
The SAGE Handbook of 

Complexity and 
Management 

Edited by 
Peter Allen, 

Steve Maguire and
Bill McKelvey

The SAG
E H

andbook of  

Com
plexity and M

anagem
ent

Ed
ited

 b
y

A
llen

, M
ag

u
ire and 

M
cK

elvey

Peter Allen is Head of the 
Complex Systems Management 
Centre in the School of 
Management at Cranfield 
University.

Bill McKelvey is Professor 
of Strategic Organizing and 
Complexity Science at the 
University of California, Los 
Angeles.

Steve Maguire is Associate 
Professor of Strategy and 
Organization in the Desautels 
Faculty of Management at 
McGill University. 

This book draws together an impressive variety of different contributions to the understanding of 
complexity in organizational settings, touching in one way or another on most of the important 
topics in the field of organisational and management studies.
Ralph Stacey, Business School, University of Hertfordshire

Managers have long voiced concern that managerial theories are unable to explain the “complexity” 
of their ever-changing organizational environments.  The editors and authors of this volume address 
this concern straight on by capturing the transdisciplinary nature of complexity science and its 
potential managerial usefulness.  
Dave Schwandt, The George Washington University 
 
 
 
 
 
 

It’s wonderful to see so many contributions in one place. The book provides a great resource for 
researchers in this area and will also do a great job in helping more conventional management 
researchers understand some of the implications of complexity science.  It helps us to see how we can 
continue to reinvent many approaches to organization in ways that meet the needs of our turbulent 
world. Congratulations to the authors and editors on a job well done.
Gareth Morgan, Schulich School of Business, York University, Toronto

The SAGE Handbook of Complexity and Management is the first substantive scholarly work to 
provide a map of state-of-the-art research in the growing field, emerging at the intersection of 
complexity science and management studies. Edited and written by internationally respected scholars 
from management and related disciplines, the Handbook is the definitive reference source for 
understanding the implications of complexity science for management research and practice.
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Complexity is one of the fastest growing 
topics of research in the natural and social 
sciences. A new, transdisciplinary and para-
digm-shifting science of complexity is 
emerging at the interstices between a diverse 
set of disciplines, challenging traditional dis-
ciplinary assumptions and boundaries. In the 
field of management and organization stud-
ies, the application of complexity science has 
grown dramatically over the past two dec-
ades: numerous scholarly as well as practi-
tioner-targeted books have been written; 
many special issues of journals have been 
published; several new specialized journals 
have been created; and articles applying 
complexity science to organizational phe-
nomena are now regularly appearing in lead-
ing management journals. Additionally, a 
complexity perspective is increasingly being 
taken up by practitioners in business, govern-
ment and non-government organizations. 
These exciting developments – their cumula-
tive effect and the range of management 
subdisciplines affected – motivate this 
volume: the SAGE Handbook of Complexity 
and Management.

The time has come for taking stock of, and 
reflecting upon, how complexity science has 
influenced management and organization 

studies over the past two decades; and for 
suggesting future directions for integrating 
complexity science into the production of 
knowledge about and relevant for contempo-
rary management. This Handbook critically 
reviews, juxtaposes and organizes the grow-
ing body of research at the intersection of 
complexity and management – work which 
addresses the implications of complexity sci-
ence for the epistemological and methodo-
logical foundations of management 
knowledge; applications of complexity sci-
ence concepts, theories and models to impor-
tant management issues and in different 
organizational contexts; and theoretical 
developments at key interfaces emerging 
between management and adjacent disci-
plines. Written by internationally respected 
scholars, the Handbook seeks to bring 
cohesion to a collection of seemingly dispa-
rate approaches; to provide readers with a 
clear overview of a heterogeneous field; and 
to set the stage for future scholarship that is 
of value to managers and to society.

In this introduction we provide a brief 
overview of the field emerging at the inter-
section of complexity and management; 
and situate it in a specific historical and con-
ceptual context within organization studies. 

Complexity and Management: 
Introducing the SAGE Handbook

S t e v e  M a g u i r e, P e t e r  A l l e n  a n d  B i l l  M c K e l v e y
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We then introduce the various Handbook 
chapters, and conclude with a discussion of 
the significance of complexity science for 
management scholarship as well as sugges-
tions for future research.

THE INTERSECTION OF COMPLEXITY 
AND MANAGEMENT

For several decades now, complex systems 
have received substantial attention in a range 
of disciplines and from this has emerged 
a broad and interdisciplinary complexity 
science (see Allen, 1981, 1988, 1990; 
Prigogine and Stengers, 1984; Anderson et al., 
1988; Nicolis and Prigogine, 1989; Lewin, 
1992; Waldrop, 1992; Wheatley, 1992; 
Kauffman, 1993; Casti, 1994; Mainzer, 1994; 
Bar-Yam, 1997). A complex system is a 
‘whole’ made up of a large number of interact-
ing ‘parts’, or ‘agents’, which are each gov-
erned by some rule or force which relates their 
behaviour in a given time period contingently 
to the states of other parts. Interactions among 
parts are usually though not necessarily local 
and rich; and can be material or informational. 
As individual parts respond to their own spe-
cific local contexts in parallel with other parts, 
qualitatively distinct emergent patterns, prop-
erties and phenomena can arise at the level of 
the system despite the absence of explicit 
inter-part coordination. Outcomes of this proc-
ess of upward causality are very difficult to 
predict from knowledge of the parts and rules 
however. In addition, once emergent phenom-
ena exist, they can in turn exert downward 
causality on the parts through the same rules 
that brought them into existence. ‘Complexity’ 
arises when emergent system-level phenom-
ena display patterns in time and space that are 
neither static nor random but are, rather, dif-
ficult to describe parsimoniously.

Complexity science is the systematic study 
of complex systems as well as the phenom-
ena of emergence and complexity to which 
they give rise. It has generated a set of 
concepts that is almost mathematical in its 

abstractness and potential applicability to a 
range of empirical phenomena in which large 
numbers of parts interact richly over time – 
from spin glasses to immune systems to 
ecosystems to economies.

The idea of viewing natural and social 
systems as complex adaptive ones – of taking 
seriously their status as evolving products of 
evolution – constitutes a major revolution in 
thinking which will have impacts on society 
as great as those of the Enlightenment, when 
reason and rationality led to the development 
of much of modern society and classical 
science. Complexity science challenges not 
only the foundations of our knowledge – our 
philosophy and our science – but also the 
economic, political and social institutions we 
build upon that knowledge.

The new vision afforded by the develop-
ment of complexity science forces us to 
confront the idea that managerial and organi-
zational knowledge pertaining to actions and 
policies in evolved – and evolving – social 
systems is necessarily limited and incom-
plete instead of being based on objective 
truth about eternal natural laws governing 
unchanging systems. We may be able to 
describe and analyse organizational dynam-
ics within natural and social systems, but this 
description will have to reflect the facts that 
part of the experience of any agent is the 
interaction with others and that these agents 
will in general have different perspectives 
and views on reality. The values, aims and 
goals of different actors will not necessarily 
coincide and the trajectory of the system will 
therefore express both the mutual reinforce-
ments and conflicts of these. Not only this, 
but over time as agents and actors experience 
the outcomes of their beliefs and behaviours, 
they will sometimes feel them confirmed and 
other times revise and change them, leading 
to new system behaviour and responses.

Although it may be possible to predict 
some features of a system under some 
conditions, sometimes seemingly small and 
inconsequential local events in a system 
can be amplified to cause global change. 
A complexity perspective thus provides a 
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scientifically grounded basis for accepting 
two paradoxical forms of wisdom. Individuals 
can change their worlds through their inter-
ventions, but their agency must be reflexive 
and respectful of the complexity of the 
system in which they are embedded. Both the 
dream of omnipotence and the nightmare of 
impotence in a fully knowable but determin-
istic world dissolve with complexity science, 
which in many ways represents an important 
cultural awakening.

Adopting a complexity perspective has 
important ontological, epistemological and 
axiological implications with which manage-
ment researchers and practitioners alike must 
come to terms. Complexity science not only 
offers a new view of the world, but also new 
methods for studying and generating knowl-
edge about it. By going beyond simple 
assumptions of evolution and change neces-
sarily meaning ‘progress’, or of ‘good’ man-
agement having a self-evident, unequivocal 
definition, we must examine more critically 
questions of responsibility, accountability 
and governance, and potentially change man-
agement education in consequence. Thus 
does complexity science shake and re-anchor 
the foundations of descriptive and normative 
knowledge within the discipline of manage-
ment and beyond. With its trans-disciplinary 
roots and appeal, a complexity perspective 
also opens up promising avenues of interface 
between organization studies and other 
related disciplines where complexity science 
is already transforming conventional think-
ing, such as economics, sociology, geogra-
phy, and – importantly in our current era – 
ecology and environmental studies.

This new scientific approach not only 
embraces dynamics instead of the ‘statics’ of 
equilibrium, but goes beyond investigation of 
the mere ‘running’ of a given dynamical 
system according to fixed rules: it accepts and 
anticipates system plasticity (i.e. the appear-
ance of qualitatively new features and disap-
pearance of old ones). It embraces evolution: 
the emergence and qualitative development 
of structure and organization. Com plexity is 
the science of organization – and in 

particular its origin and evolution – and is 
therefore the natural framework for consider-
ing organization and connected entities. 
Indeed, whereas classical science considered 
an ontology of isolated objects, complexity 
science considers an ontology of connected 
entities, i.e. a network which has links that 
change, nodes that change internally, and 
capabilities that develop and change over 
time. Complexity scholars also confront the 
fact that neither the modeller nor the model 
are outside the system modelled, but instead 
are part of it, such that both building and run-
ning the model can lead to changed behav-
iour on the part of the modelled and the 
modeller. Clearly, in efforts such as ‘climate 
change modelling’ this process is already 
evident and inescapably political, since the 
object of the modelling is to establish ‘facts’ 
about possible futures so that changes in 
behaviour will take the system down a more 
benign pathway than otherwise. CEOs and 
other managers face a similar situation inside 
organizations – their representations and 
interventions change the organization they 
are managing. 

Complexity science therefore provides 
scholars with a firm and scientifically 
anchored foundation from which to explore 
and understand human organizations.

COMPLEXITY AND MANAGEMENT: 
LOOKING BACK

While complexity science and the use of 
com plex adaptive systems to model organi-
zational phenomena is in some ways revolu-
tionary, it is important to underline that systems 
approaches to understanding organizations 
and the construct of complexity each have 
long and respected heritages within manage-
ment and organization studies. Indeed, Reed 
(1985) argues that systems theorists dominated 
management and organization theory from 
the 1930s to the 1970s; while Scott’s (2002) 
discussion of organizations from ‘rational, 
natural and open systems perspectives’ 
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appears to have become canonical, with a 
fifth edition released in 2002 and a sixth 
co-authored edition following in 2007 (Scott 
and Davis, 2007). 

As early as Barnard (1938), organizations 
were conceptualized as ‘cooperative systems’ 
from which emerged novel organization-level 
properties (i.e. qualitatively new features, 
distinct from those of the organizational mem-
bers whose coordination gave rise to them). 
Following this, researchers elaborated ‘gen-
eral systems theory’ (e.g. Von Bertalanffy, 
1950, 1968; Boulding, 1956), from which 
came a series of important contributions to 
understanding organizations as systems, such 
as Ashby’s (1956) ‘Law of Requisite Variety’; 
Simon’s (1962) description of the ‘architec-
ture of complexity’, derived from research 
into information-processing and decision 
making in complex organizations; Katz and 
Kahn’s (1966) characterization of organiza-
tions as ‘open systems’; and Thompson’s 
(1967) exploration of ‘organizations in action’, 
now recognized as foundational to the devel-
opment of structural contingency theory. 

The construct of complexity is important in 
contingency theory as a variable used to char-
acterize the structure of organizations and of 
their environments (Hall et al. 1967; Anderson 
1999). Extant research advocates viewing the 
complexity of a given organization as propor-
tional to the number of organizational subsys-
tems involved in information-processing and 
measuring complexity using three dimen-
sions: vertical (e.g. number of hierarchical 
levels in an organizational structure); hori-
zontal (e.g. number of different units at a 
given level); and geographic (e.g. number of 
distinct operational sites; see Daft, 1992). In 
a similar line of thinking – and, related 
through Ashby’s Law of Requisite Variety – 
extant research also recommends measuring 
the complexity of a given organizational envi-
ronment by the number of entities in it to 
which an organization must pay attention 
(Scott, 2002; Boisot and McKelvey, 2010).

This line of inquiry tends to view organiza-
tions from outside and with an objectivist epis-
temological stance, such that organizations 

are seen in terms of the information-processing 
they carry out. But systems approaches are 
also compatible with inquiry from an inter-
pretivist epistemological stance and adopting 
the ‘action frame of reference’ (Silverman, 
1970) of actors inside organizations. The 
contributions of Checkland (1981), who 
builds upon and extends Vickers’ (1965) 
notion of an appreciative system in his devel-
opment of ‘soft systems thinking’ and associ-
ated methodologies, exemplify this approach. 
Recognizing that actors’ interpretations of 
the situations they face – in situ – are integral 
components of any organizational system, 
the meanings attributed to organizational 
events, as both causes and consequences of 
actions, thus become important sites for 
research and for managerial interventions to 
bring about change. Similarly, Daft and 
Weick (1984: 284) begin with the premise 
‘that organizations are open systems that 
process information from the environment 
but then highlight that the environment may 
not be analyzable and, in any case, can be 
intruded upon, shaped and ultimately enacted, 
which leads them to characterize organiza-
tions as ‘interpretation systems’.

It was into this scholarly context that ideas 
from what would eventually be termed com-
plexity science began to be introduced in the 
1980s. A recent review of the field of com-
plexity and management (Maguire et al., 
2006) identified a sequenced movement 
of complexity concepts into organization 
studies: self-organization, dissipative struc-
tures and order out of stochastic chaos 
appeared earliest; then deterministic chaos 
was attended to; finally, complexity science 
described as such was discussed. This more 
or less parallels the appearance of books 
popularizing these topics for a general audi-
ence, including Jantsch’s (1980) account of 
the ‘self-organizing universe’; Prigogine and 
Stenger’s (1984) depiction of ‘order out of 
chaos’ and dissipative structures; Gleick’s 
(1987) introduction of deterministic chaos; 
Lewin’s (1992) description of complexity and 
‘the edge of chaos’; and Waldrop’s (1992) 
journalistic account of the earliest days of a 
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self-conscious science of complexity and the 
founding of the Santa Fe Institute.

Perhaps the first link between ‘manage-
ment’ and complexity arose in the field of 
‘natural resource management’. Problems of 
forest and fishery management were impor-
tant and active domains in great need of suc-
cessful management. Major progress was 
made in ecological management when the 
idea that management of natural resources 
needed to be seen as a learning process. 
Adaptive resource management (ARM) is a 
structured, iterative process of decision 
making in the face of uncertainty, with the 
aim of reducing uncertainty over time via 
system monitoring. In this way, management 
is guided essentially by ‘learning by doing’ 
and pragmatism which accepts the reality of 
complexity and the consequent limits to 
knowledge (Holling, 1986). Another exam-
ple was more direct when complex systems 
models of Canadian fisheries were developed 
in order to improve their management (Allen 
and McGlade, 1986; 1987). These provided a 
practical and real demonstration of the impor-
tance of understanding management as the 
successful interworking of two almost oppo-
site behavioural patterns – those of discovery 
and exploitation. The first required a willing-
ness to sail into the unknown, ignoring current 
rational choices, whereas the second required 
making optimal use of existing information. 
These ideas appeared again, recast by March 
as general problems of managing and organ-
izing in his famous paper on ‘exploration and 
exploitation’ (March, 1991). In many ways 
all of this work can be seen as the develop-
ment of Herbert Simon’s pioneering ideas – 
in the real world the behaviour of agents was 
not that of full rationality, assuming access to 
total information, but was that of ‘bounded 
rationality’ governed by what agents (or 
actors) considered to be ‘sufficient’ informa-
tion, resulting in what Simon called ‘satisfic-
ing’ not maximizing behaviour. This was a 
very important insight that helped open the 
path to complexity science (Simon, 1982). 

In the mid-1980s several groundbreak-
ing studies took seriously the idea that 

organizations could be understood and mod-
elled as ongoing processes that were far 
from, rather than at, equilibrium. For instance, 
Gemmill and Smith (1985) presented a model 
of organizational transformation which drew 
upon the concept of dissipative structure; 
Goldstein (1988) presented a far-from-equi-
librium approach to resistance to change; 
while Morgan’s (1986) celebrated book, 
Images of Organization, addressed ‘self-
organization’ and ‘autopoiesis’. In a related 
development, organizational scholars also 
posited a constructive role for disorder, or 
‘chaos’ in the non-mathematical sense: Quinn 
(1985) suggested that the management of 
innovation required ‘controlled chaos’; Peters 
(1987) prescribed ‘thriving on chaos’; while 
Nonaka (1988: 72) asserted that ‘the self-re-
newal strategy of an organization lies in its 
ability to manage the continuous dissolution 
and creation of organizational order’. 
Paradoxically, despite importing ‘hard sci-
ence’ concepts seemingly more compatible 
with an information-processing approach to 
organizations, this work also tended to pre-
scriptions that called for more managerial 
attention to ‘soft science’ concepts of inter-
preting, sense-making and constructing 
meanings. 

In seeing disorder, uncertainty and crisis in 
a positive light, this work questioned not 
only the merits but also the feasibility of 
centralized management of organizational 
processes; top-down control was proving to 
be, in the long term, dysfunctional to organi-
zations. Authors accordingly prescribed 
decentralization of decision making and more 
autonomy and empowerment for workers 
(i.e. distributing control among members of a 
more autonomous workforce). This emphasis 
on embracing disequilibrium and distributed 
control continued in the 1990s as scholars 
translated the so-called ‘new sciences’ 
(Wheatley, 1992) into organizational terms 
and drew lessons for managers. For example, 
Stacey (1992, 1993) conceptualized strategy 
as ‘order emerging from chaos’ and coun-
selled managers to abandon stability and 
harmony as objectives; rather, successful 
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organizations welcomed uncertainty, actively 
promoted instability of a sort and channelled 
resulting tensions and conflicts in beneficial 
ways. Unpredicted deviations from routines 
– analogous to the ‘fluctuations’ which lead 
to Prigogine’s dissipative structures – should 
be amplified rather than dampened to bring 
about organizational renewal (Goldstein, 
1994). Instead of seeking to eliminate uncer-
tainty, or at minimum buffering the organiza-
tion’s core operations from it – long viewed 
as a key function of management, in accord-
ance with contingency theory (Thompson, 
1967) – managers were advised to recognize 
the benefits of ‘coping with uncertainty’ and 
to embrace its transformational possibilities 
(Merry, 1995).

Throughout the 1990s and into the follow-
ing decade, much of the literature addressing 
complexity and management was devoted to 
what Maguire et al. (2006) refer to as ‘intro-
ductions’ of complexity science (as well as 
related topics such as chaos theory and non-
linear dynamics). This work, summarized in 
Table 1.1, introduced natural science 
approaches to complex systems (typically 
optimistically) to management scholars; 
argued (typically enthusiastically) for the 
applicability of these approaches to organiza-
tion studies or some sub-discipline within it; 
and described implications (typically pro-
found) of applying the science of complexity 
to organizations. Some of this work also 
introduced mathematical formalisms and com-
putational methods associated with complex-
ity science (e.g. Anderson, 1999); or discussed 
possible limitations of complexity science 
methods as applied to organizations (e.g. 
Johnston and Burton, 1994; Cohen, 1999).

The vast majority of this work was descrip-
tive, presenting complexity science terminol-
ogy and stylized facts about complex systems 
but rarely developing formal theories or 
models; for notable exceptions, see Drazin 
and Sandelands (1992), Levy (1994), Stacey 
(1995), Thietart and Forgues (1995), and Morel 
and Ramanujam (1999). Similarly, although 
examples and illustrations were invoked – 
typically to underline the similarities between 

organizational phenomena and characteristic 
features of other types of complex systems 
– these often relied on argument by analogy 
or resemblance thinking; and empirical stud-
ies were rare. Nonetheless, it brought com-
plexity science ideas to the management and 
organizational research community. 

Special issues of journals also played an 
important role in introducing complexity sci-
ence to management scholars, as evidenced 
by this list (which is illustrative and not 
intended to be exhaustive):

Human Systems Management •  (1990, Vol. 9.4) on 
‘Chaos and self-organization in companies’
Journal of Management Inquiry •  (1994, Vol. 3.4) 
on ‘Chaos and complexity’
Organization Science •  (1999, Vol. 10.3) on 
‘Applications of complexity theory to organiza-
tion science’
Management Communication Quarterly •  (1999, 
Vol. 13.1) on ‘Dialogues of self-organizing’
Health Care Management Review •  (2000, Vol. 
25.1) on ‘Chaos and complexity theory for health 
care management’
Journal of Organizational Change Management •  
(2000, Vol. 13.6) on ‘Change, emergence and 
complexity theory’
Research Policy •  (2000, Vol. 29.7–8) on 
‘Complexity and innovation’
The Learning Organization •  (2003, Vol. 10.6; 
2004, Vol. 11.6) on ‘Chaos, complexity and 
organizational learning’
Management Decision •  (2006, Vol. 44.7) on 
‘The application of complexity science to 
business’
Public Management Review •  (2008, Vol. 10.3) on 
‘Complexity theory and public management’.

Accompanying this work targeting man-
agement academics was the publication of a 
large number of books for management prac-
titioners, leading some scholars to worry that 
complexity was becoming just another man-
agement ‘fad’ (McKelvey, 1999b). This con-
cern, which also stemmed from the highly 
metaphorical content of much of this practi-
tioner-targeted work, prompted an innovative 
special issue of Emergence (1999, Vol. 1.2), 
the first journal devoted to complexity 
science and organization studies (and since 
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Table 1.1 Research introducing complexity science and drawing implications 
for management*

Reference Introduction of Implications drawn for

Allen and McGlade (1986, 1987) Evolutionary systems modelling Natural resource management

Kiel (1989) Non-equilibrium theory Public administration

Priesmeyer and Baik (1989) Chaos Planning

Daneke (1990) Advanced systems theory Public administration

Zuijderhoudt (1990) Chaos and self-organization Organizational structure

Kiel (1991) Nonlinear paradigm of dissipative 
structures

Social sciences

March (1991) Complex systems modelling Management

Smilor and Feeser (1991) Chaos Entrepreneurial processes

Reed and Harvey (1992) Complexity; new science Realist social science

Drazin and Sandelands (1992) Autogenesis; self-organizing systems 
theory

Organizing

Gregersen and Sailer (1993) Chaos theory Social science research

Begun (1994) Chaos and complexity theory Organization science

Johnson and Burton (1994) Chaos and complexity theory Management

Levy (1994) Chaos theory Strategy

Dooley et al. (1995) Chaos and complexity Total quality management

Smith (1995) Chaos Social science

Stacey (1995) Complexity Strategic change processes

Stumpf (1995) New science theories Leadership development

Thietart and Forgues (1995) Chaos theory Organization

Glass (1996) Chaos; nonlinear systems Day-to-day management

Overman (1996) Chaos and quantum theory Administration

Wheatley and Kellner-Rogers 
(1996)

Chaos and complexity Organizations

Lissack (1997) Chaos and complexity Management

McDaniel (1997) Chaos and quantum theory Strategic leadership

Mendenhall et al. (1998) Nonlinear dynamics International human resources 
management

Anderson (1999) Complexity theory Organization science

Cohen (1999) Complex systems theories Study of organization

Morel and Ramanujam (1999) Complex systems theory Organization theory

Mathews et al. (1999) Complexity sciences Social sciences

Duffy (2000) Chaos theory Career-plateaued worker

Arndt and Bigelow (2000) Chaos and complexity theory Health services management

Colbert (2004) Complexity (with resource-based view) Strategic human resource 
management

* Adapted from Maguire et al. (2006).

reconstituted and renamed as Emergence: 
Complexity and Organization; E:CO), which 
was made up of 55 reviews of 34 books by 
49 different scholars. Arguing for ‘moving 
from fad to firm foundations’ to underpin the 

emerging field of complexity and manage-
ment, Maguire and McKelvey (1999: 5) 
acknowledged that metaphorical applications 
of complexity science were indeed generat-
ing insights, but cautioned that metaphors 
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need to be deployed explicitly as such rather 
than unreflexively accepted as valid alterna-
tive organizational ontologies. 

In a parallel development, computational 
models associated with complexity science 
also became more common in management 
research. The appearance of the journal 
Computational and Mathematical Organiza-
tion Theory (CMOT) in 1995 evidences this 
shift. As Maguire and McKelvey (1999: 
42) note, ‘complexity science and computa-
tional modelling go hand in hand’ because 
assumptions of stochastically idiosyncratic 
agents and nonlinear interactions among a 
large number of variables are more easily 
accommodated in computational as com-
pared to mathematical models. Among 
computational approaches imported into 
management from complexity science, 
Kauffman’s (1993) NK ‘fitness landscape’ 
model was one of the earliest and most 
prominent ones (Levinthal, 1997; McKelvey, 
1999a; Rivkin, 2000). 

COMPLEXITY AND MANAGEMENT: 
LOOKING AT THE HANDBOOK

Today, even a cursory look around at the 
growing body of work which applies com-
plexity science concepts, insights and models 
to organizational phenomena reveals incredi-
ble diversity in terms of ontological and epis-
temological assumptions, levels of analysis, 
focal phenomena theorized, complex ity sci-
ence concepts harnessed, research methods 
used, and so on. Hence a dilemma arose for 
this volume: what is the best way to organize 
this work? Actually, in carrying out the 
project, reflecting on complexity and reading 
other scholars’ contributions, the dilemma 
was diminished somewhat: it became clear 
that there is no single best way of approach-
ing complexity which, by its very nature, is 
constituted by competing descriptions from 
multiple perspectives. So, rather, what is a 
useful way to organize the work in this field? 
Although the number of review articles and 

reflections on the field to date is not large, 
what does exist suggests that scholars have 
had different answers to this question.

Maguire and McKelvey (1999), for 
example, distinguish between information-
processing and interpretive approaches to 
complexity within organization studies, while 
Contractor (1999) notes that ‘self-organizing 
systems research in the social sciences’, 
identifies two programmes in tension with 
each other – one emphasizing ‘metaphors’ 
and the other emphasizing ‘models’ – and 
argues for reconciling the two. Similarly, 
Richardson and Cilliers (2001) ask the ques-
tion ‘what is complexity science?’ and 
approach it from different directions as they 
introduce a series of answers from authors 
contributing to a special issue of Emergence. 
They argue that most work can be associated 
with one of two ‘communities’ – ‘reduction-
ist’ hard science or ‘metaphorical’ soft 
science – before advocating the development 
of a third – ‘complexity thinking’ – which 
was less well represented in the work they 
reviewed. This community would embrace 
methodological pluralism (i.e. both narrative 
and computational or mathematical methods) 
and explicitly recognize limits to knowledge 
about complex phenomena. 

Other reviews have parsed work according 
to its scope or level of analysis. Focusing on 
‘applications and limitations of complexity 
theory in organization theory and strategy’, 
Levy (2000) implicitly adopts analytical 
scope as an organizing tool in describing 
more generalized models of ‘economic and 
social systems’ in a different section than 
models of ‘firms and industries’, which focus 
more specifically on competitive dynamics. 
He also addresses metaphorical applications. 
Similarly, but paying less attention to meta-
phors in favour of models, the review chap-
ters in Baum (2002) address three distinct 
levels of analysis: intraorganizational com-
plexity and computation (Carley, 2002); 
organizational complexity and computation 
(Eisenhardt and Bhatia 2002); and interor-
ganizational complexity and computation 
(Sorenson, 2002). 
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Maguire et al. (2006) distinguish between 
‘objectivist’ approaches, which tend to exam-
ine complex systems from outside (i.e. ‘God’s 
eye view’; Hendrickx, 1999) through models; 
and ‘interpretivist’ approaches, which tend to 
examine complex systems from the perspec-
tive of actors inside them through meanings. 
They note that not all interpretive work is 
metaphorical; and that the best metaphorical 
work uses metaphor as a tool and does so 
consciously (i.e. it is reflexive about the meta-
phorical status of inferences and insights). 
Their comprehensive review also pays tribute 
to the surprisingly large body of organiza-
tional scholarship, both objectivist and inter-
pretivist, which attends to the implications of 
complexity science for ontological assump-
tions, epistemological considerations and 
research methods. They distinguish this work 
addressing the ‘foundations’ of organiza-
tional knowledge from ‘applications’ of com-
plexity science to organizational phenomena. 

The approach taken in this Handbook is 
most informed by the review chapter of 
Maguire et al. (2006) insomuch as the dis-
tinction between ‘philosophy-driven’ work 
on knowledge foundations and ‘phenome-
non-driven’ applications is retained, but dif-
fers in several respects. First, to these two 
clusters of work is added a third – interfaces 
– which captures theoretical developments at 
the intersection of management and several 
adjacent fields. As you will see, very interest-
ing work is being done there. Second, the 
objectivist–interpretivist division is aban-
doned in favour of a series of more specific 
topics which correspond more closely to 
various sub-fields within management and 
organization studies, in order to facilitate 
more targeted reading by scholars in the 
various sub-fields and perhaps new to com-
plexity science. As you will also see, the 
range of topics covered spans many of the 
functional areas one might find in a business 
school, including operations, human resource 
management, leadership, entrepreneurship 
and strategy. In adopting this approach, no 
a priori stance is taken as regards the status 
of metaphors or different levels of analysis: 

contributing authors were free to deal with 
these as they saw fit. As you will see, meta-
phors play a bigger role in some chapters 
than others and are sometimes praised and 
sometimes criticized, while different levels 
of analysis figure more prominently in some 
chapters than others. 

It is important to note that the approach 
taken makes for a unique and novel Handbook 
because of the differential penetration and 
integration of complexity science into vari-
ous sub-fields. Where the existing body of 
work is of more substantial size, authors’ 
chapters organize the literature, critically 
review it, and suggest future directions for 
research, as would be expected for typical 
handbook chapters. Where the existing body 
of work applying complexity science to a 
particular topic is less voluminous, however, 
authors have had more liberty, after review-
ing the literature, to present and develop 
specific ideas in more depth. 

Foundations

This first section of the Handbook addresses 
the underlying basis of complexity science, 
describing its origins and development from 
different domains and disciplines; introduc-
ing key concepts; and discussing the implica-
tions of complexity for epistemology and 
methodology. As a source of possible repre-
sentations for organizations, as well as for 
social systems more generally, complexity 
science offers an abundance of flexible con-
cepts and robust methods on which organiza-
tional scholars draw. It has also stimulated 
philosophical reflection, inspiring scholars to 
reconsider questions of what can be known 
and how, as well as the thorny issue of limits 
to knowledge. The chapters in this opening 
section, therefore, have been assembled such 
that they collectively describe the implications 
of complexity science for the very foundations 
of management and organization studies. 
They are presented in three sub-sections: 
introductions of key concepts; interrogations 
of the meaning of complexity from different 
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epistemological perspectives; and discus-
sions of methodological implications and 
tools.

Key concepts
The chapters in this sub-section introduce 
important concepts from complexity science 
and connect them to organizational analysis. 

Yasmin Merali and Peter Allen (Chapter 1) 
trace the evolution of systems thinking in the 
Western scientific tradition as a source of 
ideas about complexity and reflect on devel-
opments most likely to be influential in shap-
ing management thinking in the future. They 
describe the steps that lead from earlier 
approaches predicated on fixed structure, 
fixed elements and fixed interactions to 
present day engagement with complexity sci-
ence and the non-equilibrium dynamics of 
open evolving systems. Complexity science 
offers conceptual and methodological tools 
to tackle issues of emergence, self-organiza-
tion, evolution and transformation by eluci-
dating the mechanisms through which 
micro-level events and interactions can give 
rise to macro-level system structures, proper-
ties and behaviours. The chapter also shows 
how modelling approaches from complexity 
science allow us to experiment with possible 
worlds in which the consequences of our 
actions play out over time.

In Chapter 2, Raymond-Alain Thietart and 
Bérnard Forgues discuss the relationship 
between complexity science and organiza-
tion. They begin with a brief survey of the 
contributions to organization studies made 
by objectivist approaches drawn from com-
plexity science, such as theories of self-
organization, deterministic chaos, path 
dependence and complex adaptive systems. 
Next, they develop propositions derived from 
the theories they review, and relate them to 
more ‘traditional’ organization theories. 
Finally, they derive some implications in the 
form of propositions. They counsel that 
future research needs to consolidate the foun-
dations upon which complexity-science 
inspired organization theories are being built, 
through: (a) development of a consensus 

about disparate definitions; (b) research that 
draws on eco nometrictools to substantiate 
the claims of existing qualitative research; 
and (c) multi-level research into process 
dynamics.

The next contribution, Chapter 3 by Jeffrey 
Goldstein, addresses the phenomenon of 
emergence. He traces the origins of the con-
struct of emergence as well as associated 
ideas of self-organization and dissipative 
structures. Six prototypes of emergent phe-
nomena in complex systems are presented 
and used to identify a set of characteristics 
common to emergence in a wide variety of 
different types of complex systems, includ-
ing organizations. The chapter also reviews 
and summarizes how the notion of emer-
gence has been employed in organization 
studies. A new approach to emergence is then 
developed by drawing on the formalism of 
‘self-transcending constructions’. This con-
cept is elaborated in a way that remedies 
several of the insufficiencies of the self-
organization approach which currently domi-
nates in organization studies; and offers 
promising paths forward for researching 
organizational adaptability.

In Chapter 4, Steve Maguire explores a 
deceptively simple question – ‘what is com-
plexity?’ – to highlight the epistemological 
challenges posed by complexity, which stem 
from issues of representation, prediction and 
interpretation. After a brief description of 
various strands of natural science from 
which contemporary complexity science has 
emerged, as well as of the features of com-
plex systems, different definitions and meas-
ures of complexity are introduced. The 
chapter illustrates how both agents within and 
observers of a complex system are each impli-
cated in constructing complexity. Maguire 
concludes by suggesting that perhaps ‘com-
plexities science’ better captures the project 
in which scholars are engaged, since appreci-
ating complexity involves acknowledging 
that competing interpretations constitute it; 
and recognizing that the nature of the complex-
ity with which one wrestles derives from one’s 
framing of and strategy for interrogating it.
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In Chapter 5, Michael J. Prietula addresses 
important methodological issues by discuss-
ing complexity from the perspective of com-
putational models of organizations. He argues 
that such modelling is not only viable but 
essential for advancing organization science 
in ways that bridge micro- and macro-levels 
of specification. He begins by describing 
basic properties of complex systems in the 
physical world; then adjusts these to reflect 
the social world; and presents an ‘induced 
simplicity hypothesis’ which posits that most 
environments in which humans find them-
selves call for behaviours that are simple and 
recurring. This perspective, with the environ-
ment viewed as a mould, provides the basis 
for arguing for the appropriateness and neces-
sity of computational modelling to under-
stand social systems. Strengthening the case 
for computational models even more, a series 
of benefits of computational modelling are 
also convincingly described.

Epistemological perspectives 
and considerations
The chapters in this sub-section explore the 
implications of complexity from different 
philosophical perspectives, as well as the 
implications of complexity for important 
philosophical questions about the nature of 
causality, knowledge and its limits.

In Chapter 6, Bill McKelvey advocates a 
scientific realist epistemology for complexity 
science, with an emphasis on ‘Campbellian 
realism’, an approach that recognizes 
idiosyncratic perceptions of the phenomenal 
world and social construction by scientific 
communities, but also considers ‘good sci-
ence’ to be accountable to what is real. He 
begins with a critique of positivism and, 
in particular, positivist economics, before 
introducing realism, evolutionary epistemol-
ogy and the ‘semantic conception’ of truth. 
He develops a ‘complexity science episte-
mology’ which is not based on ontological 
assumptions of reality’s constituent elements 
being independent and combining additively 
but, rather, on assumptions of connected 
constituent elements that can interact to 

produce multiplicative, nonlinear outcomes. 
As a result, he argues, the world has four 
basic ontological forms, each of which is 
best explored and theorized with a different 
epistemology.

David Byrne, in Chapter 7, is also an advo-
cate of realism, proposing ‘complex realism’ 
as a frame of reference for evaluating the 
effectiveness of complex organizations such 
as bureaucracies formulating and implement-
ing social policy. Byrne’s approach is predi-
cated on a quite different understanding of 
causality than is typically harnessed to evalu-
ate effectiveness of these organizations – one 
in which causality is seen as contingent, 
complex and multiple. Accordingly, the tech-
niques of ‘qualitative comparative analysis’ 
– the systematic comparison of a complex 
system before and after it has undergone a 
qualitative transformation induced, typically, 
as a result of a policy innovation – are appro-
priate to understand and manage change as 
well as the achievement of policy objectives. 
An illustration examining the performance of 
a subset of regional governance bodies within 
England’s National Health System provides 
empirical support.

In Chapter 8, Paul Cilliers defends post-
structuralism, which is too often incorrectly 
dismissed as anti-scientific and relativistic, 
as a philosophical stance that is inherently 
sensitive to the complexity of the phenomena 
investigated from it. Poststructuralism offers, 
therefore, an appropriate vantage point for 
interrogating the development of complexity 
science, a perspective which can alert com-
plexity scholars to the seductive but danger-
ous attraction of traditional reductionism. 
Equally important, the juxtaposition of com-
plexity science with postructuralism permits 
a more rigorous interpretation of the latter. 
An exploration of relations between com-
plexity science and poststructuralism leads 
Cilliers to advocate an ‘ethics of provisional-
ity’ as well as the adoption of an explicitly 
critical position that values transgression, irony 
and an aesthetically informed imagination.

Alicia Juarrero, in Chapter 9, argues that 
complexity science puts important questions 
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of what constitutes causality and explanation 
on the scholarly agenda and, therefore, 
presents opportunities for critiquing and 
moving beyond dominant but impoverished 
understandings of these concepts within nat-
ural and social science. The revalorization of 
longstanding but marginalized ideas about 
causality, such as Aristotle’s final, material, 
efficient and formal causes for instance, 
alters understandings of what can be known 
and controlled and, therefore, of the appro-
priate role of managers and organizational 
leaders; seen as catalysts in organic systems 
rather than clockmakers or controllers of 
mechanic ones, their objective becomes the 
creation of resilient organizations with the 
agility to self-organize in the face of changes 
or crises emanating from their environments.

In Chapter 10, Peter Allen and Jean Boulton 
explore the ontology of uncertainty, from 
Heraclitus through Darwin to Prigogine, in 
order to situate complexity science as an intel-
lectual development that affords an under-
standing of ignorance and real limits to 
human knowledge as both the result of and 
driving force for evolutionary change. They 
discuss different ways of studying complex 
systems and illustrate how, in the mathemati-
cal modelling traditionally dominant within 
science, uncertainty is handled or ignored or 
even denied through the use of various simpli-
fying assumptions; and explain why this 
is problematic. In contemporary complexity 
science, they see the possibility of reconciling 
science and history (i.e. of developing expla-
nations that incorporate both unchanging laws 
and novel events) by focusing on their inter-
play. Modelling, they argue, still offers impor-
tant advantages over other forms of knowing, 
but needs to be undertaken with much more 
humility than has been the case in the past.

Concluding this sub-section, Robert Chia 
(Chapter 11) explains and advocates complex 
thinking, illustrating how it has been valor-
ized in the arts, literature, humanities and 
philosophy and why, therefore, these realms 
of human endeavour should serve as impor-
tant sources of inspiration for managers 
seeking strategies to navigate complexity. 

One lesson concerns the importance of learn-
ing to recognize and appreciate what is 
inconspicuous, peripheral or hidden (i.e. 
looking at the overlooked), which often 
means abandoning the direct, frontal, rational 
approaches to phenomena so privileged in 
science and society. He argues that obliquity 
is not only legitimate but often more effective 
as a strategy for comprehending and engag-
ing with complexity in social systems.

Methodological implications 
and tools
In this sub-section, important methodological 
tools from complexity science are presented 
and their implications for organizational 
analysis are discussed.

In Chapter 12, Richard Vidgen and Larry 
Bull discuss how computational methods 
inspired by Stuart Kauffman’s NKCS model 
can better inform management and organiza-
tional research. They explore the relevance of 
coevolution as a phenomenon in organiza-
tional life then detail the NKCS model and its 
implementation in a particular agent-based 
modelling environment (‘Sendero’) now 
available online. Next, they review applica-
tions of the NKCS model in the management 
and organization studies literature. To dem-
onstrate how the NKCS model can be 
extended and further applied to shed light on 
questions of importance to management 
scholars and practitioners, they illustrate how 
the model may be used to explain competi-
tive dynamics in the microcomputer industry. 
They conclude by suggesting future direc-
tions for the NKCS model and coevolution-
ary research in management.

