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Secure State Estimation Against Sensor Attacks in
the Presence of Noise

Shaunak Mishra, Yasser Shoukry, Nikhil Karamchandani, Suhas N. Diggavi, Fellow, IEEE, and Paulo Tabuada

Abstract—We consider the problem of estimating the state of a
noisy linear dynamical system when an unknown subset of sensors
is arbitrarily corrupted by an adversary. We propose a secure state
estimation algorithm, and derive (optimal) bounds on the achiev-
able state estimation error given an upper bound on the number of
attacked sensors. The proposed state estimator involves Kalman
filters operating over subsets of sensors to search for a sensor
subset which is reliable for state estimation. To further improve the
subset search time, we propose Satisfiability Modulo Theory-based
techniques to exploit the combinatorial nature of searching over
sensor subsets. Finally, as a result of independent interest, we give
a coding theoretic view of attack detection and state estimation
against sensor attacks in a noiseless dynamical system.

Index Terms—Secure cyber-physical systems, secure state recon-
struction, sensor attacks.

I. INTRODUCTION

S ECURING cyberphysical systems (CPS) is a problem of
growing importance as the vast majority of today’s critical

infrastructure is managed by such systems. In this context, it is
crucial to understand the fundamental limits for state estimation,
an integral aspect of CPS, in the presence of malicious attacks.
With this motivation, we focus on securely estimating the state
of a linear dynamical system from a set of noisy and maliciously
corrupted sensor measurements. We restrict the sensor attacks to
be sparse in nature, that is, an adversary can arbitrarily corrupt
an unknown subset of sensors in the system but is restricted by
an upper bound on the number of attacked sensors.

Several recent works have studied the problem of secure state
estimation against sensor attacks in linear dynamical systems.
For setups with no noise in sensor measurements, the results re-
ported in [2]–[5] show that given a strong notion of observability,
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(sparse) sensor attacks can always be detected and isolated, and
we can exactly estimate the state of the system. However, with
noisy sensors, it is not trivial to distinguish between the noise and
the attacks injected by an adversary. Prior work on state estima-
tion with sensor attacks in the presence of noise can be broadly
divided into two categories depending on the noise model: 1)
bounded nonstochastic noise and 2) Gaussian noise. The results
reported in [6]–[8] deal with bounded nonstochastic noise.
Though they provide sufficient conditions for distinguishing the
sparse attack vector from bounded noise, they do not guarantee
the optimality of their estimation algorithm. The problem we fo-
cus on in this paper falls into the second category, that is, sensor
attacks in the presence of Gaussian noise. Prior work in this cate-
gory includes [9]–[12]. In [9], the focus is on detecting a class of
sensor attacks called replay attacks where the attacker replaces
legitimate sensor outputs with outputs from previous time in-
stants. In [10], the performance degradation of a scalar Kalman
filter (that is, scalar state and a single sensor) is studied when the
(single) sensor is under attack. They do not study attack sparsity
across multiple sensors and, in addition, they focus on an adver-
sary whose objective is to degrade the estimation performance
without being detected (leading to a restricted class of sensor
attacks). In [11] and [12], robustification approaches for state
estimation against sparse sensor attacks are studied. However,
they lack optimality guarantees against arbitrary sensor attacks.

In this paper, we study a general linear dynamical system
with process and sensor noises that have a Gaussian distribution,
and give (optimal) guarantees on the achievable state estimation
error against arbitrary sensor attacks. The following toy example
is illustrative of the nature of the problem addressed in this paper
and some of the ideas behind our solution.

Example 1: Consider a linear dynamical system with a scalar
state x(t) such that x(t + 1) = x(t) + w(t), and three sensors
(indexed by d ∈ {1, 2, 3}) with outputs yd(t) = x(t) + vd(t);
where w(t) and vd(t) are the process noise and sensor noise at
sensor d, respectively. The process and sensor noises follow a
zero mean Gaussian distribution with i.i.d. instantiations over
time. The sensor noise is also independent across sensors. Now,
consider an adversary which can attack any one of the sensors
in the system and arbitrarily change its output. In the absence
of sensor noise, it is trivial to detect such an attack since the
two good sensors (not attacked by the adversary) will have the
same output. Hence, a majority-based rule on the outputs leads
to the exact state. However, in the presence of sensor noise, a
difference in outputs across sensors can also be attributed to the
noise and, thus, cannot be considered an attack indicator. As a
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consequence of results in this paper, in this example, we can
identify a subset of two sensors which can be reliably used for
state estimation despite an adversary who can attack any one
of the three noisy sensors. In particular, our approach for this
example would be to search for a subset of two sensors which
satisfy the following check: over a large enough time window,
the outputs from the two sensors are consistent with the Kalman
state estimate based on outputs from the same subset of sensors.
Furthermore, we can show that such an approach leads to the
optimal state estimation error for the given adversarial setup.

In this paper, we generalize the Kalman filter-based approach
in the aforementioned example to a general linear dynamical
system with sensor and process noise. The Kalman estimate-
based check mentioned in the aforementioned example forms
the basis of a detector for an effective attack; a notion that we
introduce in this paper. For state estimation, we search for a
sensor subset which passes such an effective attack detector,
and then use outputs from such a sensor subset for state esti-
mation. We also derive impossibility results (lower bounds) on
the state estimation error in our adversarial setup, and show that
our proposed state estimation algorithm is optimal in the sense
that it achieves these lower bounds. To further reduce the sensor
subset search time for the state estimator, we propose Satisfi-
ability Modulo Theory (SMT)-based techniques to harness the
combinatorial nature of the search problem, and demonstrate the
improvements in search time through numerical experiments.

As a result of independent interest, we give a coding-theoretic
interpretation (alternate proof) for the necessary and sufficient
conditions for secure state estimation in the absence of noise [3],
[4], [7] (known as the sparse observability condition). In par-
ticular, we relate the sparse observability condition required for
attack detection and secure state estimation in dynamical sys-
tems to the Hamming distance requirements for error detection
and correction [13] in classical coding theory.

The remainder of this paper1 is organized as follows.
Section II deals with the setup and problem formulation. In
Section III, we describe our effective attack detector followed
by Section IV on our main results for effective attack detection
and secure state estimation. Section V deals with SMT-based
techniques and Section VI deals with the experimental results.
Finally, Section VII describes the coding-theoretic view for at-
tack detection and secure state estimation.

II. SETUP

In this section, we discuss the adversarial setup along with
assumptions on the underlying dynamical system, and provide a
mathematical formulation of the state estimation problem con-
sidered in this paper.

A. Notation

Symbols N, R, and B denote the sets of natural, real, and
Boolean numbers, respectively. The symbol ∧ denotes the logi-
cal AND operator. The support of a vector x ∈ Rn , denoted by

1Compared to the preliminary version [1], this paper differs in the presen-
tation of results through effective attack detection. In addition, we reduce the
complexity of the state estimation algorithm in [1] and describe SMT-based
techniques for reducing the subset search time.

supp(x), is the set of indices of the nonzero elements of x. If s is
a set, |s| is the cardinality of s. For the matrixM ∈ Rm×n , unless
stated otherwise, we denote by Mi ∈ R1×n the ith row of the
matrix. For the set s ⊆ {1, . . . , m}, we denote by Ms ∈ R|s|×n

the matrix obtained from M by removing all of the rows except
those indexed by s. We use tr (M) to denote the trace of the
matrix M. If the matrix M is symmetric, we use λmin (M) and
λmax (M) to denote the minimum and maximum eigenvalue of
M, respectively. We denote by Sn

+ the set of all n × n positive
semidefinite matrices. For a random variable x ∈ Rn , we denote
its mean by E (x) ∈ R and its covariance by V ar(x) ∈ Sn

+ . For
a discrete time random process {x(t)}t∈N , the sample average
of x using N samples starting at time t1 is defined as follows:

EN,t1 (x) =
1
N

t1 +N −1∑

t=t1

x(t). (1)

We denote by Im ∈ Rm×m and 1m ∈ Rm×1 the identity matrix
of dimension m and the vector of all ones, respectively. The
notation x(t) ∼ N (µ,Ω) is used to denote an i.i.d. Gaussian
random process with mean µ and covariance matrix Ω. Finally,
we use the symbol � for element-wise comparison between
matrices. That is, for two matrices A and B of the same size,
A � B is true if and only if each element ai,j is smaller than or
equal to bi,j .

B. System Model

We consider a linear dynamical systemΣΣΣa with sensor attacks
as shown

ΣΣΣa

{
x (t + 1) = Ax(t) + Bu(t) + w(t),

y(t) = Cx(t) + v(t) + a(t),
(2)

where x(t) ∈ Rn denotes the state of the plant at time t ∈ N,
u(t) ∈ Rm denotes the input at time t,w(t) ∼ N (

0, σ2
w In

)
de-

notes the process noise at time t, y(t) ∈ Rp denotes the output
of the plant at time t, and v(t) ∼ N (

0, σ2
v Ip

)
denotes the sen-

sor noise at time t. Both v(t) and w(t) have i.i.d. instantiations
over time, and v(t) is independent of w(t). In addition, we de-
note the output and (sensor) noise at sensor i ∈ {1, 2, . . . , p} at
time t as yi(t) ∈ R and vi(t) ∈ R, respectively. We assume that
the input u(t) is known at all times. Hence, its contribution to the
output y(t) is also known and, therefore, u(t) can be ignored.
That is, for the rest of this paper and without loss of generality,
we consider the case of u(t) = 0 for all time t ∈ N.

The sensor attack vector a(t) ∈ Rp in (2) is introduced by a
k-adversary defined as follows.

Assumption 1: A k-adversary can corrupt any k out of the p
sensors in the system.

Specifically, let κκκ ⊆ {1, 2, . . . , p} denote the set of attacked
sensors (with |κκκ| = k). The k-adversary can observe the actual
outputs in the k attacked sensors and change them arbitrarily.
For an attack-free sensor j /∈ κκκ, aj (t) = 0 for all time t ∈ N.

Assumption 2: The adversary’s choice of κκκ is unknown but
is assumed to be constant over time (static adversary).

Assumption 3: The adversary is assumed to have unbounded
computational power and knows the system parameters (e.g., A
and C) and noise statistics (e.g., σ2

w and σ2
v ).
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However, the adversary is limited to have only causal knowl-
edge of the process and sensor noise as stated by the following
two assumptions.

Assumption 4: The adversary’s knowledge at time t is statis-
tically independent of w(t′) for t′ > t, i.e., a(t) is statistically
independent of {w(t′)}t ′>t .

Assumption 5: For an attack-free sensor i ∈ {1, 2, . . . , p} \
κκκ, the adversary’s knowledge at time t (and, hence, a(t)) is
statistically independent of {vi(t′)}t ′>t .

Intuitively, Assumptions 4 and 5 limit the adversary to have
only causal knowledge of the process noise and the sensor noise
in good sensors (not attacked by the adversary). Note that, apart
from Assumptions 4 and 5, we do not impose any restrictions on
the statistical properties, boundedness, and the time evolution
of the corruptions introduced by the k-adversary.

In the following subsections, we first introduce the (effec-
tive) attack detection problem, followed by the (optimal) secure
state estimation problem. As we show later in this paper (in
Section IV), our solution for the effective attack detection prob-
lem is used as a crucial component for solving the secure state
estimation problem.

C. Effective Attack Detection Problem

In this section, we introduce our notion of effective (sensor)
attacks and formulate the problem of detecting them. Recall
that in the absence of sensor attacks, using a Kalman filter
for estimating the state in (2) leads to the (optimal) minimum
mean square error (MMSE) covariance asymptotically [14]. In
this context, our notion of effective attacks is based on the
following intuition: if we naively use a Kalman filter for state
estimation in the presence of an adversary, an attack is effective
when it causes a higher empirical error variance compared to
the attack-free case. Before we formally state our definition of
effective attacks, we first setup some notation for Kalman filters
as described below.

We denote by x̂s(t) the state estimate of a Kalman filter
at time t using outputs till time t − 1 from the sensor subset
s ⊆ {1, 2, . . . , p}. Since we use outputs until time t − 1, we
essentially use the prediction version of a Kalman filter as op-
posed to filtering where outputs until time t are used to compute
x̂s(t). In this paper, we state our results using the prediction
version of the Kalman filter; the extension for the filtering ver-
sion is straightforward. (For details about the filtering version of
our results, see the extended version [15].) In addition to x̂s(t),
we denote x̂�

s (t) as the Kalman filter state estimate at time t
using sensor subset s when all of the sensors in s are attack-
free. We eliminate the subscript s from the previous notation
whenever the Kalman filter uses all sensor measurements, that
is, when s = {1, . . . , p}. In this paper, for the sake of simplicity,
we assume that all Kalman filters we consider (in our proposed
algorithms and their analysis) are in steady state [14] when they
use uncorrupted sensor outputs. Hence, in the absence of attacks,
the error covariance matrix P�(t) ∈ S +

n defined as

P�(t) = P� = E
(
(x(t) − x̂�(t)) (x(t) − x̂�(t))T

)
,

does not depend on time. In a similar spirit, we define the error
covariance matrix P�

s ∈ S +
n corresponding to a sensor subset

s ⊆ {1, 2, . . . , p} as

P�
s = E(x(t) − x̂�

s (t))(x(t) − x̂�
s (t))

T .

Note that the error covariance matrix depends on the set of
sensors involved in estimating the state. Also, the steady-state
error has zero mean, that is, E (x(t) − x̂�

s (t)) = 0. Using the
above notation, we define an (ε, s)-effective attack as follows.