Focusing on another powerful computa-
tional method from complexity science, 
William M. Tracy (Chapter 13) sees at least 
two benefits to modelling strategic interactions 
of competing firms with genetic algorithm 
models (GAs). First, unlike mathematical 
models, GAs allow researchers to observe 
the modelled systems’ dynamic disequilibria, 
which is of particular importance because 
strategies employed during a period of dis-
equilibrium affect the specific equilibrium 
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selected by the system. Second, GAs often 
are better predictors of human and firm 
behaviour than classical game theory models. 
Tracy begins by explaining genetic algo-
rithms; providing an example of a GA-based 
strategic model; and tracing the thinking that 
underpins the application of GAs to strategic 
analysis. After describing why GA-based 
model mechanisms reflect real-world decision 
making, he surveys existing research and 
outlines future directions for the application 
of GA-based models to strategic analysis.

Donald MacLean and Donald MacIntosh, 
in Chapter 14, move from simulations and 
computational methods to discuss the gener-
ation of insights into organizations under-
stood as complex systems using action 
research methods. Action researchers not 
only study organizations but actively inter-
vene in them with the aspiration of making a 
difference (i.e. of producing knowledge that 
allows managers to be more effective). The 
authors point out parallels between action 
research and complexity thinking; and apply 
the latter to the former. They then describe 
the use of action research to explore the 
application of complexity science in organi-
zations by investigating the ‘edge of chaos’ 
in different organizational settings as well as 
the managerial and organizational practices 
that underpin it.

Concluding the Foundations section, 
Pierpaolo Andriani and Bill McKelvey 
(Chapter 15) explain what a power law is and 
why power-law science – the branch of com-
plexity science addressing phenomena 
characterized by a high degree of heteroge-
neity and distributed interdependence which 
leads to extreme variance – is essential to 
management and organization studies. They 
argue that power-law science represents a 
necessary and legitimate paradigm that is 
more general than those currently dominat-
ing the social sciences and illustrate how it 
can be applied to understand entire classes of 
phenomena, such as extreme events and the 
proliferation of small niches, which are dif-
ficult or impossible to explain via Gaussian 
or other approaches based on finite variance.

Applications

The second section of the Handbook presents 
a series of chapters that, collectively, describe 
the numerous ways in which complexity sci-
ence is being applied to phenomena of inter-
est to organization theorists and management 
researchers. The diversity of topics addressed 
and approaches employed is impressive, as 
are the quantity and quality of insights 
gained. For some scholars, the challenge 
that complexity science represents for the 
Newtonian paradigm of classical science 
serves as philosophical inspiration for re-
thinking basic assumptions and tenets of tra-
ditional management thinking. For others, 
complexity science is a rich source of meta-
phors which recast organizational processes 
in ways that inspire novel representations 
and guide managerial action. For others still, 
complexity science represents an exciting 
tool kit of novel techniques and methods, 
including computational modelling.

In considering the applications of complex-
ity science to organizational and management 
phenomena, we have divided this section into 
two parts. First come chapters addressing fun-
damental issues of organization theory – the 
relationship between an organization and its 
environment as well as related phenomena of 
organizational adaptation, change and learn-
ing. Second come chapters that address spe-
cific management disciplines, such as human 
resource management, operations, research 
and development, and knowledge manage-
ment; or specific management challenges, 
such as leadership, entrepreneurship, the for-
mulation of strategy to create competitive 
advantage and the development of corporate 
strategy in multiple business unit firms.

Complexity and organizing
The chapters in this section focus on organi-
zations in their entirety and in context. They 
draw on complexity science to shed new light 
on the relationship between organizations 
and their environments, and to re-examine 
important questions about organizational 
adaptation, change and learning.
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Max Boisot and Bill McKelvey (Chapter 
16) explore the implications of complexity 
science for thinking about organization-
environment relations. They revisit Ross 
Ashby’s ‘Law of Requisite Variety’ and recast 
it in terms of the ‘Law of Requisite 
Complexity’, which holds that, to be effica-
ciously adaptive, the internal complexity of a 
system must match its environmental com-
plexity. Their ‘Ashby Space’, which consists 
of the Ordered, Complex and Chaotic 
regimes, offers a conceptual framework for 
thinking through the trade-offs that a system 
faces between stimulus simplification and 
response complexification as it responds and 
adapts to its environment. It offers scholars 
and practitioners a conceptual framework for 
thinking through some of the more pressing 
problems that confront a globalizing world.

Chapter 17 by James S. Baldwin situates 
organizations in an environment character-
ized by other organizations to consider the 
implications of complexity for industrial 
ecology. He points out that much extant 
research is based on reductionism and seeks 
to calculate optimal, equilibrium configura-
tions. Complexity science, as well as practical 
considerations, suggests however that change 
towards a less environmentally destructive 
industrial ecosystem is about disequilibrium 
(i.e. the evolution of firms and industries). 
Evolutionary models that can be used to 
explore the probable paths of an evolving 
industrial ecosystem are described, and these 
suggest ways in which individual agents can 
contribute to improving the environmental 
performance of the overall system. Such rep-
resentations can facilitate the emergence of 
shared interpretive frameworks and collec-
tive governance.

Glenda Eoyang (Chapter 18) surveys the 
academic and practice literatures to identify 
the various ways in which the theory and 
practice of organizational change are being 
altered as a result of the deployment of 
descriptive and explanatory metaphors drawn 
from complexity science. While descriptive 
use of complexity metaphors involves retro-
spective analysis of events in a change pro cess 

using visual metaphors to label and catego-
rize patterns, explanatory use of complexity 
metaphors assumes that the mechanisms 
of organizational change mimic nonlinear 
change mechanisms of complex systems. 
These latter metaphors can, therefore, pro-
vide a basis for analysis and interventions to 
influence change; as well as for transforma-
tion of some long-standing and unhelpful 
dichotomies that have shaped understandings 
of organizational change into more helpful 
‘generative paradoxes’.

John Shotter and Haridimos Tsoukas 
(Chapter 19) also focus on organizational 
change. They point out that the dominant epis-
temological orientation of Newtonian science, 
which privileges the general and the abstract 
over the particular and the concrete, contra-
dicts common experience insomuch as novel 
situations are what practitioners face each and 
every day and, indeed, their own interventions 
help to generate the novelty with that they 
wrestle. They argue for a more ecological 
epistemology which is inspired by complexity 
science and emphasizes relations rather than 
entities. For human systems, in which subjec-
tivities and communicative relations play such 
a fundamental role, this orientation draws 
attention to the constitutive role of language 
and conversations, which are understood 
dialogically to give rise to transitory but none-
theless action-guiding anticipations and 
the ‘always unfinished openness’ inherent in 
processes of both stability and change.

Maintaining the emphasis on how 
organizations change in a given environment, 
Eve Mitleton-Kelly and Ben Ramalingam 
(Chapter 20) examine the phenomenon of 
organizational learning. The chapter identi-
fies a set of important distinctions in the lit-
erature and, in doing so, clarifies key concepts 
of organizational learning. The chapter then 
reviews and critiques research on these key 
concepts using the theoretical lens of com-
plexity science, illustrating how it can be 
used to question, reinforce and augment 
extant understandings of organizational learn-
ing. Specifically, their complexity perspec-
tive provides a conceptual underpinning for 
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the process, scope and conditions for learn-
ing; and helpfully reorients thinking about 
issues such as adaptation, alignment and 
equilibrium, the contrast between single and 
double loop learning, social connectedness 
and situated learning theories, among others.

Closing out this section on organizations 
in their environments, in Chapter 21 Kurt 
Richardson explores general implications of 
complexity science for the management of 
organizations by specifying what he refers to 
as ‘complexity thinking’. Drawing on natural 
science and philosophy, he argues that one 
implication is that complexity science con-
firms that there is no ‘optimal’ way to 
manage an organization and, consequently, 
the practice of management remains as much 
art as science. Complexity thinking implies a 
switch away from traditional management 
practices which emphasize planning and 
controlling to practices which emphasize 
learning and the evolution of managers’ 
knowledge in situ (i.e. as it is applied to con-
crete situations). He also derives practical 
lessons for managers, including that they 
should expect to be wrong and that flip-
flopping is okay because dogmatism is rarely 
effective as a strategy in the long term.

Complexity and managing
The chapters in this section review how com-
plexity science has been and can be drawn 
upon to theorize the management of different 
functional areas within an organization, and 
to address fundamental management chal-
lenges in novel and insightful ways.

Russ Marion and Mary Uhl-Bien (Chapter 
22) present implications of complexity sci-
ence for the study of leadership, highlighting 
how many contemporary organizational issues 
of complexity are not well handled through 
traditional top-down approaches to leader-
ship. They describe three emerging complex-
ity perspectives on leadership – adaptive 
leadership, administrative leadership and ena-
bling leadership – and explore differences 
among them. Whereas adaptive leadership 
refers to informal interactions to influence 
local behaviours and to generate adaptive, 

innovative outcomes, administrative leader-
ship refers to interactions that occur in the 
formal systems and structures of the organiza-
tion and are designed for efficiency and con-
trol. Enabling leadership plays an important 
role by operating at the interface between 
adaptive and administrative leadership.

Human resource management is the focus 
of Chapter 23 by Barry Colbert and Elizabeth 
Kurucz, who extend Colbert’s path-breaking 
work which outlined how complexity science 
can inform the large body of strategic human 
resource management theory that is built 
upon the resource-based view of the firm. 
They illustrate how a particular thread of 
organizational complexity science – the com-
plex responsive processes perspective – can 
be leveraged to explain how a resource-based 
advantage comes into being and how, in turn, 
an organization can build ‘competitive poten-
tial’. The advantage of the complex respon-
sive processes perspective is in shedding 
light on the processes that give rise to emer-
gent innovation and in prescribing more 
appropriately process-oriented roles for 
human resources managers.

Arash Azadegan and Kevin J. Dooley 
(Chapter 24) examine the operations func-
tion. They point out that production systems 
are complex adaptive systems that have been 
studied by operations management research-
ers for decades, and an important issue is that 
of centralized versus distributed control. 
Traditionally organizations have controlled 
manufacturing operations centrally but today 
it is more common for decisions about 
responses to changes in the organization’s 
environment to be taken by actors distributed 
throughout the system. These changes can be 
explained using Ashby’s law of requisite 
variety: the complexity of production sys-
tems has coevolved with the complexity of 
the environment in which they are situated. 
Drawing upon an historical account, they 
document the emergence of distributed con-
trol and link it to three factors: a plurality of 
organizations capable of interacting; suffi-
cient connectivity to create opportunities to 
interact; and abundant resources.
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Knowledge management is addressed by 
Max Boisot in Chapter 25. He reminds us 
that we act, survive and prosper via the 
knowledge and communication technologies 
we use in adapting to diverse phenomena 
encountered in a world which is becoming 
ever-more connected and complex. Complex 
phenomena are much higher in information 
content than simple ones, so managers’ abil-
ity to increase and to manage their knowl-
edge base determines how much complexity 
they can handle. Insights from complexity 
science can therefore benefit the discipline 
of knowledge management, as Boisot illus-
trates. He describes and critiques the field 
of knowledge management, then presents an 
integrative framework which is used to theo-
rize the cyclical nature of social learning.

Knowledge is also a key theme in Chapter 
26 by Pierpaolo Andriani, who explores the 
application of complexity science to under-
stand innovation: the conversion of knowl-
edge into socio-economic advantages via the 
researching and developing of new technolo-
gies. In contrast to other factors of production 
– land, capital and labour – knowledge is 
subject to virtuous cycles of positive feedback 
as well as network effects, which means that 
the more knowledge-intensive innovations a 
society produces, the more advantageous 
can become its position. So, understanding 
innovation is very important. Recently, 
there has been a shift in studies of innovation, 
from manufacturer-centric to network-centric 
approaches, and some refer to the network of 
interdependent, co-evolving technologies as 
the Technosphere. Complexity science pro-
vides concepts and overarching framework 
for making sense of the organic development 
and evolution of the Technosphere.

Continuing with the theme of innovation, 
Benyamin Lichtenstein (Chapter 27) reviews 
the application of complexity science by 
entrepreneurship scholars to research emerg-
ing ventures, explain start-up dynamics, 
explore the creation of new markets, trace the 
origins of new regional economic clusters 
and understand the dynamics of technology 
innovation. He organizes this work using a 

four-part typology – metamorphizing, dis-
covering, modelling and generating com-
plexity – to summarize how complexity 
science-inspired approaches have contributed 
to understandings of the emergence process 
which is at the core of entrepreneurship and 
to identify opportunities for future research. 
More boldly, he argues convincingly for a 
view of entrepreneurship as emergence, set-
ting the stage for paradigmatic renewal in the 
field of entrepreneurship.

When entrepreneurs create new firms, they 
try to create competitive advantage, which is 
the focus of Chapter 28 by Oliver Baumann 
and Nicolaj Siggelkow. These authors review 
the literature to illustrate how complexity sci-
ence, and in particular computational models 
of adaptation on fitness landscapes, is shedding 
light on the relationship between complexity 
and competitive advantage. Organizational 
complexity arises from the numerous interde-
pendencies between intra- and extra-organi-
zational elements, creating difficult problems 
of alignment or ‘fit’. Is complexity detrimen-
tal to good strategy, or can it contribute to 
competitive advantage? Do some organiza-
tion structures offer more advantage in com-
plex environments than others? And how do a 
firm’s strategies affect organizational per-
formance, given internal and environmental 
complexity? Computational modelling has 
generated significant insights into these 
important questions.

Kathleen Eisenhardt and Henning Piezunka 
(Chapter 29) also address strategy, but are 
interested in the corporate strategy of 
organizations with multiple business units. 
They present and contrast traditional corpo-
rate-centric perspectives on corporate 
strategy with a more recent ‘complexity per-
spective’, which assumes the multiple busi-
ness unit organization is a complex adaptive 
system consisting of modular, loosely linked 
and unique business units that collaborate 
and compete with one another. The latter 
perspective is business unit-centric; and 
focuses on processes such as ‘morphing’, 
‘rewiring’ and ‘patching’. It also generates 
quite different prescriptions as compared to 
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traditional theories for the distribution of 
power and decision making in firms, the 
roles of actors and the management of 
change. The complexity perspective empha-
sizes the importance of a moderate degree of 
structure and the pursuit of coevolu-
tionary adaptation of multiple business unit 
organizations with their dynamic organiza-
tional environments.

This section concludes with Chapter 30 
by James K. Hazy on management practice. 
He writes for practicing executives who, he 
anticipates, are drawn to complexity science 
because traditional management research has 
been unsatisfactory in terms of its practical 
utility. He synthesizes insights from com-
plexity science appearing in this volume to 
distil five new ‘rules of management’: (a) 
focus on the evolution of your organization’s 
resilience, not design for stability; (b) be 
open to surprises across all levels of the 
organization; (c) create effectiveness by look-
ing forwards (not backwards) and anticipat-
ing that the future will be qualitatively 
different from the present; (d) build models 
and encourage trial-and-error experimenta-
tion; and (e) recognize and reinforce larger 
scale patterns to ride a wave of renewal.

Be it through metaphysics, metaphors or 
models, it is clear from this collection of 
chapters that complexity science is trans-
forming understandings of organizing and of 
managing.

Interfaces

With its trans-disciplinary roots and appeal, a 
complexity perspective also opens up promi-
sing avenues of interface between organiza-
tion studies and other disciplines.  Accordingly, 
the third and final section of the Handbook 
introduces a series of interfaces where excit-
ing research is occurring, facilitated by a 
couple of factors. First, complexity science is 
in the process of transforming conventional 
thinking in a number of fields beyond man-
agement, and the changes underway present 
opportunities for challenging traditional 

paradigms, for doing science differently, and 
for initiating new conversations. Second, the 
common language and set of concepts pro-
vided by complexity science can facilitate 
conversations across disciplinary boundaries. 
Creative destruction is taking place and the 
boundaries between management and adja-
cent disciplines represent sites for innovative 
theorizing. This section therefore highlights 
how complexity science is being applied in 
several non-management fields and, in so 
doing, creating exciting interfaces for con-
structing knowledge that bridges manage-
ment to other disciplines.

In the first chapter in this section 
(Chapter 31), Stephen Guastello looks at the 
application of complexity science, and in 
particular research on nonlinear dynamics, to 
theoretical and practical problems encoun-
tered in psychology that are also relevant to 
management. The chapter first considers 
applications in cognitive science, in which 
consciousness is viewed as an integrated 
process which brings together psychophysics 
and sensation processes, perception, cogni-
tion, learning, memory and action. Here, 
the emphasis is on an individual in a com-
plex environment. Next, it considers collec-
tions of individuals, reviewing insights gained 
into social cognition, motivation, conflict, 
creative problem solving, group coordination 
and leadership emergence. The direct rele-
vance of these phenomena to management is 
clear, and complexity science therefore 
presents opportunities for strengthening ties 
between the disciplines of psychology and 
management.

Next, César Hidalgo (Chapter 32) looks at 
how network sociology can contribute to 
understanding complexity and management. 
He proposes that, because organizations can 
be seen as adapting, evolving networks of 
interacting entities (i.e. as complex systems), 
many insights from network theory apply. He 
also highlights how value often originates ‘in 
between’ (i.e. in the relationship that con-
nects) multiple entities, which means that 
network theory can also inform management 
theories of value creation and destruction. 
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Network science – sensing methods and ana-
lytical techniques combined – can assist 
organizations to become more self-aware, 
which will increase their likelihood of suc-
cessfully adapting to their environment. 
Further, more adaptable organizations could, 
collectively, contribute to an overall eco-
nomic or societal system that itself is more 
evolvable.

In Chapter 33, Steven Bankes examines 
the use of complexity science in public 
administration and policy. He observes that 
policy decisions, whether made by govern-
ment agencies, for-profit companies or indi-
viduals, typically concern systems that are 
both complex and open. As a result they give 
rise to ‘wicked problems’: not only must 
policy be adaptive to cope with deep uncer-
tainty and changing circumstance, but its 
analytic structures are also context depend-
ent, requiring adaptive responses because 
policy coevolves with the system towards 
which it is directed. Bankes focuses on the 
use of computational models to support 
exploration of alternatives in policy making, 
considering both possible advantages and 
potential dangers. Methods for parametric v. 
non-parametric exploration are discussed, as 
are analyses of policy alternatives, uncertain-
ties, values and sources of information, as 
well as the role of iteration and interactivity.

The next chapter, by Geoffrey Hodgson 
(Chapter 34) adopts key assumptions of evo-
lutionary and institutional economics to 
explore habits and routines – both of much 
interest to organizational researchers – as 
adaptive responses to complex environments. 
He shows that the Darwinian approach pro-
vides an overarching framework for theoreti-
cal and empirical exploration of the 
mechanisms involved in learning, knowledge 
transfer, competition and organizational 
change. He notes that discussions of the 
complexity facing agents and the mecha-
nisms required to deal with it are less promi-
nent in the literature on complexity, but of 
critical importance to understanding social 
evolution. In the approach outlined in the 
chapter, individual habits and organizational 

routines are viewed as different replicators 
and as part of the multi-level evolutionary 
process which characterizes a society.

Chapter 35 by Paul Ormerod looks at the 
application of complexity science to econom-
ics, which is creating a rich interface for 
research into complexity, management and 
economics. He notes that there are several 
key features of complex systems that suggest 
that the perspective of complexity science 
offers perhaps the best vantage point for 
analysis of an economy. He begins by con-
sidering the behaviour of economic actors 
and whether the assumption of economic 
rationality can be justified, underlining just 
how problematic such assumptions are. 
Experimental and behavioural economists, 
however, have documented how actors use 
limited information and rules of thumb, each 
one customised to particular circumstances. 
Consistent with these approaches, he exam-
ines firm behaviour from a complex systems 
perspective, including an illustrative example 
using agent-based modelling.

The section concludes with Chapter 36 in 
which Brenda Zimmerman reviews and 
organizes the literature on health care, 
explaining how complexity science has been 
tapped for insights to address public policy, 
clinical and management challenges. For 
policy makers, complexity science provides 
inspiration for redesigning health care deliv-
ery systems; for clinicians, applications of 
complexity science range from relationship-
centred care to the use of fractal geometry for 
diagnosis and treatment of cardiac condi-
tions; while for health care managers and 
leaders of health care organizations, the 
application of complexity science has resulted 
in the redesign of work roles as well as 
change in care delivery modes and patient 
safety initiatives. Complexity science appli-
cations to health care have been transforma-
tive insomuch as they have been harnessed to 
design and justify more distributed network-
based models of control and authority. 

Complexity science is not only transform-
ing our understanding of organizing and 
managing, it is transforming thinking about a 
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range of phenomena in disciplines beyond 
management. Scholars should therefore take 
advantage of the opportunity they have to 
participate in the creative destruction of tra-
ditional ways of thinking and of artificial 
boundaries separating our academic disci-
pline from others.

COMPLEXITY AND MANAGEMENT: 
LOOKING TO THE FUTURE

As the contents of this Handbook show, a 
diverse set of researchers adopting a wide 
range of approaches and studying an impres-
sive variety of organizational phenomena are 
coming together to constitute the field emerg-
ing at the intersection of complexity science 
and management. Complexity science con-
firms that our world is not one resembling a 
machine set in motion at the beginning of 
time and changing deterministically in an 
event-free manner since. Rather, it more 
resembles an ecosystem or organism in the 
process of developing, dissipating the sun’s 
energy in ways that give rise to events at dif-
ferent scales and, hence, unpredictable quali-
tative change. This is not to say that there are 
not times and places where assumptions of an 
unchanging underlying ontology will yield 
satisfactory theories and models; but it is to 
say that the search for universal laws govern-
ing relations among things is largely mis-
guided. Similarly, approaches to phenomena 
which assume equilibria need to be ques-
tioned. These realizations, of course, have 
important implications for the practice and 
study of management.

Organizations make up and operate in a 
Schumpeterian world of creative destruction 
– an under-determined social and economic 
reality which is not at, nor heading for, ‘equi-
librium’ and in which behaviours cannot be 
interpreted as being ‘optimal’. Rather, our 
societies and political economies are com-
plex systems in which numerous elements 
interact. Humans and their organizations are 
guided by imperfect schemata that are revised 

as a consequence of experiences, leading to 
changed behaviours and innovations. This, in 
turn, gives rise to novel situations for actors 
at the next moment in time, meaning new 
experiences and more changes to schemata, 
and so on: the learning process continues but 
a given schema does not necessarily con-
verge towards some accurate representation 
of reality because the latter is not fixed and is 
always ‘becoming’. If selection pressures 
operate at the level of agents in addition to 
schemata, eliminating non-viable or unlucky 
ones while others survive, then evolution 
complements learning. But, contrary to the 
view of markets from neoclassical econom-
ics, the mere presence of a firm does not 
imply that its performance or profits are opti-
mal. Rather, it implies that its performance 
has been sufficient to allow it to participate in 
the ongoing drama of creative destruction for 
at least a little while longer. Accordingly, the 
practice and study of management is redi-
rected away from traditional approaches 
which emphasize centralized calculation of 
optimal actions to navigate a knowable envi-
ronment and implemented through command 
and control, to alternative approaches which 
emphasize actions as experiments (i.e. explic-
itly recognized opportunities for learning, 
which flow from distributed judgments and 
yield knowledge which is contingent and 
provisional). In a complex world, hubris can 
lead to disaster, while the payoffs to such 
qualities as humility, doubt and mindfulness 
towards assumptions and beliefs which might 
otherwise become taken for granted are 
much larger than one might expect.

Philosophical issues of ontology and epis-
temology therefore loom large in this shift 
and, notably, for both practitioners and 
researchers. As several chapters in this 
Handbook argue and illustrate, complex sys-
tems change qualitatively as new global fea-
tures and new types of entities emerge over 
time, giving rise to an evolving, changing 
ontology. In other words, the very entities 
that we use as the basis for our descriptions 
and theories themselves can change over 
time. This is the case for managers employing 
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theories in action and for organizational 
scholars developing theories from observa-
tions. For the former, a premium is placed on 
attending to their organization’s capacities 
for adaptation and learning; this necessarily 
implies a need for more explicit attention to 
the ‘organizational epistemology’ (von Krogh 
and Roos, 1995; Tsoukas, 2005) that their 
organization is enacting (i.e. how knowledge 
is produced and used in and by the organiza-
tion). For the latter, scholars suggest embrac-
ing a new ‘normal’, ‘quasi-natural’ and 
model-centred (McKelvey, 1997; McKelvey, 
this volume) ‘bottom up’ science (Epstein 
and Axtell, 1996) for producing and using 
knowledge about organizations. Related, to 
fully embrace complexity both management 
practitioners and organizational scholars 
need humility as regards what they think they 
know about organizations since complexity 
science points to unavoidable limits to knowl-
edge (Allen, 2000, 2001, this volume), as 
well as appreciation of the multiple divergent 
yet legitimate descriptions which are consti-
tutive of complexity (Cilliers, 1998; Maguire, 
this volume).

What, then, are the implications of com-
plexity science for future management and 
organizational research? What are the most 
pressing next steps in advancing manage-
ment research on this front? Each of the 
chapters which follow provides at least par-
tial answers to these questions and it would 
be difficult, if not downright foolish, for us to 
try to synthesize them here given the breadth 
of topics covered and heterogeneity of 
perspectives represented. The diversity of 
applications of complexity science to organi-
zational questions and sheer number of inter-
faces to other disciplines potentially bridged 
by complex adaptive systems approaches 
present us with a daunting task. Simply – and 
perhaps appropriately for a subject matter 
such as ‘complexity’ – the field emerging at 
the intersection of complexity science and 
management does not lend itself to a single 
research agenda. It is unlikely that a research 
programme addressing such a wide range of 
phenomena – from leadership to human 

resource management to innovation to organ-
izational learning to operations management 
to organizational change through talk, to 
name just a few of the topics covered by the 
chapters of the Handbook – could be coher-
ent. As a result, we focus on the foundations 
of knowledge in and about organizations, 
drawing attention to the old but persistent 
issue of ‘uncertainty’ as well as to new and 
promising computational methods.

Unpacking Uncertainty 
with Complexity

Uncertainty is a ‘central concept in the 
organization theory literature, particularly in 
theories which seek to explain the relation-
ship between organizations and their envi-
ronments’ (Millikan, 1987: 133). Indeed, 
Thompson (1967: 159) argues that ‘[u]ncer-
tainty appears as the fundamental problem 
for complex organizations, and coping with 
uncertainty, as the essence of the administra-
tive process’. Similarly, Davis and Powell 
(1992: 317), in describing the development 
of theory on organization-environment rela-
tions, note that ‘[u]ncertainty is one of the 
most critical features of the environment’, 
with contingency theory, resource depend-
ency theory and transaction cost economics 
each positing that ‘a good deal of organiza-
tional behaviour consists of adaptive 
responses to environmental uncertainty’, and 
emphasizing exchange relations ‘as the pri-
mary source of uncertainty’. If uncertainty is 
so central to organizing, what does an under-
standing of complexity science imply for 
organizational research?

First, if organizations and their environ-
ments are complex systems, then uncertainty 
is unlikely to be completely reduced due to 
‘nonlinearity, which means that small causes 
are associated with disproportionately large 
effects in a system’s state variables’ and that 
a complex system’s evolution displays ‘sen-
sitivity to initial conditions, sometimes 
referred to as the “butterfly effect” after 
meteorologist Lorenz’s (1972) claim that the 
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flap of a butterfly’s wings in one region of 
the world could affect weather patterns in 
others’ (Maguire et al., 2006: 166). Another 
reason why uncertainty is likely to be a per-
manent and problematic feature of complex 
organizations and complex organizational 
environments is that there are limits to knowl-
edge in and about complex systems (Allen, 
2000, 2001, this volume). Knowledge of the 
future, in the form of accurate predictions, is 
limited because the future does not exist in 
the present awaiting discovery through 
human cleverness or the raw application of 
computational power. Rather, multiple pos-
sible futures exist. Further, the present can be 
as problematic as the future because one fea-
ture of complexity is that it is constituted 
through multiple competing yet legitimate 
descriptions, giving rise to yet more uncer-
tainty, although of a different kind.

Accordingly, we believe the time is ripe to 
unpack and explore the concept of uncer-
tainty and its relation to complexity. Impor-
tant questions that scholars could explore are: 
What is the nature of the uncertainty/
uncertainties to which organizations attend? 
To which internal and external sources of 
uncertainty do (or should) organizations 
attend? How are (or should) resources be 
allocated to avoiding, reducing or eliminating 
the various forms of uncertainty from differ-
ent internal and external sources? How does 
the uncertainty faced by an agent in a com-
plex system evolve over time? How do pat-
terns of uncertainty facing multiple agents 
evolve over time in a complex system? What 
is the relationship between uncertainty, risk 
and complexity?

Let us elaborate on the first question, for 
which some guidance comes from scholars 
wrestling with the issue of uncertainty in 
contexts where what is at stake in decision 
making is not generating adequate return on 
investment or the survival of a given organi-
zation but, rather, the survival of our planet 
and the peoples on it. Debates around climate 
change, nuclear energy, toxic substances and 
genetically modified organisms, to name but 
a few, often hinge on scientific uncertainty 

in and about complex systems and how to 
proceed in the face of it. As a consequence, 
sophisticated epistemological and ethical cri-
tiques have developed around the notions of 
risk and uncertainty, the distinction between 
type I and type II errors, and the inevitability 
of value judgments even within the soundest 
of science. For example, a bias for minimiz-
ing type I errors at the expense of more type 
II errors (e.g. the ubiquitous use of 95% con-
fidence intervals and 5% significance levels 
in hypothesis testing) may make sense in pure 
science where the consequences of false neg-
atives is merely the inconvenience of a false 
belief in the laboratory; but when it comes to 
applied science decisions for which the con-
sequences of false negatives are serious and 
irreversible harms (e.g. issues of technology 
or ecology) the situation is quite different; see 
for example McGarvey (2007) on the conse-
quences of false negatives to the question of 
whether a species is endangered. Stirling 
(1999), to give just one illustration, distin-
guishes four types of ‘incertitude’ using the 
dimensions of ‘knowledge about outcomes’ 
and ‘knowledge about probabilities’, each of 
which can be ‘problematic’ or not: risk exists 
when neither knowledge about outcomes nor 
about probabilities is problematic; uncer-
tainty is present when only knowledge about 
probabilities is problematic; ambiguity exists 
when only knowledge about outcomes is prob-
lematic; and ignorance is the label for situa-
tions when both knowledge about outcomes 
and about probabilities is problematic.

Given the tendency towards loose and 
imprecise use of the term ‘uncertainty’ in 
much management research, organization 
theory could benefit from a more nuanced 
and systematic approach. Using Stirling’s 
(1999) typology, the qualitative changes 
inevitable in an evolving complex system 
mean that managers face much more ambigu-
ity and ignorance than one might guess if one 
looked only at the management literature 
where the concepts of risk and uncertainty 
predominate. In sum, exploration of the rela-
tionships among uncertainty, risk and com-
plexity is likely to prove fruitful.
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Modeling and 
Narrating Complexity

The underlying heterogeneity of the entities 
which make up organizations and their envi-
ronments, as well as the empirical reality of 
qualitatively novel features emerging in them 
over time as they move through successive 
states of disequilibrium, pose epistemologi-
cal and methodological challenges for organ-
izational researchers. Fortunately, complexity 
science offers methods for addressing those 
management phenomena that involve order 
creation along with changing ontology, as 
opposed to unchanging entities subjected to 
forces pulling them inevitably toward some 
equilibrium. As Maguire et al. (2006: 197) 
write:

Further, the shift from elegant mathematical rep-
resentations of idealized processes to agent-based 
computational models also allows organizational 
researchers to pursue the epistemological advan-
tages of models and experiments without having 
to assume away important – or, as some would 
say, essential – features of organizational reality 
simply to make the mathematics tractable. These 
include idiosyncratic heterogeneity among indi-
viduals or firms, commonly eliminated by assuming 
homogeneity; interdependence among agents, 
commonly eliminated by assuming independence; 
and the emergent outcomes of agent interactions, 
commonly ignored because equations necessarily 
focus on relations among variables at a single level 
of analysis, treating fast variables as insignificant 
noise and slow variables as unchanging constants. 
… So, instead of conceptualizing and studying the 
world as made up of independent homogeneous 
agents responding as automatons to equilibrating 
forces – seemingly without choice or, equivalently, 
with omnisciently rational choice – bottom-up 
science offers a more realistic alternative.

As numerous chapters in the Handbook 
illustrate, computational modelling and the 
use of ‘agent-based models’ (ABMs) in 
organizational research is contributing much 
to our understanding of management. 
Complexity science represents an important 
development for organizational scholars (and 
economists) because it provides theories 
appropriate to Schumpeterian competition 
and offers mathematical and computational 

tools to study creative destruction in eco-
nomic sectors as a complex evolutionary 
system. Instead of modelling each agent 
according to a single profit- or utility-maxi-
mizing algorithm, researchers can explore 
much more heterogeneous situations where 
different behavioural rules interact and 
responses play out over time, leading to a 
much more realistic view of markets. To 
understand the dynamics of a changing world 
that is constantly in flux, insights that stem 
from assumptions of perfect knowledge 
(which may then be subsequently relaxed) in 
order to generate mathematical puzzles that 
are solvable can be complemented with 
insights from computational models that start 
from assumptions of agents having no knowl-
edge but acquiring it over time through expe-
rience. Indeed, the latter may be superior to 
unravel the mysteries of emergent features, 
characteristics and capabilities that lead to 
increasing levels of coordination, hierarchi-
cal structures and system-level organization.

In addition, for managers and policy 
makers who wish to manage a given system 
and who are deliberating the merits of a 
given strategy or policy intervention, absence 
of knowledge about the ways in which differ-
ent elements of the system may interact as 
they respond to the intervention represents a 
real empirical problem. However, computa-
tional models can be used to capture aspects 
of the system that are relevant to the decision 
maker while representing the system in terms 
of the interacting agents that inhabit it. In this 
way, the evolution of the system can be 
examined under the influence of different 
policies and actions and can be run repeat-
edly with different random elements to 
explore the stability of any particular type of 
trajectory and the sensitivity of outcomes to 
changes in parameters. Such models can not 
only help to shed light on different possible 
futures but can also reveal collective out-
comes that were not anticipated by the man-
ager or policy maker.

Thus, the harnessing of computational 
modelling techniques originating in the 
study of complex systems by organizational 
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scholars is yielding many insights. These 
contributions can be juxtaposed with nume-
rous other chapters in the Handbook, which 
illustrate how concepts and ideas from com-
plexity science have also contributed to the 
qualitative methods used to explore organiza-
tional phenomena. Perhaps it is too early in 
the development of the field to expect more 
integration, but we propose that future 
research should be more attentive to synthe-
sizing computational modelling of emer-
gence and narratives of emergence from 
qualitative research, reiterating a point made 
not long ago by Maguire et al. (2006: 201):

Ideally, agent-based models (ABMs) would bring 
experimental corroboration and elaboration to 
findings from narrative studies. ABMs could offer 
tests for broadening generality and for studying 
dynamics. ABMs also allow the juxtaposition of 
variables from different disciplines. Thus, narrative 
studies could be more multidisciplinary. Narrative 
researchers can also help to develop better ABMs 
by offering clearer data for the purpose of validat-
ing baseline models. Thus, ABMs would simulate 
the narrative findings first, and then advance into 
experimental manipulations. Qualitative research-
ers should also design studies to enlighten or chal-
lenge model-centred findings.

This appeal for integration of computational 
and qualitative methods is consistent with 
recent claims of scholars that ‘an appropriate 
aspiration for organization theory in the early 
twenty-first century is providing a natural his-
tory of the changing institutions of contem-
porary capitalism’ by studying ‘mechanisms’ 
(Davis and Marquis, 2005: 333): computational 
models can be used to elucidate mechanisms 
at work when particular patterns arise; while 
narratives developed from qualitative methods 
can identify the specific individuals, organiza-
tions and events that, in retrospect, turn out to 
have been determinant in the natural history 
of a given economic sector’s ‘becoming’.

FINAL WORDS

As the chapters in this Handbook demonstrate, 
complexity science offers a range of novel 

conceptualizations and approaches for under-
standing the processes that govern and drive 
the emergence, development and demise of a 
range of interacting entities (e.g. people, busi-
ness units, organizations and societies) as they 
cooperate and compete in open systems, draw-
ing resources from each other and their envi-
ronments. Almost mathematical in its level of 
abstraction and metaphysical in its implica-
tions, complexity science provides firm foun-
dations for organization studies, with robust 
philosophical underpinnings, concepts and 
methods; innovative applications which shed 
light on important organizational phenomena; 
and promising interfaces for launching fruitful 
conversations between organizational and 
other types of scholars. With so much to rec-
ommend in the chapters that follow, perhaps 
the best way to conclude this introduction is 
simply to encourage you to discover each of 
them individually and to wish you many 
pleasant hours of what we are convinced will 
be stimulating and enjoyable reading.
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Complexity and 

Systems Thinking

Y a s m i n  M e r a l i  a n d  P e t e r  A l l e n

Once the whole is divided, the parts need names.
There are already enough names.
One must know when to stop.
Knowing when to stop averts trouble.
Tao in the world is like a river flowing home to 
the sea.

Lau Tsu, Tao Te Ching

INTRODUCTION

Systems thinking has evolved over the 
millennia as people have looked for ways to 
articulate the features of the world around 
them in a coherent manner.1 Starting from 
the definition of a system as an integrated 
whole made up of interconnected parts, vari-
ous formalizations of systems thinking in a 
way that would be of interest to managers 
have emerged over time as people have 
looked for ways of rationalizing their interac-
tions with the world. These formalizations 
give us a set of ontological and epistemo-
logical devices that have been used to define 
what the world is, to explain how it works, 
and to define and justify interventions that 
are intended to change, control or constrain 
the future behaviour of that world.

The ancients debated the role of structure, 
form and composition2 in determining the 

behaviour of social, physical and natural 
systems, and engaged with the transience of 
system phenomenology,3 and we find these 
themes recurring in modern theories of 
systems behaviour. Successive schools of 
systems thinking have focused on specific 
aspects of systems properties, and developed 
an apparatus to confront the challenges of 
their time in dealing with complexity.

In this chapter we track the evolution in 
the Western scientific tradition of systems 
ideas to deal with complexity, and reflect on 
the developments that are most likely to be 
influential in shaping management thinking 
from here on.

Our account takes us from Bertalanffy’s 
biologically inspired GST (General Systems 
Theory), through the cybernetics of the Macy 
Group and the analytical ethos of systems 
engineering, the theories of self-organization 
and self-production in chemistry and life, to 
the present day engagement with the ideas of 
complexity science.

This trajectory crosses and re-crosses 
traditional divisions between the physical, 
biological and chemical sciences, and it takes 
us from the Newtonian predictability of the 
trajectories of complex dynamical systems in 
space to the present day challenges of dealing 
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with the unpredictable trajectories of complex 
dynamical systems in space-time. We shall 
see how the different conceptualizations of 
systems and their complexity have affected 
the ontological and epistemological assump-
tions for successive models for managing 
complexity in socio-economic contexts.

SYSTEMS THINKING

Based on the definition of a system as an 
integrated whole made up of interconnected 
parts, axiomatic to traditional systems think-
ing are:

the existence of a distinct entity that can be  •
identified and explicitly defined as ‘the system’ 
or ‘the whole’;
the composition of ‘the whole’ from a number of  •
inter-connected parts; and
the existence of distinctive properties that can  •
be ascribed to ‘the whole’ but not to any of the 
individual parts that constitute ‘the whole’ (i.e. 
‘the whole’ is more than the sum of its parts).

Systems thinking is often defined by its 
contrast to the Cartesian paradigm which is 
characterized by the belief that the behaviour 
of the whole can be understood entirely from 
the properties of its parts. Systems thinking, 
on the other hand, asserts that systems cannot 
be understood by analysis – the properties of 
the parts can only be understood within the 
larger context of the whole.

The composition (what the components 
are (made of )), structure (how the compo-
nents are connected) and organization (how 
the components interact to maintain the 
coherent existence of the system as a distinc-
tive ‘whole’) of a system together define the 
identity of the system at any given moment. 
As we shall see, these three aspects have 
received varying degrees of attention in the 
different families of systems thinking and 
practice that have evolved in diverse fields 
and been adopted and adapted by manage-
ment thinkers to deal with complexity over 
the years.

General Systems Theory

The formalization of modern day systems 
thinking goes back to Ludwig von 
Bertalanffy’s formulation of the General 
Systems Theory (GST) in the first half of the 
twentieth century as

… an important means of controlling and 
instigating the transfer of principles from one field 
to another, and it will no longer be necessary to 
duplicate or triplicate the discovery of the same 
principle in different fields isolated from each 
other. (Bertalanffy, 1968)

In his exposition of the GST in 1940, 
Bertalanffy argued that the laws of classical 
physics that could be applied to predict the 
behaviour of physical systems were based on 
assumptions of systems closure and 
equilibrium dynamics that did not hold for 
biological systems. So, for example, whilst 
the Second Law of Thermodynamics states 
that the entropy (associated with the degree 
of disorder) of an isolated (closed) system 
which is not in equilibrium will tend to 
increase over time, approaching a maximum 
value at equilibrium, living systems are open 
systems capable of maintaining ordered 
steady states under non-equilibrium condi-
tions. This sets the stage for subsequent 
developments in systems thinking directed at 
understanding the dynamics that underpin 
the maintenance of order in open systems. 
Bertalanffy provided a point of connection 
for other developments in the study of open 
systems in diverse fields.