Definition 1 ((ε, s)-Effective Attack): Consider the linear
dynamical system under attack ΣaΣaΣa as defined in (2), and a k-
adversary satisfying Assumptions 1–5. For the set of sensors s,
an ε > 0, and a large enough N ∈ N, an attack signal is called
(ε, s)-effective at time t1 if the following bound holds:

tr
(
EN,t1

(
eseT

s

))
> tr(P�

s ) + ε,

where es(t) = x(t) − x̂s(t), and EN,t1 (·) denotes the sample
average as defined (1).

In other words, an attack is called (ε, s)-effective if it can
lead to a higher estimation error compared to the optimal esti-
mation error in the absence of sensor attacks, using the same
set of sensors s. An attack is called (ε, s)-ineffective if it is not
(ε, s)-effective. Essentially, we use EN,t1

(
eseT

s

)
as a proxy for

the state estimation error covariance matrix in the presence of
attacks; a sample average is used instead of an expectation be-
cause the resulting error in the presence of attacks may not be
ergodic. Also, since x̂s(t) is computed using all measurements
from time 0 until time t − 1, Definition 1 implicitly takes into
consideration the effect of attack signal a(t) for the time window
starting from 0 until time t1 + N − 1.

Using the above notion of an (ε, s)-effective attack, we define
the ε-effective attack detection problem as follows.

Problem 1. [ε-Effective Attack Detection Problem]:
Consider the linear dynamical system under attack ΣaΣaΣa as
defined in (2), and a k-adversary satisfying Assumptions 1–5.
Let sall be the set of all sensors, that is, sall = {1, . . . , p}. Given
an ε > 0, construct an attack indicator d̂attack ∈ {0, 1} such that:

d̂attack(t1) =

{
1 if the attack is (ε, sall)-effective at time t1

0 otherwise.

D. Optimal Secure State Estimation Problem

We now focus on the problem of estimating the state from
the adversarially corrupted sensors. We start by showing a neg-
ative result stating that a certain estimation error bound may
be impossible to achieve in the presence of a k-adversary. To
do so, we define the sensor set that contains p − k sensors and
corresponds to the worst case Kalman estimate as

sworst,p−k = arg max
s⊆{1,2,...,p},

|s|=p−k

tr(P�
s ). (3)

The impossibility result can now be stated as follows.
Theorem 1 (Impossibility): Consider the linear dynamical

system under attack ΣaΣaΣa as defined in (2), and an oracle MMSE
estimator that has knowledge of κκκ, that is, the set of sensors
attacked by a k-adversary. Then, there exists a choice of sensors
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κκκ and an attack sequence a(t) such that the trace of the error
covariance of the oracle estimator is bounded from below as
follows:

tr

(
E
(
e(t)eT (t)

)) ≥ tr

(
P�

sworst, p −k

)
, (4)

where e(t) above is the oracle estimator’s error.
Proof: Consider the attack scenario where the outputs from

all attacked sensors are equal to zero, that is, the corruption
aj (t) = −Cjx(t) − vj (t), ∀j ∈ κκκ. In such a scenario, the in-
formation collected from the attacked sensors cannot enhance
the estimation performance, and the oracle estimator can simply
use the remaining (attack free) sensors to achieve the best pos-
sible error performance. Hence, the result follows by picking κκκ
such that κκκ = {1, . . . , p} \ sworst,p−k . �

In the context of Theorem 1, we define a state estimate to be
optimal if it is guaranteed to achieve the lower bound shown in
(4). This can be formalized as follows.

Problem 2. [Optimal Secure State Estimation Problem]:
Consider the linear dynamical system under attack ΣaΣaΣa as de-
fined in (2), and a k-adversary satisfying Assumptions 1–5. For
a time window G = {t1 , t1 + 1, . . . , t1 + N − 1}, construct
the state estimates {x̂(t)}t∈G such that

tr

(
EN,t1

(
eeT

)) ≤ tr

(
P�

sworst, p −k

)
,

where e(t) = x(t) − x̂(t) is the state estimation error.
Similar to Definition 1, we use the sample average

EN,t1

(
eeT

)
in Problem 2 (and not expectation) since the re-

sulting error in the presence of attacks may not be ergodic.

III. SPARSE OBSERVABILITY AND (ε, s)-EFFECTIVE ATTACK

DETECTION

In this section, we first describe the notion of k-sparse observ-
ability [4]. This notion plays an important role in determining
when Problems 1 and 2 are solvable. After describing sparse ob-
servability, we describe an algorithm for (ε, s)-effective attack
detection which leverages sparse observability for its perfor-
mance guarantees.

A. k-Sparse Observability

Definition 2. (k-Sparse Observable System): The linear dy-
namical system under attack ΣaΣaΣa as defined in (2), is said to
be k-sparse observable if for every set s ⊆ {1, . . . , p} with
|s| = p − k, the pair (A,Cs) is observable.

In other words, a system is k-sparse observable if it remains
observable after eliminating any choice of k sensors. In the
absence of sensor and process noise, the conditions under which
exact (that is, zero error) state estimation can be done despite
sensor attacks have been studied in [3], [4], and [7] where it is
shown that 2k-sparse observability is necessary and sufficient
for exact state estimation against a k-adversary. In Section VII,
we provide a coding-theoretic interpretation for this condition
in the context of attack detection and secure state estimation in
any noiseless dynamical system.

B. (ε, s)-Effective Attack Detector

In this section, we describe an algorithm based on the sparse
observability condition for detecting an (ε, s)-effective attack.
We first introduce some additional notations, followed by the
description of the algorithm and its performance guarantee.

1) Additional Notation: Let the sensors be indexed by i ∈
{1, 2, . . . , p}. We define the following observability matrices:

Oi =

⎡

⎢⎢⎢⎣

Ci

CiA
...

CiAμi −1

⎤

⎥⎥⎥⎦, O =

⎡

⎢⎢⎢⎣

O1
O2
...

Op

⎤

⎥⎥⎥⎦, (5)

where Oi is the observability matrix for sensor i (with observ-
ability index μi as shown in (5)) and O is the observability
matrix for the entire system (that is, p sensors) formed by stack-
ing the observability matrices for the sensors. Similarly, for any
sensor subset s ⊆ {1, 2, . . . , p}, we denote the observability ma-
trix for s by Os (formed by stacking the observability matrices
of sensors in s). Without loss of generality, we will consider
the observability index μi = n for each sensor. For any sensor
subset s with |s| > k, we define λmin,s\k as follows:

λmin,s\k = min
s1 ⊂s, |s1 |= |s|−k

λmin
(OT

s1
Os1

)
, (6)

where λmin
(OT

s1
Os1

)
denotes the minimum eigenvalue of

OT
s1
Os1 . We define matrices Ji , J, and M as shown below

Ji =

⎡

⎢⎢⎢⎢⎢⎣

0 0 . . . 0
Ci 0 . . . 0

CiA Ci . . . 0
...