In the management field, systems thinking 
began to erode the Newtonian paradigm of a 
clockwork universe governed by determinis-
tic laws of nature. Developments in the 
earlier part of the twentieth century were 
predicated on the design paradigm for man-
agement and problem solving. The emphasis 
was predominantly on the design of organi-
zations as systems that could be regulated 
and controlled by management intervention. 
Later developments signalled a shift away 
from the design paradigm, as organizational 
scholars began to engage with ideas of 
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self-organization, emergence, adaptation and 
co-evolution as mechanisms to explain the 
unintended consequences of designed 
management interventions.

The science of cybernetics, Maturana and 
Varela’s conceptualization of autopoiesis 
(Maturana and Varela, 1973) and Prigogine’s 
work with dissipative systems (Prigogine, 
1967) are amongst the most influential 
forces in the evolution of ideas about the 
management and organization of systems. 
Cybernetics focused on mechanisms for 
control and co-ordination in machines and 
organisms, and gave rise to management 
theories for organizational design in the 
first part of the twentieth century. Maturana 
and Varela focused on the patterns of pro-
cess and organization that defined living 
systems, and their work has been influential 
in the development of theories of self-
organization and the maintenance of identity 
in social systems (Luhmann, 1990; Merali, 
2002). Prigogine’s work was influential in 
the development of ideas about the dynam-
ics underpinning organizational transforma-
tion – shifting the focus from being to 
becoming.

THE DESIGN PARADIGM

In this section we look at the contributions of 
cybernetics and systems engineering to man-
agement thinking. Both approaches grew out 
of the research activity in the Second World 
War, and were influential in the development 
of management ideas about the way in which 
organizational structure and control mecha-
nisms could be designed in order to meet the 
challenges of managing large, complex 
systems.

Whilst systems engineering focused on 
controlling complexity by breaking down 
large organizational structures into smaller, 
more manageable ones, cybernetics raised 
the attention of managers to the organizing 
principles that governed the nonlinear 
dynamics of structurally stable systems.

Cybernetics: patterns of control

The cybernetics movement began during the 
Second World War. Norbert Weiner coined 
the term cybernetics from the kybernetes 
(steersman) and defined it as a new science 
of ‘control and communication in animal and 
machine’. The conceptual framework for 
cybernetics was developed in the Macy 
meetings (the first of which was held in 
1946). The multidisciplinary membership of 
the Macy group included Weiner, von 
Neumann, McCullough, Shannon Mead and 
Bateson. Their agenda of developing a self-
guiding, self-regulating machine ran along-
side an interest in discovering the common 
principles of organization in diverse systems 
and in understanding the neural mechanisms 
underlying mental phenomena to create an 
exact science of the mind. Subjects like com-
plexity, self-organization, connectionism and 
adaptive systems had been initiated already 
in the 1940s and 1950s.

The participants of the Macy conferences 
went on to make a number of important con-
tributions to the fields of computer science, 
artificial intelligence, cognition, philosophy, 
information theory, economics, and ecology. 
John von Neumann’s invention of cellular 
automata and self-reproducing systems has 
been incorporated into modern-day 
complexity science modelling approaches.

A major contribution of cybernetic move-
ment to management science in the early part 
of the twentieth century was the conceptuali-
zation of feedback loops between system 
components as regulating mechanisms for 
the system’s performance. The overall regu-
latory mechanism for the system is based on 
the existence of a circular arrangement of 
causally connected components – the output 
of each component either has a positive or 
negative effect on the output of the next 
component. The overall behaviour of the 
system depends on the cumulative effect of 
all the links between its components – a 
system containing an odd number of negative 
links will display a self-balancing behaviour, 
whilst one that has an even number of 
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negative links will display a self-reinforcing 
exponential runaway behaviour.

The fundamental contribution of this con-
ceptualization to general systems theory was 
the distinction of the pattern of organization 
from physical structure.

The early developments in management 
science based on cybernetic principles 
focused on the exploitation of negative feed-
back loops for the self-regulation of systems 
and the maintenance of stability. The impor-
tance of positive feedback mechanisms only 
entered mainstream management thinking in 
the 1990s along with the interest in under-
standing the network dynamics underpinning 
discontinuities in the competitive landscape.

Two of the most prominent developments 
derived directly from the cybernetic move-
ment in the field of management are Jay 
Forrester’s System Dynamics and Stafford 
Beer’s Viable Systems Model.

System Dynamics
System Dynamics grew out of Forrester’s 
work on applying the theoretical apparatus of 
control theory and the nonlinear dynamics 
associated with the feedback mechanisms 
of cybernetics to ‘enterprise design’ in the 
1950s.

It is predicated on the development of 
models that define an enterprise in terms of 
the structure of the feedback loops underpin-
ning its dynamic behaviour. The focus of the 
model is on the long-term patterns and inter-
nal organizing structure of closed information 
loops and their role in controlling and regu-
lating the enterprise’s behaviour in response 
to exogenous stimuli and endogenous 
fluctuations.

Over the years there has been a prolifera-
tion of modelling tools for System Dynamics 
to enable the representation of the causal 
structures of problems in terms of stocks and 
flows and feedback loops. The overall pat-
tern of the feedback relationships is defined. 
The use of such tools has been important in 
promoting the use of System Dynamics 
models to design policy interventions and to 
test the potential of these interventions to 

effect desirable outcomes by affecting the 
relative potency of feedback loops. In 
particular, by supporting the modelling and 
simulation of complex systems with large 
numbers of variables within multiple inter-
acting feedback loops, System Dynamics 
enables decision makers to explore the 
potential of their interventions to generate 
unintended consequences. In practice, the 
predictive power of System Dynamics simu-
lations and their utility for designing inter-
ventions is limited by the extent to which a 
persistent set of feedback mechanisms and 
their causal effect can be defined for the 
lifetime of the model.

In systems where it is possible to accurately 
identify the pattern of feedback loops and the 
assumption of structural stability holds – i.e. 
new variables and equations do not appear 
during the time that the ‘simulation’ repre-
sents, System Dynamics models can be useful, 
and their predictions meaningful. However, 
this is no longer the case if the assumption of 
structural stability ceases to hold – e.g. if new 
mechanisms and innovations appear, or 
resources and factors that were not even 
included in the original model suddenly 
become important, or people change their 
behaviour. So, a System Dynamics model 
may be useful within the time span that its 
structure actually agrees with that of reality, 
but could be very misleading if this strong 
limitation was neither stated nor understood.

The Viable System Model
The Viable System Model (VSM) also origi-
nated in the 1950s, and was conceived by 
Stafford Beer as a generic blue-print, or tem-
plate, for the organizing structure of any 
autonomous system. According to Beer, any 
organization can be defined in VSM terms as 
a set of systems nested within systems, 
embodying a recursive organizing structure.

The generic VSM template comprises a 
configuration of what Beer defines as the:

… five necessary and sufficient subsystems 
interactively involved in any organism or organiza-
tion that is capable of maintaining its identity 
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independently of other such organisms within a 
shared environment. (Beer, 1985)

The generic VSM template is replicated at all 
levels of detail within the nested structure: 
the organizing architecture is fractal in nature, 
displaying the self-similar VSM template at 
every level.

Labelled as ‘Systems 1–5’ the subsystems 
respectively take care of the primary function 
of the organization, information and commu-
nication, governance, environmental moni-
toring, policy and strategy. According to the 
VSM theory, an organization is viable if and 
only if it has this specified inter-related set of 
management functions embodied recursively 
at all levels of organization. If any of the sub-
systems are absent or defective, the viability 
of the organization will be compromised.

VSM has been widely used for organiza-
tional diagnosis and design: its fractal nature 
unifies its application at all scales to define 
the management structures for maintaining a 
cohesive organizational structure and iden-
tity. Beer’s own work on the diagnosis of 
socio-political systems illustrates the grand 
scope of VSM applications.

System Dynamics and VSM conform to a 
design worldview based on assumptions of 
structural stability, such that desired behav-
iours of complex systems can be brought 
about in a largely deterministic manner by 
management interventions on feedback loops. 
This view has sometimes been criticized for 
‘reifying’ some temporary description, and 
for not taking into account the non-rational 
behaviour of human actors and the emergent 
aspects of collective behaviours. This criti-
cism has been even more strongly levelled at 
the other strand of systems thinking (Systems 
Engineering) that grew out of the research 
activity from the Second World War.

The engineering of systems: 
constructing complex structures

In addition to the emergence of the cyber-
netic movement, a more analytic approach to 

dealing with complexity also grew out of the 
operations research activity in the Second 
World War, based on the definition of systems 
in terms of hierarchical structures and modu-
lar organization. At any level in the hierarchy 
the system could be partitioned into a set of 
interacting subsystems, which could them-
selves be decomposed further into subsys-
tems at successively more granular levels of 
detail. The technical and management chal-
lenge lay in the partitioning of projects, sys-
tems and development work without losing 
the holistic view of the system. The concep-
tual challenge lay in the definition of bound-
aries and interfaces in a way that would 
preserve the integrity of the reassembled 
whole. This strand of systems thinking, typi-
fied by Systems Engineering and Software 
Engineering (often classified as the ‘hard’ 
systems approaches) focused on the internal 
consistency of modularized systems, whilst 
Soft Systems Methodology focused on the 
problematic definition of the ‘whole’ for 
human activity systems.

Systems Engineering
Systems Engineering as an approach and 
methodology grew in response to the 
increased size and complexity of systems and 
projects, it:

recognizes each system is an integrated whole 
even though composed of diverse, specialized 
structures and sub-functions. It further recog-
nizes that any system has a number of objectives 
and that the balance between them may differ 
widely from system to system. The methods seek 
to optimize the overall system functions accord-
ing to the weighted objectives and to achieve 
maximum compatibility of its parts. (Chestnut, 
1965)

This engineering approach to the manage-
ment of complexity by modularization was 
re-deployed in the software engineering dis-
cipline in the 1960s and 1970s with a prolif-
eration of structured methodologies that 
enabled the analysis, design and develop-
ment of information systems by using tech-
niques for modularized description, design 
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and development of system components. 
Yourden and DeMarco’s Structured Analysis 
and Design, SSADM, James Martin’s 
Information Engineering, and Jackson’s 
Structured Design and Programming are 
examples from this era. They all exploited 
modularization to enable the parallel devel-
opment of data, process, functionality and 
performance components of large software 
systems. The development of object orienta-
tion in the 1990s exploited modularization to 
develop reusable software. The idea was to 
develop modules that could be mixed and 
matched like Lego bricks to deliver to a 
variety of whole system specifications. The 
modularization and reusability principles 
have stood the test of time and are at the 
heart of modern software development.

Introducing the axiological dimension: 
soft systems thinking
Whilst the cybernetic approaches had their 
roots in the desire to construct a self-guiding, 
self-regulating machine and create a science 
of the mind, and both VSM and System 
Dynamics have been used to explore aspects 
of social systems, none of the approaches 
covered so far dealt explicitly with human 
values and motivation.

Peter Checkland’s conceptualization of the 
Soft Systems Methodology (Checkland and 
Scholes, 1990) grew out of his critique of the 
way in which systems engineering methods 
neglected the human dimension of the con-
text within which systems were conceived 
and used. Soft Systems Methodology (SSM) 
is important in the history of systems engi-
neering because of its explicit treatment 
of human purpose and value-based percep-
tions. Whilst the systems engineering 
approaches focus on the efficacy and internal 
consistency of systems specifications and 
their development – i.e. building the system 
right, SSM focuses on the often contested 
question of what the ‘right’ system should be. 
Subsequent attempts have been made to fuse 
SSM with the structured approaches of sys-
tems engineering, but SSM remains at its 
most powerful when used freely as an 

approach for exploring, making sense of, and 
defining multiple views of problem situa-
tions and their potential solutions.

SSM can be used both for general problem 
solving and in the management of change. Its 
primary use is in the analysis of complex 
situations where there are divergent views 
about the definition of the problem situation 
(e.g. How to improve health services deliv-
ery; How to manage disaster planning; When 
should mentally disordered offenders be 
diverted from custody? What to do about 
homelessness amongst young people?), and 
the transformation that it needs to undergo.

In SSM the problem situation is viewed as 
a human activity system with multiple stake-
holders having different perceptions about 
the system and its purpose. In the early 
stages of the method each stakeholder is 
engaged in defining explicitly what the prob-
lem situation is, and what transformation it 
must undergo to achieve a more desirable 
state of affairs. As part of this exercise each 
stakeholder has to make explicit the 
Weltanschaaung (the ‘world outlook’ and 
value assumptions) that the transformation 
definition is based on. Each stakeholder then 
goes on to define the activities that must be 
undertaken to deliver the transformation, 
along with the requisite resource require-
ments and criteria for evaluating the effec-
tiveness, efficacy and efficiency of the 
proposed transformation. The different 
stakeholder ‘models’ of transformation are 
then fed into a collective debate and discus-
sion with the objective of arriving at a deci-
sion about the way forward that would be 
systemically desirable and culturally 
feasible.

Whilst SSM (along with other approaches 
arising out of the more general socio-technical 
school of management and critical systems 
thinking) was important in pointing to the 
importance of human and social values and 
perceptions in decision making and its out-
comes, it remains within the design para-
digm. Its focus is on specifying and designing 
the ‘right’ system intervention to achieve a 
desired state of affairs. Whilst it highlights 
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the messiness of human activity systems and 
acknowledges the diversity that is accommo-
dated in social organization, its design is to 
enable all stakeholders to see the whole, 
diverse problem space, and to take a collective 
decision about the best way forward.

Models in the design paradigm

Making models of complex systems and 
situations is a powerful way of understanding 
and testing the assumptions that we make 
about the structure and dynamics of 
systems.

We understand situations by making 
creative, but simplifying assumptions. We 
define the domain in question (the boundary) 
and by establishing some rules of classifica-
tion (a dictionary) that allow us to say what 
things were present and when. This means 
that we describe things strategically in terms 
of words that stand for classes of objects. The 
value associated with an element in a model 
(e.g. number, price) may be both related to 
the internal state of the element and also 
affected by processes or mechanisms that link 
it to other elements. This allows us to under-
stand the changes in a variable in terms of 
both internal conditions and also the changes 
that occur in the values of the other variables 
within the system. If the purpose of defining 
the system is to achieve an explanation of the 
linked changes in the values of the different 
components, then we need to include within 
the system the majority of causal links possi-
ble, and allow weaker links to be left in the 
environment. In other words, there may be a 
succession of levels of description corre-
sponding to the natural clustering of linkages, 
such as for example, atoms, cells, organisms, 
groups, firms, industries, economies, societies 
up to the planet. The point is that in using a 
systems approach to characterize a situation, 
there are really three levels of description 
involved: the internal nature of the elements; 
the different variables in interaction making 
up the ‘system’; the effects and links con-
nected to the system environment.

The staging posts in the evolution of 
systems thinking have all been associated 
with different types of assumptions about 
what constitutes a ‘good enough’ abstraction 
of reality as a basis for the development of 
models that would allow us to:

make predictions about future system states;  •
and
define interventions in the present that would  •
generate desired behaviours of the system at 
some future point.

In Figure 1.1 we show how successive 
assumptions are made in the development of 
models in order to ‘understand’ the real situ-
ation. On the left-hand side we have the 
‘cloud’ of reality and practice. Approaches 
like SSM engage with this by attempting to 
capture and systematize descriptions of per-
ceptions of reality from different stakeholder 
perspectives.

The ‘science’ of modelling begins by 
deciding on a boundary within which an 
explanation will be attempted, in the context 
of the environment outside. The second 
assumption is that of classification. The ele-
ments present within the boundary are 
classified into types, so that potentially, pre-
viously established behaviour and responses 
of similar types can be used to predict 
behaviour. In examining any evolving system 
of interest over some long time, however, it 
will be found that qualitative evolution has 
occurred in which some types of component 
have disappeared, others have changed and 
transformed, and others still have appeared 
in the system initially as innovations and 
novelties.

Figure 1.1 shows us how starting from 
‘reality’ on the left, about which no assump-
tions have been made, different types of rep-
resentation and model can be made providing 
that the necessary assumptions hold (Allen 
et al., 2007). These different representations 
pass from one of pure acceptance through 
various intermediate views to one of complete 
deterministic certainty when prediction is 
believed possible. In the development of 
these representations and understandings of a 
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Figure 1.1 Successive assumptions that lead to various ‘scientific’ understandings 
of a situation
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situation, the inherent openness of the future 
is constrained by two basic assumptions:

the closure of the system to unknown outside  •
influences; and
the homogeneity and fixity of the classes of  •
internal elements.

If these two assumptions can reasonably 
be made, then in fact the system may well 
behave in a predictable way. It really reduces 
to saying that providing nothing new hap-
pens in the environment and that system ele-
ments continue to act as they have been, we 
can predict the future. However, such an 
approach may work for artefacts that are only 
used in environments for which they were 
designed, but not for living things which can 
learn, get bored and be creative. Also, even 
the first assumption implies that all the inter-
actions between system and environment are 
known and held within given bounds. But 
in reality, our system is an ‘intellectual 
construction’ which captures some, or many 

or most of the interactions between it and the 
environment but is constrained by the 
bounded rationality imposed by the modeller: 
it does not include the things that the model-
ler does not know about, or considers to be 
irrelevant. Indeed, it is through events and 
crises that some of the things we did not 
know will reveal themselves.

The assumptions are specifically shown in 
Table 1.1.

If we are interested in understanding the 
behaviour of the existing system then we can 
simply take the inventory and description 
now, and consider the ‘working’ of the com-
ponents, bearing in mind the way that differ-
ent aspects and elements are connected. This 
assumes structural stability and takes us 
away from open, evolutionary change, to the 
effects of running a fixed set of processes.

By considering only the present and 
assuming structural stability of our current 
system, we can generate models that govern 
the dynamics of the probability distributions 
of the different variables. Such models are 
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systems models that are very useful in study-
ing the resilience and risk of collapse of 
organizations or structures as a result of fluc-
tuations in the environment and within the 
system. These models take into account not 
only the ‘average’ dynamics of such systems 
but their different possible futures in which 
luck can play a positive or negative influ-
ence. In other words, such models can con-
sider how some particular shock or internal 
event may disturb the behaviour of the 
system, taking into account all possible 
sequences of events – including those that are 
possible but improbable. Resilience and con-
tingency planning is not just about how a 
system will respond to a particular shock or 
disturbance but the relative probabilities of 
different possible pathways into the future – 
some corresponding to a return to normal 
functioning and others to different kinds of 
failure or collapse.

This is the essence of calculating risks and 
attempting to design systems that are resilient 
and capable of dealing with possible events 
and fluctuations. Such applications are of 
great importance for logistics, supply and 
demand networks and production systems. 
Systems models can be developed that can be 
used to examine their performance and also 
their resilience and the risk of failure under 
various circumstances. Structural stability 

and essentially fixed structural elements can 
be assumed if, for example, the systems are 
designed and owned by single agents. Of 
course, if the different elements should be 
managed by different agents with their own 
motives and learning capacity, models can be 
used to explore the effects of different assump-
tions of what these might be. In any case, 
these probabilistic dynamic models have been 
developed in the natural sciences and can be 
applied to help explore, design and make 
decisions in human complex systems.

If the events considered are discreet, then 
the running is according to a probabilistic 
dynamics, and we have what is called sto-
chastic nonlinear dynamics, where different 
regimes of operation are possible, but the 
underlying elements never change nor learn, 
nor tire of their behaviours.

In Table 1.1 we have set out two pathways 
to greater simplification and easier under-
standing. The first pathway is to assume 
that we can use average rates instead of 
probabilities for the events, in which case we 
arrive at deterministic system dynamics. This 
is in general, nonlinear dynamics and may 
be cyclical or chaotic or at equilibrium, but 
what happens is certain, simple and easy to 
understand.

The second pathway is to suppose that 
the dynamic probabilities move rapidly to 

Table 1.1 The general complexity framework

Number Assumption made Resulting model

1 Boundary assumed Some local sense-making possible – no structure supposed.
2 Classification assumed Strategic, open-ended evolutionary – structural change occurs. 

Statistical distributions part of the evolutionary process can be 
multi-modal. 

3 Average types Operational, probabilistic, nonlinear equations, master equations, 
Kolmogorov equations – assumed structurally stable. Statistical 
distributions can be multi-modal or power laws.

First pathway
4 Statistical attractors Self-organized criticality, power law distributions.

Second pathway
4 Average events, dynamics of average 

agents
Deterministic mechanical equations, system dynamics – assumed 
structurally stable. No statistical distribution.

5 Attractors of nonlinear dynamics Study of attractors, catastrophe theory. Nonlinear dynamics with 
point, cyclic or chaotic/strange attractors. 
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equilibrium – to a stationary distribution. 
This is a particular way to define a ‘system’ 
since it is one in which the interactions are 
assumed to maintain the form of the distribu-
tion. The work of Bak on sand piles led to the 
idea that this stationarity expressed that the 
system attained a self-organized criticality. 
So, for example, the probabilities of earth-
quakes, or of cities or firms of different sizes 
is considered to result from systemic interac-
tions that will tend to restore the stationary 
distribution should it be disturbed. For many 
years the work of Zipf on word frequencies 
and on city sizes showed from the data that 
the distribution in question was particularly 
simple – a seemingly fixed negative power 
law governing the probability of finding a 
city of a given size. The US distribution of 
city sizes for example between 1790 and 
today has been described by a Zipf exponent 
of varying between 0.98 and 0.75 which is a 
remarkably stable curve. However, this appar-
ent stability hides a great deal of dynamics 
since individual cities have occupied very dif-
ferent places in this scheme. Similarly, for 
firm sizes, although the overall curve for US 
firms is fairly stable the fate of each individ-
ual firm is still quite dramatic ending of 
course, as all things must, in extinction. 
While these ideas are interesting it is difficult 
to see how management can use these results 
in any way to make decisions. Rather it is true 
that agents struggle to attain their ends what-
ever that may be, and the interactions of the 
system seem to enmesh them in a fairly stable 
collective outcome. However, recently Toyota 
overtook General Motors as the largest auto-
mobile producer and so the distribution is in 
fact populated by large amounts of dynamic 
change and the probabilistic nature of the 
distribution by no means reduces agents to 
impotence. Bad management or lack of effort 
will simply hasten the demise that is the over-
all outcome that the distribution promises.

This discussion exposes some of the 
limitations associated with the assumptions of 
structural stability, equilibrium assumptions 
and the use of average types and distributions 
to describe system properties. In the next 

sections we look at how systems thinking in 
the second part of the twentieth century 
shifted away from assumptions of structural 
stability to focus on the dynamics of open, 
out-of-equilibrium systems and the impor-
tance of microdiversity in heterogeneous 
populations.

THE SCIENCE OF COMPLEX SYSTEMS: 
COMPLEX ADAPTIVE SYSTEMS

The later part of the twentieth century saw a 
questioning of the popularity of centralized, 
hierarchical management control, accompa-
nied by a growing concern about the unin-
tended and unforeseen consequences of 
planned management interventions.

Herbert Simon’s articulation of bounded 
ration ality in decision making and 
Mintzberg’s articulation of strategy as emer-
gent (Mintzberg, 1978) were important mile-
stones in management thinking. Both pointed 
to the limitations of the planned approaches of 
decision makers in ensuring expected out-
comes of management action, and fuelled the 
search for alternatives to the design paradigm.

As early as 1957, Simon highlighted the 
limitations in informational and cognitive 
scope and capacity of managers to make 
optimal decisions in complex situations, due 
to bounded rationality:

boundedly rational agents experience limits in 
formulating and solving complex problems and in 
processing (receiving, storing, retrieving, transmit-
ting) information. (Simon, 1957)

Simon’s work was perceived at the time as 
a challenge to develop better optimization 
techniques within the design paradigm, but 
in fact it pointed to the more profound issue 
of whether it was ever possible to develop an 
optimal plan.

By marking the distinction between 
planned strategy and strategy in action 
Mintzberg’s concept of emergent strategy 
highlighted the contextual complexity for 
strategic action. He proposed that actual 
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strategies emerge from the dynamics of 
interaction between the organization and its 
environment. This idea brought with it 
notions of organizational learning and evolu-
tion over time. In the organizational behav-
iour literature, there was a growing interest 
in the role of self-organizing groups and 
front-line inventiveness in enabling transfor-
mation and innovation whilst maintaining 
organizational integrity in dynamic competi-
tive contexts.

The rapid adoption of the Internet and 
related technological advances in the 1990s 
highlighted the networked nature of society 
and economics, characterized by increased 
informational complexity and scope for 
greater uncertainty and unpredictability 
associated with the consequences of manage-
ment action. The global inter-connectedness 
and network dynamics made it difficult to 
define the requisite system boundary and 
parameters of structural stability within the 
deterministic design paradigm (Merali and 
McKelvey, 2006).

These developments generated the interest 
of management scholars in the ‘new’ science 
of complex systems which enabled the 
formalization of ideas of adaptation, emer-
gence, self-organization and transformation.

Self-organization, emergence 
and adaptation

In systems thinking the idea of emergence 
was originally expressed in the context of 
systems as hierarchical, nested systems of 
systems – the philosopher C.D. Bond coined 
the term ‘emergent properties’ for properties 
that emerge at a certain level of complexity 
but do not exist at lower levels (Capra, 1996). 
Scientists in the second half of the twentieth 
century brought to the fore the importance of 
the open nature of systems and provided 
insights about the dynamics of emergence, 
inspiring management scholars to develop 
models of organizations as complex adaptive 
systems. Complex adaptive systems are 
systems that adapt and evolve in the process 

of interacting with dynamic environments. 
Adaptation at the macro level (the ‘whole’ 
system) is characterized by emergence and 
self-organization based on the local adaptive 
behaviour of the system’s constituents.

Three of the most influential develop-
ments in systems thinking about emergence 
and self-organization in open systems came 
from the physical and life sciences: 
Prigogine’s work on dissipative structures 
in chemical systems along with Eigen’s 
hypercycles and Haken’s articulation of 
Synergetics, Maturana and Varela’s concept 
of autopoiesis in living systems, and the 
articulation of evolutionary dynamics in arti-
ficial life and ecosystems. All of these high-
light that self-organization is not the result of 
a priori design, it surfaces from the interac-
tion of system and the environment and the 
local interactions between the system’s com-
ponents. This capacity for the spontaneous 
creation of order through intrinsically 
generated structures is captured in Stuart 
Kauffman’s (1993) expression ‘order for 
free’, in the notion of Prigogine’s dissipative 
structures (Prigogine, 1967), Haken’s 
Synergetics (Haken, 1973), Eigen’s hypercy-
cles (Eigen and Schuster, 1979) and in 
Maturana and Varela’s theory of autopoiesis 
(Maturana and Varela, 1973).

Dissipative structures, autocatalysis 
and synergetics
In the 1960s Ilya Prigogine and his col-
leagues demonstrated that energy input to 
an open system with many interacting 
components, operating far from equilibrium, 
can give rise to a higher level of order. 
Running a particular chemical reaction where 
nonlinear catalytic effects were present gave 
rise to the spontaneous formation of station-
ary or moving patterns of colour (‘dissipative 
structures’) that either maintained themselves 
in a stable state far from equilibrium, or 
evolved to produce new patterns.

Close to equilibrium the chemical kinetics 
can be described by the linear equations of 
classical thermodynamics, but as the chemi-
cal reaction is driven further from equilibrium 



FOUNDATIONS42

by pumping in reactants, the system reaches a 
critical point at which it ‘jumps’ spontane-
ously from homogeneity to a moving or sta-
tionary coloured pattern. Prigogine modelled 
this phenomenon using nonlinear chemical 
kinetic equations receiving matter and energy 
from the outside. In this explanation, changes 
in the internal structure (observed as insta-
bilities and the jump to the new structural 
form) are the result of local fluctuations in the 
densities of chemicals amplified by positive 
feedback loops. He called the emergent, 
ordered structures ‘dissipative structures’.

Also in the 1960s Herman Haken developed 
his science of Synergetics (Haken, 1973, 
1978), based on his work with lasers, demon-
strating the self-organization of an incoherent 
mixture of lightwaves of different frequencies 
and phases into a coherent laser light of one 
single monochromatic wavelength. The syner-
getic mechanism was taken up by Beer in his 
formulation of Syntegrity as a method for 
team-based problem solving (Beer, 1994).

In the 1970s Manfred Eigen speculated 
that the origins of life may lie in interacting 
autocatalytic cycles (hypercycles) that 
evolved by passing through instabilities and 
creating successively higher levels of organi-
zation characterized by increasing diversity 
of richness of components and structures for 
natural selection to act on.

Prigogine, Eigen and Haken’s discoveries 
of self-organizing systems are all character-
ized by:

n stable states that are far from equilibrium;
n development of amplification processes through 

positive feedback loops;
n the breakdown of stable states through instabili -

ties that lead to new forms of organization;
n continual flow of energy/matter through a 

system; and
n mathematical description in terms of nonlinear 

equations.

As Capra (1996) points out, in nonlinear 
thermodynamics the ‘runaway’ positive feed-
back loops that had always been regarded as 
destructive in cybernetics now appear as a 

source of new order and complexity in the 
theory of dissipative structures.

Dissipative structures demonstrated how 
self-organization and the emergence of struc-
tures (such as oscillating colours, spiral 
waves, etc.) at a completely different level to 
that of the molecules creating it, could occur 
spontaneously. The patterns were in the 
range of centimetres while the molecules that 
formed them were of the order of a hundred 
million times smaller. All that was required 
was a system of interacting elements (in this 
case molecules and atoms) that are open to 
flows of energy and matter. This gives us a 
science that includes history both in the 
organization and structure that has emerged, 
together with its relationship with the envi-
ronment: in the words of Prigogine and 
Stengers: ‘where classical science used to 
emphasize permanence, we now find change 
and evolution.’

The nonlinear equations that describe the 
system’s dynamics have a number of possible 
solutions, and the path that the system takes 
will depend on the system’s history and the 
prevailing environmental conditions at that 
precise moment. As the system is in a con-
stant state of flux, the combination of system 
state and environmental conditions is unique 
for each dissipative structure, and this means 
that over the longer term it is impossible to 
predict what the next system state will be.

It is this impossibility of prediction that 
distinguishes complex adaptive systems from 
chaotic systems. The term ‘chaos’ has been 
popularized in the managerial literature on 
dynamism, innovation and creativity, and is 
often used to refer to a state of disorder and 
randomness out of which arises a new order. 
However, technically a chaotic system is a 
deterministic system that has parts of its tra-
jectory that are not stable so that its future is 
very sensitive to its precise path and current 
state. In practice the degree of accuracy (of 
measurement of start conditions) needed in 
order to predict an outcome is likely to be 
impossible to obtain. Chaotic systems share 
properties with complex systems, including 
their sensitivity to initial conditions. However, 
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in the study of chaotic systems, the systems’ 
dynamics are generally described by a small 
number of variables interacting in a nonlinear 
fashion, whilst complex systems have many 
degrees of freedom.

The scientific study of open systems has 
led to the science of complexity – that is the 
science of evolutionary change, adaptation 
and self-transformation. It deals with sys-
tems that can undergo spontaneous, symme-
try breaking transformations corresponding 
to qualitative change with new emergent fea-
tures, capabilities and processes and do not 
simply grow or decline within a fixed set of 
dimensions. It is easy to see the appeal of 
such a science for those in search of systemic 
principles to explain the dynamics of socio-
economic systems: it has the potential to 
address the ideas of path dependency, crea-
tivity, disruptive change, unpredictability and 
self-determination that are characteristic of 
human activity systems.

This approach for open systems presented a 
major contrast to the equilibrium dynamics of 
traditional Newtonian physics, and brought to 
the fore the importance of system/environ-
ment interactions. For management scholars it 
suggested the possibility of a novel paradigm 
for the organization of complex social systems 
– one in which individuals did not have sight 
of the whole problem space, there was no 
central co-ordinator, and yet their local inter-
actions resulted in the emergence of a coher-
ent collective behaviour in the face of 
environmental perturbation. We shall see the 
impact of these ideas on current thinking 
about competition and the evolving competitive 
landscape in a later section.

Autopoiesis
Whilst the discovery of dissipative structures 
in the natural sciences provided the conceptual 
frame for understanding the dynamics of 
self-organization and transformation, the 
biological sciences provided a novel perspec-
tive on sustainability, life and the mainte-
nance of organizational integrity.

The cybernetic movement had already 
launched a stream of research on the devel-

opment of machine intelligence, and von 
Neumann’s work with cellular automata 
forms an important component of experi-
ments with artificial life to the present day. 
The von Neumann machine was a theoretical 
machine which, by following precisely 
detailed instructions, could fashion a copy of 
itself. The concept was then improved when 
Ulam suggested that the machine be built 
as a collection of cells on a grid. The idea 
intrigued von Neumann, who drew it up – 
creating the first of the devices later termed 
cellular automata.

Maturana and Varela’s theory of autopoi-
esis had its roots in the cybernetic world: 
they examined the mathematical models of 
self-organizing networks from cybernetics, 
and using cellular automata, they developed 
the model of self-producing organization that 
is at the heart of their theory. Maturana and 
Varela (1973) identified autopoiesis (self-
production) as the defining characteristic of 
all living systems. The term is sometimes 
used in a more general sense to refer to self-
organizing systems with nonequilibrium 
dynamics capable of maintaining stability 
over long periods of time.

According to their definition, the system is 
open to the flow of energy and materials, but 
maintains its integrity and identity by 
organizational closure:

Living systems [are] organised in a closed causal 
circular process that allows for a change in the way 
the circularity is maintained, but not for the loss of 
the circularity itself.

In keeping with the cybernetic tradition, their 
definition distinguishes between the organi-
zation (abstract description of pattern of rela-
tions) and structure (physical relationships 
between components, physical embodiment 
of its organization). They define the living 
system as a network of networks of (self-
producing) production processes, identifying 
three types of relations (relations of constitu-
tion, relations of specification and relations 
of order) that must obtain between compo-
nents in order to maintain the substance, 
form and integrity of the autopoietic unity 
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over time. The autopoietic unity is a self-
referential, self-regulating, self-producing, 
self-organizing entity capable of maintaining 
a stable state under nonequilibrium condi-
tions. The autopoietic ‘network of processes 
of production’ is realized by components 
interacting with each other through structural 
coupling and neighbourhood relations of 
variable strength. Perturbations in the envi-
ronment are sensed by boundary components 
and appropriate adjustments are propagated 
through the network. Individual components 
make adjustments relative to their local 
neighbourhood relations to maintain a stable 
global organization.

The mechanism of structural coupling 
allows the system to learn and to generate 
new behaviours in response to environmental 
changes whilst preserving its overall pattern 
of network relationships. The system inter-
acts with both its internal and external 
environment through structural coupling, 
responding to environmental changes with 
structural changes which will in turn alter 
future behaviour of the system as a whole.

In the management field, autopoiesis has 
provided an important conceptual framework 
for thinking about boundary phenomenology 
and the processes of self-organization that 
allow learning and creativity whilst main-
taining organizational integrity and identity 
in the face of environmental perturbations 
(Merali, 2002).

In sociology Niklas Luhmann developed 
the theory of autopoiesis to study social 
systems as networks of networks of 
communication:

Social systems use communication as their particu-
lar mode of autopoietic reproduction. Their ele-
ments are communications that are … produced 
and reproduced by a network of communications 
and that cannot exist outside of such a framework. 
(Luhmann, 1990)

The dynamics of the system is defined in 
terms of self-amplifying feedback loops, and 
network closure gives a shared system of 
beliefs, explanations and values – a context 
of meaning – which is continually sustained 

by further conversations. In Luhmann’s 
approach, communication acts include self-
production of roles and boundaries (of expec-
tation, confidentiality, loyalty, etc.), which 
are maintained and renegotiated by the 
autopoietic network of conversations.

The autopoietic construct illustrates the 
combination of path dependency and innova-
tion that have characterized the evolution of 
systems thinking: in it we can see clearly the 
connection between the cybernetic move-
ment of the Macy conferences, and the self-
organizing principles of complex systems 
science articulated by Prigogine, Eigen and 
Haken. Its impact on the field of manage-
ment has been largely at the conceptual 
level – as metaphor, model and, as in 
Luhmann and Merali, theory for making 
sense of the systemic properties of individual 
organized forms and their persistence.

In the next section we look at the ideas 
about the way in which other ideas from 
biology have contributed to our understand-
ing of more complex socio-economic sys-
tems involving multiple relationships 
between many individuals and organizations 
– we move from looking at the unity as an 
individual persistent, bounded entity to 
looking at populations of different entities 
and their co-evolution with the changing 
landscape.

Adaptation, evolution 
and co-evolution

In the second half of the twentieth century a 
number of models and theories developed to 
link diversity of individuals at the local micro 
level with population level effects at the macro 
level. Some of the main contributions to sys-
tems thinking in this vein came from models of 
evolutionary dynamics and the creation of 
artificial life with cellular automata.

Artificial life
Simulations deploying von Neumann’s 
cellular automata were instrumental in the 
development of ideas about the way in which 



COMPLEXITY AND SYSTEMS THINKING 45

a collection of simple entities (later referred 
to as ‘agents’)4 could, by following very 
simple interaction rules, self-organize into 
complex structures. This type of modelling 
was used extensively in the 1960s and 1970s 
to develop ideas about the origins of life and 
the organization of biological systems at all 
scales, ranging from the genome and cellular 
organization through to organisms, ecologies 
and social systems.

Craig Reynolds work on the dynamics of 
flocking was amongst the first biological 
agent-based models that contained social 
characteristics (Reynolds, 1987). He tried to 
model the reality of lively biological agents, 
known as artificial life, a term coined by 
Christopher Langton in the 1980s. Models 
such as these (in which elaborate, stable 
flocking patterns emerge as individual agents 
follow three very simple rules for positioning 
themselves relative to their neighbours) 
inspired management scholars to look 
for simple rules that they could deploy to 
create a self-organizing, adaptive workforce. 
Experiments showing the spontaneous 
emergence of novel artificial life forms 
encouraged them to advocate the organiza-
tional forms that were on the ‘edge of chaos’, 
aligned with Kauffman’s speculation that:

Networks on the boundary between order and 
chaos may have the flexibility to adapt rapidly and 
successfully through the accumulation of useful 
variations. In such poised systems, most mutations 
have small consequences because of the systems’ 
homeostatic nature. A few mutations, however, 
cause larger cascades of change. Poised systems 
will therefore typically adapt to a changing envi-
ronment gradually, but if necessary they can 
change rapidly. (Kauffman, 1991)

Whilst many of the attempts to translate 
these ideas into management practice were 
overly simplistic, this strand of work 
succeeded in providing management scholars 
with models for conceptualizing the dynamics 
of self-organization.

Evolutionary dynamics: fitness landscapes
According to the classical theory of evolu-
tion, populations adapt to their environment 

under the pressures of selection. At the indi-
vidual level, biological fitness is determined 
by the genetic make-up of individuals, with 
those that have a good enough fit with the 
environment surviving to reproduce.

The classical top-down perspective of 
selection as the driver of evolution has been 
complemented by complex systems scholars 
using cellular automata to define mecha-
nisms for the generation of micro-level diver-
sity and defining the ‘fitness landscape’ or 
map of the relative value (for survival) of 
individual genetic endowments. The most 
common mechanisms for generation of diver-
sity are random mutation and recombination. 
The evolutionary process is defined as a 
search in the space of possible genotypes for 
points that map for a higher fitness. The best 
known of such models is Stu Kauffman’s 
NKC model in which the space of possible 
genotypes is defined by a network of N genes 
(with A possible variants (alleles)) with K 
interdependencies between them (determin-
ing the extent to which the potency of each 
gene is affected by its interacting others) and 
affected by C external interdependencies. 
As Maguire et al. (2006) explain:

biologists conceptualize the challenge facing species 
as a problem of combinatorial optimization – of 
navigating the landscape in search of higher peaks 
by sampling points in the space, ascertaining the 
associated fitness, and moving – then theorize 
about adaptation, competition and co-evolution 
using computational experiments. Agents thus, try 
to climb toward fitness peaks, but run the risk of 
getting trapped on suboptimal ones.

It is also important to realize that since a new 
behaviour can have emergent properties and 
features, in reality the ‘fitness landscape’ only 
exists where it is ‘populated’. The real fitness, and 
even the dimensions of performance may change 
when a new type is actually tried out.

Models of evolutionary dynamics have 
been deployed in management science as a 
mechanism for connecting the diversity and 
interactions of individuals at the local level 
with the overall system characteristics dis-
played at the macro-level for a number of 
different applications including the dynamics 
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of competition, the emergence of dominant 
designs, the impact of disruptive technologies 
and organizational adaptation.