...
. . .

...
CiAμi −2 CiAμi −3 . . . Ci

⎤

⎥⎥⎥⎥⎥⎦
, J =

⎡

⎢⎢⎢⎣

J1
J2
...

Jp

⎤

⎥⎥⎥⎦,

M = σ2
w JJT + σ2

v Inp . (7)

In a similar spirit, Js is defined for a sensor subset s by stacking
Ji for i ∈ s, and Ms = σ2

w JsJ
T
s + σ2

v In |s|. We use the follow-
ing notation for sensor outputs and noises corresponding to a
time window of size μi = n (observability index):

yi(t) =

⎡

⎢⎢⎢⎣

yi(t)
yi(t + 1)

...
yi(t + μi − 1)

⎤

⎥⎥⎥⎦, vi(t) =

⎡

⎢⎢⎢⎣

vi(t)
vi(t + 1)

...
vi(t + μi − 1)

⎤

⎥⎥⎥⎦,

ȳ(t) =

⎡

⎢⎢⎢⎢⎢⎣

y1(t)
y2(t)

...

yp(t)

⎤

⎥⎥⎥⎥⎥⎦
, v̄(t) =

⎡

⎢⎢⎢⎣

v1(t)
v2(t)

...
vp(t)

⎤

⎥⎥⎥⎦, w̄(t)=

⎡

⎢⎢⎢⎣

w(t)
w(t+1)

...
w(t+n−2)

⎤

⎥⎥⎥⎦

(8)

where yi(t) and vi(t) denote the output and sensor noise at
sensor i at time t, respectively.

2) Attack Detection Algorithm: We consider the attack de-
tection problem for a time window G = {t1 , t1 + 1, . . . , t1 +
N − 1}, and assume without loss of generality that the window
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Algorithm 1: ATTACK-DETECT (s, t1).
1: Run a Kalman filter that uses all measurements from

sensors indexed by s until time t1 − 1 and compute the
estimate x̂s(t1) ∈ Rn .

2: Recursively repeat the previous step N − 1 times to
calculate all estimates x̂s(t) ∈ Rn , ∀t ∈ G = {t1 , t1 +
1, . . . , t1 + N − 1}.

3: For time t ∈ G, calculate the block residue

rs(t) = ȳs(t) −Osx̂s(t) ∀t ∈ G.

4: if block residue test defined below holds,

EN,t1

(
rsrT

s

)− (OsP�
sOT

s + Ms
)

� η 1n |s|1T
n |s|,

where 0 < η ≤
(

λm in , s \k
3n(|s|−k)

)
ε, then

5: assert d̂attack,s(t1) := 0
6: else
7: assert d̂attack,s(t1) := 1
8: end if
9: return (d̂attack,s(t1), {x̂s(t)}t∈G ).

size N is divisible by n. For a sensor subset s with |s| > k, we
start by computing the state estimate x̂s(t1) obtained through a
Kalman filter that uses measurements collected from time 0 up to
time t1 − 1 from all sensors indexed by the subset s. Using this
estimate, we can calculate the block residue rs(t1) which is the
discrepancy between the estimated output ŷs(t1) = Osx̂s(t1)
and the actual output ys(t1), i.e.,

rs(t1) = ys(t1) − ŷs(t1) = ys(t1) −Osx̂s(t1). (9)

By repeating the previous procedure N − 1 times, we can ob-
tain the sequence of residues {rs(t)}t∈G . The next step is to
calculate the sample average of rs(t)rT

s (t), and compare the
sample average with the expected value of rs(t)rT

s (t) in the
case when sensor subset s is attack free. This can be done using
the following (block) residue test:

EN,t1

(
rsrT

s

)− (OsP�
sOT

s + Ms
)

� η 1n |s|1T
n |s|, (10)

for some η > 0. Simply put, the residue test checks whether the
sample average of rs(t)rT

s (t) over time window G is close to
its attack-free expected value OsP�

sOT
s + Ms . This is similar

in spirit to a Chi-squared test [16] (with stronger guarantees
as shown in Section III-C), and the time window essentially
averages out the effect of noise. Note the attack-free estimation
error covariance matrix P�

s used in (10) can be computed offline
[14] without the need for any data collected from attack-free
sensors. If the element-wise comparison in the residue test (10)
is valid, we set the attack detection flag d̂attack,s(t1) to zero
indicating that no attack was detected in sensor subset s. This
procedure is summarized in Algorithm 1.

C. Performance Guarantees

In this subsection, we describe our first main result which is
concerned with the correctness of Algorithm 1.

Lemma 1: Let the linear dynamical system as defined in
(2) be 2k-sparse observable. Consider a k-adversary satisfy-
ing Assumptions 1–5 and a sensor subset s ⊆ {1, 2, . . . , p} with
|s| ≥ p − k. For any ε > 0 and δ > 0, there exists a large enough
time window length N such that when Algorithm 1 terminates
with d̂attack,s(t1) = 0, the following probability bound holds:

P
(
tr
(
EN,t1

(
eseT

s

)− P�
s

) ≤ ε
)
≥ 1 − δ, (11)

where es(t) = x(t) − x̂s(t). In other words, for large enough
N , the bound tr

(
EN,t1

(
eseT

s

)− P�
s

) ≤ ε holds with high
probability2 (w.h.p.). Moreover, in the context of (ε, s)-effective
attacks, the following also holds:

P
(
d̂attack,s(t1) = dattack,s(t1)

)
≥ 1 − δ, (12)

where d̂attack,s(t1) is the output of Algorithm 1 while dattack,s(t1)
is the output of an oracle detector that knows the exact set of
attacked sensors. Hence, Algorithm 1 can detect any (ε, s)-
effective attack w.h.p. for large enough N .

Proof of Lemma 1: We focus only on showing that (11) holds
whenever Algorithm 1 terminates with d̂attack,s(t1) = 0; the
rest of the lemma easily follows from the proof of (11) and
Definition 1. Since we assume that the set s has cardinality
|s| ≥ p − k, we can conclude that there exists a subset sg ⊂ s
with cardinality |sg | ≥ p − 2k sensors such that all of its sen-
sors are attack free (subscript g in sg stands for good sensors in
s). Hence, by decomposing the set s into an attack-free set sg

and a potentially attacked set s \ sg , we can conclude that after
a permutation similarity transformation for (10), the following
holds for the attack-free subset: sg :

EN,t1

(
rsg

rT
sg

)
−Osg

P�
sOT

sg
− Msg

� η 1n(|s|−k)1T
n(|s|−k) .

Therefore

tr
(

EN,t1

(
rsg

rT
sg

)
−Osg

P�
sOT

sg
− Msg

)

≤ n(|s| − k)η = ε1 . (13)

Similarly, after a suitable permutation Π, we can decompose
the block residue rs(t) defined in (9) as follows:

Π(rs(t)) =
[

rsg
(t)

rs\sg
(t)

]
=
[

ysg
(t) −Osg

x̂s(t)
ys\sg

(t) −Os\sg
x̂s(t)

]

=
[Osg

x(t) + Jsg
w̄(t) + v̄sg

(t) −Osg
x̂s(t)

ys\sg
(t) −Os\sg

x̂s(t)

]

=
[ Osg

es(t) + zsg
(t)

ys\sg
(t) −Os\sg

x̂s(t)

]
, (14)

2By stating that the bound holds with high probability for large enough N ,
we mean that for any δ > 0 and ε > 0, ∃Nδ,ε ∈ N such that for N > Nδ,ε ,

P
(

tr
(

EN ,t1

(
eseT

s

)
− P�

s

)
≤ ε

)
≥ 1 − δ.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on July 17,2020 at 04:49:32 UTC from IEEE Xplore.  Restrictions apply. 



54 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 1, MARCH 2017

where zsg
(t) = Jsg

w̄(t) + v̄sg
(t). Using (14), we can rewrite

tr
(

EN,t1

(
rsg

rT
sg

))
as

tr
(

EN,t1

(
rsg

rT
sg

))
= tr

(
Osg

EN,t1

(
eseT

s

)OT
sg

)

+ tr
(

EN,t1

(
zsg

zT
sg

))
+ 2EN,t1

(
eT
s OT

sg
zsg

)
. (15)

By combining (13) and (15)

tr
(
Osg

EN,t1

(
eseT

s

)OT
sg

−Osg
P�

sOT
sg

)

≤ tr
(
Msg

)− tr
(

EN,t1

(
zsg

zT
sg

))
+ ε1

− 2EN,t1

(
eT
s OT

sg
zsg

)

(a)
≤ 2ε1 − 2EN,t1

(
eT
s OT

sg
zsg

)
(16)

(b)
≤ 3ε1 , (17)

where (a) follows w.h.p. due to the law of large numbers (LLN)
for large enough N (details in Appendix A1), and (b) follows
w.h.p. by showing that the cross term 2EN,t1 (e

T OT
sg

zsg
) has

zero mean and vanishingly small variance for large enough N .
The cross term analysis is described in detail in Appendix A2.
Now recall that for any two matrices A and B of appropriate
dimensions, tr (AB) = tr (BA). Using this fact along with
(17), the following holds:

tr
(

EN,t1

(
eseT

s − P�
s

)OT
sg
Osg

)
≤ 3ε1 , (18)

and, hence, we obtain the following bound which completes the
proof:

tr
(
EN,t1

(
eseT

s

)−P�
s

) (c)
≤ 3ε1

λmin

(
OT

sg
Osg

)
(d)
≤ 3ε1

λmin,s\k
≤ ε

(19)

where (c) follows from Lemma 3 in Appendix B and (d) fol-
lows from the definition of λmin,s\k . Note that it follows from:
|sg | ≥ p − 2k and 2k-sparse observability, that λmin(OT

sg
Osg

)
and λmin,s\k are bounded away from zero. This completes the
proof of (11). Based on the proof of (11) and Definition 1, it
is now straightforward to show (12). Intuitively, the probability
of mismatch between d̂attack,s(t1) and dattack,s(t1) in (12) stems
from the chances of a false detection; this occurs when the
noise realizations deviate from LLN and the detector’s thresh-
old check fails despite the absence of an adversary. As seen in
the proof of (11), w.h.p. the noise realizations obey LLN, and,
hence, w.h.p. d̂attack,s(t1) and dattack,s(t1) are equal. �

IV. EFFECTIVE ATTACK DETECTION AND SECURE STATE

ESTIMATION

Based on the performance guarantees for the ATTACK-DETECT

algorithm described in Section III, in this section, we describe
our main results for Problems 1 and 2.

Algorithm 2: EXHAUSTIVE SEARCH.
1: Enumerate all sets s ∈ S such that

S = {s|s ⊂ {1, 2, . . . , p}, |s| = p − k}.
2: Exhaustively search for s∗ ∈ S for which

dattack,s∗(t1) = 0 and use x̂s∗(t) for t ∈ G as the state
estimate.

A. Attack Detection

We start by showing a solution to Problem 1 (ε-effective attack
detection), which follows directly from Lemma 1.

Theorem 2: Let the linear dynamical system defined in (2)
be a k-sparse observable system. Consider a k-adversary satis-
fying Assumptions 1–5, and the detector d̂attack(t1) = ATTACK-
DETECT(sall, t1) where the set sall = {1, . . . , p}. Then, for a
large enough time window length N , w.h.p. d̂attack(t1) is equal
to the attack indicator which solves Problem 1.

Proof: The proof is similar to the proof of Lemma 1. In the
proof of Lemma 1, we basically required the set of good sensors
sg to form an observable system. Similarly, while checking for
effective attacks on a sensor set of size p, we require the set of
good sensors (of size ≥ p − k) to form an observable system in
order to repeat the steps in the proof for Lemma 1; this require-
ment is guaranteed by the k-sparse observability condition. On
a related note, in Section VII, we give a coding-theoretic inter-
pretation for the k-sparse observability requirement for attack
detection. �

B. Secure State Estimation

Algorithm 2 describes our proposed solution for Problem 2
(secure state estimation). As described in Algorithm 2, we
exhaustively enumerate

(
p

p−k

)
sensor subsets of size p − k,

and then apply ATTACK-DETECT on each sensor subset un-
til we find one subset s∗ for which ATTACK-DETECT returns
d̂attack,s∗(t1) = 0 indicating that the subset is (ε-effective) attack
free. The following theorem states the performance guarantees
associated with Algorithm 2.

Theorem 3: Let the linear dynamical system defined in (2)
be a 2k-sparse observable system. Consider a k-adversary sat-
isfying Assumptions 1–5. Consider the state estimate x̂s∗(t)
computed by Algorithm 2. Then, for any ε > 0 and δ > 0, there
exists a large enough N such that

P
(
tr
(
EN,t1

(
es∗eT

s∗
)) ≤ tr

(
P�

sworst, p −k

)
+ ε
)
≥ 1 − δ (20)

where es∗(t) = x(t) − x̂s∗(t) is the estimation error
using x̂s∗(t) as the state estimate. In other words, w.h.p.