Evolutionary drive
‘Evolutionary drive’ was put forward some 
years ago (Allen and McGlade, 1987) as the 
underlying mechanism that describes the 
change and transformation of complex sys-
tems. In this view evolution is driven by the 
interplay over time of processes that create 
micro-diversity at the elemental level of the 
system and the selection operated by the col-
lective dynamic that results from their inter-
action together with that of the system with 
its environment.

This co-evolution is seen as a continuous, 
on-going process and not one that has already 
‘run its course’, as in the case of ‘evolution-
ary stable strategies’ (Maynard-Smith, 1982). 
Because of the ignorance of individuals, and 
of the universe itself, as to the pay-offs that 
will occur over time for a given behaviour, 
there are always new aspects of micro-diver-
sity that can occur, so that co-evolution never 
reaches an ‘optimal’ outcome, as in the Game 
Theory approach. Instead, we see this multi-
level exploration and retention process as an 
on-going process that is occurring in real 
time, enabling the system to respond to cur-
rently undefined changes in the environment. 
History is still running. Each behavioural 
type is in interaction with others, and 
therefore evolutionary improvements may 
lead to greater synergy or conflict between 
behaviours, and in turn lead to a chain of 
responses without any obvious end. And if 
there is no end, then the most that can be said 
of the behaviour of any particular individual 
or population is that its continued existence 
proves only that it has been ‘good enough’ – 
but not that it is optimal.

In this review of the ideas that link com-
plexity to the management of organizations 
the guiding premise is that successful organi-
zations require underlying mechanisms that 
continuously create internal micro-diversity 

of ideas, practices, schemata and routines – 
not that they will all be taken up, but so that 
they may be discussed, possibly tried out and 
either retained or rejected. It is this that will 
drive an evolving, emergent system that 
is characterized by qualitative, structural 
change.

It firmly anchors success in the future on 
the tolerance of, and ultimately organizational 
understanding of, seemingly unnecessary per-
spectives, views, and ideas, since it is through 
the future implementation of some of these 
that survival will be achieved. In other words 
the organizational behaviour and the func-
tional types that comprise it now, have been 
created from the competitive and/or coopera-
tive interactions of the micro-diversity that 
occurred within them in the past.

Elements may be of the same type, but 
differ from each other in detail. Nobody may 
know whether these differences will make a 
difference as they are just random variations 
around a reasonable average. But, consider 
that there is in fact a ‘fitness’ landscape 
which actually reflects better and worse ‘fit’ 
of the diverse individuals to the environment. 
In biological evolution, the variation is 
caused mainly by genetic and epigenetic 
variations which lead to phenotypic hetero-
geneity for which the fitness landscape will 
provide differential survival and reproduc-
tion rates, thus defining and amplifying the 
‘fitter’, and suppressing the less fit. In this 
way, the existence of mechanisms that pro-
voke genetic and phenotypic variation will 
automatically produce the exploration of the 
fitness landscape.

In a competitive market it will be true that 
differential performance will be defined by 
customers and investors through the choices 
they make. Within organizations, however, 
evolutionary change will require that differ-
ent performances of different individuals, 
ideas, practices or routines be noticed, and 
that what works well is deliberately rein-
forced, and what works less well discour-
aged. This differential dynamics is really the 
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‘selection’ term of Darwin, operated by the 
environment, the customers and investors of 
the market place, or by the beliefs of the 
upper echelons of the organization. The 
organization chooses between different pos-
sible practices, routines, etc. and the market 
chooses between different possible products 
and services made by firms – and the only 
thing that is certain is that if there is no diver-
sity to choose between, then nothing can 
change.

Evolution can only occur if there is some-
thing that will generate heterogeneity sponta-
neously. And this is in fact the current 
ignorance about future outcomes and a lack 
of commonly agreed norms of how things 
should be done. This leaves managers with 
the challenge of deciding how much diversity 
to support within the organization for the sake 
of an unknowable future: the real options 
approach is designed to allow managers to 
invest in possible futures, but deciding what 
to invest in is still a challenge. The situation is 
further complicated by its dynamics and the 
coupling of the internal organization and the 
environment: the shape of the competitive 
landscape changes as individual organizations 
make their moves, and, depending on the 
dimensions of change, the fitness factors may 
also change. This brings to the fore the impor-
tance of time and timing, and of the informa-
tion flows between system and environment.

We can devise a simple computer program 
to demonstrate the dynamics of evolutionary 
drive, by considering a population that 
initially sits at a low point of a fitness 
landscape, and then has random variation of 
individual fitness. Different individual types 
will grow at different rates, thus defining 
‘fitness’ after the fact. Gradually the popula-
tion will ‘climb’ the local fitness landscape 
because of processes of ‘exploration’ in char-
acter space. Ignorance and consequent ran-
domness are very robust sources of such 
exploration. Clearly random changes in the 
design of any complicated entity will mean 
that tinkering experiments will lead to many 

non-viable individuals and hence that there is 
an ‘opportunity cost’ to behavioural explora-
tion. By considering two populations simul-
taneously at the foot of the fitness hill, where 
one population has a higher rate of random-
ness in character space than the other, we can 
compare the relative success of different 
rates of exploration. Initially, the ‘explorer’ 
population wins, because, despite its cost in 
nonviable individuals, diffusing and innovat-
ing faster is rewarded by the fitness slopes it 
discovers. Later, however, when the land-
scape has been explored and climbed, faster 
diffusion is no longer rewarded and the more 
conservative population with less exploration 
eventually dominates.

Evolution is thus driven by the noise to 
which it leads. Providing that microscopic 
diversity (noise) is produced in systems of 
interacting populations, the interaction 
dynamics will lead to the retention and 
amplification of some, and the suppression 
of others. This process will determine the 
‘ability to evolve’ as well as the particular 
types of micro-diversity contained in the 
populations at a given time. This situation 
reinforces the earlier epistemic theme of our 
limited knowledge of our own systems. 
There will never be a completely clear under-
standing of any evolving system at a given 
time, because it will always contain micro-
diverse elements that may or may not turn 
out to be successful. The understanding that 
we can have of reality is obtained by creating 
a ‘system’ of interacting entities that are 
sufficiently correct to describe the current 
situation, but inadequate to predict the future 
structural evolution that may occur.

However, understanding the nature of 
evolutionary dynamics enables us to specu-
late on the space of possibilities for the future 
by experimenting on how plausible models 
of current states may play out under a variety 
of future conditions.

For a social system, the irreducible uncer-
tainty of the open-ended co-evolution of 
things means that a messy, micro-diversity is 
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the only insurance against an unknown future, 
and that social evolution will proceed through 
successive periods of drift and diversification 
separated by shorter spans of selective elimi-
nation. Evolution and co-evolution only dem-
onstrate what is not viable at a particular 
time, and do not imply that what remains is 
an optimal structure that achieves anything in 
particular. Models can be built that capture 
the behaviour of multiple interacting indi-
viduals and the way in which their beliefs are 
confounded, reinforced or updated as they 
struggle to make sense of their changing cir-
cumstances. Complex systems models can 
therefore help us explore the consequences 
of different possible practices, values and 
beliefs, perhaps indicating some basic 
features that will underlie any functioning 
society.

Modelling complex social systems

Advances in mathematics of complex systems 
since Newton and Leibnitz’ differential calcu-
lus have become increasingly sophisticated, 
and significant developments include statisti-
cal mechanics, dynamical systems theory for 
dealing with nonlinearity, feedback and itera-
tions, and Poincare topology and fractal 
geometry for studying the qualitative features 
of complex systems. Whilst analytic methods 
have always been used for studying system 
dynamics, most nonlinear equations for 
complex systems are too difficult to solve 
analytically, and the advances in computing 
capacity have advanced the practice of solving 
by just running them numerically.

Cellular automata and agent-based sys-
tems are the most prevalent modelling 
approaches used for modelling complex 
social systems. One of the earliest social 
agent-based models (ABM) in concept was 
Thomas Schelling’s segregation model 
(Schelling, 1971). Though Schelling origi-
nally used coins and graph paper rather than 
computers, his models embodied the basic 
concept of ABMs as autonomous agents 

interacting in a shared environment with an 
observed aggregate, emergent outcome.

With the growing availability of comput-
ers ABMs could become much more ambi-
tious (an early example is Robert Axelrod’s 
model for competing strategies for the 
Prisoner’s Dilemma).

For social systems ABMs have been used 
to examine phenomena from the societal 
scale (e.g. ethnocentricism and dissemina-
tion of culture and the co-evolution of social 
networks and culture), issues as designing 
effective teams, understanding the communi-
cation required for organizational effective-
ness and the behaviour of social networks at 
the level of the individual organization 
(Axelrod, 1997; Carley, 2003). More recently, 
agent-based simulations have been based on 
models of human cognition, known as cogni-
tive social simulation (Sun, 2006). The 
exploitation of ABMs in the management 
field spans applications in the strategic, oper-
ational and organizational domains (Lomi 
and Larson, 2001; Maguire et al., 2006).

The diffusion of agent-based modelling 
has been accelerated by the availability of 
specialized modelling software (StarLogo in 
1990, SWARM and NetLogo in the mid-
1990s and RePast in 2000). A number of 
special interest groups and journals have been 
established focusing on the use of agent-
based modelling in the social sciences 
(reviewed in Bonabeau, 2002; Samuelson, 
2005; Samuelson and Macal, 2006).

Epstein and Axtell developed the first 
large-scale ABM, the Sugarscape, to simulate 
and explore the role of social phenomenon 
such as seasonal migrations, pollution, sexual 
reproduction, combat, and transmission of 
disease and even culture.

Learning multi-agent models
Agent-based modelling really become com-
plex systems modelling when the agents are 
open to new ideas (decision behaviours) and 
can learn over time. This effectively opens 
the system. Without this, the models them-
selves are still closed, mechanical systems.
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One of the direct uses of ABMs with 
learning agents is in the study of competitive 
dynamics. The competitive landscape of a 
given organization consists, among other 
things, of other organizations with similar 
objectives, and so there will be two criteria 
for fitness: (1) the ability to out compete 
similar organizations, or (2) the ability to 
discover other ‘niches’ which can still com-
mand resources, but which escape the 
competition.

In Darwinian thinking the micro-diversity 
of agents that occurs is considered to be 
‘random’ and independent of the selection 
processes that follow, while in human inno-
vation we like to think that there is intention-
ality, calculation and belief that may, a 
priori, ‘channel’ diversity into some narrower 
range.

The openness of an organization to its 
environment underlines the importance of 
the ‘fit’ between an organization and its envi-
ronment. The ‘fitness’ of any organization or 
structure is a measure of its ability to elicit, 
capture or merit resources from its environ-
ment and put them to use for self-perpetua-
tion. In order to maintain ‘fitness’ in a 
changing environment then, it will be neces-
sary for the organization to be capable of 
actively transforming itself over time, requir-
ing that agents change their internal 
knowledge, behavioural rules and perhaps 
connections.

Just having noisy agents, or signals with 
agents with fixed rules, which can be simply 
described by fixed stochastic equations 
corresponds to a mechanical model of social 
systems. Representing learning agents that 
can give rise to structural change and emer-
gent capabilities takes us from a mechanical 
model with fixed structure to evolutionary 
and co-evolutionary models which exhibit 
full complexity.

The dynamic perspective on competition 
shifts the emphasis from creating a set of 
maximally efficient operations that will pro-
duce some good or service for a particular 
market, to developing adaptive capacity in 

recognition of the reality of openness. 
Openness exposes the organization to 
change in supply and demand situations and 
the continual appearance of new ideas, tech-
nologies and competitors. This in turn 
demands changes in the organization itself, 
as it is presented with the need to learn and 
adapt, continually shifting its focus to track 
change. This discussion of organizational 
dynamics reinforces the replacement of 
maximal efficiency with ‘sufficient effi-
ciency’ combined with sufficient adaptabil-
ity, but emphasizes the significance of 
self-organized, organizational change in 
underwriting this process.

The problem of what constitutes the requi-
site level of efficiency and diversity to deal 
with the changing competitive landscape has 
no single definitive solution, but the use of 
agent based models allows us to explore the 
space of possible futures that may evolve 
from the (albeit limited) set of endowments 
and actions that we can conceivably attribute 
to our agents.

CONCLUSION

The evolution of systems thinking, starting 
from the ancients’ distinction between struc-
ture and form, has progressed as successive 
simplifying assumptions have been chal-
lenged and new dimensions have been 
introduced.

Associated with each stage of development 
are concepts that have influenced manage-
ment thinking along with powerful methods 
and models for adoption in management 
practice. In this chapter we have traced the 
path from approaches predicated on assump-
tions of structural stability to the present day 
engagement with complex systems science 
and the nonequilibrium dynamics of open 
systems.

One of the key transitions in the 
methodological perspectives between the two 
halves of the twenty-first century has been 
the shift from assuming structural stability to 
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questioning whether and when it is safe to 
assume structural stability. In the absence of 
structural stability the challenge shifts from 
being one of dealing with uncertainty to one 
of also dealing with unpredictability.

The science of complex systems has given 
us the conceptual and methodological equip-
ment to tackle issues of emergence, self-
organization, evolution and transformation, 
to elucidate the mechanisms by which micro-
level properties can give rise to macro-level 
behaviours, and to explain the generation of 
novel structures and behaviours over time.

The developments in evolutionary 
dynamics have challenged two other meth-
odological constructs that dominated systems 
thinking in the earlier era. The emphasis on 
open systems and the concept of co-evolution 
have entailed re-thinking the construct of the 
boundary and the separation of concerns 
between system and environment. The rec-
ognition of micro-diversity, outliers or ‘noise’ 
in the generation of alternative evolutionary 
pathways has challenged the use of average 
values to define variables, and this in turn has 
challenged the relevance of many of the sta-
tistical approaches for modelling the dynam-
ics of social systems.

Historically systems’ thinking has its roots 
in philosophy and the natural and biological 
sciences. The application of systems con-
cepts to social systems has been an important 
component of management science. The 
scientific understanding of the being and 
becoming of biological and physical systems 
has been variously deployed in the 
management field as metaphor, analogue and 
true description of social systems.

Some of the objections to using concepts 
from the natural sciences to explain human 
social systems have focused on the 
inadequacy of these concepts to deal with 
issues of free will, intentionality and purpo-
siveness. However, the recognition exists 
that there are collective phenomena and 
systemic properties that can be ascribed to 
human activity systems. Systems’ thinking 
gives us the possibility of choosing and 

using abstractions to make sense of the 
dynamics that underpin the behaviour of 
individuals and collectives. Complex sys-
tems thinking is attractive because it gives 
us the concepts that have been used to char-
acterize social behaviour in the human sci-
ences (e.g. emergence, adaptation, evolution, 
transformation, path-dependency, learning, 
diversity, serendipity), and allows the pos-
sibility of developing models that capture 
some of the richness and diversity of human 
existence. The complex systems modelling 
approa ches allow us to experiment with pos-
sible worlds in which consequences of our 
actions play out over time. In doing so we 
need to be aware of the dangers of bounded 
rationality and its influence on the choices 
that we make about the abstractions we 
deploy, and the assumptions we make about 
the data that we test these against.

Over time the focus of systems’ thinking 
has shifted from structure (reflected in the 
use of modularization to deal with complex-
ity), to organization or form (accentuated in 
the cybernetic approaches) to the network 
dynamics of adaptation and transformation 
(within the paradigm of complex systems 
science). Each of these ‘phases’ has given us 
concepts, tools and methods for understand-
ing and dealing with complexity in the world 
as we understand it.

For management science, systems’ think-
ing is a framework that includes these differ-
ent approaches and allows us to deal with the 
idea that the component parts of a system 
can best be understood in the context of 
relationships with each other and with other 
systems, rather than in isolation.

NOTES

1 Capra (1996) attributes the root meaning of the 
word ‘system’ with its holistic connotations to the 
Greek synhistanai (to place together).

2 For example, the Pythagorean distinction 
between matter and substance, and the Aristotelian 
distinction between matter and form.
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3 For example, Heralcitus’ observation that we 
cannot step in the same stream twice.

4 Whilst the origins of agent-based models 
go back to the von Neumann machine, it is prob-
able that the first use of the word agent is by 
John Holland and John H. Miller’s (1991) paper 
Artificial Adaptive Agents in Economic Theory which 
is based on an earlier conference presentation of 
theirs.
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2
Complexity Science 

and Organization

R a y m o n d - A l a i n  T h i e t a r t  a n d  B é r n a r d  F o r g u e s

INTRODUCTION1

Complexity science is the scientific study 
of systems with many interacting parts that 
exhibit a global behaviour not reducible to 
the interactions between the individual 
constituent parts. In less than twenty years, 
complexity science – as applied to social 
organization phenomena – has evolved from 
a small set of well-identified contributions to 
a rich field of varied research agendas and 
projects. The field is now characterized by 
epistemological, methodological and para-
digmatic diversity. From the positivist stance 
of model builders to constructivist postures, 
from quantitative to qualitative methods of 
inquiry, from nonlinear dynamics to meta-
phors, this diversity makes complexity 
science as applied to organizations increas-
ingly difficult to comprehend. In this rich 
field, fortunately, Maguire et al. (2006) pro-
vide an extensive literature review, which 
quotes no less than 331 references, and effec-
tively gives order to the field. Building on 
Maguire et al.’s (2006) contribution our first 
objective is to revisit the order they propose. 
This will then serve our second objective, 
which is to reflect on the theoretical implica-

tions of complexity science for organization 
studies. In addition, and in contrast to 
Maguire et al.’s (2006) contribution, this 
chapter concentrates on what those authors 
term ‘objectivist’ work only, i.e. model-based 
approaches. What Maguire et al. term ‘inter-
pretivist’ endeavours are left aside for two 
reasons: first, although we acknowledge their 
richness and relevance, we believe their 
metaphoric bent doesn’t fit well with their 
objectivist counterparts, and this would 
hinder our theorizing; second, due to their 
richness, these endeavours merit an extensive 
treatment of their own.

Objectivist research applying complexity 
science to organization studies is concerned 
with understanding the processes by which 
complex, irregular interactions can achieve 
order, and those by which simple determinis-
tic rules create complex phenomena that seem 
to be driven by chance. Organizations are 
viewed as comprising multiple actors with 
diverse agendas, internally and externally, 
who seek to coordinate their actions so as to 
exchange information, act, and interact in a 
nonlinear and dynamic fashion.

A series of observations from the study of 
nonlinear dynamics and complex systems 
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is scientifically well established and relevant 
to our discussion. First, ‘processes that 
appear to be random may be chaotic, 
revolving around identifiable types of attrac-
tors [i.e. a limited area in a system’s state 
space from which it never departs] in a 
deterministic way’; the ‘behavior of [these] 
complex processes can be quite sensitive to 
small differences in initial conditions’; and, 
‘[c]onsequently, historical accidents may 
“tip” outcomes strongly in a particular 
direction’ (Anderson, 1999: 217). Second, 
‘complex patterns can arise from the 
interaction of agents’ and ‘[t]hese patterns 
are “emergent” ’ (Anderson, 1999: 218). 
Third, ‘complex systems tend to exhibit 
“self-organizing” behavior’ (Anderson, 
1999: 218). These results stress the fact that 
deterministic systems can exhibit an appar-
ent randomness that is nevertheless con-
tained within a limited domain – a ‘strange 
attractor’ (Ruelle, 1991). They also highlight 
that, within this domain, behaviour is sensi-
tive to initial conditions (Lorenz, 1963). 
Moreover, in situations of increasing returns 
(i.e. positive feedbacks), they are process 
dependent (Arthur, 1994). Furthermore, 
from random interactions between entities in 
a system, complex patterns may emerge 
(Holland, 1995). Finally, some systems, ini-
tially in a random state, can gradually self-
organize to achieve an order (Nicolis and 
Prigogine, 1977; Kauffman, 1993) that is 
more than the aggregated interactions of the 
independent entities that make up the 
system.

In the following lines, we first give a brief 
survey of the contributions of objectivist 
complexity theories and draw relevant 
inferences for organization studies. The 
survey covers self-organization, determinis-
tic chaos, path dependence, complex adap-
tive systems, and the selectionist contexts 
view. Second, we infer a set of propositions 
that serve as clues about how organizations 
work. Propositions are derived from the com-
plexity theories we review and then relate to 
more ‘traditional’ organization theories. 
Finally, a last section concludes the chapter, 

drawing implications for organization 
research.

BRIEF REVIEWS OF MAJOR SCHOOLS 
OF THOUGHT IN COMPLEXITY 
SCIENCE

Self-organizing systems

Self-organizing systems theory, also known 
as autogenesis or synergetics (Haken, 1977; 
Nicolis and Prigogine, 1977; Prigogine and 
Allen, 1982; Kauffman, 1993) aims at explain-
ing the emergence of order out of the interac-
tions between entities such as DNA and RNA 
molecules (Kauffman, 1993), chemical ele-
ments (Prigogine and Stengers, 1984), and 
organizational actors (Drazin and Sandelands, 
1992). Self-organization is a naturally emer-
gent process of organizing found in dissipa tive 
systems that are subject to energizing 
forces. Order emerges as the result of 
interactions, induced by tensions that result 
from energy differentials between autono-
mous entities (Bénard, 1901). There is no 
specific overarching programme to create a 
given form of order. Rather, ongoing 
interactions may generate any form of 
organization. In the physical world, autocata-
lytic processes help to reinforce whatever 
order emerges. In organizations, order can 
result from learning processes by social 
agents looking for local solutions to problems. 
As a consequence, order may result from 
synergies among individual initiatives. Many 
debates have centred on the origins of 
self-organization. Once put into motion, enti-
ties within a system seem to adapt to the 
outcomes of their prior interactions. It is in 
the zone of instability, far from equilibrium, 
that changes take place, allowing some order 
to emerge. From a given initial state,  dynamic 
interactions can lead to similar states 
as if systems entities were attracted to a pre-
ordained configuration. This is consistent 
with Prigogine and Stengers’ (1984) argu-
ment, according to which a determined order 
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is found only because it was there to be dis-
covered in the first place.

Deterministic chaos

Chaos theory has received a considerable 
amount of attention in the natural sciences 
(Allen and Sanglier, 1978; Ruelle, 1991) and, 
more recently, in the social sciences (Brock 
and Malliaris, 1989; Cheng and Van de Ven, 
1996). It emphasizes concepts such as 
sensitivity dependence to initial conditions 
(SDIC), process bifurcation, attractors, and 
irreversibility (Thietart and Forgues, 1995); 
and it is not concerned with agents per se. It 
represents a mathematical approach to the 
evolution of dissipative nonlinear dynamic 
systems characterized by low dimensionality. 
Interactions between simple relationships can 
evolve into a highly complex network, the 
behaviour of which is impossible to antici-
pate. Such systems can be stable, periodic in 
behaviour, or chaotic. The transition, or bifur-
cation, from stability to periodicity to chaos 
takes place when the coupling among forces 
of stability (i.e. negative feedbacks) and insta-
bility (i.e. positive feedbacks) increases. The 
coupling among forces can be changed by 
agency or when subjected to external shocks. 
Once put into motion, however, the combina-
tion of these forces can put the system on a 
route for which the end cannot be predicted. 
When in a chaotic state, behaviour is attracted 
and contained within a strange shaped fron-
tier called a strange attractor (Ruelle and 
Takens, 1971). Within the attractor, even 
though behaviour is deterministically driven, 
prediction is impossible except for the very 
short term where sensitivity to small varia-
tions is not yet fully felt. These deterministic 
processes lead to surprising and unpredictable 
results. In fact, a small change, the effect of 
which is multiplied over time, can easily pro-
duce a dramatically different evolution. This 
theory has been applied to the study of organ-
izational events such as innovation (Cheng 
and Van de Ven, 1996) and crisis (Thietart and 
Forgues, 1997). These studies show that 

what appears to be randomness is, in fact, 
deterministically driven. The succession and 
interaction of decisions create a very complex 
behaviour that develops a dynamic of its own 
based on actions or decisions taken by organ-
izational agents. Paradoxically, freedom of 
choice appears to create its own determinism, 
but within which outcomes are impossible to 
predict precisely.

Path dependence

Unrelated to chaos theory – which is deter-
ministic – path dependence is stochastic; but 
it is similar to chaos theory in its sensitivity-
dependence characteristics. Positive feed-
back in economic systems illustrates the 
mechanism of path dependent evolutions 
(Arthur, 1990). According to Arthur (1990: 
92) once chance opens up a particular path, it 
‘may become locked in regardless of the 
advantages of other paths’ giving some firms 
a self-reinforcing initial advantage. Small 
perturbations, then, determine the pathway, 
which need not be the most efficient. These 
can tilt parts of the economy ‘into new struc-
tures and patterns that are then preserved and 
built upon’ and which are in part ‘the result 
of historical chance’ (Arthur, 1990: 99). In 
those situations described by Arthur (1994), 
an initial strategic advantage, which could be 
the result of the combination of past strategic 
choice and chance, is the ‘cause’ behind 
market domination. However, as noted by 
David (2001: 26):

path dependent systems – which have a 
multiplicity of possible equilibria among which 
event-contingent selections can occur – may (…) 
become locked in to attractors that are optimal, 
or that are just as good as any others in 
the feasible set, or that take paths leading to 
places everyone would wish to have been able 
to avoid, once they have arrived there.

Perhaps the most famous case of path 
dependence is that of how QWERTY came 
to be the dominant keyboard arrangement 
(David, 1985). Arthur points to three 
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characteristics which were crucially impor-
tant in causing lock-in: technical interrelat-
edness (i.e. the need for compatibility among 
parts of a technical system); economies of 
scale; and quasi-irreversibility of invest-
ments. Path dependence has been extensively 
documented by organization scholars, as 
shown by the contributions in Garud and 
Karnøe’s (2001) edited volume.

Complex adaptive systems

Complex adaptive systems, as is the case 
with self-organized systems theories, rely on 
an entirely different paradigm. Here the 
focus is not to search for simple causes to 
complex outcomes but, rather, to understand 
how simplicity emerges from complex inter-
actions (Gell-Mann, 1994). In complex adap-
tive systems theory, simplicity arises from 
the aggregated behaviour of interdependent 
adaptive agents driven by a set of rules 
(Holland, 1988). Agents, following rules, 
adapt to each other and create an emergent 
order. A given set of rules governing interac-
tion, a specified number of interacting agents 
and random events seem to uncover a ‘hidden’ 
process. Once in motion, the process follows 
a route towards a stable end, periodicity, or 
even apparent randomness. Ever since 
Conway’s Game of Life (1976), successful 
and more comprehensive computer applica-
tions have developed in the field of organiza-
tion studies: from the study of emergent 
social behaviour (Epstein and Axtell, 1996) 
to organizational adaptation (Carley and Hill, 
2001), culture formation (Harrison and 
Carroll, 1991) and stock market evolution 
(LeBaron, 2000). In these models, emergent 
system-level behaviours are achieved through 
the interaction of agents. Stable patterns are 
not just the outcome of random encounters. 
Internal dynamics and random events coa-
lesce to produce different orders by follow-
ing multiple paths. Questions thus arise 
concerning the role of causation and the 
nature of the order that emerges, and in 
which chance plays a key role. The nature of 

the interaction itself, however, is determinis-
tic; rules are fixed by choice or by nature. 
Once chance has opened up opportunities for 
viable alternative combinations, the system 
evolves towards an un-programmed, emergent 
order.

An emergent ‘selectionist’ 
contexts view

McKelvey (1997, 1999) provides an explana-
tion for emergent order. New orientations, in 
the realm of organizations, emerge following 
random encounters of competencies which 
create something different from a simple 
arithmetic totting up. These encounters do not 
take place in an ordained manner, nor 
do they evolve in a completely disorderly 
manner. Through their interactions agents 
learn and adapt to each other to create some-
thing new. McKelvey (1997) likened organi-
zations to quasi-natural phenomena, where 
human intentions and natural processes are 
intertwined. Top-down forces control bottom-
up (i.e. naturally occurring) autonomous and 
innovative initiatives (McKelvey, 2004). In his 
view, organizational processes should be 
observed from a co-evolutionary perspective. 
Order, then, is the result of many ‘Darwinian 
variation, selection, retention, and competitive 
struggle effects at different levels’ (McKelvey, 
1997: 360). Each emergent level becomes a 
selectionist context for the level below. Here, 
‘Darwin machines at a higher level operate to 
create order at lower levels; order that may be 
governed, in part, by simple rules’ (McKelvey, 
1997: 361). According to his theory, idiosyn-
cratic intentions are present at a micro-level. 
However, ‘micro-evolutionary order (…) 
emerges in the context of macro-evolutionary 
selection and competitive pressure’ (McKelvey, 
1997: 361). There is freedom to the extent that 
agents create the context for such encounters 
to unfold. There is determinism too, by virtue 
of the contextual forces. And there is chance 
in the interactions between agents. Once put 
into motion the emergent behaviour assumes a 
life of its own.
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ORGANIZATIONAL IMPLICATIONS 
OF MAJOR SCHOOLS OF THOUGHT 
IN COMPLEXITY SCIENCE

In summary, if we accept that organizations 
are a function of complex processes, we can 
draw some tentative conclusions from the 
preceding review of complexity theories: (a) 
agency may create its own determinism (e.g. 
chaos theory); (b) chance can open up paths 
that inevitably lead to an inescapable out-
come (e.g. path dependence view); (c) organ-
izations are an emergent outcome, being the 
result of random encounters between agents 
that interact following a set of deterministic 
rules (e.g. complex adaptive systems and 
self-organization theory); and (d) order 
mostly emerges through a cascade of trial 
and error processes taking place at different 
levels (e.g. emergent ‘selectionist’ contexts 
view). These tentative conclusions stress 
each complexity science school’s specific 
contributions. However, from their respective 
specificities, similarities and complementari-
ties emerge. They all contribute to a better 
understanding of organizational dynamics. 
Some schools emphasize the process behind 
the dynamics of order creation; while others 
give an explanation of the forces at play in 
the process itself. We address each here.

Games scientists play: 
from Conway’s Game of Life 
to NK modelling

Cellular automata (CA) and NK modelling are 
the most popular methods to simulate and 
study organizational phenomena. Cellular 
automata are best adapted to study emergence 
from spatial processes. They can represent 
social or economic dynamics, from competi-
tion to strategy (Sorenson, 2000). They can 
also help to investigate the evolution of popula-
tions of firms competing in a spatially delim-
ited context (Lomi and Larsen, 1996). 
Interactions between agents are driven by 
simple and fixed rules. Each entity, a firm for 

example, interacts with its neighbours. Its state 
changes as a function of its neighbours’ state. 
Conway’s (1976) Game of Life research of the 
late 1990s and early 2000s, based on cellular 
automata, has provided interesting and coun-
ter-intuitive results. However, approaches 
based on cellular automata, limited by fixed 
rules and spatial constraints, have given way to 
more comprehensive and flexible approaches. 
NK modelling, for instance, was introduced by 
Kauffman (1993), who worked for a period at 
the Santa Fe Institute, to simulate biological 
evolution. Since then it has received many 
applications in organizational research. In NK 
models, we still have elements of a system in 
interaction, but the elements are not spatially 
bounded. The state of an element doesn’t 
depend on distance criteria, i.e. the state of 
a neighbouring element. In NK models, N 
stands for the number of elements or attributes 
in a system, for instance, the organizational 
routines of a given organization (the system), as 
in Levinthal’s (1997) research on firms strate-
gies; while K is the interdependence between 
attributes, i.e. the coupling between routines 
in Levinthal’s work. Through a ‘random 
walk’ the system evolves towards higher 
fitness on a metaphorically called ‘terrain 
of adaptation’ or ‘fitness landscape’ where the 
fittest configuration prevails. This modelling 
has received numerous applications since 
Levinthal’s contribution, such as Gavetti et al.’s 
(2005) examination of analogical search strate-
gies in novel industries; Siggelkow and Rivkin’s 
(2006) work on innovation in multi-level 
organizations; Lenox et al.’s (2006) research 
on capability heterogeneity among firms; 
Levinthal and Posen’s (2007) study of organi-
zational adaptation and population selection 
and Porter and Siggelkow (2008) on the sus-
tainability of competitive advantage. In addi-
tion, different but related methods such as 
genetic algorithms (GA, see Tracy, in this 
volume) can help researchers to investigate 
complex phenomena not directly accessible 
through empirical observation such as the evo-
lution of organizational populations (Bruderer 
and Singh, 1996), the emergence of strategic 
groups in an industry (Lee et al., 2002) or 
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innovation processes (Cartier, 2004). 
Applications of the coevolutionary NKCS 
model, on the other hand, are less frequent (for 
a review, see Vidgen and Bull, in this 
volume).

These contributions have opened new 
roads to researchers. Organizational scien-
tists can now stretch their queries and 
investigate an organizational realm which 
would have been obscured by methodologi-
cal hurdles or unavailability of data. These 
contributions are thus stepping stones to 
what McKelvey (2002) calls a model-centred 
organization science epistemology. They are 
tools to study complex phenomena; and are 
to complexity organizational science what 
mathematics is to physics.

From mechanics to magic: American 
versus European perspectives

McKelvey (2002) proposes a taxonomy of 
approaches within complexity science by dis-
tinguishing between American and European 
traditions – an ordering which clarifies the 
field and with which we agree. Specifically, 
the research questions addressed within each 
tradition aim at two different but complemen-
tary objectives. On the one hand, the ‘American’ 
tradition describes, through mathematical 
modelling and simulation, how complexity is 
created. On the other hand, the ‘European’ 
tradition gives an explanation of the forces 
behind complexity. In other words, one 
describes how order emerges from a disorgan-
ized world; while the other gives an explana-
tion of the forces behind the search for order.

The works of Holland (1988) and Kauffman 
(1993) represent the American tradition well. 
Prietula (in this volume), for instance, reflects 
on this tradition linking complexity and 
computer simulation. Through computer 
simulation, he suggests that human 
adaptability and cultural history help main-
tain the stability of organizational structures. 
The ‘Complex Adaptive System’ (CAS) 
approach also illustrates this tradition. Through 
computational modelling and simulation, 

these and other scholars show that ‘order’ – i.e. 
an equilibrium or a recognizable configuration 
– appears when interactions reach a given 
intensity. When interactions are not intense 
enough, stability prevails. When interactions 
become too intense, they lead to a complete 
disorder. It is in the intermediate range, 
between too little and too many interactions, 
where emergent phenomena arise – at the 
edge of ‘chaos’.

Agent-based modelling (ABM), along with 
the NK, GA, CA models previously dis-
cussed, is frequently used to study the succes-
sive transitions from stability to disorder and 
passing by an intermediate emergent state. It 
represents agents (e.g. individuals or organi-
zations) or entities (e.g. decisions) that inter-
act following fixed (or adaptable in the case 
of ‘intelligent agents’) rules. The outcome of 
these interactions is achieved ‘mechanically’. 
It is the result of pre-established or adaptive 
rules mediated or moderated by some chance 
factor. In some instances, selection forces are 
at play and the search for optima occurs on a 
fitness landscape as in the case of NK and GA 
modelling. With such modelling, researchers 
explore the realm of the mechanics behind a 
dynamic process, which can lead to emergent 
phenomena and other forms of order.

The European tradition (Prigogine and 
Stengers, 1984; Mainzer, 1994), on the other 
hand, focuses on ‘self-organizing systems’. 
First, it suggests an explanation of the forces 
behind self-organizing processes. Second, it 
gives a reason why some forms of ‘order’ (e.g. 
stability or sense-making regularity) appear. 
With respect to the forces driving the process 
dynamics, Bénard (1901) proposes that a ten-
sion, such as heat in his case, pushes the ele-
ments (molecules, agents, events) of a system 
to enter into interaction. An organizational 
equivalent would be the difference between 
supply and demand. The gap between supply 
and demand creates an adaptive price tension 
which gives rise to entrepreneurial initiatives 
or leads to industry re-organization. Due to 
this tension and for as long as it is main-
tained, interactions take place from which an 
‘order’ can emerge. When tension reaches a 
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given value, the system transitions from one 
state to another. A state of apparent stability 
can therefore lead to an emergent, self-organ-
ized outcome. From the emergent organized 
state, if tension increases, the system can 
then display ‘chaotic’ behaviour. Tension is 
maintained through a continuous inflow of 
energy to the system which dissipates and 
exchanges this energy with its environment. 
Without such tension nothing would happen 
and the system would remain stable.

A question remains: why a self-organized 
order? According to Prigogine, there is a 
self-organized order because it always was 
there to be discovered! Islands of order wait 
to be found in an ocean of ‘chaos’. Order 
originates from disorder. Disorder, induced 
by the tension, provides the ground for many 
trials and errors. However, a right combina-
tion doesn’t last for ever. A satisfactory fit 
between degrees of ‘complexity’ of encoun-
tering agents–elements–entities and degrees 
of complexity of the supporting context 
(Ashby, 1962) must exist. Without a satisfac-
tory fit, self-organization couldn’t take place 
in the complexity regime of Ashby’s space 
(see Boisot and McKelvey in this volume). 
Once discovered, the fit – an emergent order 
– must be positively reinforced if it is to be 
maintained. Order is then kept under control 
through dampening and organizing forces 
that prevent the system from moving to a 
‘chaotic’ state. The implications of this 
research programme for organizational 
research are particularly significant: while 
the European tradition doesn’t offer all the 
tools that the American tradition does, it – 
most crucially – provides clues about the 
‘magic’ behind the process of emergence 
while proposing a teleological and dynamic 
perspective on complex systems evolution.

From God’s intention to Russian 
roulette: a pre-existing order versus 
a random quest

Some organizational forms and combinations 
work better than others. A timeless regularity 

in organizations, characterized by hierarchy, 
specialization, coordination and incentive 
structure, prevails in societies across the 
ages. Nevertheless, historical and institu-
tional contexts condition adaptation and 
contingent arrangements. New contexts 
necessitate new forms of organizing. We 
know some forms work better than others in 
different contexts: sometimes it occurs by 
chance that a given organizational arrange-
ment fits well the prevailing conditions; and 
sometimes a given form emerges, following 
many trials and errors, to achieve an accept-
able and unintended order.

Emergence follows a now well-understood 
route. For instance, Plowman et al. (2007: 
538), in their study of a radical transformation 
in a church, propose that, given a high level of 
organizational tension: (1) ‘emergence of 
small change and amplification into radical 
change [is encouraged …]’; (2) ‘resource 
availability accelerates a small change into 
radical change’; (3) ‘the use of language’ and 
‘symbols accelerates a small change into radi-
cal change’; (4) ‘the interaction of amplifying 
actions accelerates a small change into radical 
change’; and (5) ‘the interaction of amplifying 
actions and contextual conditions accelerates 
small change into radical change’. In other 
words, a new order appears if forces at play 
exert tension on the system; a small change, if 
amplified, leads to a transformative process 
which, fuelled with new imported resources 
and positively reinforcing forces, leads to a 
new equilibrium. In the same vein, Chiles et 
al. (2004: 514), studying the emergence of 
Branson’s musical theatres, observe ‘four 
dynamic mechanisms of emergent self-organ-
ization: (1) spontaneous fluctuations that initi-
ate a new social order; (2) autocatalytic 
feedback loops that amplify and reinforce 
these fluctuations; (3) coordinating mecha-
nisms that help stabilize the emergent order; 
and (4) recombinations of preexisting resources 
that renew the social order, add variety, and 
fuel positive feedback processes’. Here again, 
consistent with Plowman et al.’s (2007) 
research, chance is at play. When chance 
triggers the process, similar dynamics 
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appear: positive reinforcement to favour emer-
gence; and stabilizing effects to prevent the 
new emergent order from dissolving into 
chaos. Chance, nevertheless, constantly chal-
lenges such equilibria. New emerging equi-
libria can also be reconstructed, subject to 
the enduring tension, as demonstrated in 
Lichtenstein et al.’s (2007: 244) research which 
shows that ‘the positive-feedback process of 
self-organization, which occurs when the 
enactment of one activity generates character-
istics that support the emergence of another 
activity, which supports the emergence of fur-
ther activities, and so on’; and that ‘the pres-
ence (completion) of each activity helps build 
a “scaffold” for emergence’, thus ‘providing a 
catalyst for further activities to be enacted’. 
McKelvey (1997; 1999) already alluded to 
such a successive scaffolding process in his 
emergent ‘selectionist’ contexts view. God’s 
hand and chance are at play: order is there to 
be found; and chance helps in the search.

When complexity leads 
to simplicity and vice versa

System dimensionality matters. Depending 
on the dimension of a system, i.e. the number 
of variables involved, dynamics differ. On the 
one hand, high-dimensional (complex) sys-
tems are characterized by multiple levels and 
multiple variables interacting in a nonlinear 
fashion. This is the case with large organiza-
tions which, under the right conditions – 
energizing tension, an initial perturbation 
accompanied by positive reinforcement, and 
stabilizing forces – can be the receptacle of 
self-organizing activities. From complexity, 
simplicity, i.e. a self-organized order, emerges. 
On the other hand, low-dimensional (simple) 
systems are characterized by a few highly 
coupled variables in a dynamic and nonlinear 
fashion. This is the case with simpler and 
relatively contained processes such as inno-
vation. From this relative simplicity, a com-
plex dynamic equilibrium unfolds.