Algorithm 2 achieves the bound lim sup
N →∞

1
N

∑
t∈G

eT
s∗(t)es∗(t)

≤ tr(P�
sworst, p −k

).
Proof: The result follows from Lemma 1 which en-

sures that in the absence of the (ε, s)-effective attack
property, the calculated state estimate still guarantees the
bound (11). This, in turn, implies that in the worst case

lim sup
N →∞

1
N

∑
t∈G

eT
s∗(t)es∗(t) = tr(P�

sworst, p −k
) is achievable.
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However, since the k-adversary may not always attack
the worst case set of sensors sworst,p−k , we can replace
the equality sign above with an inequality, leading to

lim sup
N →∞

1
N

∑
t∈G

eT
s∗(t)es∗(t) ≤ tr(P�

sworst, p −k
). �

V. REDUCING SEARCH TIME USING SATISFIABILITY MODULO

THEORY SOLVING

Algorithm 2 exhaustively explores all combinations of p − k
sensors until a set s∗ satisfying dattack,s∗(t1) = 0 is found. In
this section, we explore the idea of using sophisticated search
techniques in order to harness the underlying combinatorial
aspect of the secure state estimation problem. In particular, we
extend previous work by the authors and co-workers on using
Satisfiability Modulo Theory (SMT)-like solvers [6], developed
for the noiseless case, in order to improve the search time while
preserving optimality of the solution.

The driving concept behind SMT solvers can be summarized
as follows. First, the search space of all sensor subsets with
cardinality p − k, is encoded using Boolean variables (the num-
ber of Boolean variables increases linearly with the number of
sensors), and a Boolean search engine (e.g., SAT solver) is used
in order to traverse the search space. Whenever the SAT solver
suggests one possible solution in the search space, a higher
level solver (typically referred to as the Theory-solver) is used to
check the correctness of that particular solution. Finally, in order
to prevent the SAT solver from enumerating all possible solu-
tions in the search space, the Theory-solver generates counter
examples (certificates), explaining why a particular solution is
not valid. Each certificate is used by the SAT solver in order to
prune the search space and hence enhance the performance of
the overall algorithm. This methodology of “counter-example
guided search” effectively breaks the secure state estimation
problem into two simpler tasks over the Boolean and Reals do-
main. Further details about this technique are described below.

A. Overall Architecture

We start by introducing a Boolean indicator variable b =
(b1 , . . . , bp) ∈ Bp where the assignment bi = 1 hypothesizes
that the ith sensor is under attack while the assignment bi = 0
hypothesizes that the ith sensor is attack-free. Using this indi-
cator variable, b, we start by asking the (pseudo-)Boolean SAT
solver to assign values to b in order to satisfy the following
formula:

φ(0) ::=
p∑

i = 1

bi ≤ k, (21)

which ensures that at most k sensors are going to be hypothe-
sized as being under attack (the addition in (21) is over Reals).

In the next step, this hypothesized assignment is then
checked by the theory solver. This is done by running the
ATTACK-DETECT algorithm (Algorithm 1) using only the set of
hypothesized attack-free sensors s(b) = {1, . . . , p} − supp(b).
If the ATTACK-DETECT algorithm returns d̂attack,s(b) = 0 then our
solver approves this hypothesis and the algorithm termi-
nates. Otherwise, an UNSAT certificate (also known as a

Algorithm 3: SMT-BASED SEARCH.
1: status := UNSAT;
2: φB :=

∑
i∈{1,...,p} bi ≤ k;

3: while status == UNSAT do
4: b := SAT-SOLVE(φB );
5: s(b) := {1, 2, . . . , p} − supp(b);
6: (d̂attack,s(b) , {x̂s(b)(t)}t∈G )

:= ATTACK-DETECT(s(b), t1);
7: if d̂attack,s(b) == 1 then
8: φcert

:= GENERATE-CERTIFICATE(s(b), {x̂s(b)(t)}t∈G );
9: φB := φB ∧ φcert;

10: end if
11: end while
12: s∗ = s(b);
13: return {x̂s∗(t)}t∈G ;

counter-example) is generated explaining why this assignment
of b is not valid (i.e., a conflict). A trivial UNSAT certifi-
cate that can always be generated takes the following form (in
iteration j):

φcert(j) ::=
∑

i∈s(b)

bi ≥ 1, (22)

which ensures that the current assignment of the variable b is ex-
cluded. Once this UNSAT certificate is generated, the (pseudo-)
Boolean SAT solver is then invoked again in the next iteration
with the following constraints:

φ(j + 1) ::= φ(j) ∧ φcert(j),

until one assignment of the variable b passes the attack detection
test. This procedure is summarized in Algorithm 3.

B. Conflicting Certificates

The generated UNSAT certificates heavily affect the overall
execution time. Smaller UNSAT certificates prune the search
space faster. For simplicity, consider the example shown in Fig. 1
where the vector b has only three elements. On one hand, an
UNSAT certificate that has the form φcert = b1 + b2 + b3 ≥ 1
leads to pruning only one sample in the search space. On the
other hand, a smaller UNSAT certificate that has the form φcert =
b1 ≥ 1 eliminates four samples in the search space which is
indeed a higher reduction, and hence leads to better execution
time.

To generate a compact (i.e., smaller) Boolean constraint that
explains a conflict, we aim to find a small set of sensors that can-
not all be attack-free. To do so, we start by removing one sensor
from the set s(b) and run the ATTACK-DETECT algorithm on the
reduced set s′(b) to obtain d̂attack,s′(b) . If d̂attack,s′(b) still equals
one (which indicates that set s′(b) still contains a conflicting set
of sensors), we generate the more compact certificate:

φcert(j) ::=
∑

i∈s′(b)

bi ≥ 1. (23)
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Fig. 1. Pictorial example illustrating the effect of generating smaller conflicting certificates. (a) A tree showing all the combinations of three Boolean indicator
variables b1 , b2 , b3 when a conflicting certificate of the form φcert := b1 + b2 + b3 ≥ 1 is generated. The missing combination {0, 0, 0} is the only one that is
eliminated as a result of this certificate. (b) A tree showing all the combinations of three Boolean indicator variables b1 , b2 , b3 when a conflicting certificate of the
form φcert := b3 ≥ 1 is generated. The missing four combinations {0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0} are eliminated as a result of this certificate.

Algorithm 4: GENERATE-CERTIFICATE (s, {x̂s(t)}t∈G ).
1: Compute the residues for i ∈ s
2: ri(t) :=yi(t)−Oi x̂s(t), ∀t∈G={t1 , . . . , t1 +N−1}
3: μi(t1) :=

∣∣tr
(
EN,t1

(
rirT

i

)−OiP�
sOT

i −Mi

)−ηn
∣∣;

4: Normalize the residues
5: μi(t1) := μi(t1)/λmax

(OT
i Oi

)
,

6: µ(t1) := {μi(t1)}i∈s ;
7: Sort the residues in ascending order
8: µ sorted(t1) := sortAscendingly(µ(t1));
9: Choose sensor indices of p−2k+1 smallest residues

10: µ min r := Index (μ sorted[1 : p − 2k + 1]) ;
11: Search linearly for the UNSAT certificate
12: status = UNSAT; counter = 1; φconf-cert = 1; s′ = s
13: while status == UNSAT do
14: s′ := s′ \ µ min r[counter];
15: (d̂attack,s′ , {x̂s′(t)}t∈G ) := ATTACK-DETECT(s′, t1);
16: if d̂attack,s′ == 1 then
17: φconf-cert := φconf-cert ∧

∑
i∈s′ bi ≥ 1;

18: counter := counter + 1;
19: else
20: status := SAT;
21: end if
22: end while
23: return φconf-cert

We continue removing sensors one by one until we cannot find
any more conflicting sensor sets. Indeed, the order in which
the sensors are removed is going to affect the overall execution
time. In Algorithm 4 we implement a heuristic (for choosing
this order) which is inspired by the strategy we adopted in the
noiseless case [6].