High-dimensional systems are the realm of 
self-organization and complex adaptive 

dynamics. Low-dimensional systems are the 
realm of chaos theory. In studying self-organ-
ization, we attempt to understand how com-
plexity creates simplicity in the form of an 
emergent order, i.e. how a highly disordered 
state leads to an organized or ordered one. On 
the other hand, by applying chaos theory, we 
can attempt to understand how simplicity in 
the form of a low-dimensional, deterministic 
system creates apparent randomness. Apart 
from these differences, both dynamics involve 
tensions, energy exchange and dissipation, 
phase transition, stability, regularity, organ-
ized order, and deterministic randomness. 
They thus share similar features.

In our 1995 article on ‘Chaos Theory and 
Organization’ (Thietart and Forgues, 1995), 
we made several propositions based on chaos 
theory (see the left column in Table 2.1). 
After 15 years, we still believe these proposi-
tions to be a valid and relevant representation 
of low-dimensional system dynamics. Low-
dimensional systems (1) are potentially 
chaotic; (2) evolve from one dynamic state to 
another following a discrete bifurcation proc-
ess; (3) render forecasting impossible, espe-
cially at a global scale and in the long term; 
(4) are ‘attracted’ to an identifiable configu-
ration, when in a chaotic state; (5) have a 
fractal form, when in a chaotic state; and, as 
a consequence, (6) are such that the taking 
of very similar actions in them leads to very 
different results.

We also present six new propositions for 
high-dimensional systems (see the right 
column in Table 2.1), which parallel our six 
original ones. Some propositions (Propositions 
7, 8 and 11) are corroborated by empirical 
evidence (see Chiles et al., 2004; Lichtenstein 
et al., 2007; Plowman et al., 2007). Propositions 
7 and 8 refer, first, to the self-organizing 
potential of complex organizations when they 
are subjected to counteracting forces; second, 
to the transition from one state of stability to a 
state of emergent order and then to a state of 
‘chaos’, as a function of forces at play. 
Proposition 11 relates to the fractal form that 
organizations may adopt in time or in space. 
This hypothesized property, however, is only 
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Table 2.1 Propositions about the complex dynamics of systems

Low-dimensional systems

‘Chaos theory’

High-dimensional systems

‘Self-organization’

Proposition 1: Organizations are potentially chaotic

– 1a.  the greater the number of counteracting forces 
in an organization, the higher the likelihood of 
encountering chaos

– 1b.  the larger the number of forces with different 
periodic patterns, the higher the likelihood of 
encountering chaos

Proposition 7: Organizations are potentially self organizing

– 7a.  the greater the number of counteracting forces, the 
higher the likelihood of encountering order

– 7b.  the larger the number of forces (positive 
reinforcement and negative counterbalance), the 
higher the likelihood of encountering order

Proposition 2: Organizations move from one dynamic 
state to the other through a discrete bifurcation process

– 2a.  an organization will always be in one of the 
following states: stable equilibrium, periodic 
equilibrium, or chaos

– 2b.  a progressive and continuous change of the 
relationships between two or more organizational 
variables leads an organization, in a discrete 
manner, from a stable to a chaotic state via an 
intermediary periodic behaviour

Proposition 8: Organizations move from one dynamic state 
to the other through a discrete transition process

– 8a.  an organization will always be in one of the following 
states: stable equilibrium, emerging order, or disorder 
(‘chaos’)

– 8b.  subject to tension, an initial disturbance, if reinforced 
and kept under control, leads the organization from a 
state of stability to an unstable emerging order.

– 8c.  subject to tension, an initial disturbance, if reinforced, 
leads the organization from a state of stability to 
‘chaos’ via an unstable intermediary emerging order.

Proposition 3: Forecasting is impossible, especially at a 
global scale in the long term

– 3a.  when in a chaotic state, ceteris paribus, the 
impact of a change has an unpredictable long 
term effect

– 3b.  when in a chaotic state, ceteris paribus, the 
impact of an incremental change can be 
predicted in the very short term

Proposition 9: Forecasting is impossible, especially at a 
global scale in the long term

– 9a.  when in a self organizing state, ceteris paribus, the 
impact of a change has an unpredictable long term 
effect

– 9b.  when in a self organizing state, ceteris paribus, the 
impact of an incremental change can be predicted in 
the very short term

Proposition 4: When in a chaotic state, organizations 
are ‘attracted’ to an identifiable configuration

– 4a.  when in a chaotic state, organizations are more 
likely to adopt a specific configuration than a 
deterministically ‘random’ pattern

– 4b.  the greater the openness of an organization to its 
environment, the more likely is the ‘attraction’ by 
the organization to a given configuration

Proposition 10: When self organizing, organizations evolve 
toward an identifiable emerging order

– 10a.  when self organizing, organizations are more likely 
to adopt a specific configuration than a ‘random’ 
pattern

– 10b.  the greater the openness of an organization to 
its environment, the more likely the organization 
evolves to a given configuration

Proposition 5: When in a chaotic state, organizations, 
generally, have a fractal form

– 5a.  when in a chaotic state, similar structure patterns 
are found at the organizational unit, group and 
individual levels

– 5b.  when in a chaotic state, similar process patterns 
are found at the organizational unit, group and 
individual levels

Proposition 11: When in an emerging order state, 
organizations, generally, have a fractal form

– 11a.  when in an emerging order state, similar structure 
patterns are found at the organizational unit, group 
and individual levels

– 11b.  when in an emerging order state, similar process 
patterns are found at the organizational unit, group 
and individual levels

(continued)
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relevant for critically self-organized systems 
(Bak, 1996), where power-law phenomena 
prevail (Andriani and McKelvey, 2009). The 
other propositions – i.e., Proposition 9 on 
impossible forecasting, Proposition 10 on 
identifiable order, and Proposition 12 on repli-
cability – extend the original propositions 
from low-dimensional to high-dimensional 
systems; and are based on the assumption that 
what holds true for low-dimensional systems 
also does so for high-dimensional ones.

As a synthesis, we propose that high-
dimensional systems have a potential to self-
organize. When subjected to tensions, an 
initial perturbation can subsequently be posi-
tively reinforced, thus opening the way to an 
emergent order. This emergent order however, 
if continuously positively reinforced, can then 
lead to ‘chaos’. Thus, for this emergent order 
to be maintained it must be kept under control 
by dampening forces. It is therefore an unsta-
ble order. Further, in the case of power-law 
phenomena, scalable self-organizing dynam-
ics may occur. In such situations, a fractal 
structure, i.e. self-similarity at different scales 
in time or space, is observed (see Andriani and 
McKelvey, in this volume, for further discus-
sion of power-law phenomena).

CONCLUSION

When we launched our research programme on 
chaos theory back in 1992, we had a paucity 
of work in management to build upon. We 
therefore drew from physics, and eagerly read 
how finance scholars applied nonlinear 

mathematical tools to their datasets. Close to 
20 years later, a wealth of contributions has 
transformed a burgeoning complexity science 
field into a vast and diverse set of ideas, con-
cepts, methods, and research themes. Among 
these, we still find metaphorical applications 
of complexity science to organizations which 
are less rigorous than we would like. However, 
such loose applications of complexity science 
are much less prevalent now than before.

As chapters in this Handbook show, the 
field is now comprised of an impressive array 
of high quality research. Better grounded 
works dominate in such areas as entrepreneur-
ship, leadership, change, innovation, strategy 
process and competitive dynamics. At the 
same time, complexity science-inspired meth-
ods have also become well established. The 
literature now contains a large number of first-
rate simulation-based research projects, event 
studies, analyses informed by techniques from 
econometrics, and qualitative studies of 
dynamic phenomenon, all of which establish 
‘firm foundations’ (Maguire and McKelvey, 
1999) for further research advances. But rich-
ness in themes and methods in the application 
of complexity science to organization has its 
drawbacks: it can be intimidating to newcom-
ers; it often entails a steep learning curve; and, 
until recently, it lacked structure.

We believe that the field is still in the 
emerging stage of order creation. There is 
certainly evidence of positive reinforcement 
with the increasing acceptance of complexity 
science as a legitimate approach to the study 
of organization. However, we also believe 
that the necessary stabilizing forces, without 
which complexity science as applied to 

Low-dimensional systems

‘Chaos theory’

High-dimensional systems

‘Self-organization’

Proposition 6: Similar actions taken by organizations in 
a chaotic state will never lead to the same result.

– 6a.  when in a chaotic state, two identical actions 
taken by a same organization always lead to two 
different results

– 6b.  when in a chaotic state, the same action taken by 
two organizations never lead to the same result

Proposition 12: Similar actions taken by organizations in an 
emerging state will never lead to the same result

– 12a.  when in an emerging state, two identical actions 
taken by a same organization always lead to two 
different results

– 12b.  when in an emerging state, the same action taken 
by two organizations never lead to the same result

Table 2.1 (Contd.)
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organization could become a very messy 
field, are missing. So this Handbook repre-
sents a much-needed contribution to efforts to 
organize the field. We are on the right path.

But to where? In the future, more theo-
retical and empirical research needs to be 
done to consolidate the foundations on which 
complexity science as applied to organization 
is being built. Three areas seem particularly 
promising and challenging. The first area is 
conceptual: we argue that scholars must seek 
to develop a consensus around and stabilize 
convergent definitions. Second, we argue 
that process research that draws on econo-
metric tools, as in the field of finance, in 
order to disentangle and shed light on the 
dynamics behind order creation could be an 
excellent addition to the qualitative work 
which has successfully been undertaken in 
recent years. Third, we argue that multi-level 
research into process dynamics also offers a 
promising new direction for investigation. As 
a scholarly community, we must endeavour 
to meet these new challenges and move 
forward along the path we are creating.

NOTE

1 We are most grateful to Steve Maguire and Bill 
McKelvey for their superb editorial work.
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Emergence in Complex Systems

J e f f r e y  G o l d s t e i n

INTRODUCTION

This chapter explores the phenomena of 
emergence in complex systems in order to 
review and comment on organizational 
research applications of the idea. First, six 
prototypes of emergent phenomena in com-
plex systems are presented, with an eye 
towards delineating a set of common charac-
teristics possessed by emergent phenomena 
across a wide variety of different types of 
complex systems including organizational 
systems. Next, the chapter reviews recent 
utilizations of the idea of emergence in 
organizational studies. The ‘dissipative struc-
tures’ model underlying much of this research 
is then explicated emphasizing the strong 
coupling between so-called self-organizing 
processes and the production of emergent 
phenomena. A new approach to emergence is 
then developed by first unpacking the various 
‘folklore’ and conceptual snares that have 
become associated with emergence. This 
new model of emergence, based on the for-
malism of self-transcending constructions, is 
unfolded out of several suggestions offered 
about emergence by various researchers and 
theorists during the history of complexity 
science. The construct of self-transcending 

constructions is elaborated towards how it 
remedies several of the insufficiencies of the 
self-organizational approach. Finally, the 
chapter concludes with remarks on how 
emergence can aid in research into organiza-
tional adaptability.

SIX PROTOTYPES OF EMERGENT 
PHENOMENA IN COMPLEX 
SYSTEMS

Research into the phenomena of emergence 
in complex systems has yielded a set of at 
least six prototypical conceptualizations, 
each with its characteristic theoretical under-
pinnings (in italics):

1 Phase transitions, ‘quantum protectorates’ 
and similar critical phenomena in condensed 
matter physics (Anderson, 1972; Laughlin, 2005; 
Batterman, 2009): symmetry-breaking; order 
parameters: renormalization group: universality; 
and criticalization.

2 Self-organizing physical systems (Haken, 1981; 
Allen and McGlade, 1987; Nicolis and Prigogine, 
1989; Haken, 2008), dissipative structures: far-
from-equilibrium conditions; order parameters; 
‘enslaved’ variables; and self-organization.
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3 Mathematical emergence in dynamical systems 
(May, 1976; Cohen and Stewart, 1994; Martelli, 
1999; Scott, 2007): nonlinearity; phase space; 
bifurcations; attractors; and chaos.

4 Computational emergence (Langton, 1986, 
1996; Adami, 1998; Crutchfield, 1993, 1994; 
Holland, 1994, 1998; Marinaro and Tagiaferri, 
2002; Griffeath and Moore, 2003): artificial life; 
neural nets; Game of Life; and computational 
mechanics.

5 Social emergence including virtual social net-
works of the internet (Addis, 1975; Johnson, 
2002; Sawyers, 2005): collectivity; social 
networks; artificial societies; and cooperation.

6 Biological emergence (Goodwin and Sole, 2000; 
Reid, 2007; McShea, 2000): new speciation; 
morphogenesis; symbiogenesis; and hierarchical 
constructions.

Although emergent phenomena cover a 
wide range of diverse disciplines and various 
typologies have been suggested for them, 
common characteristics include: radically 
novel macro-level entities and properties 
with respect to a micro-level substrate: osten-
siveness in the sense of unpredictability and 
non-deducibility; integrated coordination 
characterizing the macro-level; and dynami-
cal in the sense of coming to be over time 
(Goldstein, 1999). The Nobel laureate 
Laughlin (2005) holds we are now leaving 
the Age of Reductionism and entering the 
Age of Emergence.

BACKGROUND AND HISTORY

The modern sense of the term ‘emergent’ 
(and by extension ‘emergence’) was coined 
in 1875 by the philosopher Lewes (1875: 
368–369) when discussing the changing 
nature of causality:

... although each effect is the resultant of its com-
ponents, we cannot always trace the steps of the 
process, so as to see in the product the mode of 
operation of each factor. In the latter case, I pro-
pose to call the effect an emergent. It arises out of 
the combined agencies, but in a form which does 
not display the agents in action.

It took several decades for Lewes’ definition 
to influence the movement known as Emergent 
Evolutionism (Blitz, 1992; Stephan, 1999; 
Goldstein, forthcoming) promulgated by 
prominent philosophers and scientists such as 
Samuel Alexander, Conwy Lloyd Morgan, 
C.D. Broad, Roy Wood Sellars, W. Wheeler, 
Alfred North Whitehead, Arthur Lovejoy, and 
George Herbert Mead. The idea of emergence 
was proposed as a supplement and thereby 
correction to an overly mechanistic and incre-
mentalist view of evolution in Darwin’s 
theory. It was held that emergence could steer 
between mechanism and vitalism on the 
other.

Emergent Evolutionism was just the proto-
phase of emergentist thought, succeeded by a 
mid-phase lasting from approximately 1940 
to 1975 and the current neo-emergentist 
period accompanying the rise of complexity 
theory. During the mid-phase period, the con-
cept of emergence was influential in the phi-
losophy of science, the spread of Whitehead’s 
process philosophy and process theology, 
theoretical biology, and the nascent field of 
neuroscience (Goldstein, forthcoming).

THE USE OF THE CONSTRUCT 
OF EMERGENCE IN ORGANIZATIONAL 
RESEARCH

Emergence has surfaced as an important 
construct in studies of organizational 
dynamics and leadership in particular 
(Romanelli, 1991; Gartner, 1993; Katz, 1993; 
Goldstein, 1997, 1999, 2006; MacIntosh and 
MacLean, 1999; Marion and Uhl-Bien, 
2001; Guastello, 2002; Chiles et al., 2004; 
McKelvey, 2007; McKelvey and Lichtenstein, 
2007; Lichtenstein and Plowman, forth-
coming; Plowman and Duchon, 2007, 2008; 
Plowman, et al., 2007a,b; Schwandt, 2007). 
Lichtenstein et al. (2006) have begun quan-
tizing emergence via time series analysis as 
well as a multi-level longitudinal content 
analysis of organizational texts.
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In general these appeals to the construct 
of emergence are suggesting an alternative 
way that organizational structures, strategies, 
and practices, as well as leadership and 
follower roles can arise without being due to 
an imposition from command/control hierar-
chies. Appealing to emergence, accordingly, 
explains varied aspects of organizational 
dynamics through emphasizing spontaneous 
innovations which emerge out of interactions 
within social networks of persons and between 
persons and technologies. Typically, these 
innovations in organizational functioning are 
understood as the emergence of collectivities 
at the macro-level out of connectivities at the 
micro-level. Moreover, because these innova-
tions are not the result of imposition, it is 
believed they are more likely to exhibit crea-
tive solutions, are more likely to evoke 
employee commitment, and consequently are 
more likely to empower rather than disem-
power employee contributions.

One of the dominant theoretical underpin-
nings shared by many of these researchers 
employing the idea of emergence is a ‘dissi-
pative structures’ model derived predomi-
nantly from the approaches found in the first 
three prototypes of emergent phenomena 
listed above, particularly that of number two, 
namely, the work on self-organizing physical 
systems pioneered by Prigogine and Haken 
and, to a lesser extent, the nonlinear dynami-
cal systems prototype of number one, the 
latter the main perspective, for example, 
taken by Guastello (2002).

A salient example of an organizational 
application of emergence following the dissi-
pative structures model is the study conducted 
by Chiles et al. (2004) on the sundry ‘organi-
zational collectives’ involving country music 
that have sprang up around the town of 
Branson, Missouri which have been attracting 
over 6 million visitors annually. These collec-
tives have arisen ‘spontaneously’ over the 
years mostly without the intervention of some 
centralized hierarchical guiding facility.

Combining the research of Chiles et al.  
(2004) with some of the other examples of 

organizational uses of the idea of emergence, 
such as found in McKelvey and Lichtenstein 
(2007) and Lichtenstein and Plowman (forth-
coming), this ‘dissipative structures’ model 
can be said to possess at least four elements 
or stages of emergence:

1 A period of disequilibrium in which spontaneous 
fluctuations emerge forming the seeds of new 
emergent order;

2 Positive feedbacks which amplify the fluctuations 
of #1;

3 Recombinations and new correlations of existing 
resources, capabilities, symbols, language, and 
work patterns;

4 Coordinating mechanisms that stabilize the new 
emergent order.

From within the purview of this model, for 
example, Chiles et al. (2004) understand 
emergence as involving a ‘self-organizing 
logic’ composed of a set of ‘hodge podge 
configurations’ neither ‘planned’, control-
led,’ nor ‘created’ through ‘human design’ 
(p. 510).

Most of the organizational appliers of 
emergence hold that these self-organizing 
processes operate in a ‘bottom-up’ fashion 
which means they are considered to be more 
prone to occur when command and control 
mechanisms are relaxed or dismantled. As a 
result, in an important sense, such a per-
spective has tended to suggest a passive or 
laissez-faire leadership style. Partly in 
response to the latter implication but also to 
both take into consideration what actual 
research into emergence in complex sys-
tems actually reveals, e.g. in biological 
emergence and in artificial life as well as its 
mathematical formalisms, recently Goldstein 
(2001, 2002, 2004, 2006, forthcoming) has 
suggested supplementing the dissipative 
structures/self-organizational model of 
emergence with one that focuses more on 
the constraining and constructional 
operations discernible in nearly all 
complexity research into emergence, an 
approach that will be further expounded 
below.
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‘FOLKLORE’ SURROUNDING 
EMERGENCE

The notion of emergence has through all its 
three periods provoked responses and criti-
cism from within the philosophy of science 
(see Goldstein, 2000; Wimsatt, 2007; Bedau 
and Humphries, 2008). This is not surprising 
since, although the idea of emergence offers 
many conceptual benefits, it doesn’t come 
without enigmatic and elusive threads involv-
ing sundry bits of ‘folklore’ which have 
grown up around the idea as well as varied 
philosophical snares associated with it. 
‘Folklore’ is being used intentionally to indi-
cate those connotations of the idea which are 
derived from popular mis-interpretations of 
research findings. Since to not address these 
troublesome issues would only serve to 
forestall the usefulness of organizational 
applications of the idea of emergence, this 
‘folklore’ and these conceptual snares must 
be addressed.

Folklore #1: Complexity arises 
suddenly from simplicity

The first bit of ‘folklore’ concerns the claim 
that the complexity exhibited in emergent 
phenomena arises directly, spontaneously, 
and suddenly out of simpler or even random 
dynamics. Such an interpretation was often 
touted in the early days of chaos theory when 
technical ‘chaos’ was shown mathematically 
to emerge out of deceptively simple mathe-
matical operations (see May, 1976). However, 
just because an outcome is startlingly novel 
with respect to its antecedents, doesn’t neces-
sarily mean there are not a host of intermedi-
ate means by which the novelty ensues 
(Goldstein, 1996). A close inspection of the 
logistic equation, for example, which has 
become something of an emblem of chaos 
theory, demonstrates various complex mathe-
matical operations taking place such as: criti-
calization of parameters; bifurcations; iterative 
and recursive operations; and so on. There are 

also multifarious sources of nascent order and 
sundry ‘complexifying’ operations taking 
place in the emergence of novel order in the 
physical laboratory. This finding is analogous 
to Turing’s (1952) remarks: ‘Most of an 
organism most of the time is developing from 
one pattern to another not from homogeneity 
into a pattern’ (quoted in Kelso, 1995: 3).

Folklore #2: ‘Order for free’

The second representative of ‘folklore’ is 
Kauffman’s (1995) influential concept of 
‘order for free’ in how he has understood the 
implications of self-organization. One of the 
reasons Kauffman postulated the order 
observed in his networks was ‘for free’ had to 
do with random assignation of rules by 
which his networks operate which would 
seem to imply there was no pre-set design at 
work, hence the emergent order was ‘for 
free’. Yet Kauffman (1995) admitted, ‘… if 
the network has more than K = 2 inputs per 
light bulb, then certain biases in the Boolean 
rules, captured by the P parameter, can be 
adjusted to ensure order’ (103; emphases 
added). Although the identification of this 
bias had to wait until after the run of a simu-
lation, the important point is that emergent 
order only ensued when the biased rules were 
operative. But these biases were built-into 
the rules so that the order which emerged 
was constructed to do so and hence not ‘free’ 
at all.

A focus on ‘order for free’ tends to neglect 
the indispensable role of the ‘containers’ and 
other constraining and constructional opera-
tions involved in emergence, e.g., Berge, 
et al. (1984) found that in the Bénard con-
vection, a typical example of the ‘dissipative 
structure’ model of emergence, the distance 
separating two neighboring currents is on 
the order of the vertical height of the con-
tainer. Similarly, the number of convection 
rolls can be curtailed by reducing the ratio of 
the horizontal dimension to the vertical 
height of the container. Weiss (1987), in 
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turn, found that instabilities in the thermal 
boundaries of liquid systems similar to the 
Bénard system lead to more complicated 
kinds of convection. These ‘costs’ are over-
looked when emergent order is thought of as 
‘for free’.

In terms of organizational researchers 
advocating the use of the construct of emer-
gence, an enthusiasm for ‘order for free’ 
shows up in the above-mentioned claim that 
emergence is more likely to take place in the 
face of a relaxation of or dismantling of the 
normal command and control hierarchy. 
Moreover, holding to the presumption that 
emergent order is ‘for free’ not only has the 
unfortunate effect of neglecting very impor-
tant determining conditions of emergent 
order, it also neglects the fact that emerging 
order may not be beneficial at all. For 
instance, in many respects, cancer cells are 
emergent order and yet they are clearly not 
advantageous to the patient.

Folklore #3: The ‘edge of chaos’

Too many proponents have mistakenly argued 
that emergence is more likely to take in what 
is believed to be a particularly ‘pregnant’ 
zone during the evolution of a complex 
system termed the ‘edge of chaos’. The 
notion originated when the artificial life 
researchers Langton (1990) and Packard 
(1984, 1988) claimed to have shown in com-
puter simulation that there was a special 
verge in complex systems which they called 
the ‘edge of chaos’ where emergent phenom-
ena were supposed to more likely manifest 
themselves. Langton contended that as his 
statistic l increased, the complexity of the 
dynamics would increase as the system 
moved towards a region where emergence 
was more likely. Packard, in turn, used a 
genetic algorithm to evolve cellular automata 
to perform complex computations, contend-
ing, like Langton, that he had identified a 
special ‘edge of chaos’ where such a capa-
bility was at its prime. Packard interpreted 

his findings to imply that when complex 
computation (read: ‘complex emergence’) is 
required, evolution selects rules that lead to a 
cognate ‘edge of chaos’.

This notion was taken up by Kauffman 
(1995) who made it a centerpiece in his 
speculations on the theory of evolution:

… on many fronts, life evolves toward a regime 
that is poised between order and chaos … It is a 
very attractive hypothesis that natural selection 
achieves genetic regulatory networks that lie near 
the edge of chaos … life exists at the edge of 
chaos … The best exploration of an evolutionary 
space occurs at a kind of phase transition between 
order and disorder … as if by an invisible hand, the 
system may tune itself to the poised edge of chaos 
… (pp. 25–28).

Indeed, Kauffman has repeatedly argued 
that biological organisms possess an innate 
propensity to evolve to such a state because 
of its adaptive potential.

Even though the ‘edge of chaos’ appar-
ently offers a metaphor tempting in its 
usefulness, the original computational exper-
iments on which the idea was founded 
by Langton and Packard were later discov-
ered to be faulty by other artificial life 
researchers, namely, Mitchell et al. (1999); 
Mitchell et al. (1993). Replicating the work 
of Langton and Packard, they found just the 
opposite: those cellular automata rules with a 
capacity for producing complex emergent 
phenomena were in fact not found in some 
transitional ‘edge of chaos’ region at all. 
These researchers exhumed the most prob-
lematic aspect of Langton’s work in his not 
having correlated λ with an independent 
measure of computation, an inadequacy 
which Packard did try to remedy but without 
much avail. Mitchell et al. (1999) discovered, 
by contrast, from their own computational 
experiments,

there is no evidence for a generic relationship 
between l and computational ability in CA and no 
evidence that an evolutionary process with compu-
tational capability as a fitness goal will preferentially 
select CAs at a special l region. (p. 11)
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Instead, they found both that a given run 
was organized around the patterns that 
appeared earliest and that the supposed 
‘phase transitional’ regime in which symme-
try was broken was simply not the best realm 
for computational efficacy. Later, Crutchfield, 
working with Hanson (1997), discovered that 
the kind of computational capability associ-
ated with emergent phenomena was more 
likely to take place in the dynamical region 
characterized as the ‘chaotic’ rather than the 
‘edge of chaos’, but that this can be difficult 
to observe due to the ‘filters’ used in explor-
ing the chaotic regime. Although Kauffman 
has broadened the scope of his ‘edge of 
chaos’ to suggest some kind of criticalization 
in general, the pioneer in the study of self-
organized criticality, Bak (1996), has found 
no evidence to substantiate Kauffman’s claim 
that evolution has an impetus to evolve 
towards criticalization as a particularly 
well-suited condition for evolutionary 
‘experiments’.

Folklore #4: Emergence only takes 
place through self-organization

The close association between emergence 
and self-organization goes back at least to the 
schools of Prigogine and Haken both of 
which put the onus on how the emergence of 
new order takes place onto self-organizing 
processes. In this model of emergence, the 
‘self’ of ‘self-organizing’ connotes such 
properties as ‘innate’, ‘unplanned’, ‘sponta-
neous’, and susceptible to taking place in 
‘leaderless’ situations. These connotations 
match the characterization, on the part of 
Chiles et al. (2004), of the emergence music 
theaters around Branson, Missouri as guided 
by a ‘self-organizing logic’ neither ‘planned’, 
‘controlled’, nor ‘created’ through ‘human 
design’.

However, a close inspection of how 
emergent order does come about in each 
instance when it does shows that a lot more 
than self-organizing processes are necessary. 

Although one might have supposed that the 
‘organizing’ part of ‘self-organizing’ would 
draw attention to structure building, most 
appeals to self-organization in fact tend to 
neglect structuring operations. Yet, if, as 
McKelvey (2001) avows, complexity in 
organizations is about order creation, then a 
main issue should be how emergent order is 
constructed. Although self-organizing proc-
esses play a role in emergence, a wider and 
more general conceptualization of emergent 
order generation is needed that can include 
the varied and special types of constructional 
operations involved in the emergence of new 
order, again an issue which will be gone into 
below.

As a matter of historical fact, the notion 
of construction as such was intimately tied 
into emergence right at the beginning of 
contemporary neo-emergentist research 
when Anderson (1972), a winner of the 
Nobel Prize in physics, offered his 
‘Constructionist Hypothesis’ as a response 
to arch reductionism rampant among parti-
cle physicists. This hypothesis proposed 
that although it might be possible to reduce 
nature to certain simple, fundamental laws, 
this did not then entail a similar ability for 
re-constructing the universe from these 
simple laws since each new level of com-
plexity involved the emergence of entirely 
new properties and laws not appearing at the 
lower levels. That is, each new level of com-
plexity would exhibit the construction of 
new structures with new properties that 
transcend lower level characteristics and 
dynamics.

Indeed, supposed exemplars of emergent 
phenomena in the laboratory require 
strenuous non-self-organizational processes, 
a case in point being the coherence of 
lasers which Haken (2008) has put forward 
as the prototype of emergence and self-
organization. For laser light to be generated, 
however, involves constraining and construc-
tional operations that don’t fit into the self-
organizational conceptual box (see Strogatz, 
2003).
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CONCEPTUAL SNARES IN UTILIZING 
THE IDEA OF EMERGENCE

As stated above, besides the sundry folklore 
surrounding the idea of emergence, there are 
also varied conceptual snares involved with 
issues in the philosophy of science (Goldstein, 
2000; Wimsatt, 2007; Bedau and Humphries, 
2008) which need to be addressed so that the 
use of the idea of emergence can avoid the 
problematic aspects of these issues and 
thereby advantageously used in theory and 
research. One issue concerns the specific role 
of emergence in scientific explanations. A 
crucial reason for appealing to emergence in 
the first place is when the dynamics of a 
complex system lends itself to a more thor-
ough understanding through attention to the 
across-system organization at a macro-level 
and not just the micro-level constituents 
alone (Bechtel and Richardson, 1993). This 
appeal usually arises when the macro-level 
patterns, structures and properties of the 
higher level organization appear intractable 
to prediction and deduction from, as well as 
reduction to, the lower level of parts. Turning 
to emergence in appealing to the macro-level 
organization does not so much explain the 
system’s dynamics as it provides a pointer to 
where explanations would need to lie, emer-
gence then serving more as an indexical 
marker directing the research agenda to the 
dynamics of the emergent level as well as 
those operations having the potency to bring 
about the properties observed on the emer-
gent level.

This implies that the role of emergence in 
explanatory strategies requires both emer-
gentist and reductionist inquiry (Wimsatt, 
2007). Clark (1996), in fact, has asserted that 
to emphasize the contrast between emergen-
tist and reductionistic explanations invites 
the misleading claim that accounts utilizing 
the idea of emergence have nothing to say 
about how emergent order arises.

Another issue concerns the ontological 
status of the entities, patterns, and properties 
of the emergent level. This is related to the 

claim that the emergentist status of the higher 
level is merely provisional, i.e. only useful 
until the advent of a more thorough micro-
level explanation. In dealing with this issue, 
Crutchfield (1993) has pointed out that the 
emergent patterns detected by scientists are 
often assumed to be there through assump-
tions implicit in the statistics used in detection. 
To correct this subjective bias, Crutchfield 
proposes defining emergence according to 
its ‘intrinsic computational capacity’. Hence, 
attention must be given to how much sub-
jective bias and preconceived assumptions 
are entering the recognition of emergent 
phenomena.

Another puzzling feature involves the 
nature of the coherence observed in emergent 
phenomena. For instance, the coherence of 
‘dissipative structures’ is often described in 
very stringent terms: an across-system cor-
relation which ‘overpowers’ local or lower 
level forces (Nicolis, 1989), or as ‘enslave-
ment’ (Haken, 1981). It is questionable 
whether such a strenuously rigid definition of 
emergent coherence is appropriate for ‘organ-
ized collectivities’, ‘emergent networks’, and 
so on. It is exactly this kind of inflexible  
order that the complexity-oriented economist 
Page (2007) challenges with his notion of the 
powerful role of differences in a complex 
system, i.e. heterogeneous elements allowed 
to express their individual differences while, 
at the same, time operating as a unity.

Still another conceptual snare lies in wait 
when it comes to the idea of a novel emer-
gent level. Wimsatt (2007) describes the 
notion of a level in a complex system as that 
which houses entities with comparable size, 
rates of change, patterns, and dynamical 
properties. In other words, an emergent level 
consists of entities and their relations that 
hang together more strongly with one another 
on the same level than they do with other 
units and relations on other levels. Although 
they are often conflated, an emergent level is 
different than the notion of scale per se 
(Goldstein, 2002). This distinction is neces-
sary to keep in mind in the face of research 
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involved with scaling dynamics in complex 
systems, e.g. the finding of power law signa-
tures in social network dynamics (Barabási, 
2002). Rather than being self-similar to 
levels at different scales, emergent levels can 
be taken as implying a type of scale variance 
or what Wolpert and Macready (2000) refer 
to as self-dissimilarity at different levels. 
Taking the latter into consideration puts 
emergence in greater accord with Anderson’s 
(1972) emergentist Construc tionist Hypo-
thesis mentioned above.

Furthermore, emergent levels are consti-
tuted by thick interactions with other levels 
in the sense of Hofstadter’s (1979) ‘tangled 
hierarchies’ or ‘strange loops’ and Wimsatt’s 
(2007) notion of ‘causal thickets’ which 
stress the difficulty of localizing unambigu-
ously an entity on any one level. This is also 
why it is often the case that the interplay 
between the level of parts and that of organ-
ization is what yields the highest explana-
tory payoff (Lewin, 1992). The study of 
emergence in complex systems is a much 
messier matter than either presuming the 
self-similarity of scale invariance or holding 
that emergent levels are crisply distinct with 
each other. This also implies that in organi-
zational applications of the construct of 
emergence there will be many opportunities 
for getting confused about what is happen-
ing on what level.

Another pervasive conceptual issue con-
cerns how emergence has been thought to 
involve some kind of breach in causality. 
This issue began way back in the history of 
emergentist thought when the idea of emer-
gence was used as a bulwark against overly 
mechanistic explanatory strategies. Vestiges 
of this view of emergence can be found, 
for example, in Stacey’s (1996) recent 
contention:

Causal links between specific actions and specific 
organisational outcomes over the long term disap-
pear in the complexity of the interaction between 
people in an organisation, and between them and 
people in other organisations that constitute the 
environment. (p. 187)

Although Stacey was not averring that com-
plex systems are acausal but rather that their 
causal links can be obscured, such a caution 
is frequently overlooked. In a phrase, com-
plex systems demand complex causality.

An issue closely related to that of causality 
has to do with the purported unpredictability 
customarily assigned as a defining character-
istic of emergent phenomena. A significant 
source of this unpredictability comes from the 
way that emergence can incorporate random-
ness into construction of the new emergent 
level. As Allen and McGlade (1987) stated, it 
is often the random departures of systems 
from norm-seeking, average behavior which 
are decisive for their adaptive capability. 
Nicolis (1989) put it this way: a system under 
the influence of random occurrences due to 
an unpredictable environment may develop 
temporary structures or processes suitable 
for novel occasions as they may arise. 
Furthermore, because self-organizing proc-
esses are supposed to happen on their own 
spontaneously and are said to be neither 
directed, conditioned, nor guided, it is believed 
they cannot be known ahead of time.

However, there are crucial limitations on 
just how unpredictable emergence is. Indeed, 
even research into ‘dissipative structures’ 
shows they are indeed predictable to the extent 
that given the right container, and the right 
liquid, and the right process of heating, the 
Bénard convection cells will emerge, and their 
patterns will be quite similar to those observed 
in previous experiments. Furthermore, the 
only thing totally unpredictable in the Bénard 
system is the directionality of movement of 
each hexagonal convection cell since this 
directionality hinges on which specific random 
currents become amplified (see Nicolis and 
Prigogine, 1989). Predictability also shows up 
in the Game of Life (Poundstone, 1985), an 
exemplar of the computational emergence of 
artificial life, where, for example, the presence 
of two emergent patterns called ‘t-tetraminos’ 
in close proximity to one another can be used 
to predict the later emergence of another 
pattern, the ‘pentadecathelon’. At first, this 
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predictability was unknown so the ‘pentade-
cathelon’ was presumed to be an unpredictable 
emergent, but now that a correlation has been 
established between the ‘t-tetramino’ and the 
‘pentadecathelon’, the latter has become much 
more predictable, a progress in prediction that 
is continuing as more and more outcomes of 
the Game of Life are catalogued and studied 
(see Griffeath and Moore, 2003). As more is 
put into taxonomies and typologies of emer-
gent phenomena, such classification schemes 
will no doubt aid in the discovery of repeating 
patterns and thereby greater predictability.

THE SELF-TRANSCENDING 
CONSTRUCTION OF EMERGENT 
ORDER

To adequately address the problematic 
aspects of both the folklore and conceptual 
snares associated with the idea of emergence 
a well as the imputation that emergence 
requires a passive leadership style, a new 
model of emergence has been offered by 
Goldstein (1996, 1997, 2001, 2002, 2003, 
2004, 2006). An unfortunate consequence 
stemming from an over-emphasis on self-or-
ganizing processes as the key to emergence 
has been the driving of a conceptual wedge 
between the supposedly spontaneous, inner-
directed processes of self-organization and 
those otherwise constructional in nature. In 
Goldstein’s revised model, this wedge is 
removed with the result that self-organizing 
process will still play an important role but 
only as taking place alongside the more 
overtly structuring operations. This wider 
model of emergence is termed ‘self-tran-
scending constructions’ (stcs) which focuses 
on how pre-existing order in a system under-
goes sundry ‘complexifying’ operations 
(Ehresmann and Vanbremeersch, 2007) as it 
is transformed into radically novel emergent 
order. The ‘self-’ and ‘transcendence’ of ‘self-
transcending’ refer to how emergent order 
arises out of yet transcends the lower level 

and antecedent substrate. The idea of self-
transcendence includes four fundamental 
requirements for understanding emergence: 
building blocks; constructional operations 
utilizing the building blocks; constraining 
and containing factors; and a simultaneous 
transcendence of building blocks.

Formalizing emergence 
as self-transcending constructions

In order to sketch out the outline of a formal-
ism of stcs, it is helpful to turn to the great 
French mathematician Thom’s (1998) 
description of what’s involved in a formal-
ism: intuitions about a subject matter are 
organized as a morphology T so that, given a 
formal set of symbols and rules generating a 
formal system S, an isomorphism between S 
and T, S ↔ T, is established which attaches 
a ‘meaning’ to any symbol s belonging to S. 
Although the intention of a formalism is that 
T will be fully covered by S, it’s more likely 
that only a ‘local zone’ of S, ZS, in the mor-
phology T is complete so that at the bound-
ary of ZS, the correspondence of S and ZS 
breaks down which then prohibits an exten-
sion beyond ZS of the isomorphism S ↔ T. 
Applying Thom’s scheme to formalizing 
emergence as stcs, the S would first need to 
include the various extant formalisms that 
have been developed to study emergence in 
its various guises including:

nonlinear dynamical systems theory (‘nds’) with  •
the formalisms of difference equations, coupled 
differential equations, phase space, attractors, 
and bifurcations;
the constructs of symmetry-breaking found in  •
solid state physics where emergence has been 
associated with phase transitions;
the constructs used by the Prigogine School to  •
formalize ‘dissipative structures’, e.g. thermody-
namics as well as dynamical systems;
the constructs used by the Haken School to  •
formalize self-organizing systems such as order 
parameters and ‘enslavement’ of variables;
the mathematical formalisms found in the artifi- •
cial life variety of computation emergence;
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the high level abstract mathematical formalisms  •
of emergence found, e.g., in the set theoretical, 
mathematical logic, and category theoretical 
approaches of Ehresmann and Vanbremeersch 
(2007) and Hofstadter (1979).

It must also be recognized that self-tran-
scending constructions must possess a unique 
potency in order to capture the radical nov-
elty generating characteristic of emergence 
– more specifically, the constructional opera-
tions must be special types of constructions 
if emergence is to live up to its claim of 
amounting to something transcending ordi-
nary change. In other words, a formalism for 
stcs must show a transcending of the very 
same lower level antecedent conditions out 
of which the higher emergent level is con-
structed. The reader is referred to Goldstein 
(2001, 2002, 2004, 2006, forthcoming) where 
the radical novelty generating aspect of the 
new model for emergence is expressed in 
terms of a mathematical logical definition 
adapted from the work of Simmons (2008).

‘Construction’ in this sense doesn’t neces-
sarily entail an external constructor since 
novel order can arise out of the interaction of 
elements which are already ordered to some 
nascent extent. An example is how the inter-
nal organization of a cell is constructed out 
of a complex interaction of self-regulatory 
feedback loops, protein folding, multi-mo-
lecular modularization, and other spatial and 
temporal constraining operations in tandem 
with genetic information (see Moss, 2003).

To better appreciate what is involved with 
the proposed new formalism for emergence, 
it is helpful to briefly describe several of the 
approaches that have been inspirational for it. 
The first intimation of this formalism of stcs 
was Reiser’s (1935: p. 63) description of 
emergent wholes using an analogy from 
transfinite set theory:

Just as assertions about the properties of finite 
classes cannot be made to apply to transfinite 
aggregates, so in a similar way, the peculiar non-
additive properties of an emergent whole (gestalt) 
cannot be predicated of the constituent parts. 
(p. 63)

A crucial step in transfinite set theory, as 
developed by Cantor in the latter quarter of 
the nineteenth century (Tiles, 1989), was later 
disparagingly described as absurd since it 
relied on an impossible ‘self-transcending 
construction’ by Kaufman (1978), an emi-
nent Austrian philosopher of mathematics. 
Yet, it was just this same expression that 
motivated the naming of the formalism for 
emergence offered here since the phrase ‘self-
transcending construction’ fit very aptly the 
way emergent phenomena are produced out 
of, yet transcend lower level components.

Stcs played an indirect but indispensable 
role in later approaches to emergence, via the 
theorems in mathematical logic formulated 
in 1931 by Gödel (1962) and in 1937 by 
Turing (1937) which relied on the same stc as 
Cantor used in his proof of transfinite sets. 
Indeed, the same self-transcending construc-
tional argument is also at the basis of the 
complexity metric called logical depth 
devised by Bennett (1988), a complexity ori-
ented physicist and computer scientist. 
Another argument from Gödel/Turing found 
its way in Cohen’s and Stewart’s (1994), 
‘Existence Theorem for Emergence’ which 
proposed that emergent phenomena could 
not be expressed except in intractably long 
deductive chains emanating from their lower 
level or antecedent conditions. Along the 
same vein, this self-transcending construc-
tional model showed up in the work of von 
Neumann (von Neumann and Burks, 1966), 
on self-reproducing automata which has 
served as a major influence of the computa-
tional emergence of artificial life. The links 
between the emergence found in artificial life 
and the formalism of stc is also exhibited in 
several sources: the ‘object construction’ 
theory put forward by Fontana and Buss 
(1996) as an improvement over the dynami-
cal system conceptualizations of phase space 
and attractors; and Holland’s (1994, 1998) 
computational model of emergence based 
on his recursive scheme of ‘constrained 
generating procedures’ (cgps) which can 
be considered a type of rudimentary self-
transcending construction.
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In general, whereas a model based on self-
organization alone would tend to emphasize 
how emergent order happens on its own 
when controlling mechanisms are relaxed, a 
model of emergence based on self-tran-
scending constructions instead emphasizes a 
host of structuring operations. This in turn 
indicates that leadership in emergent sys-
tems would be better understood according 
to the constructional roles of expediting con-
structional activities, linking people and 
projects, shaping, and other constructional 
ways of facilitating the emergence of novel 
structures.

CONCLUSION: THE FUTURE OF 
EMERGENCE IN ORGANIZATIONAL 
RESEARCH

When it comes to the adaptability of an 
organization to a changing environment, a 
random search among new possibilities of 
organizational functioning is not the most 
effective means toward adaptation to its envi-
ronment (Kauffman, 1995). Indeed, when a 
search is merely random with no clues about 
upward trends, the only way to find the high-
est pinnacle is to search the whole space. 
This can be seen in biological as well as tech-
nological evolution since they both consist 
of processes that attempt to optimize 
systems riddled with conflicting constraints 
(Kauffman and Macready, 1995).

Turning to emergence offers itself as a way 
to rethink organizational adaptability, particu-
larly when emergence is understood as incor-
porating ‘self-organizational logic’ but also 
utilizing various constructional and constrain-
ing operations as proposed in the model of 
self-transcending constructions. Indeed, 
Maguire (1999) has suggested that the search 
for improvements in adaptability amounts to a 
design problem since it is a matter of under-
standing diverse options among various com-
binations of organizational processes to 
construct a strategy. The idea of ‘design’ is 
counter, though, to the above-mentioned 

cleaving of self-organization as a natural, 
spontaneous occurrence from construction, 
artifice and design.

What’s necessary for future research is 
how organizational emergence can be guided 
toward granting greater adaptability to organ-
izations. Since randomness alone doesn’t 
supply the answer, there will be a need for 
assessing the varied constructional approaches 
that are possible. The self-transcending con-
structional approach to emergence instead 
calls on organizational players to play a more 
active role than the passive one implicated 
in a purely self-organizational approach. 
Research is now under way and will acceler-
ate in order to determine in more detail what 
exactly is involved in this more active, 
constructional role.
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4
Constructing and 

Appreciating Complexity

S t e v e  M a g u i r e

INTRODUCTION

The emergence of a science of complexity 
that increasingly is applied by organizational 
researchers and practitioners to management 
motivates this Handbook. But what, precisely, 
is complexity? This chapter explores this 
deceptively simple question with an emphasis 
on the implications of the epistemological 
challenges of complexity. These stem from 
issues of representation, prediction and inter-
pretation; and are particularly relevant for 
social scientists. The chapter begins by briefly 
describing the various natural science research 
strands from which contemporary complexity 
science has emerged, as well as the features 
which characterize complex systems. It then 
elaborates and explores the epistemological 
issues associated with defining and measur-
ing complexity, using Gell-Mann’s (1994, 
1995, 2002) seductive notion of ‘effective 
complexity’ to illustrate how agents in and 
observers of a complex system are each 
implicated in constructing complexity. The 
role of competing interpretations in constitut-
ing complexity is discussed, as well as that of 
different strategies for engaging with com-
plexity. The chapter concludes by underlining 

the importance of appreciating complexity 
and its implications.

CONSTRUCTING COMPLEXITY

Emergence of complexity science

For the past three decades, complex systems 
have received increased attention from a 
diverse set of scientific disciplines, and from 
this has emerged a broad interdisciplinary 
science of complexity (see Anderson et al., 
1988; Nicolis and Prigogine, 1989; Lewin, 
1992; Waldrop, 1992; Kauffman, 1993; Casti, 
1994; Mainzer, 1994; Bar-Yam, 1997). Two 
broad scientific programmes, increasingly 
overlapping, anchor the development of 
complexity science (McKelvey, 2004). A 
European School of complexity (see Table 
4.1) draws from the physical sciences and 
emphasizes far-from-equilibrium conditions 
to explore ‘self-organization’, which is con-
ceptualized as the emergence of order from 
disorder due to small perturbations, i.e. ‘order 
through fluctuations’ (Nicolis and Prigogine, 
1977) or ‘order out of chaos’ (Prigogine and 
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Stengers, 1984); while, in parallel with this, 
‘synergetics’ (Haken, 1977) was developed 
from work on lasers. For example, merely 
heating a pot of water from underneath can 
result in order and organization as geometric 
patterns of hotter and colder water appear 
(Bénard, 1901). Prigogine (1955) termed 
such order a ‘dissipative structure’ because it 
maintains itself by dissipating the applied 
energy differential; absent a continued flow 
of energy, entropic processes would lead the 
system to equilibrate without order or organ-
ization, in accordance with the Second Law 
of Thermodynamics – i.e. water temperature 
would be unpatterned and homogeneous 
throughout. Using mathematical models, and 
emphasizing critical values at which phase 
transitions from disorder to order occur (and 
vice versa), research in this tradition focuses 
on how unorganized entities in a given 
system seemingly organize themselves into 
coordinated structures that sustain or repro-
duce themselves when subjected to an exter-
nally imposed flow of energy. This work was 
extended beyond consideration of stability 
within a given system to the question of the 
structural stability of a system (Allen, 1976) 
and the possibility of new entities and 
processes emerging, which linked these ideas 
to the questions of biological, ecological and 
social evolution.

In contrast, the North American School 
(see Table 4.1) draws from the life sciences 
and makes extensive use of computational 
approaches. Researchers in this tradition use 
agent-based models to simulate the emergence 
of order among large numbers of coevolving 
entities or ‘agents’ in the form of patterns of 
evolved agent attributes and rules, as well as 
hierarchical structures which represent a 
nexus of both upward and downward cau-
sality. It is theorized that such systems of 
agents evolve spontaneously to a state of 
‘self-organized criticality’ (Bak, 1996) at 
which the size and frequency of restructuring 
events among agents is related by an inverse 
power law.

A full explanation of emergent order 
requires reference to concepts from both 

Schools: the European School emphasizes 
system-environment processes; whereas the 
North American School emphasizes intra-
system processes. McKelvey (2001), using 
thermodynamic theory and building on 
Cramer (1993), relates the two approaches 
by drawing attention to a system’s first and 
second ‘critical values’, which demark phase 
transitions and thus define lower and upper 
bounds of a region which can give rise to 
what is termed ‘complexity’. This occurs 
when system-level phenomena are character-
ized by patterns in time and in the system’s 
movement through its state space – i.e. the 
space of possible values of variables of inter-
est to observers and used to characterize the 
system – that are neither static nor randomly 
changing. Rather, these patterns are difficult 
to describe, to re-create, and to predict due to 
their intricacy and the coupling of agent-level 
and system-level behaviors. Broad patterns 
of behavior may be anticipatable, but an indi-
vidual agent’s and the system’s specific paths 
through a space of possible states are difficult 
if not impossible to predict.

Further, because systems capable of giving 
rise to complexity are open ones at far-from-
equilibrium conditions in which the ongoing 
interaction of parts is sustained through the 
import of information and energy-matter 
from the system’s environment, delimiting 
the boundary of these systems is also diffi-
cult. Indeed, many (e.g. Cilliers, 1998) argue 
that distinguishing a complex system from its 
environment is, in the end, an analytic choice, 
i.e. determined by the purpose and perspec-
tive of the observer seeking to describe it, 
who is therefore an active participant in the 
construction of complexity.

Features of complex systems

Despite these challenges of delimiting and 
describing complex systems, there is more or 
less broad agreement as to their key features, 
which are summarized in Table 4.2.

Arguably, that which most distinctly 
characterizes a complex system is the set of 
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Table 4.1 Disciplinary origins of complexity science

Reference Discipline Key Concepts

European School

Poincaré 1890 Mathematics Non-predictability of nonlinear dynamic systems; 
three-body problem.

Bénard 1901 Fluid dynamics Bénard cells.
Prigogine 1955, 1962, 1980 Thermodynamics Nonlinear thermodynamics; non-equilibrium, 

dynamical statistical mechanics.
Popper 1959 Philosophy Irreversible processes in physics.
Allen 1975, 1976, 1988, 1993a, b Physics Complexity and evolutionary adaptation modeled via 

stochastic systems dynamics.
Haken 1977 Synergetics Synergetics; order & control parameters.
Eigen and Schuster 1979 Biology Self-optimization; quasi-species.
Prigogine and Stengers 1984 Thermodynamics New worldview implied by self-organization.
Favre et al. 1988 Fluid dynamics Transitions of systems from turbulence to order; 

multidisciplinary perspective.
Cramer 1993 Molecular biology Dissipative structures; chaos; multidisciplinary 

perspective.
Cohen and Stewart 1994 Biology; mathematics Emergence of simplicity from the interaction of chaos 

and complexity.
Mainzer 1994 Philosophy Order creation, from quantum physics and biology to 

the econosphere.
Prigogine (with Stengers) 1997 Thermodynamics Arguments against reversibility of time, Einstein’s 

determinism, and pure chance.
North American School
Mandelbrot 1961, 1963, 1975 Mathematics Fractal geometry; chaos; rank/frequency power laws.
Lorenz 1963, 1972 Atmospheric science Strange attractors; sensitivity to initial conditions.
Kauffman 1969, 1993, 2000 Medicine Spontaneous origins of biological order; fitness 

landscape models.
Holland 1975, 1988, 1995, 1998 Engineering Genetic algorithms; emergence and coevolving agents; 

bottom-up science.
Thom 1975 Mathematics Catastrophe theory.
Kaye 1989, 1993 Physics Fractal geometry.
Arthur 1983, 1988 Economics Self-reinforcing positive feedback processes in firms 

and economies.
Wolfram 1983 Computer science Computational modeling of emergent structures.
Bak et al. 1987 Physics Self-organized criticality.
Gleick 1987 Multidisciplinary Chaos theory.
Pines (ed.) 1988 Multidisciplinary Founding papers of SFI; Gell-Mann’s ‘surface 

complexity arising out of deep simplicity’.
Anderson et al. (eds.) 1988 Economics Complexity applications to economics.
Langton 1989 Biology Artificial life.
Lewin 1992 Multidisciplinary Personalized account of the origins of complexity 

science at SFI.
Waldrop 1992 Multidisciplinary History of the origins of complexity science at SFI.
Salthe 1993 Evolutionary biology Self-organization in biology.
Casti 1994 Mathematics Counterintuitive nonlinear surprises in all kinds of 

phenomena.
Depew and Weber 1995 Evolutionary biology Evolution of evolutionary thinking from Darwin to self-

organization biology.

From: Maguire et al. (2006: 168).
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Table 4.2 Features of complex systems

 1. Complex systems consist of a large number of elements.

 2. These elements interact dynamically.

 3. Interactions are rich; any element in the system can influence or be influenced by any other.

 4. Interactions are nonlinear.

 5. Interactions are typically short range.

 6. There are positive and negative feedback loops of interactions.

 7. Complex systems are open systems.

 8. Complex systems operate under conditions far from equilibrium.

 9. Complex systems have histories.

10. Individual elements are typically ignorant of the behavior of the whole system in which they are embedded.

From: Cilliers (1998).

interactions among its large number of 
constituent parts. These can be material/
energetic or informational, and are typically, 
but not necessarily, rich and local. Individual 
parts, i.e. agents, respond in parallel to their 
local contexts according to some force or 
rule that relates their behavior interactively 
and contingently to the state of other parts. In 
so doing and without any part having a global 
view of the system or explicit coordination 
among parts, the parts can collectively give 
rise to system-level order which is not pre-
dictable from knowledge of the parts alone, 
through a process of upward causality. Once 
these emergent phenomena and properties 
are brought into existence, they can then 
exert influence on the parts through a process 
of downward causality, through the same set 
of forces or rules in place. Notably:

although parts typically interact with neighboring 
parts, this does not prelude long-range influence 
nor self-regulatory loops of negative feedback, 
loops of positive feedback causing vicious or virtu-
ous cycles, or some combination of these, as 
near-range interactions cascade forward in time. 
(Maguire et al., 2006: 166)

These possibilities mean that, for a com-
plex system, time, in the form of a specific 
history, matters a great deal; the evolution of 
a complex system is typically characterized 
by path dependence and irreversibility. In 
addition, because interactions among agents 
‘may be characterized by non-linearity, which 

means that small causes are associated with 
disproportionately large effects in a system’s 
state variables’, complex systems ‘display 
sensitivity to initial conditions, sometimes 
referred to as the “butterfly effect” after 
meteorologist Lorenz’s (1963) claim that the 
flap of a butterfly’s wings in one region of 
the world could affect weather patterns in 
others’ (Maguire et al., 2006: 166). Gell-
Mann (2002: 20) reminds us that ‘the partic-
ular history we experience is co-determined, 
then, by the fundamental laws [of physics] 
and by an inconceivably long sequence of 
chance events, each of which could turn out 
in various ways’ which give rise to a ‘funda-
mental indeterminacy’; and, while ‘most 
accidents in the history of the universe don’t 
make much difference to the coarse-grained 
histories with which we are concerned’, 
some become ‘frozen accidents’ by producing 
‘substantial effects, if only in a limited region 
of space and time’.

Complex systems thus give rise to emer-
gence and complexity, and complexity sci-
ence is the study of these phenomena. It 
offers researchers a set of concepts which is 
almost mathematical in its abstractness and 
potential applicability to a wide diversity of 
systems with different underlying ontologies 
and at different levels of analysis. For 
organizational researchers, for example, 
technology can be considered a complex 
system which evolves as new and existing 
artifacts are recombined (e.g. Fleming and 
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Sorenson, 2001); a single organization can be 
considered a complex system made up of 
individuals (e.g. Dooley, 1997) or of business 
units (e.g. Martin and Eisenhardt, 2010) or of 
value chain activities (cf. Porter, 1996) or, 
even more abstractly, of decisions (e.g. 
Rivkin, 2000); while a set of organizations, 
such as those making up an industry sector 
or the economy, can also be considered a 
complex system (e.g. Anderson et al., 1988; 
Arthur et al., 1997). In each of these ‘wholes’, 
it is possible for a coherent, mutually consist-
ent ecology of interacting ‘parts’ to emerge 
from what is effectively a bottom-up and 
highly distributed process of construction.

Different views, types 
and aspects of complexity

‘It would take a great many different 
concepts – or quantities – to capture all of 
our notions of what is meant by complexity’, 
underline Gell-Mann and Lloyd (2004: 387). 
There is then, unsurprisingly, no agreement 
on how to conceptualize, define or measure 
complexity. Attempts to do so quickly 
encounter difficult ontological and epistemo-
logical questions which are made all the 
more intractable because they overlap. Is 
complexity an objective property of a given 
system in the world; or does it characterize 
an observer’s subjective efforts to represent 
and make predictions about the system? 
Complexity is both and, therefore in some 
nontrivial sense, neither; the concept of com-
plexity forces us to confront the limits – and 
hence meaning – of other concepts and their 
relations, including objectivity and subjectiv-
ity, among others. In other words, it leads us 
to confront the limits (Cilliers, 1998; Allen, 
2000, 2001) – and hence meaning – of our 
knowledge.

One view, which happens to be the one 
that has dominated historically in organiza-
tion studies, is that complexity is an objective 
property of a system and correlates with the 
system’s structural intricacy (Moldoveanu, 
2005), such that complexity increases with 

the number of parts as well as the density and 
variability of relations among them. Boisot 
and Child (1999) refer to this as ‘relational 
complexity’. This type of complexity figures 
prominently in open systems models of 
organizations and contingency theory 
(Thompson, 1967), as a structural variable 
used to characterize organizations as well 
as their environments (Hall et al., 1967; 
Anderson, 1999). For example, organiza-
tional complexity has been conceptualized as 
proportional to the number of distinct organ-
izational subsystems; and Daft (1992) rec-
ommends that it be measured using three 
dimensions: vertical, to capture the number 
of hierarchical levels; horizontal, to capture 
the number of units; and geographic, to cap-
ture the number of distinct sites. Similarly:

in many empirical studies, the complexity of the 
organization is measured in terms of perceived 
coupling among sub-groups, tasks or procedures, 
the length of the process needed to go through to 
make a decision, or the number of people, resources 
or constraints involved. (Carley, 2002: 212)

As concerns organizational environments, 
it has been recommended to measure their 
complexity by the number of distinct entities 
to which a given organization must pay atten-
tion (Scott, 2002). More recently, scholars 
have operationalized complexity as ‘the 
degree of interdependence among decisions 
that a firm faces’; and have viewed complex-
ity as ‘a feature of the environment in the 
sense that the interdependencies are dictated 
by the nature of the decisions themselves and 
… not chosen by the firm’ (Siggelkow and 
Rivkin, 2005: 103).

These operationalizations, seemingly 
straightforward, hint at difficult issues how-
ever. For example, given that ‘we may think 
of organizations as interacting networks of 
people, behaviours, routines, strategies, epis-
temologies, emotional states, cultural tradi-
tions, and so forth’ and ‘we may expect that 
within the same organizational phenomenon, 
multiple such individuations may arise, 
interact with one another and disappear’, 
then ‘this leaves in doubt both the essence of 
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the modules or entities that make up the part-
structure of the organizational whole, and 
the law-like-ness of the connections between 
these entities’ (Moldoveanu, 2005: 259). 
Similarly, in identifying and enumerating the 
entities in an organizational environment to 
which an organization ‘must’ pay attention, 
the question arises: must pay attention why, 
or in order to accomplish what? These issues 
suggest that phenomena in the world and 
human describers of them are not as distinct 
as common understandings of scientific 
knowledge hold.

Standing in contrast to the structuralist 
view, an alternative view of complexity 
focuses on the observer of a system and 
argues that complexity is subjective: com-
plexity correlates with the difficulty of repre-
senting and making valid or accurate 
predictions about the system (Moldoveanu, 
2005), making it essentially an epistemologi-
cal phenomenon. Boisot and Child (1999) 
refer to this as ‘cognitive complexity’. Intui-
tively, we might expect a direct relation-
ship between the objective, relational (i.e. 
structural) complexity of a phenomenon and 
the subjective, cognitive complexity experi-
enced by an observer of that phenomenon. 
Indeed, implicit in the groundbreaking work 
of Simon (1962) on ‘the architecture of com-
plexity’ is the assumption that relational 
complexity in the world translates into diffi-
culties of representation and prediction in 
models of the world, i.e. into cognitive com-
plexity. But this does not always hold: struc-
turally intricate systems can behave simply 
and predictably (Bar-Yam, 1997); while 
chaos theory explains how structurally non-
intricate systems can behave in unpredictable 
ways (Ott, 1993). In other words, because 
both emergent simplicity and emergent com-
plexity are possible counterintuitive system-
level outcomes, knowledge of a system’s 
parts and their relations cannot be used to 
infer the complexity of the system as a whole 
(Bar-Yam, 1997).

Lloyd (2001: 7) catalogues 42 distinct 
measures of complexity and clusters them 

into three groups based on questions about 
the entity for which complexity is being 
measured: ‘(1) How hard is it to describe? (2) 
How hard is it to create? (3) What is its 
degree of organization?’ These groups 
contain 11, 8 and 23 measures respectively. 
Based on the third question, one might 
expect that the third group would be com-
prised of measures of objective, structural 
complexity, but Lloyd’s (2001: 7, emphasis 
added) inclusion in this group of those meas-
ures capturing the ‘difficulty of describing 
organizational structure, whether corporate, 
chemical cellular, etc.’ underscores the chal-
lenges – if not the impossibility – of teasing 
apart views which posit complexity as an 
ontological phenomenon from those which 
posit complexity as an epistemological 
phenomenon.

In addition, Lloyd’s (2001) first two 
questions point to different aspects of the dif-
ficulty facing an observer of complex phe-
nomena. ‘How hard is it to describe?’ captures 
‘information’ measures of complexity, typi-
cally quantified in bits; whereas ‘how hard is 
it to create?’ captures ‘resource’ measures of 
complexity, typically quantified using units 
of energy, time, computational resources, 
money or something similar (Lloyd, 2001). 
With information measures such as ‘minimal 
description length’, for example, ‘the com-
plexity of a system is associated with the 
degree of difficulty involved in completely 
describing the system’ (Lloyd, 2001: 7). With 
resource measures, the complexity of a 
system is associated with the difficulty of 
constructing or duplicating or simulating the 
system, i.e. in manipulating and exploiting, 
typically for the purpose of prediction, 
descriptions of the system. For example, in 
computer science the ‘computational com-
plexity’ of a task measures the amount of 
computing time or the computing capacity or 
the number of computing steps required to 
execute it. Similarly, measures such as ‘cryp-
ticity’ and ‘logical depth’ capture the effort 
necessary to produce knowledge then exploit 
it: ‘In the human scientific enterprise, we can 
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identify crypticity roughly with the difficulty 
of constructing a good theory from a set of 
data, while logical depth is a crude measure 
of the difficulty of making predictions from 
that theory’ (Gell-Mann, 1995: 18). Although 
these latter measures are not, strictly speak-
ing, information measures, they refer clearly 
to information processing activities and to 
activities of generating and applying knowl-
edge. In so doing, these measures bear wit-
ness to the difficulty one faces in trying to 
disentangle the concepts of complexity 
and knowledge – the two are intimately 
connected.

Moldoveanu (2005: 263) argues for parsing 
the difficulty observers of complex organiza-
tional phenomena face into two components 
which map to these different dimensions and 
units: ‘informational complexity’ (also termed 
‘informational depth’), which ‘relates to the 
minimum amount of information required to 
competently simulate or represent a phenom-
enon on a universal computational device’; 
and ‘computational complexity’ (also termed 
‘computational load’), which ‘relates to the 
relationship between the number of input 
variables and the number of operations that 
are required by a competent representation of 
that phenomenon’. He underlines that a phe-
nomenon is complex in the subjective diffi-
culty sense if its representation in model form 
requires ‘an amount of information that is at 
or above the working memory endowments 
of the modeler or observer; if the computa-
tional requirements of generating predictions 
about such a phenomenon are at or above the 
computational endowments of the modeler 
or observer; or both together’ (Moldoveanu, 
2005: 263).

Effective complexity

Gell-Mann (1994, 1995, 2002) points out 
that it is rarely a complete description of a 
phenomenon that is sought by an observer or 
modeler (which might be an agent in the 
world, such as a bacterium, a higher organism, 

an individual human, an organization, etc.); 
and argues that conceptualizations and meas-
ures of complexity based on a complete 
description do not, therefore, capture the 
essence of what is meant by the label ‘com-
plex’. He and his collaborators argue for the 
use of information measures because they 
‘are useful tools for dealing with complex 
systems: they can be used to measure both 
the amount of information needed to describe 
regular, rule-governed behaviour, and the 
amount of information needed to describe 
irregular, apparently random behaviour’ 
(Gell-Mann and Lloyd, 1996: 45). Gell-Mann 
(1994, 1995, 2002) also argues that the 
essence of what is meant by ‘complexity’ is 
best captured by the concept of ‘effective 
complexity’ which, for a given entity, is an 
information measure defined as ‘the length 
of a highly compressed description of [the 
entity’s] regularities’ (Gell-Mann and Lloyd, 
2004: 387). This measure stands in contrast 
to another common information measure of 
complexity (Lloyd, 2001) – ‘algorithmic 
information content’ or AIC for short. Gell-
Mann and Lloyd (2004: 388–389) explain, 
‘The AIC of a bit of string (and, hence, of the 
entity it describes) is the length of the short-
est program that will cause a given universal 
computer U to print out the string and then 
halt’; and, in making their argument for 
focusing on ‘effective complexity’, criticize, 
‘Some authors call AIC “algorithmic com-
plexity”, but it is not properly a measure of 
complexity since randomness is not what we 
mean when we speak of complexity.’

Here, again, observers and modelers 
become implicated in the complexity of the 
phenomena of interest to them because, una-
voidably, ‘what is a regularity depends on a 
judgment of what is important and what is 
not’ (Gell-Mann, 2002: 14). Mathematically, 
as Gell-Mann (2002: 15) argues, ‘The best 
way to represent the regularities of an entity 
is to embed that entity conceptually in a set 
of comparable things, all the rest of which 
are imagined, and to assign probabilities or 
weights to the members of the set’, because 
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‘such a set, with probabilities for the 
members, is called an ensemble, and it 
embodies the regularities in question’. He 
shows that the AIC of an entity can be parsed 
into two quantities: Y, which captures the 
regular features, and ignorance, I, which cap-
tures the random features. Y represents the 
effective complexity of the entity if ‘the right 
ensemble’ is found, which is the ensemble 
that minimizes Y ‘subject to the conditions 
imposed by the judge’ or, in other words, 
‘based on a judgment of what is important’ 
(Gell-Mann, 2002: 15).

If we consider an adapting and/or evolving 
entity such as an organism which is seeking 
to survive in an environment exerting selec-
tion pressures, then the regularities that 
matter are those in the organism’s relation-
ship with its environment that, once described, 
can be used in some way that leads the entity 
to generate ‘behavior conforming more or 
less to the selection pressures in the real 
world’ (Gell-Mann, 1995: 17). This is largely 
how the concept of ‘adaptive agent’ is under-
stood within complexity science, as Maguire 
and McKelvey (1999: 42) explain:

Be they organisms, humans, or firms, each of 
these can be seen to be surviving by compressing 
data and signals into ‘internal models’ or ‘schema’ 
of themselves, of their environment, and of the 
interaction between the two, and then ‘exploiting’ 
these to make predictions and to guide their 
behavior. Because models are never perfect or 
complete, all behavior also has an ‘exploring’ 
dimension to it as well: it generates more informa-
tion that can be incorporated into and improve [an 
agent’s] schema. Selection is multi-level, occurring 
on the level of internal models and behavior (i.e. 
learning as selection between competing schema), 
on the level of the agent (i.e. evolution as selection 
between competing agents), and perhaps on 
higher level ‘organizations’ that have emerged out 
of the interactions of agents.

Regularities result from both fundamental 
laws and frozen accidents: ‘Frozen accidents, 
affecting significantly things judged to be 
important, give rise to regularities. Of course, 
the fundamental laws also contribute to 
regularities, but those laws are thought to be 
simple, and so effective complexity comes 

mainly from frozen accidents’ (Gell-Mann 
2002: 21).

If we consider humans or human organiza-
tions, however, the issue of identifying the 
regularities that matter – i.e. the issue of 
whose ‘judgment of what is important’ is to 
dominate, to borrow Gell-Mann’s (2002: 15) 
phrasing – is rarely left, intentionally at least, 
for an environment to decide via selection. 
Rather, knowledge is brought to bear specifi-
cally to avoid, or to lower the probability of, 
being selected out by the environment. But, 
if the environment is truly complex then 
competing assessments of what is important, 
i.e. of the regularities that matter, are to be 
expected (see the chapter by Cilliers, this 
volume): ‘since it is impossible to find all 
regularities of an entity, the question arises 
as to who or what determines the class of 
regularities to be identified’ (Gell-Mann, 
1995: 17). This situation, combined with the 
conclusion that observers and their represen-
tations (which should include and be a 
function of observers’ imagination according 
to Gell-Mann (2002) and Gell-Mann and 
Lloyd (2004) are constitutive of complexity, 
suggests that complexity is not only insepa-
rable from knowledge but also from a politics 
of knowledge as ‘judgments of what is 
important’ emerge from competing claims 
and vantage points.

It is well accepted that, in order to assess 
the complexity of a given phenomenon, the 
level of coarse graining and scale of observa-
tion must be determined; a certain amount of 
previous knowledge and understanding about 
the world must be assumed; and the language 
used in descriptions of the system under con-
sideration must be agreed upon (Gell-Mann, 
1995; Bar-Yam, 1997). Consequently, Gell-
Mann (2002: 14) reminds, ‘[o]ne should 
recognize that effective complexity is con-
text-dependent in a number of ways’; and he 
uses the example of men’s neckties to 
illustrate. Those that are striped are intui-
tively less complex than those that are hand-
painted, he argues, drawing upon an intuitive 
understanding of complexity as relating 
to the regularities in the neckties. Which 
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regularities are discernible, in turn, depends 
upon how close to the necktie we are, i.e. the 
level of detail or ‘coarse graining’ at which 
we can, or wish, to describe the necktie. 
Regularities observed from across a room 
will differ from those observed under a close 
inspection with eyes just inches away from 
the necktie. Further, the level of complexity, 
as well as the ontology assumed by the lan-
guage used to describe the necktie, depends 
upon who is describing the necktie and for 
what purpose: fashion designers and discern-
ing customers will likely focus on features 
such as the presence or absence of stripes or 
hand-painted designs, the colors used and the 
relationship between these features and those 
of neckties which were part of prior designer 
collections; while dry cleaners will likely 
focus on other features such as the presence 
or absence of stains from food, wine or 
coffee, how extensive and intensive these are 
and the relationship between these features 
and those of neckties cleaned successfully 
and unsuccessfully in prior time periods. If 
assessing the complexity of a necktie is no 
simple matter, imagine the issues associated 
with assessing the complexity of a large 
organization, or an education system, or an 
ecosystem, or the economy.

APPRECIATING COMPLEXITY

Interpretations

Unavoidably, ‘defining and understanding 
what constitutes complexity involves defining 
and understanding what constitutes informa-
tion within, and about, a system’, which 
‘raises the question of whose perspective, 
ontology and assumptions get to dominate, an 
obviously political matter when it comes to 
generating representations of and within 
social systems’ (Maguire et al., 2006). Inter-
pretive issues are not easily overlooked by 
natural scientists either because, even within 
a single epistemic community with a common 
epistemology and shared methodology, dif-
ferent levels of coarse-graining (i.e. scale of 

observation) can lead to, given emergent phe-
nomena, different ontologies and hence dif-
ferent prescriptions for generating and 
applying knowledge about a given phenome-
non. Advocates of scale-free theories, for 
example, face multiple fronts of resistance as 
each of the scientific communities which 
have a stake in defending their quasi-monop-
oly over knowledge claims at a given scale or 
level of analysis engage in defensive institu-
tional work. When issues of interpretation are 
raised, it is common for natural scientists to 
seek to sidestep them by introducing the 
notion of intersubjective validity to replace 
objectivity; when interpretation is recognized 
as unavoidable, intersubjective agreement is 
posited so that researchers can get on with the 
task of building formal models. Such a 
maneuver is arguably less significant in situa-
tions of scientific disciplines ‘where (1) the 
difficulty of reaching intersubjective agree-
ment pales in comparison to that of represent-
ing and making predictions about a given 
system, and (2) the achievement of intersub-
jective agreement is conceived of as an 
apolitical act’; and more significant in situa-
tions where reaching intersubjective agree-
ment is understood as a political process and 
also ‘where the most difficulty – and, dare we 
say, complexity – resides’ (Maguire et al., 
2006: 171).

Competing, inequivalent descriptions have 
been viewed as constitutive of complexity by 
both natural and social science scholars. For 
example, Casti (1994: 276, emphasis in origi-
nal) argues that ‘the complexity of the system 
N as seen by the observer is directly propor-
tional to the number of such [inequivalent] 
descriptions’; while Mikulecky (2001: 344) 
similarly argues that ‘[c]omplexity is the 
property of a real world system that is mani-
fest in the inability of any one formalism 
being adequate to capture all its properties’. 
Thus the challenge of ‘interpretive complex-
ity’ (Lopez-Garay and Contreras, 2003), 
which captures the difficulty of achieving 
intersubjective agreement on fundamentally 
interpretive issues, is in a significant sense 
prior to the difficulties faced by a single 
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observer in compressing data to represent a 
system as well as those faced by the observer 
when subsequently computing predictions 
about the system. Casti (1994: 269) advocates 
defining complexity as ‘a joint property of 
the system and its interaction with another 
system, most often an observer and/or con-
troller’. Complexity thus can be seen to come 
into existence as particular representational 
frames are brought to bear on a specific 
phenomenon – a conceptualization that 
dissolves the object–subject and ontology–
epistemology distinctions, much like post-
structuralist approaches (see the chapter by 
Cilliers, this volume).

Strategies

Boisot and Child (1999) argue that there are 
two strategies for dealing with complexity – 
‘complexity reduction’ and ‘complexity 
absorption’. With the former, the goal is a 
convergent one of eliciting ‘the most appro-
priate single representation’ of the variety 
associated with complex organizational phe-
nomena; while, with the latter, it is expected 
that actors ‘can hold multiple and sometimes 
conflicting representations’ of phenomena 
(Boisot and Child, 1999: 238). The goal 
of the latter strategy can be explicitly 
divergent – ‘to generate new insights, and 
thus contribute to expanding the possibilities 
for thought and action’ (Tsoukas and Hatch, 
2001: 981). In a recent review of the literature 
on complexity and management, Maguire 
et al. (2006: 174–175) distinguish between 
more objectivist research which engages 
with complexity by reducing it and more 
interpretivist research which engages with 
complexity by absorbing it:

In terms of the philosophy of science which under-
pins it, objectivist work tends towards positivism or 
those strands of postpositivism described as ‘normal 
science’ (Suppe, 1977; Curd and Cover, 1998; 
McKelvey, 2002). It adopts an information-based 
ontology and an epistemology premised on the 
existence and accessibility of objective information 

about a given system (or, less strongly, information 
that is intersubjectively agreed upon and valid). It 
employs a view of organizations and their members 
as information-processing systems or as adaptive 
systems coming to grips with some objective envi-
ronment about which information that could help 
them to adapt can be ascertained. This work also 
tends towards quantitative research, mathematical 
formalism, and agent-based computational mode-
ling. It also commonly considers representation as 
an apolitical act and scientific representations in 
particular as neutral. On the other hand, interpre-
tivist work tends towards postmodernism or post-
structuralism. It adopts a meaning-based ontology 
and epistemology, and is premised on the impos-
sibility of identifying any information as objective. 
Rather, it views organizations and their members as 
interpretive, sense-making systems. More qualita-
tive, this work is typically also more sensitive to the 
politics of representation as well as to the limits and 
provisional nature of knowledge about complex 
systems.

Morin (2007) makes a distinction similar 
to the reduction vs. absorption one of Boisot 
and Child (1999) by delimiting what he 
terms ‘restricted complexity’ and ‘general-
ized complexity’. The former describes com-
plexity as conceptualized by researchers 
seeking essential patterns in, and universal 
rules for, the phenomena they are investigat-
ing. Restricted complexity is captured and 
represented in mathematical formalism and 
computational modeling by researchers inter-
ested in dynamical systems called complex 
(Morin, 2007) and referred to by Richardson 
(this volume) as ‘neo-reductionists’. This 
community of scholars recognizes but 
‘reduces’ (Boisot and Child, 1999) or ‘decom-
plexifies’ (Morin, 2007) complexity and, in 
so doing, ultimately avoids ‘the fundamental 
problem of complexity which is epistemo-
logical, cognitive, paradigmatic’ such that 
‘the paradigm of classical science remains, 
only fissured’, according to Morin (2007: 
10). In other words, after a nod to the tough 
epistemological – and therefore, especially 
for social systems, political – issues raised by 
recognizing complexity, many researchers 
engage with complexity by re-embracing the 
‘Cartesian reductionism’ with which they are 
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comfortable (Mikulecky, 2001). In so doing, 
a constitutive aspect of complexity is lost: 
‘In fact, there is no way to capture real-
world complexity with any finite number 
of formal systems and the limits of the 
Newtonian Paradigm are obvious’ because 
‘the Newtonian Paradigm itself has been 
designed to exclude everything that real-
world complexity embodies’ (Mikulecky, 
2001: 348).

Generalized complexity, on the other 
hand, represents a conceptualization of com-
plexity that substitutes an emphasis on oppo-
sition and dualisms with an emphasis on 
mutual implication and dualities. Generalized 
complexity describes complexity as concep-
tualized by researchers who are reflexive 
about and accept that the object of their 
knowledge cannot ever be fully captured. 
Rather, by ‘absorbing’ (Boisot and Child, 
1999) complexity, scholars understand their 
knowledge of phenomena called complex as 
provisional and contingent: its limits are 
explicitly acknowledged (Allen, 2000, 2001) 
and its method, conforming to ‘the logical 
core of complexity’, is ‘dialogical’ (Morin, 
2007). As a consequence, science becomes 
re-contextualized and itself understood 
historically and relationally with other 
human endeavors, including philosophy, 
politics and ethics. Ongoing critical reflec-
tion on the nature and limits of knowledge is 
indispensable to the study of complexity 
(Cilliers, 1998, 2000).

Let us be clear: this is not at all to say that 
efforts to tame complexity by ‘reducing’ it 
(Boisot and Child, 1999) and rendering it 
‘restricted complexity’ (Morin, 2007) through 
formalization and modeling are not useful 
because they adopt a reformative rather than 
revolutionary stance toward the epistemol-
ogy and paradigms which dominate in sci-
ence; it is to say, however, that these efforts 
need to be contextualized within a worldview 
that is reflexive about the choice not to 
‘absorb’ complexity (Boisot and Child, 1999) 
– a worldview that appreciates ‘generalized 
complexity’ (Morin, 2007).

CONCLUSION

This chapter has introduced and explored the 
concept of complexity, highlighting how it 
has been constructed in different ways and is 
intimately bound up with issues of represen-
tation, prediction and interpretation. Perhaps 
‘complexities science’ better captures the 
project in which complexity scholars are 
engaged, since appreciating complexity 
involves acknowledging that competing 
interpretations constitute it; and recognizing 
that the nature of the complexity with which 
one wrestles stems from one’s framing of and 
strategy for interrogating it. Incentives exist 
to focus on restricted complexity at the 
expense of the big picture which is general-
ized complexity; and these need to be counter-
acted, as Gell-Mann (2002: 22) underlines:

Unfortunately, in a great many places in our 
society, including academia and most bureaucra-
cies, prestige accrues principally to those who 
study carefully some aspect of a problem, while 
discussion of the big picture is relegated to cocktail 
parties. It is of crucial importance that we learn to 
supplement those specialized studies with … a 
crude look at the whole.

Because the exploration of generalized 
complexity is a dialogic undertaking, it 
accommodates efforts to capture restricted 
complexity through formalism and computa-
tional modeling, but embeds them within a 
certain humility as well as a respect for both 
the phenomenon in question and other 
observers of it. Consequently, the phenome-
non of complexity is potentially transforma-
tive of the science that made it an object of 
knowledge. There is, indeed, much to appre-
ciate about complexity.
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5
Thoughts on Complexity 

and Computational Models

M i c h a e l  J .  P r i e t u l a

WHITHER COMPLEXITY?