Note that the reduced sets s′(b) are used only to generate the
UNSAT certificates. Hence, it is direct to show that Algorithm 3
still preserves the optimality of the state estimate as stated by
the following result.

Theorem 4: Let the linear dynamical system defined in (2) be
2k-sparse observable system. Consider a k-adversary satisfying
Assumptions 1–5. Consider the state estimate x̂s∗(t) computed
by Algorithm 3. Then, for any ε > 0 and δ > 0, there exists a
large enough N such that:

P
(
tr
(
EN,t1

(
es∗eT

s∗
))≤ tr

(
P�

sworst, p −k

)
+ε
)
≥ 1−δ. (24)

Note that although, for the sake of brevity, we did not analyze
analytically the worst case execution time (in terms on number

of iterations) of Algorithm 3, we show numerical results in
Section VI that support the claim that the proposed SMT-like
solver works much better in practice compared to the exhaustive
search procedure (Algorithm 2).

VI. NUMERICAL EXPERIMENTS

In this section, we report numerical results for Algorithms 2
and 3 as described by the experiments below.

A. Experiment 1: Residue Test Performance in Algorithm 2

In this experiment, we numerically check the performance
of the residue test involved in Algorithm 2 while checking for
effective attacks across sensor subsets. We generate a stable sys-
tem randomly with n = 20 (state dimension) and p = 5 sensors.
We select k = 2 sensors at random, and apply a random attack
signal to the two sensors. We apply Algorithm 2 by running all
the
(5
3

)
= 10 Kalman filters (one for each distinct sensor subset

of size 3) and do the residue test corresponding to each sensor
subset. Fig. 2(a) shows the maximum entry in the residue test
matrix Rs = EN,t1

(
rsrT

s

)− (OsP�
sOT

s + Ms
)

for the 10 dif-
ferent Kalman filters. It is apparent from Fig. 2(a) that only one
Kalman filter produces a state estimate that passes the residue
test defined in Algorithm 1. This indeed corresponds to the set
of attack-free sensors in the experiment.

B. Experiment 2: Performance of SMT-Based Search

In this experiment, we compare the sensor subset search time
for the SMT-based approach (Algorithm 3) with that for the
exhaustive search approach (Algorithm 2). For this experiment,
we fix n = 50 (state dimension) and vary the number of sensors
from p = 3 to p = 15. For each system, we pick one third of the
sensors to be under attack, i.e., k = �p/3�. The attack signal is
chosen as a linear function of the measurement noise. For each
system, we run the bank of

(
p

p − k

)
Kalman filters to generate the

state estimates corresponding to all sensor subsets of size p − k.
We then use both exhaustive search as well as the SMT-based
search to find the sensor subset that satisfies the residue test in
Algorithm 1. Fig. 3 shows the average time needed to perform
the search across 50 runs of the same experiment. Fig. 3 suggests
that the SMT-based search has an exponential improvement over
exhaustive search as the number of sensors increases. In partic-
ular, for p = 15, the SMT-based search out-performs exhaustive
search by an order of magnitude.
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Fig. 2. Figure showing results of Experiment 1: (a) the maximum entry in the residue test matrix Rs = EN ,t1

(
rs rT

s

)
−
(
OsP�

s OT
s + Ms

)
for the 10

Kalman filters versus the threshold η = 0.7 (indicated by the dashed red line). As shown in the figure, there is only one subset of sensors which satisfies the
threshold η, and this corresponds to the attack-free set of sensors, and (b) the estimated state trajectory (of state x4 and x8 , i.e., dimension 4 and 8 of x) from the
subset of sensors which satisfy the threshold versus the actual state trajectory.

Fig. 3. Comparison of sensor subset search times for exhaustive search and
SMT-based search.

VII. SPARSE OBSERVABILITY: CODING THEORETIC VIEW

In this section, we revisit the sparse observability condition
against a k-adversary and give a coding theoretic interpretation
for the same. We first describe our interpretation for a linear
system, and then discuss how it can be generalized for non-
linear systems.

Consider the linear dynamical system in (2) without the
process and sensor noise (i.e., x (t + 1) = Ax(t), y(t) =
Cx(t) + a(t)). If the system’s initial state is x(0) ∈ Rn and
the system is θ-sparse observable, then clearly in the absence of
sensor attacks, by observing the outputs from any p − θ sensors
for n time instants (t = 0, 1, . . . , n − 1) we can exactly recover
x(0) and hence, exactly estimate the state of the plant. A cod-
ing theoretic view of this can be given as follows. Consider
the outputs from sensor d ∈ {1, 2, . . . , p} for n time instants as
a symbol Yd ∈ Rn . Thus, in the (symbol) observation vector
Y =

[Y1 Y2 . . .Yp

]
, due to θ-sparse observability, any p − θ

symbols are sufficient (in the absence of attacks) to recover the
initial state x(0). Now, let us consider the case of a k-adversary
which can arbitrarily corrupt any k sensors. In the coding theo-
retic view, this corresponds to arbitrarily corrupting any k (out
of p) symbols in the observation vector. Intuitively, based on the
relationship between error correcting codes and the Hamming
distance between codewords in classical coding theory [13], one
can expect the recovery of the initial state despite such corrup-
tions to depend on the (symbol) Hamming distance between the
observation vectors corresponding to two distinct initial states
(say x(1)(0) and x(2)(0) with x(1)(0) �= x(2)(0)). In this con-
text, the following lemma relates θ-sparse observability to the
minimum Hamming distance between observation vectors in
the absence of attacks.

Lemma 2: For a θ-sparse observable system, the minimum
(symbol) Hamming distance between observation vectors cor-
responding to distinct initial states is θ + 1.