What do we mean by ‘complexity’ when we 
discuss computational models of human 
organizations? In part, the answer to this 
question is the mission of this volume wherein 
many definitions and discussions can be 
found. However, an exact and particular 
answer to this question may not be straight-
forward, as we see definitions of complexity 
ranging from informal articulations of 
‘generic difficulty’ to highly-constrained 
mathematical specification of certain and 
requisite properties. Consider that in 1988 a 
Complex Systems Summer School was held 
by the Sante Fe Institute in New Mexico, 
bringing together a wide range of scholars 
with the ultimate goal ‘to advance research in 
the general science of complexity’ (Stein, 
1989:xvi). A derivative of that event was a 
book on the topics covered, Lectures in the 
Sciences of Complexity: Volume I, with con-
tributors including Stuart Kauffman, John 
Holland, and Brian Arthur. The Preface 
begins with a humble statement: ‘Complexity 
is almost a theological concept; many people 
talk about it, but nobody knows what “it” 
really is’ (Stein, 1989:xiii).

Over twenty years later how have we 
done? In Melanie Mitchell’s (2009) new 

book, she concludes that ‘neither a single sci-
ence of complexity nor a single theory of 
complexity exist yet’ (p. 14) and ‘many dif-
ferent measures of complexity have been 
proposed; however, none have been univer-
sally accepted by scientists’ (p. 13). Is this 
lack of convergence either essential or impor-
tant for organizational researchers? And, in 
particular interest for this chapter, what are 
the implications to the use of agent-based 
models in organizational research?

I suggest that the short answer to the first 
question is ‘no’ as there is no necessary 
requirement for the advancement of a disci-
pline that demands a broad range agreement 
on a definition of a particular term, concept, 
law, theory, or metric that crosses discipli-
nary boundaries. Moreover, a fundamental 
problem exists in even defining what consti-
tutes ‘agreement’ (i.e. beyond simple asser-
tion) in that the ontological or theoretical 
stance, as well as broader context, may differ 
among them. Evolutionary theory (if we can 
even articulate an unambiguous definition) 
has qualitatively different operational 
definitions and meaning in biology than 
it does in (evolutionary) psychology than it 
does in organization theory.1 Similar 
differences can be found for ‘complexity’ 
among (and within) the aforementioned three 
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example disciplines. Therefore, to begin a 
discussion it is necessary to provide a suffi-
cient definition or description, whether oper-
ationally or otherwise, that accommodates a 
particular disciplinary context, so that inter-
pretive differences in the use can be accu-
rately discerned. This, of course, is true for 
any cross-disciplinary effort and is certainly 
true for attempts like complexity that purport 
to cross several. From a good definition one 
can infer the nature of the agreement, and 
thus its implications.

We can generate a reasonably intuitive 
interpretation of what we mean by complex-
ity in our current discussion. Complexity 
necessarily has at its core component aggre-
gation dynamics – that is, the object under 
study is a system comprised of a collection of 
‘subparts’ that interact (in some fashion) over 
time. What sorts of general properties char-
acterize such systems? We might start with 
the following as four typical properties of 
such complex dynamical systems from the 
physical sciences:2

Property 1. Structurally Aggregated. The 
system is comprised of a group (or groups) of 
components – that is, there are sub-compo-
nents involved in the system that contribute 
to, or define, the overall behaviour. These are 
the particles and planets of the basic physical 
science models. There may or may not be 
different levels of aggregation in the system.

Property 2. Dynamical Interaction. Sub-
components of the system interact – over 
time, components engage each other in 
some manner wherein the interaction has 
the capability to influence (i.e. change) sub-
component behaviours.

Property 3. Invariant and Universal Rules. 
In the basic physical sciences, laws (perhaps 
statistically defined) govern the nature of 
these interactions (e.g. laws of motion, laws 
of thermodynamics).

Property 4. Component Homogeneity. Any 
given sub-component is exchangeable with 

any other subcomponent; that is, any unique 
behaviour of any sub-component is attribut-
able solely to historical path of interactions 
and not to any fundamental differences in 
sub-components (within categorical contexts). 
Individuality does not exist.

The concept of ‘complex’ dynamical 
systems describes those dynamical systems 
which are either difficult or impossible to 
tract and predict analytically. How difficult is 
it to create a complex dynamical system? 
Consider the three-body problem from classi-
cal mechanics. Imagine two objects rotating 
about each other where the sole influence on 
the paths of their behaviour are their initial 
relative positions and the mutual attraction of 
gravity. The paths over time for each object 
are analytically solvable – the objects gener-
ate elliptical orbits about the barycenter (the 
center of mass for the two particles). However, 
adding simply one more body makes things 
amazingly difficult. To date, researchers have 
not yielded an explicit expression for the gen-
eral solution that permits such systems (with 
three or more objects) to be solved analyti-
cally.3 The third interacting body generates 
path behaviours that are chaotic – single cases 
can be illustrated but not predicted. Therefore, 
the ‘tricks’ of statistical mechanics need to be 
employed which, in part, treat the detailed 
states of the system elements as unknown, 
with the presumed number of components 
approaching infinity, but subject to probabil-
istic description (Evans and Morriss, 1990). 
The specifics of the system need to jump 
from two to infinity in order to be tractable. If 
physics cannot address the specific path pre-
dictions of three or more interacting objects, 
what hope does our social science version 
have in explicating knowledge of our people 
interacting in organizations?

To examine this question, we need to 
revisit the properties of a dynamical system. 
When we consider aggregates of organiza-
tions composed of humans, this list of prop-
erties changes.4 First, humans (and their 
organizations) are typically purposeful. That 
is, the assembly generally has overall goals 
to achieve (Barnard, 1938), but in human 
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systems the concept extends beyond a 
property of the aggregate to the components 
of the aggregate itself (Ackoff and Emery, 
[1972] 2006):

Both organisms and organizations are purposeful 
systems, but organisms do not contain purposeful 
elements. The elements of an organism may be 
functional, goal-seeking, or multi-goal seeking, 
but not purposeful. In an organism only the whole 
can display will; none of its parts can. (p. 222)

Purposeful elements of the organization 
define both the property and mechanism of 
valuation of the aggregate behaviour. Will, 
then, is an essential component of a purpose-
ful system and its components underlying 
such definitions and valuations. What do 
they mean by ‘will’? Essentially, will allows 
a system (or its components) to ‘change its 
goals in constant environmental conditions; 
it selects goals as well as the means by 
which to pursue them’ (Ackoff and Emery, 
[1972] 2006:31). In other words, a purpose-
ful system is adaptive. With this additional 
property, we have defined a type of complex 
adaptive system (e.g. Mitchell, 2009), char-
acteristic of virtually any living system.5

Property 5. Adaptive. Both systems and sub-
components (humans) are driven by goals to 
attain within the context of a purpose.

However, as our sub-components are actu-
ally humans, the adaptive property is further 
specified as a component of ‘will’ in terms of 
goal-orientation, flexibility, choice, and 
learning. Thus, there is an aspect of adapta-
tion that attributes substantial endogenous 
flexibility. The implications of these are sig-
nificant, and two stand out. First, if individu-
ality does matter then Property 4 above must 
be accommodated. Does it matter that indi-
viduals learn at different rates? Does it matter 
that individuals have different knowledge? 
Does it matter that individuals make different 
choices in the same situation? Does it matter 
that individual’s have different influence 
over, or connectivity with, others? Does it 
matter that individuals have memories of the 

interactions in which they engage? Individuals 
may differ in significant ways either initially 
or as events unfold. Consequently, the nature 
of the interaction dynamics, and hence per-
haps the overall system dynamics, lead to 
different behaviours – sub-components are 
not fully interchangeable. Thus path-depend-
encies may matter, as well as which individu-
als are on which paths, and matter perhaps 
significantly, in terms of the particular 
state of a particular sub-component and its 
interactions with others. We need to alter 
Property 4.

Property 4’. Component Heterogeneity. 
There are aspects of agents that differ, through 
initial endowments, consequences of interac-
tions, or both, and such individuality can 
impact (ultimately) system behaviour.

Second, the rules guiding the system 
behaviour as well as the behaviour of the 
sub-components may be under-specified or 
variable (or both), necessitating revision to 
Property 3. In traditional physical sciences 
(e.g. physics, chemistry), these rules may 
be interpreted as laws, defined as mathe-
matically expressed generalizations, often 
describing idealized systems, whose conse-
quences are determined by implications of 
the expression(s) (Feynman, 1965). In fact, 
true chaos (as a mathematical concept) only 
occurs in deterministic, nonlinear dynamical 
systems, with one common definition is that 
which is deterministic in constants but unpre-
dictable in variables, as is found in some 
nonlinear systems (Williams, 1997).6 That is, 
looking at the underlying equation(s), one 
can supply values for the constants and input 
a value for each variable, and the result is 
predictable. However, predicting values over 
ranges of the variables as the system unfolds 
over time cannot be done. The search for 
chaotic properties is, in part, to discern 
underlying regularity in the presence of 
apparent noise.

In biological sciences, however, there is 
often a distinctly different approach, where 
generalizations are typically expressed (and 
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characterized) as theories rather than laws 
(though the term may be retained), as 
described by Ernst Mayr (1988):

Generalizations in modern biology tend to be 
statistical and probabilistic and often have 
numerous exceptions. Moreover, biological gener-
alizations tend to apply to geographical or other-
wise restricted domains. One can generalize from 
the study of birds, tropical forests, freshwater 
plankton, or the central nervous system but most 
of these generalizations have so limited an applica-
tion that the use of the word law, in the sense of 
laws of physics, is questionable (p. 19).

Thus, as physical science generalizations 
are seen as (relatively) invariant and biologi-
cal science generalizations are seen as con-
textual, what about generalizations of human 
behaviour? For the levels of scale of interest 
in this chapter (e.g. activities of deliberation 
and choice in human systems), our specifica-
tion of relevant behaviours are not dominated 
by fundamental physical laws and invari-
ances of nature. The theories we posit are not 
only contextual and based on the specific 
environment of interest (as are biological), 
but must accommodate the fact that these 
environments themselves are often artificial 
in nature and the ‘laws’ of interaction may 
change (Simon, 1969). From an individual’s 
perspective, much of the environment is 
defined by other individuals who reflexively 
view that individual in their environment. For 
example, norms (Hechter and Opp, 2001) 
and broader issues of culture (Shore, 1996) 
as well as legal systems (Jolls et al., 1998) 
define highly contextual systems exerting 
substantial influence on the dynamics of 
interaction among individuals that are both 
artificially constructed, recursively reflexive, 
and learned.

Property 3’. Variable and Contextual Rules. 
Both structural and behavioural components 
are not only influenced by physical laws, but 
rules of interaction may be dominated by 
highly contextual, perhaps vaguely specified, 
and changing ‘laws’ that influence behaviour 
in direct and indirect ways.

Thus, the difficulty of discerning laws of 
human behaviour may seem ominous and the 
importance of this distinction is addressed by 
Scriven (1956), who asserts that there is no 
reasonable expectation that simple laws of 
prediction in the behavioural sciences will be 
found. The assertion is based on the belief 
that in even the simplest (but non-trivial) 
cases, there are multiple critical variables 
involved: ‘The difference between the scien-
tific study of human behaviour and that of 
physical phenomena is thus partly due to the 
relatively greater complexity of the simplest 
phenomena we are concerned to account for 
in a behavioural theory’ (p. 332). Nevertheless, 
sometimes complexity can be more apparent 
than real (Table 5.1).

SIMON’S ALLEGORY OF THE ANT

Insight into the relationship between com-
plexity and computational models of organ-
izations can be gained in recalling Simon’s 
Allegory of the Ant (1996), where an observer 
sees a singular wandering ant ‘making his 
laborious way across a wind- and wave-
molded beach’ (p. 51). When one sees an 
abstracted graph of the ant’s path, it appears 
exceedingly complex and most difficult to 
describe. However, as Simon points out, the 
complexity of the path is largely determined 
by the obstacles encountered by the ant, and 
not the complexity of the ant’s choices of 
path formation. Therefore, to understand the 
likely path of the ant, the key is in the 
analysis of the ant’s (presumably simple) 

Table 5.1 Properties comparing physical 
and human complex systems

Physical systems Human systems

Structurally aggregated (Similar)

Dynamical interactions (Similar)

Invariant and universal 
rules

Variable and contextual 
rules

Component 
homogeneity

Component heterogeneity 
Adaptive (intelligently)
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locomotive adaptive system and its goal. Set 
the ant in a particular environment, and 
examine how it moves. Similarly, Simon 
asserts the relative simplicity of human 
behaviour:

Human beings, viewed as behaving systems, are 
quite simple. The apparent complexity of our 
behaviour over time is largely a reflection of the 
complexity of the environment in which we find 
ourselves. (1969:53)

Consequently, to understand the behaviour 
of an individual, the key is in the analysis 
of the individual’s (presumably simple) 
cognitive adaptive system and its goal. Set 
the human in a particular environment, and 
examine how the human behaves.

Let’s modify the ant metaphor. Rather than 
ants wandering the beach under the influence 
of the environment, imagine that the ants are 
reacting not to other pebbles, but other ants, 
and every one of those are reacting to each 
other. If we watch these ants interacting, we get 
a substantial increase in apparent behavioural 
complexity, but again this is due to the nature 
of the increased complexity of the environ-
ment. As the ant moves through the maze of 
other ants, these ants may move, and the 
environment we are watching to predict the 
original ant’s path is changing. Following 
Simon’s arguments, the environment to which 
the original ant is responding includes the 
other ants. Furthermore, for any given ant in 
that environment, the other ants are respond-
ing to their environment, which includes all 
other ants including our original ant.

As we observe ants swarming, bumping 
into one another, altering their path, we again 
see complexity in path behaviour. Given the 
simple nature of the ants, are their collective 
patterns well-specified? Are there analytical 
solutions? Not really. The behaviour of the 
collective (e.g. a swarming raid pattern) is 
not explicitly contained in the ants’ simple 
rules (Camazine et al., 2001). However, we 
do know that much of an ant’s mobile behav-
iour is influenced by information contained 
in trails of pheromones, often bounded by 
behavioural goals (e.g. acquisition of food or 

prey), and density of nest mates. In fact, very 
precise swarming patterns can be generated 
through a computer simulation based on 
seven simple rules of behavioural engage-
ment – how they react to their environment 
(Deneubourg et al., 1989). Ants have adapted 
their behavioural mechanisms for over 140 
million years (Moreau et al., 2006) and virtu-
ally all of those mechanisms are likely genet-
ically-based to engage in pre-defined 
behavioural typology to achieve pre-defined 
goals. Their behaviours, though slightly 
adaptable, are essentially invariant. Workers 
work. Queens breed. Soldiers fight.

But our rules of interaction are not so 
evolutionarily determined; rather, evolution 
has sort of reversed the mechanism – we are 
quite malleable in our behaviour. Again, sub-
stituting people for ants, people are in each 
other’s (social) environment. Each person is 
reacting to an environment that is reacting to 
them. We (as hominids), however, have been 
around for about 6 million years after our 
divergence from other apes, but our brain 
size has increased four-fold since then until it 
stabilized about 100,000 years ago with its 
final increase under Homo sapiens (Lee and 
Wolpoff, 2003). The development of our 
neocortex in particular (and associated 
hyperconnectivity) suggests that this was a 
consequence of the need for engaging in 
social groups and all that entails, including 
communication, coordination, and deception 
(Byrne and Whiten, 1988; Dunbar, 2003; 
Dunbar and Schultz, 2007). The enlargement 
of the brain required that our infants be born 
when the skull is sufficiently pliable, which 
seems to extend aspects of cortical plasticity 
for several years (Julész and Kovacs, 1995; 
Elman et al., 1996). This plasticity allows for 
substantial influence of the environment 
(Quartz and Sejnowski, 1997), and much of 
that environment consists of people. 

Furthermore, this (extended) plasticity 
coupled with the capacity for language devel-
opment (Pinker, 2002) affords important 
opportunities to acquire skills, writing, 
culture, and other related knowledge 
symbolically (Deacon, 1997), which is a 
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substantially more efficient mechanism for 
learning than direct experience alone. At an 
early age, we learn how to adapt to a remark-
ably complex, and changing environment.

The end result is that we show remarkable 
flexibility in the behaviours we may exhibit. 
That flexibility is revealed in the artifacts that 
we design, such as organizations, but is also 
revealed in Simon’s ‘environment as mold’ 
concept. Much of the work on organization 
theory is based on attempts to explain 
behaviours of individuals (individually and 
collectively) within the environment of an 
organization.

THE ORGANIZATION AS MOLD

Organizations in the form that we often 
explore are artifacts designed to achieve a 
goal. The goals will require divisions (or 
even subdivisions) of effort of individuals 
that can work together; that is, a ‘defining 
characteristic’ of an organization is that it is, 
in fact, organized (Cartwright, 1965/1997). 
As March and Simon put it, organizations 
‘are systems of coordinated action among 
individuals and groups whose preferences, 
information, interests, or knowledge differ’ 
(March and Simon, 1993: 2). Now, where 
does the concept of complexity fit in this 
discussion? I suggest as examples that there 
are (at least) two that interact, complexity of 
structure and complexity of function, that 
have potential impacts on system behaviour 
with respect to its stability and serve to 
simply illustrate the point.

Organizations are computational devices. 
They are designed (explicitly or implicitly, 
successfully or not) to reduce both structural 
and functional complexity in order to attain 
sufficient forms of efficient stability in 
achieving its goals. Stability, in the context 
used here, is a qualitative assertion about a 
dynamic property of the system as whole, 
and not to a property of any specific compo-
nent (Ashby, 1960).7 Of course, there are 
many different interpretations of structure 

and processes, but my point here is to illus-
trate how two such important general con-
structs (no matter how they are defined) can 
have an impact on overall behaviour of the 
system and, consequently, its stability.

Complexity of structure

Structure involves conceptual or physical 
partitioning and describing how those parti-
tions interact. This partitioning could be by 
function, geography, product or customer, 
but could be sub-partitioned (hierarchically 
scaled) and/or alternatively partitioned (per-
spectively scaled) based on other factors, 
such as authority, power and communication 
(Kates and Galbraith, 2007). Simon’s con-
cept of nearly decomposable systems illus-
trates, in the general form, the primary value 
in partitioning (1996: 197). The key word in 
this perspective, and related to partitioning in 
general, is ‘nearly’, wherein necessary paths 
of connectivity are retained. For example, in 
vision research this property is called ‘weak 
modularity’ (Kosslyn and Koenig, 1992). As 
Ashby (1960) notes, system stability ‘always 
implies some co-ordination of actions 
between the parts’ (p. 57). Structural com-
plexity in organizations has classically been 
measured in terms of the number of parti-
tions (Blau, 1971), but more sophisticated 
analysis takes into account multiple dimen-
sions of structure (Scott, 1987; Burton et al., 
2006). In general, structural complexity 
attempts to capture the aspects of partitions 
and their relations. For the most part, struc-
tural complexity is assumed fixed over a 
focused timeframe of interest, though not 
necessarily stationary over broader ones.8

Complexity of function

Function involves the fundamental processes 
engaged by individuals or groups within the 
structure. One option for discerning com-
plexity may be a simple count of unique 
functions (e.g. Kannapan, 1995), or some 
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derivative of that such as those used in soft-
ware development (e.g. Symons, 1988). 
However, the nature of discerning the indi-
vidual and collective complexity of functions 
is, in general, underdeveloped (McShea, 
2000). A simple intuitive interpretation might 
include the amount of ‘cognitive effort’ (or 
task complexity) for an individual or group 
to execute (with indicative measures such as 
error rate or time to train). In general, func-
tional complexity attempts to capture both 
the breadth and execution costs and difficul-
ties for processes, under the broad title of 
organizational routines. For the most part, 
functional complexity is a dynamic entity 
describing those routines, and possibly the 
rate of change of those routines.

Now, let’s return to the allegory of the ant/
human. The two dimensions above exemplify 
the range of abstract environments formed 
by human organizations. We know that indi-
viduals or groups will adapt to their environ-
ment (under the correct motivations and 
opportunities) engaging routines that accom-
modate the demands of the environment 
(Nelson and Winter, 1982) as well as internal 
accommodations and constraints (Cyert and 
March, 1963). Look at the routines of an 
organization, and that will tell you a lot about 
the environment within which those routines 
reside. But also look at the behaviours of the 
individuals – that will also tell you a lot about 
the organization in which they reside (Simon, 
1976). Despite the wide range of potential 
behaviours in which an individual can engage, 
their activities within an organization are 
actually quite limited by social, cognitive, 
individual and organizational constraints. 
For example, March (1994) describes how 
social identities define sets of rules that 
determine ‘appropriateness’ of actions, which 
then influence choice and behaviours for 
those adopting those social identities. This 
is what Carley and I (1994) refer to as the 
induced simplicity hypothesis, which sug-
gests why much of the simplicity (and 
variance) in human behaviour is largely 
explained by (again) the characteristics of 
their environments, and generally those 

(organizational) environments call for behav-
iours that are simple and recurring. People 
will become the kind of decision maker that 
the environment affords.

One method of understanding aspects of 
how the complexity of environments contrib-
utes to organizational phenomena is the use 
of computational models that simulate the 
components, structure, and dynamics of the 
organization.

COMPUTATIONAL MODELS

Our interest is in computational modelling to 
understand complex systems of individuals is 
derived from the uses of models in general, 
which has been at the core of ‘how science is 
done’ in fields as old as physics. But even in 
the vaulted halls of physics, there are disa-
greements. Morrison (1999) discusses how 
physicists Paul Dirac and Henrich Hertz 
differed in their approach:

… a theoretician like Dirac sees the world as gov-
erned by fundamental laws and invariances that 
the need for models becomes not only otiose but 
creates the unnecessary philosophical problem of 
determining whether nature is actually like one’s 
chosen model. Hertz, the experimentalist, per-
ceives nature as filled with enormous complexity 
and it is the desire to understand how it might be 
possibly constructed, that motivates his reliance on 
models. (p. 41)

From our perspective, universal laws are 
best approximate and contextual, so we 
might consider siding with Hertz on the 
value of models in understanding how nature 
(and we are part of nature) works. But what 
about the ultimate scientific goal of predic-
tion? In his historical account of Arthur 
Burks’ role with the Santa Fe Institute, 
Waldrop (1992) describes Burks’ encounters 
with critics who define the value of a science 
solely in the ability to predict. Set in the con-
text of discussing systems that are potentially 
chaotic and highly path-dependent, and thus 
impossible to predict, Waldrop asserts Burks’ 
retort that ‘predictions are nice, if you can 
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make them. But the essence of science lies in 
explanation, laying bare the fundamental 
mechanisms of nature’ (p. 39), and computa-
tional models are an effective method of 
articulating fundamental mechanisms, in 
physical, biological or social sciences.

For example, at one end of the spectrum, 
molecular dynamics simulations evaluate the 
complex dynamics of extremely small sys-
tems, such as quantum plasma phenomena 
(e.g. Misra and Shukla, 2009) and systems 
operating at nanosecond timescales (e.g. 
Duan and Kollman, 1998). At the other end 
of the spectrum, Sussman and Wisdom (1992, 
1988) conducted computational simulations 
that demonstrated Pluto’s orbit (covering 845 
million years) is chaotic (1988) and a 100 
million year simulation that demonstrates the 
solar system itself exhibits chaotic properties 
(1992). The first digital simulation of a com-
plete life form (an all-atom molecular dynam-
ics model of a virus) has been created and 
used to test its stability properties (Freddolino 
et al., 2006). The relative laws of conse-
quence vary from solar system to virus, but if 
the relevant ones are captured computation-
ally, substantial progress can be made on 
demonstrating the sufficiency of mechanisms 
underlying the behaviours of interest.

Gell-Mann (1995) provided an intuitive 
metric of complexity (‘effective complexity’) 
as the simplest description of a system’s 
(observed) regularities that sit between none 
(entire randomness) and fully determined 
(e.g. closed form solution, analytically trac-
table). In our earlier discussion of the ‘three-
body problem’, we noted a similar observation 
of extremes – those systems having a small 
number of sufficiently tractable components 
(call them, simple) and those systems with a 
few more components rendering them intrac-
table (call them, complex). If we adopt Gell-
Mann’s pragmatic perspective, then we can 
begin to discern the role that computational 
models might play in generating insights in 
complex adaptive social systems. Specifically, 
if we engage an alternative investigative 
approach, wherein we remove the classifica-
tion constraint based on analytical tractability, 

then that demarcation between the extremes 
of ‘simple’ and ‘complex’ disappears.

This situation is reminiscent of a point 
made by Allen Newell almost 40 years ago 
in his famous assessment of the state of 
experimental psychology, entitled ‘You can’t 
play 20 questions with nature and win’ 
(1973). Newell argued that by following a 
strategy of positing (and consequently test-
ing) phenomena in terms of their extremes 
(i.e. opposites) often fails to yield suffi-
ciently cumulative science as such distinc-
tions are generally illusory. Furthermore, 
articulating and testing binary extremes of 
posited phenomena usually lead to deriva-
tive ancillary or sub-phenomena which are 
subsequently asserted under the extreme 
model. One important element of Newell’s 
suggestion was to build more ‘complete’ 
computational models that accounted not 
only for the phenomena of interest, but the 
broader context within which the phenom-
ena resides, in order to tell a coherent story.9 
Thus, we can then analyze how the proc-
esses behave over a range of parametric 
values in-between the polarizing theoretical 
extremes. Along that line, Miller and Page 
(2007) specifically discuss the ‘interest 
in-between’ in computational modelling 
complex adaptive social systems:

Modelling, by its very nature, is about extremes … 
Unfortunately, sometimes in the pursuit of 
extremes, we kill off the most interesting parts of 
the world … One important insight from models 
of complex adaptive social systems is the interest in 
between the extremes. Using these models, we are 
finding that as we move away from the extremes 
we do not incrementally approximate what has 
come before, instead are thrust into new realms of 
experience. (pp. 227–228)

This is a nice articulation of what most 
computational social science is about – it is 
about things that occur somewhere between 
organization science’s own version of the 
three-body problem and infinity. This per-
spective is also consistent with Merton’s 
([1949] 1996) assertions regarding middle-
range theories of social phenomena, which is 
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actually what most organizational theories 
are about:

… theories that lies between the minor but neces-
sary working hypotheses that evolve in abundance 
during day-to-day research and the all-inclusive 
systematic efforts to develop a unified theory that 
will explain all of the observed uniformities of 
social behaviour, social organization, and social 
change. (p. 41)

Putting it all together, there are several 
indications in theory and practice, across 
disciplines, that computational modelling is 
not only plausible, but a legitimate, or even 
necessary, methodology for advancing 
organization science.

COMPUTATIONAL 
ORGANIZATIONAL MODELS

If we presume legitimacy, then what are the 
potential benefits of a computational model 
in representing complex adaptive social sys-
tems capable of exhibiting complexity, such 
as organizations? Since our early edited 
volume on this topic (Carley and Prietula, 
1994), there have been a variety of recent 
publications addressing this and related 
topics (e.g. Epstein, 2006, 2008; Davis et al., 
2007; Harrison et al., 2007; Carley, 2009) 
including those in this volume. For the pur-
poses of this chapter, I suggest that there are 
five (not unrelated) significant ones, which 
address the properties noted in Table 5.1, 
plus important characteristics of computa-
tional modelling itself.

First, computational modelling allows one 
to focus on multiple types of organizational 
phenomena that ‘go together’, most often in 
some mid-range theoretical context. As such, 
these mechanisms can employ multiple levels 
of associated representations with the breadth 
and depth that often generate substantial 
complexity in social science structures. 
Furthermore, the key properties of these 
mechanisms can vary – that is, we can assert 
heterogeneity in each of these mechanisms, 

if necessary, to allow specific types of vari-
ance in the population. Thus, aggregation can 
occur over multiple, possibly heterogeneous, 
constructs. In general, there can be an impor-
tant characteristic of theoretical coherency 
that is attained in computational models. In 
discussing research on computational models 
of vision, Marr (1982) asserts that ‘almost 
never can a complex system of any kind be 
understood as a simple extrapolation from 
the properties of its elementary components’ 
(p. 19), and proceeds to conclude that ‘if one 
hopes to achieve a full understanding of a 
system … then one must be prepared to con-
template different kinds of explanation at 
different levels of description that are linked, 
at least in principle, into a cohesive whole’ 
(p. 20). Thus, and again reminiscent of 
Newell’s warning, Marr does not assert a 
pure ‘reductionism versus holism’ distinc-
tion, but a view that accommodates phenom-
ena across these perspectives, similar to the 
hierarchical reductionism arguments now 
found in biology (Dawkins, 1986). Depending 
on the nature of the question, one can subse-
quently test for regularities or invariants 
across levels or contexts (Simon, 1990; 
Gell-Mann, 2002).

For example, Ashworth and Carley (2006) 
demonstrate this nicely in their simulation of 
impact of individuals on team performance, 
where they integrate constructs such as social 
network structures, task attributes and 
individuals’ knowledge. Boero et al. (2008) 
show how a small difference in the cognitive 
features of individual agents (i.e. heterogene-
ity) can lead to remarkably different macro 
properties. Carroll et al. (2006) incorporated 
complex elements of an actual case to simu-
late alternative organizational designs.

Second, one can focus on the process as 
well as the product of behaviour. Computa-
tional modelling defines a set of mechanisms 
operating dynamically, concerning both indi-
vidual and collective behaviour, over time. 
That is, we can make a distinction between 
the interim events of the model’s components 
and the more generic properties of the collec-
tive consequences of those components. 
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We can get traces of behaviours as the simula-
tion dynamically unfolds. This, of course, is a 
reductionist type of argument, but one that 
permits doing social science ‘from the bottom 
up’ (Epstein and Axtell, 1996). Although 
there may be overall questions of attributing 
ultimate causality in nonlinear systems (e.g. 
Wagner, 1999), capturing the dynamics of 
interaction of the mechanisms can generate 
plausible evidence of causality through dem-
onstration of mechanism sufficiency to 
account for the phenomena one is attempting 
to explain. For example, Ethiraj and Levinthal 
(2009) examine the average performance over 
time under conditions of whether goals are 
temporally differentiated or not. With compo-
nents of the underlying dynamics specified, 
we are likely more insulated against the risk 
of making the ecological fallacy of drawing 
false inferences about individuals, derived 
solely from aggregate data (Robinson, 1950).

A third benefit is the fundamental symbolic 
nature of the computer and the particular 
type of universality of the computational 
mechanism itself. Computational theories 
can capture both numeric and symbolic rep-
resentations and processes; consequently, 
mappings from the theoretical constructs to 
computational representations can be made 
more efficiently. Furthermore, the represen-
tations of constructs when they are processes 
(as algorithms) have an important property. 
The concept of representing symbolic rules/
routines or any other algorithm, whether they 
are descriptive of individual deliberation 
(e.g. decision rules and preferences, a spe-
cific underlying cognitive architecture), an 
abstracted aggregate (e.g. group, division, 
organization), or any intermediating model or 
simulation architecture (e.g. NK-landscapes, 
Swarm, NetLogo, RePast, systems dynam-
ics) can be sufficiently and equivalently cap-
tured by a computational model, which has 
remarkably powerful theoretical limits and 
equivalence (Harel, 1989; Sipser, 1997). This 
is especially useful when the ‘rules of behav-
iour’ of the system, or of any system compo-
nent, or any structural or process variation 
within either may change dynamically. 

Ironically, the universality of what can be 
simulated means that there are few con-
straints imposed on what should be simu-
lated. Consequently, as computational models 
spread, there is no doubt the risk of insuffi-
cient substance hidden in the complexity of 
the form, generating a trivial computational 
Gedankenexperiment. Again, general guid-
ance from Newell, Gell-Mann and Simon 
serve to promote the type of scientific per-
spectives that can orient the work and 
balance the simplicity of the model against 
the value of its (informational) return.10

The fourth benefit I find is another 
intrinsic property of computational models. 
Computational models permit postulated 
mechanisms to be manipulated explicitly. 
This is characteristic of much of the work in 
recent computational modelling, often cast as 
a computational experiment, systematically 
examining parameter spaces. For example, 
Lin et al. (2008) manipulate several types of 
search strategies exploring strategic network 
dynamics, Rodin (2008) examined March-
like models learning under differing struc-
tural forms, and Fontaine et al. (2011) 
examine how culture and knowledge impact 
post-acquisition performance in a March-like 
model of learning, and Levine and Prietula 
(2011) incorporate multi-method (qualitative 
analysis of a knowledge sharing resource) 
with computational modelling, manipulating 
the parameters obtained from the field data in 
a simulation. The work of Epstein and Axtell 
(1996) remains one of the clearest examples 
of systematic manipulation of constructs that 
also includes multiple level modelling, and 
Harrison and Carroll’s (2006) body of work 
on simulating organizational culture demon-
strates how insight can be gained through 
coordinated sets of experiments. Included in 
this benefit are those categories of manipula-
tions that can be called ‘counterfactuals’ – 
given a set of preceding events and the 
outcome, how would things change if the 
preceding events changed? This type of non-
monotonic logic has been the study of phi-
losophers (Collins et al., 2004), computer 
scientists (Ginsberg, 1986), as well as 
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psychologists, social psychologists, and 
neuroscientists alike (Baird and Fugelsang, 
2004; Mandel et al., 2005; Epstude and 
Roese, 2008). From an organization science 
perspective, this type of reasoning is often 
engaged in asserting attributions of risk, loss, 
or causation (e.g. Lipe, 1991) driving strate-
gic and policy choices of organizations and 
governments. Formal manipulations and 
derivatives of consequence would seem as a 
more rational alternative than simply relying 
on the biased and boundedly rational meth-
ods of a ‘mental simulation’ (e.g. Kahneman 
and Tversky, 1982). Consequently, manipu-
lating parameters in a computational form 
can more effectively accommodate counter-
factual alternatives.

The final benefit I find is that building such 
models enforces a uniformity and formalism 
(i.e. ‘uniformalism’) in describing organiza-
tional phenomena. Though tractable, analytic 
solutions may not exist, the next best thing 
would be tractable, computational solutions. 
Computational models tend to be ‘homuncu-
lus resistant’ as the task of specifying the 
properties and behaviours of the model com-
putationally requires the articulation of every 
important component – those that are not 
represented are simply not components of the 
theory. That is, these models tend to be unfor-
giving when under-specified. However, there 
are issues regarding how different levels of 
articulation can add to the understanding of 
organizational phenomena using computa-
tional models. This is addressed in the next 
section.

LEVELS OF SPECIFICATION

Computers are representational devices. 
Therefore, I will make a strong statement 
regarding computational models and the rep-
resentational formalisms – in the algorithm 
resides the theory. This is an important point. 
Again we can turn to Marr (1982) for guid-
ance on linking theory and computational 
models. In his discussion on vision, he argues 

that one needs to understand an information 
processing system on three levels, in order to 
claim that one ‘understands’ an information 
processing device (i.e. vision) completely. I 
suggest that this applies to understanding 
organizational systems as well, as they are 
also information processing devices (Simon, 
1996). Table 5.2 indicates the levels from 
Marr’s context (any computational device) 
adapted to our context (computational 
organization theory).11

At the top level, Computational Theory, 
there are theoretical statements that address 
the type of problems covered by the theory. 
Computational theories are about dynamics, 
and dynamics necessitate computation – 
therefore, it is important to assert what is 
being computed (and, of course, why). Marr, 
as did Simon, recognized the importance of 
studying the environment, noting that ‘trying 
to understand perception by studying only 
neurons is like trying to understand bird 
flight by studying only feathers: It just cannot 
be done’ (1982: 27). Again, if we understand 
(and specify) the environmental context, we 
are better prepared to understand the nature 
of the algorithm (i.e. dynamic processes, 
routines) and its role in organizational deci-
sion making. For example, in Cyert and 
March’s behavioural theory of the firm, one 
of the key organizational processes asserted 
is organizational learning. At the computa-
tional theory level, this is asserted as three 
constructs: adaptation of goals, adapting in 
attention rules, and adaptation of search 
rules (1963: Chapter 6). Considering atten-
tion rules, one example addresses how profit 
goals are adjusted with respect to prior per-
formance (i.e. last period’s profit) and prior 
aspirations (i.e. last period’s goal). From a 
theoretical perspective, the constructs and 
their general relationships are described.

Next is the Algorithm level, where funda-
mental choices are made in what constructs 
are represented (and how), what dynamics 
are defined (and how) in the model, and 
how they interact. I suggest that this level is 
critical for computational organizational 
modelling, as at this level is where the theory 
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is specified. However, this is often insuffi-
ciently described or even absent from the 
discussion. The problem is that there are a 
wide variety of options for both representing 
constructs and defining the algorithmic 
dynamics. Furthermore, even apparently 
minor modifications in either can have 
impacts on the resulting behaviour and per-
formance – if learning is involved, what form 
of learning function is used? What does 
search mean and look like? There is no 
‘coding’ at this level, only descriptions of 
modelling choices. For example, in our com-
putational models of Cyert and March’s 
duopoly (Prietula and Watson, 2000), we 
used a pseudo-code type of algorithmic 
description to achieve this end.12 This would 
be what Lucas (1980) called, in his descrip-
tion of business cycle research, ‘an explicit 
set of instructions for building a parallel or 
analogue system – a mechanical, imitation 
economy’ (p. 697). Referring back to the 
Cyert and March example, there are five con-
structs specified: profit (PFT), profit goal 
(PFG), two attention parameters (β1, β2), and 
a learning rate (η). Furthermore, there is a 
decision routine that specifies how they work 
together. Collectively, the algorithm forms 
the operational definition of the theory. Thus, 
‘attention’ is operationally defined as a 
parameter that weighs the contribution of a 
variable (either profit or profit goal) to the 
aspirations for the next period. In fact, Cyert 
and March do include an Algorithm level in 
their specification, including verbal descrip-
tions and flow-charts.

Given the Algorithm specification of the 
key constructs, there is the subsequent trans-
lation of the algorithm into executable forms 
via an Implementation level, where the what 
of the algorithm level is translated into the 
how of an Implementation level. For exam-
ple, depending on the type of model, one 
can build a full model using straight code, 
such as Java, Visual Basic.Net, or C++; one 
could apply computational tools such as 
Mathematica (Wolfram, 2002) or MATLAB 
(Klee, 2007); or engage specific types of 

higher level development environments, such 
as NetLogo (Wilensky and Rand, in press), 
Repast (North et al., 2006), systems dynam-
ics (Sterman, 2000), or Swarm (Bonabeau 
et al., 1999). The choices here are important 
as they can impose substantial constraints 
and implicit assumptions not articulated at 
the algorithm level. In the parlance of classic 
software engineering, here is where there is a 
distinct risk of verification failure – one fails 
to ‘build the system correctly’ given the 
specifications (Boehm, 1981). The literature 
is beginning to address some of these latter 
issues. For example, North and Macal (2007) 
present an excellent overview to agent-based 
model development where verification (and 
validation) is covered.13 From a broader per-
spective, Ashworth and Carley (2007) argue 
that computational modelling tools can help 
unify organization theory by affording shar-
ing tools created and, in fact, would facilitate 
building, replicating, and consequence 
verifying models extant in the literature 
on a common ground. Cyert and Marr’s 
Implementation level was accomplished by 
a programming language called Gate, 
rendering comprehension of the actual 
model a challenge for the times (Augier and 
Prietula, 2007;  Prietula and Augier, 2011).

Finally, there is a recurring discussion of 
whether ‘code’ should be made available or 
not for such research (i.e. the Implementation 
level of Table 5.2). My suggestion is that it 
should not; rather, the algorithms should be 
made available, similar to what is often 
encountered in computer science, specified 
as pseudocode (see note 12). I have two rea-
sons for this suggestion. The first is prag-
matic – who wants to delve through someone 
else’s code? Not only are there potential pro-
prietary issues, but examining the code is 
equivalent to observing the details of labora-
tory practices Bankes (2009) suggests that 
computational models are a type of labora-
tory equipment. This is very different from 
standard scientific reporting practices that 
communicate procedures by defining what 
laboratory methods, materials, and protocols 
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Table 5.2 Adaptation of Marr’s (1982) levels understanding to computational modelling 
of organizations

Specification level Description Example (Cyert and March, 1963)

Computational theoryComputational theory
(process model usually 
expressed verbally)

What is theory attempting to explain? 
What is the nature of the problem being 
solved? What theoretical constructs are 
addressed? How are they related? What 
is the logic of the strategy by which the 
dynamics are carried out?

Organizational learning is realized through: 
adaptation of goals, attention rulesattention rules, and 
search rules. Past performances will influence 
where (and how much) attention will be 
paid in future decisions. Attention paid to 
prior profit goalsprofit goals in formulating new profit 
goals will be based on prior performanceprior performance and 
prior decisionsprior decisions of the near past. The rate of rate of 
adaptationadaptation is determined by a constant for 
the firm. 

AlgorithmAlgorithm
(process model 
expressed in structured 
computational form)

What specific constructs are represented? 
What are the underlying process(es)/
routines that incorporate the constructs 
and specify the dynamics? How do they 
interrelate?