Proof: Consider a system with p sensors, and observa-
tion vectors Y (1) and Y (2) corresponding to distinct initial
states x(1)(0) and x(2)(0). Due to θ-sparse observability, at
most p − θ − 1 symbols in Y (1) and Y (2) can be identical;
if any p − θ of the symbols are identical, this would imply
x(1)(0) = x(2)(0). Hence, the (symbol) Hamming distance be-
tween the observation vectors Y (1) and Y (2) (corresponding to
x(1)(0) and x(2)(0)) is at least p − (p − θ − 1) = θ + 1 sym-
bols. Also, there exists a pair of initial states

(
x(1)(0),x(2)(0)

)
,

such that the corresponding observation vectors Y (1) and Y (2)

are identical in exactly p − θ − 1 symbols3 and differ in the
rest θ + 1 symbols. Hence, the minimum (symbol) Hamming
distance between the observation vectors is θ + 1. �

For a θ-sparse observable system, since the minimum Ham-
ming distance between the observation vectors corresponding
to distinct initial states is θ + 1, we can:

1) correct up to k < θ+1
2 sensor corruptions,

2) detect up to k ≤ θ sensor corruptions.
Note that (1) above is equivalent to 2k ≤ θ (sparse observ-

ability condition for secure state estimation [4]). It should be
noted that a k-adversary can attack any set of k (out of p) sen-
sors, and the condition k < θ+1

2 is both necessary and sufficient
for exact state estimation despite such attacks. When k ≥ θ+1

2 ,
it is straightforward to show a scenario where the observation
vector (after attacks) can be explained by multiple initial states,
and hence exact state estimation is not possible. The following
example illustrates such an attack scenario.

Example 2: Consider a θ-sparse observable system with
θ = 3, number of sensors p = 5, and a k-adversary with k = 2.
Clearly, the condition k < θ+1

2 is not satisfied in this example.
Letx(1)(0) andx(2)(0) be distinct initial states, such that the cor-
responding observation vectors Y (1) and Y (2) have (minimum)
Hamming distance θ + 1 = 4 symbols. Fig. 4 depicts the ob-
servation vectors Y (1) and Y (2) , and for the sake of this ex-
ample, we assume that the observation vectors have the same
first symbol (i.e., Y (1)

1 = Y (2)
1 = Y1) and differ in the rest

3 If there is no such pair of initial states, the initial state can be recovered by
observing any p − θ − 1 sensors. By definition, in a θ-sparse observable system,
θ is the largest positive integer, such that the initial state can be recovered by
observing any p − θ sensors.
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Fig. 4. Example with θ = 3, p = 5 and k = 2. For distinct initial states
x(1) (0) and x(2) (0), the corresponding observation vectors are Y(1) and Y(2) .

Given (attacked) observation vector Y =
[
Y1 Y(1)

2 Y(1)
3 Y(2)

4 Y(2)
5

]
, there

are two possibilities for the initial state: (a) x(1) (0) with attacks on sensors 4
and 5, or (b) x(2) (0) with attacks on sensors 2 and 3.

4 symbols (hence, a Hamming distance of 4). Now, as shown
in Fig. 4, suppose the observation vector after attacks was

Y =
[
Y1 Y (1)

2 Y (1)
3 Y (2)

4 Y (2)
5

]
. Clearly, there are two possi-

ble explanations for this (attacked) observation vector: (a) the
initial state was x(1)(0) and sensors 4 and 5 were attacked, or
(b) the initial state was x(2)(0) and sensors 2 and 3 were at-
tacked. Since there are two possibilities, we cannot estimate the
initial state exactly given the attacked observation vector. This
example can be easily generalized to show the necessity of the
condition k < θ+1

2 .
For (noiseless) non-linear systems, by analogously defining

θ-sparse observability, the same coding theoretic interpretation
holds. This leads to the necessary and sufficient conditions for
attack detection and secure state estimation in any noiseless
dynamical system with sensor attacks.

APPENDIX

A. Proof Details for Theorem 2

1) Proof of (16) Using LLN:

tr
(
Msg

)− tr
(

EN,t1

(
zsg

zT
sg

))

(a)
=

n−1∑

l=0

1
n

(
tr
(
Msg

)− 1
NB

∑

t∈Gl

tr
(
zsg

(t)zT
sg

(t)
)) (b)

≤ ε1 ,

where (a) follows from partitioning time window G (of size
N ) into n groups G0 , G1 , . . . Gn−1 (each of size NB ) such that
Gl = {t| ((t − t1) mod n) = l}, and (b) follows w.h.p. from

LLN (for different time indices in Gl, tr
(
zsg

(t)zT
sg

(t)
)

corre-

sponds to i.i.d. realizations of the same random variable).
2) Cross Term Analysis and proof of (17): The cross term

2EN,t1

(
zT
sg
Osg

es

)
can be written down as a sum of n terms

as shown below:

2EN,t1

(
zT
sg
Osg

es

)
(a)
=

2
n

n−1∑

l=0

(
1

NB

∑

t∈Gl

zT
sg

(t)Osg
es(t)

)

=
2
n

n − 1∑

l=0

ζl , (25)

where (a) follows from partitioning time window G (of size
N ) into n groups G0 , G1 , . . . Gn−1 (each of size NB ) such
that Gl = {t| ((t − t1) mod n) = l}. Now, we will show that
each ζl has zero mean and vanishingly small variance for large
enough N . The mean analysis can be done as shown below:

E (ζl)
(a)
=

1
NB

∑

t∈Gl

E
(
zT
sg

(t)
)

E
(Osg

es(t)
)

= 0, (26)

where (a) follows from the independence of es(t) from zT
sg

(t)
(due to Assumptions 4 and 5). This implies that the cross term

2EN,t1

(
zT
sg
Osg

es

)
has zero mean. From (26) and (16),

2ε1 ≥ E
(

EN,t1

(
tr
(
Osg

(
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s − P�
s

)OT
sg

)))

= E
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)))

(a)
≥ λmin

(
OT

sg
Osg

)
E
(
EN,t1

(
tr
(
eseT

s − P�
s

)))
, (27)

where (a) follows from Lemma 3 (discussed in Appendix B).
Using (27), we can show that for any ε2 > 0, there exists a

large enough NB such that (see [15] for details):

E
(
ζ2
l

)
= E

⎛

⎝
(

1
NB

∑

t∈Gl

eT
s (t)OT

sg
zsg

(t)

)2
⎞

⎠ ≤ ε2 . (28)

Clearly ζl has vanishingly small variance as NB →
∞. As a consequence, the variance of the cross term

2EN,t1 (z
T
sg
Osg

es) =
2
n

∑n − 1

l=0
ζl is also vanishingly small

for NB → ∞ (follows from the Cauchy-Schwarz inequal-
ity). Since the cross term 2EN,t1 (z

T
sg
Osg

es) has zero mean
and vanishingly small variance, by the Chebyshev inequality,
|2EN,t1 (z

T
sg
Osg

es)| ≤ ε1 holds w.h.p., and this completes the
proof of (17).

B. Bounds on the Trace of Product of Symmetric Matrices

Lemma 3: If A and B are two symmetric matrices in Rn×n ,
and B is positive semi-definite:

λmin (A) tr (B) ≤ tr (AB) ≤ λmax (A) tr (B) . (29)
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