PFT = profit made at end of time period t
PFG = profit goal for time period t
β1 = attention paid to recent performance 
success (PFT)
β2 = attention paid to recent performance 
failure (PFT)
η = second-order learning rate (0.0 ≤ η ≤ 0.3 
rectangular)

if {PFTt-1 > PFGt-1}
then β1 = β1 + η(1- β1)
 PFGt = (1- β1)PFGt-1 + β1PFTt-1

else β1 = β1 - ηβ1

 PFGt-1 = (1- β2)PFGt-1 + β2PFTt-1

ImplementationImplementation
(process model realized 
in executable form)

How is the algorithm realized 
computationally? What are the 
mechanisms and how do they work? 
Which mechanisms are part of the theory 
and which are not?

;K29 ß K29 + 1; C78 ß (1-C132)*C78 + 
C132*C75
;C131 ß  C131*(1-C120) IF C75 < C78
C78 ß (1-C131)*C78 + C131*C75; C131 ß
C131 + C120*(1-C131)

were employed. On the other hand, the key 
elements of consequence reside in the 
Algorithm level, where the interpretation of 
the theory is most clearly articulated as 
assumptions and intent – as I noted, how 
things are operationally defined. In the true 
manner of science, communication of the 
Algorithm is akin to a description of the 
detailed protocols of an experimental con-
text, wherein replication of the protocol, 
through its description, should result in a 
replication of the findings. If the Algorithm 
can be replicated across Implementation 
choices, then evidence can naturally begin to 
accumulate surrounding a theory (to the 
extent that replication in social science is 
viewed as acceptable).

CONCLUSION

The purpose of this chapter is to serve as an 
essay for thoughts regarding complexity and 
computational models of organizations. The 
examination of Simon’s Allegory of the Ant 
suggests that an environment of individuals 
will complicate the prediction of reactions, 
as the environment becomes increasingly 
complex. However, the flexibility of human 
adaptation is likely exploited by the con-
straints of the organizational context (induced 
simplicity hypothesis) that turns attention 
again to the environment as both mold 
and explanans for behaviours (see also 
Gigerenzer, 2007). Thus, the use of computa-
tional models of organizations is seen as not 
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only viable, but essential for advancing 
aspects of organization science in attempts to 
bridge the macro-micro level of specifica-
tion. In the words of Cohen and Cyert 
(1965/1997), such models can be based on 
‘reasonable assumptions’, where:

… the computer model is a model in which the 
implications of the assumptions, that is, the conclu-
sions, are derived by allowing an electronic digital 
computer to simulate the processes embodied in 
the assumptions (p. 307).

Therefore, even if there is an equilibrium 
value, and many times there is not, the matter 
of interest may be in examining the path 
dynamics by which the equilibrium is reached.

As we are told of the physical examples 
of unpredictability and chaos from simple 
dynamic systems all around us (as pointed 
out by many popular books on the topic), 
one wonders how something as complex as 
an assemblage of humans can ever get any-
thing done at all! I believe there are two 
reasons for this. One is that the organiza-
tions we study are generally (and relatively) 
stable structures, and the adaptability of 
humans (individually and collectively) 
within the realms of the extant routines gen-
erally serves to sustain the stability of the 
structure across a wide variety of disruptive 
forms (Simon, 1976).

The other is that our evolutionary past and 
cultural history seems to include roots of 
cooperation and empathy (Henrich et al., 
2004; deWaal, 2009). Therefore, being a 
complex adaptive social system may not 
unequivocally require any of the ‘maladap-
tive’ properties of physical systems. As 
Snowden and Boone (2007) point out, there 
is a distinct difference between complicated, 
complex and chaotic states in an organiza-
tion, and knowing that difference matters. 
I tend to agree with the observation that evi-
dence for true chaos and complexity (in the 
mathematical sense) in real world data, 
versus idealized conditions, is difficult 
(Williams, 1997). Nevertheless, we do find 
things that closely resemble such behaviour 
in our social environments. As a conse-

quence, we must understand the differences 
in context, and determine how to adapt such 
constructs mutatis mutandis to our social 
ones (e.g. Arrow et al., 2000).

Finally, we must make a distinction between 
our cognitive limitations to understand some-
thing (i.e. it is ‘complex’ because I cannot 
understand it), and ascribing measurable prop-
erties characteristic of complexity to phenom-
ena, independent of any observer (i.e. it is 
‘complex’ because is satisfies these condi-
tions). In science, as Lord Kelvin asserted, 
measurement matters. Computational models 
can help distinguish between the two as well 
as facilitating the former and demonstrating 
the latter.

NOTES

1 For example, organizational theorists often 
mistake Lamarkian for Darwinian doctrine. In 
Lamarkian heredity, a behaviour (e.g. giraffe’s 
‘stretching’ their necks) or an exogenous alteration 
to phenotypes (e.g. cutting tails off of mice) will 
have direct genotypic consequences (i.e. longer 
necks, no tails). On the other hand, some theorists 
seem to avoid the necessity of genotypes (i.e. off-
spring) in their entirety, eliminating the fundamental 
elements underlying biological evolutionary mecha-
nisms (i.e. ‘organizations evolve’). Cross-disciplinary 
‘borrowing’ of concepts should distinguish between 
metaphor and attribution. Raman and Prietula 
(2010) provide an example of comparing how a 
physics-based model of preferential attachment in 
network emergence generates different results from 
one incorporating a specific social science property 
(homophily).

2 List adapted from Holland (1995) and Mitchell 
(2009).

3 See Barrow-Green (1996) for the story of 
Poincare’s essay on this famous problem, which 
contained a critical error. When correcting this error. 
Poincare discovered the foundations of mathematical 
chaos. For 300 years, the fundamental theories of 
physical sciences were based on analytical models 
involving two variables, with very minor extensions 
up to five (Weaver, 1961).

4 Note that other types of living systems may 
exhibit such properties, but we are focusing on 
human systems in this chapter. Furthermore, analy-
sis of aggregates of humans may not necessarily 
require such properties under certain conditions and 
assumptions.
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 5 Mitchell (2009) also makes a point that there 
is no central control. As this is typically not the case 
in organizations, it is not pursued in this chapter.

 6 Of course, individuals are also physical sys-
tems. The distinction is more one of what is being 
examined on what level, what timescales are of inter-
est, and what constraints (via physical components) 
are imposed (Newell, 1990).

 7 Interpretations of stability can range from 
exact forms of equilibria to less formal judgments of 
‘acceptable’ regions of behaviour.

 8 For example, in the duopoly model of Cyert 
and March (1963), the particular loosely coupled 
modularization of decisions was seen as changing as 
they argued that the firm was indeed an ‘adaptable 
institution’ (p. 99), but it was assumed stable over 
their simulated time frame of 50 periods.

 9 Newell did not intend for this to be a new 
guide to science, but a caricature of the current state 
of experimental psychology. In fact, as science 
progresses, this form of questioning can indeed be 
locally efficient (e.g. Kosslyn, 2006).

10 As Newell used to consistently remind us in 
our research meetings, ‘hypotheses come from the 
theory, not the theorist.’ In Kydland and Prescott’s 
(1996) discussion of the value of computational 
experiments in economics, they echo Lucas’s (1980) 
advice in emphasizing the role of building on ‘well-
tested theory’ in deriving components of the model.

11 This section is adapted from Prietula (2010).
12 Pseudocode is not actual computer code (e.g. 

JAVA or C++) and there is no universally accepted 
specification of ‘the one way’ to do pseudocode. 
Rather, it is a structured, English-like language that 
incorporates basic programming constructs (e.g. 
sequencing, decision, iteration) and uses ‘whatever 
expressive method is most clear and concise to 
specify a given algorithm’ (Cormen et al., 2009:17). 
The main goal of pseudocode is to effectively com-
municate the fundamental elements of an algorithm 
in an unambiguous manner so that the algorithm 
can be replicated in any language, yet yield to types 
of formal analysis.

13 See also Burton (2003), Burton and Obel 
(1995), Galan et al. (2009), Midgley et al. (2007), 
Thomsen et al. (1999).
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Realist Epistemology 
for Complexity Science

B i l l  M c K e l v e y

There is no accepted definition of emergence, 
even among scientists, but few who have seriously 
studied such phenomena believe it to be an ‘eye-
of-the-beholder’ effect. Indeed, it is possible to list 
criteria that go far toward distinguishing some 
observation as emergent, regardless of the observer 
and the time of discovery. (Holland, 2002: 27)

I subscribe to Holland’s view that phenomena 
– whether compressible or not – exist in the 
real world independently of the eye of the 
beholder. This is the essence of scientific 
realism; it is possible to base truth claims on 
aspects of the real world, given appropriate 
research methods. My modification is that I 
substitute Campbellian Realism in place of 
the ‘scientific realism’ emanating from phi-
losophies of science rooted in physics 
(McKelvey, 1999). It is important, however, 
to also take note of Gell-Mann’s ‘effective 
complexity’: Designing buildings in California 
is more complex because of earthquakes. The 
simpler building codes in, say, Texas, are 
ineffectively complex for California. On the 
other hand, one doesn’t need to understand 
nano-phenomena to build quake-safe struc-
tures; nano-thinking would not be effectively 
complex either. Building codes – building 

‘schemas’ as Gell-Mann (2002: 16) would 
call them – need to be effectively complex, 
no more no less.

Effectively complex theorizing and model-
building, and doing the kind of research that 
produces effectively complex managerial 
schemata, are the objectives of effectively 
complex scientific method. Philosophies of 
scientific realism aim to accomplish this. 
Truth-claims, then, are also effectively 
complex. As you will see, in Campbellian 
Realism, while idiosyncratic perceptions of 
the phenomenal world are recognized, and 
social construction by scientific communities 
is accepted, ultimately good science is held 
accountable to the hard reality of what is real. 
Postmodernism, constructivism, and relativ-
ism undoubtedly surface at the beginning of 
inquiry, but effective complexity science 
applied to organizations and management 
needs to rise above these pseudo-science 
wishful-thinkings if truth claims are to be 
valid and believable. Nothing less will do! 
For the most constructive connection between 
postmodernism (really poststructuralism) see 
Cilliers’ book, Complexity and Postmodern-
ism (1998).
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CRITIQUE OF POSITIVISM 
AND POSITIVIST ECONOMICS

Defining logical positivism 
and logical empiricism

… The word ‘positivist’, like the word ‘bourgeois’, 
has become more of a derogatory epithet than a 
useful descriptive concept, and consequently has 
been largely stripped of whatever agreed meaning 
it may once have had (Giddens, 1974: ix).

In fact, ‘positivism’ has both strong and weak 
points and how it is defined has evolved. 
Positivists worry about the fundamental 
dilemma of science: How to conduct truth-
tests of theories, given that many of their 
constituent terms are unobservable and 
unmeasurable, seemingly unreal, and thus 
beyond the direct first-hand sensory experi-
ence of investigators? The term, positivism, 
was coined by August Comte. He attempted 
to avoid the dilemma by disallowing into sci-
ence terms not directly apparent to the human 
senses. Comte claimed that the goal of sci-
ence is prediction based only on observable 
terms (Audi, 1995: 147).

Following Newtonian mechanics, German 
mechanistic materialism, held that ‘… exist-
ence obeys, in its origin, life, and decay, 
mechanical laws inherent in things 
themselves, discarding every kind of super-
naturalism and idealism in the exploration of 
natural events’ (Suppe, 1977: 8, quoting 
Büchner, 1855). It rests on empirical inquiry 
rather than philosophical speculation, a view 
in which there is no doubt that a real objec-
tive world exists. Materialism gave way to 
the neo-Kantian view that ‘science is con-
cerned to discover the general forms of struc-
tures of sensations; the knowledge science 
yields of the “external worlds” is seen as webs 
of logical relations which are not given, but 
rather exemplified … in sensory experience’ 
(Suppe: 9). Thus science discovers not just 
the structure of matter but rather the logic of 
the interrelations among the phenomena. 
This view had become the dominant philoso-
phy of the German scientific community by 

1900. By mid nineteenth century Hegel’s 
philosophy of ‘the identity of reason and 
reality’ dominated. It proclaimed only 
‘reason’ is ‘real’, denying the existence of 
tangible entities such as earth, water, and fire. 
The world is purely perception, a matter of 
the mind!

Mach added the notion that scientific state-
ments must be empirically verifiable, result-
ing in neopositivism. The excesses of Mach’s 
approach, which included a rejection of math-
ematics, subsequently were denied, resulting 
in a modified positivism (Whitehead and 
Russell, 1910–1913) that still held to verifia-
bility as a basis of assuring truth but included 
mathematics as an appropriate expression of 
scientific laws. During the ensuing decade the 
main elements of the Received View devel-
oped and were published in Carnap’s (1923) 
first publication. It formally stated the tenets 
of logical positivism, since it included math-
ematical, theoretical, and observational lan-
guages as well as the separation of theory and 
observation terms.

By 1910 the Vienna Circle (founded in 
1907), a group of Germans trained in logic, 
mathematics, and physics meeting at the 
University of Vienna, had accepted the task 
of considering how to respond to: (1) Hegelian 
idealism; (2) scientists’ beliefs in mechanis-
tic materialism; (3) neo-Kantian sensory 
experiencing of the external world; (4) 
Machian neo-positivism’s emphasis of verifi-
cation, and finally the crowning blows; (a) 
Planck’s quantum mechanics; and (b) 
Einstein’s theory of special relativity, both of 
which violated determinism, sensory rele-
vance, and verificationism. Their official 
manifesto, The Scientific World View: The 
Vienna Circle, was published in 1929.1

Responding to the philosophical dilemma, 
logical positivists founded their epistemology 
on axiomatic theories, using terms compris-
ing three languages: ‘(1) logical and mathe-
matical terms; (2) theoretical terms; and (3) 
observation terms’ (Suppe, 1977: 12). Theory 
terms are unreal, abbreviated representations 
of phenomena described by the observation 
terms. Correspondence rules (C-rules) assure 
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theoretical terms are explicitly linked to 
observation terms. They held that theory 
terms are unreal and, thus, theoretical expla-
nations of causality are also unreal, leading to 
the view that theories may be interpreted only 
as instrumental summaries of empirical 
results (Hunt, 1991: 276–277). The ‘scientific 
truth’ in theory terms is ascertained via ‘veri-
fication’ in observation terms. Logical posi-
tivists attempted to clarify the language of 
science by expunging metaphysical terms not 
amenable to direct sensory testing and by 
insisting that logic terms be verified as to 
cognitive meaning and truth, thereby ‘ridding 
it [science] of meaningless assertions by 
means of the verifiability principle and recon-
structing it through formal logic into a precise, 
ideal language’ (Hunt, 1991: 271).

In his classic statement Schlick (1932/33)2 
focused on the seeming impossibility of ever 
knowing whether the external world is differ-
ent from the metaphysical or transcendent 
reality of the human senses, that is, cognitive 
construction or interpretation. In his view the 
only way to tell if some datum is real or not is 
to take it away and see if there is a difference. 
Thus, if I sit once and the chair is there and if 
I sit again and the chair is not there and I fall, 
I may conclude the chair is real. This is what 
Schlick refers to as a testable difference.

Subsequently Nagel (1961), and Hempel 
(1965), following others, evolved an episte-
mology focusing on laws, explanation, and 
theory, known as logical empiricism. It had 
replaced logical positivism by mid twentieth 
century. The logical empiricists’ immediately 
encountered a problem with the verifiability 
principle, since for a law to be verified it 
must be empirically proved universally true 
for all times at all places, an impossibility. 
Consequently verifiability was abandoned, to 
be replaced by a somewhat relaxed testability 
criterion that all propositions have to be 
amenable to some measure of empirical test, 
a view eventually championed by Popper 
(1959) as his falsifiability principle. This 
modification finally admitted that theory 
terms could never be directly ‘verified’ 
empirically.

In responding to the fundamental dilemma, 
the logical empiricists attempted to deal with 
the problems identified with the logical posi-
tivists’ strict separation of theory and obser-
vation terms via the use of C-rules. How to 
have an ‘unreal’ theory term explicitly defined 
via C-rules without having the theory term 
simply be the result of an observable meas-
ure of some sort? This would become an 
operationalist’s treatment of theory – it is 
whatever is measured (Hempel, 1954). It cre-
ated the ‘theoreticians dilemma’: (1) If all 
theory terms can be explicitly defined by 
reduction to observation terms, then theory 
terms are unnecessary; and (2) If theory 
terms cannot be explicitly defined and related 
to observation terms they are surely unneces-
sary because they are meaningless (Hempel, 
1965: 186). Further, if theory terms are iso-
morphic to operational measures there is no 
possibility of using the theory to predict new 
phenomena, as yet unmeasured.

It is clear that the term ‘positivism’ is now 
obsolete among modern philosophers of 
science (de Regt, 1994). Nevertheless, many 
key ingredients of positivism still remain 
in good standing among scientific realists, 
such as: theory terms, observation terms, tan-
gible observables and unobservables, auxil-
iary hypotheses, causal explanation, empirical 
reality, testability, incremental corroboration 
and falsification, and generalizable law-like 
statements. Though Suppe (1977) wrote the 
epitaph on positivism and relativism, a posi-
tivist legacy remains (McKelvey, 1999). The 
idea that theories can be unequivocally veri-
fied in search for a universal unequivocal 
‘Truth’ is gone. The idea that ‘correspond-
ence rules’ can unequivocally connect theory 
terms to observation terms is gone. The role 
of axioms as a basis of universal Truth absent 
empirical tests is negated. The importance of 
models and experiments is reaffirmed.

The fallacy of positivist economics

The evolutionary aspect of economics 
originates in attempts by Spencer (1898) and 
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Friedman (1953) to use Darwinian selectionist 
theory to justify why only rational firms 
survive. Samuelson (1947) and Friedman 
(1953) draw on the mathematics of classical 
physics, its First Law of Thermodynamics 
(the conservation of energy law), and the 
centrality of equilibrium, in attempting to 
turn economics into a predictive science 
(Mirowski, 1989). To get economics out of 
its equilibrium-centric stance, Nelson and 
Winter (1982) use Darwinian selectionist 
theory to introduce dynamics into economic 
‘Orthodoxy’. More recently, however, Salthe 
(1993), Rosenberg (1994), and Eldredge 
(1995) all recast Darwinian selectionist 
theory as an equilibrium-based theory as 
well. They conclude that the most significant 
dynamics in the bio- and econspheres are 
variances around equilibria in niches remain-
ing stable for millions of years. While 
Darwinian selection is still important at the 
tail end of the order-creation process, the 
‘self-organization biologists’ (Van de Vijver 
et al., 1998) see other natural forces sur-
rounding the biosphere as causing the more 
significant changes in biological entities over 
the millennia. Self-organization biology 
enters the mix as an important additional 
component of bioeconomics.

Hinterberger (1994) critiques economic 
orthodoxy’s reliance on the equilibrium 
assumption from a different perspective. In 
his view, a closer look at both competitive 
contexts and economic actors uncovers four 
forces working to disallow the equilibrium 
assumption:

1 Rapid changes in the competitive context of firms 
does not allow the kinds of extended equilibria 
seen in biology and classical physics;

2 There is more and more evidence that the 
future is best characterized by ‘disorder, instabil-
ity, diversity, disequilibrium, and nonlinearity’ 
(p. 37);

3 Firms are likely to experience changing basins 
of attraction – that is, the effects of different 
equilibrium tendencies;

4 Agents coevolve to create higher-level struc-
tures that become the selection contexts for 
subsequent agent behaviours.

Hinterberger’s critique comes from the 
perspective of complexity science. Also from 
this view, Arthur et al. (1997: 3–4; who draw 
from Holland, 1988) note that the following 
characteristics of economies counter the 
equilibrium assumption essential to predictive 
mathematics:

1 ‘Dispersed Interaction’ – dispersed, possibly 
heterogeneous, agents active in parallel;

2 ‘No Global Controller or Cause’ – coevolution of 
agent interactions;3

3 ‘Many Levels of Organization’ – agents at lower 
levels create contexts at higher levels;

4 ‘Continual Adaptation’ – agents revise their 
adaptive behaviour continually;

5 ‘Perpetual Novelty’ – by changing in ways that 
allow them to depend on new resources, agents 
coevolve with resource changes to occupy new 
habitats; and

6 ‘Out-of-Equilibrium Dynamics’ – economies 
operate ‘far from equilibrium’, meaning that 
economies are induced by the pressure of trade 
imbalances, individual to individual, firm to firm, 
country to country, etc.

After reviewing all the chapters, most of 
which rely on mathematical modelling, the 
editors ask, ‘… In what way do equilibrium 
calculations provide insight into emergence?’ 
(p. 12; my italics). Most chapters miss the 
essential character of complex adaptive sys-
tems stylized in the bullets – heterogeneous 
agents in far-from-equilibrium systems.

In his book, Dynamics of Markets: 
Econophysics and Finance, McCauley (2004) 
observes that in physics a mathematical 
model is confirmed or not via empirical 
experiments; the math lives or dies depending 
on the experiments. In economics McCauley 
shows that it is not so; economists adhere to 
their math models whether or not they are 
empirically confirmed. In economics reli-
ance on the math from equilibrium physics 
(Mirowski, 1989) amounts to a faith-based 
would-be science. I offer some specific 
quotes from McCauley’s book in Table 6.1.

The lack of empirical confirmation of 
theories and their math formalizations is 
further confirmed by the quotes of 
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economists, no less – listed in Table 6.2 – 
who point to the total disjunction between 
econometrics and economists’ beliefs in 
their theories. Economists claim that econo-
metrics is a valid substitute for experiments 
(where the independent variable can be 
directly shown to cause the dependent vari-
able – or not). This claim was refuted in a 
classic test by Lalonde (1986) of whether 
any of the best econometric models could 
replicate a real-world experiment.4 They 
couldn’t!

REALISM

From the positivist legacy a model-centred 
evolutionary realist epistemology has 
emerged. Elsewhere (McKelvey, 1999), I 
argue that model-centred realism accounts to 
the legacy of positivism and evolutionary 
realism accounts to the dynamics of science 
highlighted by relativism, all under the label 
Campbellian Realism. Campbell’s view may 
be summarized into a tripartite framework 
that replaces the historical relativism of 
Kuhn (1962) and Feyerabend (1975) for the 
purpose of framing a dynamic realist episte-
mology. First, much of the literature from 
Lorenz (1941) forward has focused on the 
selectionist evolution of the human brain, our 
cognitive capabilities, and our visual senses 
(Campbell, 1974); it concludes that these 

capabilities do indeed give us accurate 
information about the world we live in 
(reviewed by Azevedo, 1997).

Second, Campbell (1991) draws on the 
hermeneuticists’ coherence theory in a selec-
tionist fashion to argue that over time mem-
bers of a scientific community (as a tribe) 
attach increased scientific validity to an entity 
as the meanings given to that entity increas-
ingly cohere across members. This process is 
based on hermeneuticists’ use of coherence 
theory to attach meaning to terms (Hendrickx, 
1999). This is a version of the social construc-
tionist process of knowledge validation that 
defines Bhaskar’s (1975) use of transcendental 
idealism and the sociology of knowledge 
components in his scientific realist account. 
The coherentist approach selectively winnows 
out the worst of the theories and thus 
approaches a more probable truth.

Third, Campbell (1991) and Bhaskar 
(1975) combine scientific realism with 
semantic relativism. Nola (1988) separates 
relativism into three kinds:

1 ‘Ontological relativism is the view that what 
exists, whether it be ordinary objects, facts, the 
entities postulated in science, etc., exists only 
relative to some relativizer, whether that be a 
person, a theory or whatever’ (1988: 11) – [onto-
logically nihilistic].

2 Epistemological relativisms may allege that (1) 
what is known or believed is relativized to 
individuals, cultures, or frameworks; (2) what is 
perceived is relative to some incommensurable 

Table 6.1 Joseph McCauley’s evaluation of theoretical economics – the math stuff

‘The known mathematical laws of nature, the laws of physics, do not change. … Local invariances … can be • 
reproduced by different observers independently …’. (p. 2)

‘We know mathematical laws of nature that cannot be violated intentionally … are beyond the possibility of human • 
invention, intervention, or convention’. (quoting Alvin Turing; p. 2)

‘… Notwithstanding the economists’ failed attempt to make economics look like an exercise in calculus … in • 
economics in contrast with physics, there exist no known inviolable mathematical laws of ‘motion’/behavior. … 
Economic ‘law’, like any legislated law or social contract, can always be violated by willful people and groups’. (p. 3)

‘Econometric models … are too complicated and based on too few good ideas and too many unknown parameters • 
to be very useful’. (p. 6)

‘The aim of this book is to make it clear to the reader that neo-classical theory, beloved of pure mathematicians, is a • 
bad place to start in order to make new models of economic behavior’. (p. 6)
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paradigm; (3) there is no general theory of 
scientific method, form of inquiry, rules of rea-
soning or evidence that has privileged status 
(1988: 16−18) – [epistemologically nihilistic].

3 Semantic relativism holds that truth and falsity 
are ‘… relativizable to a host of items from 
individuals to cultures and frameworks. What 
is relativized is variously sentences, statements, 
judgements or beliefs’ (1988: 14) – [semantically 
weak].

Nola observes that Kuhn and Feyerabend 
espouse both semantic and epistemological 
relativism. Relativisms5 familiar to social 
scientists range across all three kinds, that is, 
from ontological nihilism to semantic. 
Campbell clearly considers himself a seman-
tic relativist in addition to being an ontologi-
cal realist (Campbell and Paller, 1989). This 
produces an ontologically strong, relativist, 
dynamic epistemology. In this view the 
coherence process within a scientific com-
munity continually develops in the context of 
selectionist testing for ontological validity. 
The socially constructed coherence-enhanced 
theories of a scientific community are tested 
against real-world phenomena (the criterion 
variable against which semantic variances 

are eventually narrowed and resolved), with 
a winnowing out of the less ontologically 
correct theoretical entities. This process, 
consistent with the strong version of scientific 
realism proposed by de Regt (1994), does not 
guarantee error-free ‘Truth’ (Laudan, 1981), 
but it does move science in the direction of 
Popper’s (1959) increased verisimilitude 
(truthlikeness).

Campbellian realism is crucial because 
elements of positivism and relativism still 
flourish in social science. Campbell’s is 
an epistemology: (1) dealing with metaphys-
ical terms, (2) objectivist empirical investiga-
tion, (3) recognition of socially constructed 
meanings of terms, and (4) a dynamic pro-
cess by which a multiparadigm discipline 
usually reduces to fewer but more significant 
theories.

Campbell defines a critical, hypothetical, 
corrigible, scientific realist selectionist evo-
lutionary epistemology as follows (McKelvey, 
1999: 403):

1 A scientific realist postpositivist epistemology that 
maintains the goal of objectivity in science with-
out excluding metaphysical terms and entities.

Table 6.2 Economists on the value of econometrics*

‘No economic theory was ever abandoned because it was rejected by some empirical econometric test, nor was a • 
clear cut decision between competing theories made in light of the evidence of such a test.’ (Spanos, 1986: 660)

‘Very little of what economists will tell you they know, and almost none of the content of the elementary text, • 
has been discovered by running regressions. Regressions on government-collected data have been used mainly to 
bolster one theoretical argument over another. But the bolstering they provide is weak, inconclusive, and easily 
countered by someone else’s regressions.’ (Bergmann, 1987: 192)

‘We don’t genuinely take empirical work seriously in economics. It’s not the source by which economists • 
accumulate their opinions, by and large.’ (Leamer in Hendry et al., 1990: 182)

‘I invite the reader to try and identify a single instance in which a “deep structural parameter” has been estimated • 
in a way that has affected the profession’s beliefs … . (Summers, 1991: 130)

‘No one really believes a scientific assertion in economics based on statistical significance.’ (McCloskey, 1994: 358)• 

‘Most allegedly empirical research in economics is unbelievable, uninteresting or both. It doesn’t get down to the • 
phenomena. It’s satisfied to be publishable or clever. It’s unbelievable unless you have to believe temporarily to 
get tenure.’ (McCloskey, 1994: 359)

‘In economics it takes a theory to kill a theory, facts can only dent a theorist’s hide.’ (Samuelson quoted in Card • 
and Krueger, 1995: 355)

* Collected by Pierpaolo Andriani.
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2 A selectionist evolutionary epistemology govern-
ing the winnowing out of less probable theories, 
terms, and beliefs in the search for increased 
verisimilitude may do so without the danger of 
systematically replacing metaphysical terms with 
operational terms.

3 A postrelativist epistemology that incorporates 
the dynamics of science without abandoning the 
goal of objectivity.

4 An objectivist selectionist evolutionary episte-
mology that includes as part of its path toward 
increased verisimilitude the inclusion of, but 
also the winnowing out of the more fallible, 
individual interpretations and social construc-
tions of the meanings of theory terms compris-
ing theories purporting to explain an objective 
external reality.

The epistemological directions of Camp-
bellian realism have strong foundations in 
the scientific realist and evolutionary episte-
mology communities (see Azevedo, 1997). 
The one singular advantage of realist method 
is its empirically based, self-correcting 
approach to the discovery of truth (Holton, 
1993). While philosophers never seem to 
agree exactly on anything, nevertheless, 
broad consensus does exist that these state-
ments reflect what is best about current 
philosophy of science. To date evolutionary 
realism has amassed a considerable body of 
literature, as reviewed by Hooker (1987) and 
Azevedo (1997). Along with Campbell and 
Lawson’s (1997) realist treatment of eco-
nomics, Azevedo’s book stands as a principal 
proponent of realist social science.

THE SEMANTIC CONCEPTION

In my development of Campbellian Realism 
(McKelvey, 1999) I show that model-
centredness is a key element of scientific 
realism, but I do not develop the argument. In 
this section, I flesh out the development of a 
model-centred social science by defining the 
Semantic Conception. As Cartwright put it 
initially: ‘The route from theory to reality is 
from theory to model, and then from model 

to phenomenological law’ (1983: 4). The 
shift from Cartwright’s earlier view of models 
as passive reflections of theory and data to 
‘models as autonomous agents’ mediating 
between theory and phenomena reaches full-
est expression in Morgan and Morrison 
(2000), her protégés.

Models may be iconic or formal. Most 
management scholars live in the shadow of 
economists and economics departments 
dominated by economists trained in the con-
text of theoretical (mathematical) economics. 
Because of the axiomatic justification of 
theoretical economics, I first discuss the 
axiomatic conception in epistemology and 
economists’ dependence on it. Then I turn to 
the semantic conception, its rejection of the 
axiomatic definition of science, and its 
replacement programme.

The axiomatic syntactic tradition

Axioms are defined as self-evident truths 
comprised of primitive syntactical terms. 
Thus, in Newton’s second law, F = ma: 
requires understanding mass (being hit by a 
large truck) and acceleration (being hit by a 
speeding Ferrari). And the three terms, force, 
mass, and acceleration cannot be decom-
posed into smaller physical entities defined 
by physicists – they are primitive terms this 
sense (Mirowski, 1989: 223). A formal 
syntactic language system starts with primi-
tives – basic terms, definitions, and forma-
tion rules (e.g. specifying the correct structure 
of an equation) and syntax – in F = ma the 
syntax includes F, m, a, = and × (implicit in 
the adjoining of ma). An axiomatic formal 
language system includes definitions of what 
is an axiom, the syntax, and transformation 
rules whereby other syntactical statements 
are deduced from the axioms. Finally, a 
formal language system also includes a set of 
rules governing the connection of the syntax 
to real phenomena by such things as meas-
ures, indicators, operational definitions, and 
correspondence rules all of which contribute 
to syntactic meaning.
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Based on the work of Pareto, Cournot, 
Walras, and Bertrand, economics was already 
translating physicists’ thermodynamics into a 
mathematicized economics by 1900. By the 
time logical positivism was established by the 
Vienna Circle circa 1907 (Hanfling, 1981), 
science and philosophy of science believed 
that a common axiomatic syntax underlay 
much of known science – it connected theo-
ries as far removed from each other as motion, 
heat, electromagnetism, and economics to a 
common set of primitives. Over the course of 
the twentieth century, as other sciences became 
more formalized, positivists took the view that 
any ‘true’ science ultimately reduced to this 
axiomatic syntax (Nagel, 1961; Hempel, 
1965); this was the origin of the ‘Unity of 
Science’ movement (Hanfling, 1981).

Now, the axiomatic requirement in creas-
 ingly strikes many scientists as more straight-
jacket than paragon of good science. After 
quantum/relativity theories, even in physics 
Newtonian mechanics came to be seen as a 
study of an isolated idealized simplified 
physical world of point masses, pure vacuums, 
ideal gases, frictionless surfaces, linear 
one-way causal flows, and deterministic 
reductionism (Suppe, 1989: 65–68; Gell-
Mann, 1994). But biology continued to be 
thought – by some – as amenable to axio-
matic syntax even into the 1970s (Williams, 
1970; Ruse, 1973). In fact, most formal theo-
ries in modern biology are not the result of 
axiomatic syntactic thinking. Biological phe-
nomena do not reduce to axioms. For exam-
ple, the Hardy–Weinberg ‘law’, the key 
axiom in the axiomatic treatments of Williams 
and Ruse is:

p
AA Aa

N
=

+1 2/

where p is the gene frequency, A and a are two 
alleles or states of a gene, and N is the number 
of individuals. But instead of being a funda-
mental axiom of evolutionary theory, it is now 
held that this ‘law’, like all the rest of biological 
phenomena is a result of evolution, not a 
causal axiom (Beatty, 1981: 404–405).

The so-called axioms of economics also 
suffer from the same logical flaw as the 
Hardy–Weinberg law. Economic transactions 
appear to be represented by what Mirowski 
refers to as the ‘heat axioms’. Thus, Mirowski 
shows that a utility gradient in Lagrangian 
form:
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is of the same form as the basic expression of 
a force field gradient:
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As Mirowski (1989: 30–33) shows, this 
expression derives from the axiom F = ma. 
Suppose that, analogous to the potential or 
kinetic energy of planetary motion defined by 
the root axiom F = ma, an individual’s move-
ment through commodity space (analogous to 
a rock moving through physical space) is U = 
ip (where i = an individual, p = change in 
preference). The problem is that Newton’s 
axiom is part of the causal explanation of 
planetary motion, but the economists’ axiom 
could be taken as the result of the evolution of 
a free market capitalist economy, not as its 
root cause. This ‘axiom’ is not a self-evident 
expression that follows an axiomatic syntax 
common to all ‘real’ sciences. It is the result of 
how economists think an economy ought to 
behave, not how economic systems actually 
behave universally. Economists are notorious 
for letting ought dominate over is (Redman, 
1991). Orthodox economic theory still is 
defined by axiomatic syntax (Hausman, 1992). 
It is pretty much a faith-based religion!

Essential elements 
of the semantic conception

Parallel to the fall of The Received View 
(Putnam’s (1962) term combining logical 
positivism and logical empiricism) and its 
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axiomatic conception, and starting with 
Beth’s (1961) seminal work dating back to 
the Second World War, we see the emergence 
of the ‘Semantic Conception of Theories’ 
(Suppes, 1961; van Fraassen, 1970; Suppe, 
1977, 1989; Beatty, 1987). Suppe (1989: 3) 
says, ‘The Semantic Conception of Theories 
today probably is the philosophical analysis 
of the nature of theories most widely held 
among philosophers of science’. I present 
four key aspects:

From axioms to phase-spaces
Following Suppe, I will use phase-space 
instead of Lloyd and Thompson’s state-space 
or Suppes’ set-theory. A phase-space is defined 
as a space enveloping the full range of each 
dimension used to describe an entity. Thus, 
one might have a regression model in which 
variables such as size (employees), gross 
sales, capitalization, production capacity, age, 
and performance define each firm in an indus-
try and each variable might range from near 
zero to whatever number defines the upper 
limit on each dimension. These dimensions 
form the axes of an n-dimensional Cartesian 
phase-space. Phase-spaces are defined by 
their dimensions and by all possible configu-
rations across time as well. They may be 
defined with or without identifying underlying 
axioms – the formalized statements of the 
theory are not defined by how well they trace 
back to the axioms but rather by how well they 
define phase-spaces across various state tran-
sitions. In the semantic conception, the quality 
of a science is measured by how well it 
explains the dynamics of phase-spaces – not 
by reduction back to axioms.

Isolated idealized structures
Semantic conception epistemologists observe 
that scientific theories never represent nor 
explain the full complexity of some phe-
nomenon. A theory may claim to provide a 
generalized description of the target phenom-
ena, say, the behaviour of a firm, but no 
theory ever includes so many variables and 
statements that it effectively accomplishes 
this. A theory (1) ‘does not attempt to describe 

all aspects of the phenomena in its intended 
scope; rather it abstracts certain parameters 
from the phenomena and attempts to describe 
the phenomena in terms of just these abstracted 
parameters’ (Suppe, 1977: 223); (2) assumes 
that the phenomena behave according to the 
selected parameters included in the theory; 
and (3) is typically specified in terms of its 
several parameters with the full knowledge 
that no empirical study or experiment could 
successfully and completely control all the 
complexities that might affect the designated 
parameters. Suppe (1977: 223–224) says 
theories invariably explain isolated idealized 
systems (his terms). And most importantly, 
‘if the theory is adequate it will provide an 
accurate characterization of what the phe-
nomenon would have been had it been an 
isolated system …’. Using her mapping 
metaphor, Azevedo (1997) explains that no 
map ever attempts to depict the full complex-
ity of the target area – it might focus only on 
rivers, roads, geographic contours, arable 
land, or minerals, and so forth – seeking 
instead to satisfy the specific interests of the 
map maker and its potential users. Similarly 
for a theory. A theory usually predicts the 
progression of the idealized phase-space over 
time, predicting shifts from one abstraction 
to another under the assumed idealized con-
ditions. Needless to say, the foregoing equates 
to Gell-Mann’s ‘effective complexity’.

Model-centred science 
and bifurcated adequacy tests
Models comprise the core of the semantic 
conception. In the axiomatic conception: (1) 
Theory is developed from its axiomatic base; 
(2) Semantic interpretation is added to make 
it meaningful in, say, physics, thermodynam-
ics, or economics; (3) Theory is used to make 
and test predictions about the phenomena; 
and (4) Theory is defined as empirically and 
ontologically adequate if it both reduces to 
the axioms and is instrumentally reliable in 
predicting empirical results. In the typical 
social science approach: (1) Theory is induced 
after an investigator has gained an apprecia-
tion of some aspect of social behaviour; 
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(2) An iconic model is often added to give a 
pictorial (box-&-arrow) view of the interrela-
tion of the variables, show hypothesized path 
coefficients, or possibly a regression model is 
formulated; (3) The model develops in paral-
lel with the theory as the latter is tested for 
empirical adequacy by seeing whether effects 
predicted by the theory can be discovered in 
the real-world. In the semantic conception: 
(1) Theory, model, and phenomena are 
viewed as independent entities; (2) Science is 
bifurcated into two not-unrelated activities, 
analytical and ontological adequacy. My 
view of models as centred between theory 
and phenomena sets them up as autonomous 
agents, consistent with the various authors in 
Morgan and Morrison (2000). Consequently, 
they have two bases of validity:

Analytical AdequacyAnalytical Adequacy ••  focuses on the theory–model 
link. It is important to emphasize that in the 
semantic conception ‘theory’ is always expressed 
via a model. ‘Theory’ does not attempt to use its 
‘If A, then B’ epistemology to explain ‘real-world ’ 
behaviour. It only explains ‘model’ behaviour. It 
does its testing in the isolated idealized world 
of the model. A mathematical or computational 
model (see Prietula; Tracy; Vidgen and Bull; all this 
volume) is used to structure up aspects of interest 
within the full complexity of the real-world phe-
nomena and defined as ‘within the scope’ of the 
theory – which is to say it has to meet the stand-
ards of Gell-Mann’s effective complexity. Thus, a 
model would not attempt to portray all aspects of, 
say, school systems – only those within the scope 
of the theory being developed.
Ontological AdequacyOntological Adequacy ••  focuses on the 
model–phenomena link. Developing a model’s 
ontological adequacy runs parallel with improv-
ing the theory–model relationship. How well does 
the model represent real-world phenomena? Is it 
effectively complex? How well does an idealized 
wind-tunnel model of an airplane wing represent 
the behaviour of a full sized wing in a storm? 
How well does a drug shown to work on ‘ideal-
ized’ lab rats work on people of different ages, 
weights, and genetic variances? If each dimen-
sion in the model – called model-substructures – 
adequately represents an equivalent behavioural 
effect in the real world, the model is deemed 
ontologically adequate (McKelvey, 2001).

Theories as families of models
A difficulty encountered with the axiomatic 
conception is the belief that only one theory 
(or model) concept should build from the 
underlying axioms. In this sense, only one 
model can ‘truly’ represent reality in a rigor-
ous science. Given this, a discipline such as 
evolutionary biology fails as a science. Instead 
of a single axiomatically rooted theory, as 
proposed by Williams (1970) and defended by 
Rosenberg (1985), evolutionary theory is a 
family of theories including theories explain-
ing the processes of (1) variation; (2) natural 
selection; (3) heredity; and (4) a taxonomic 
theory of species (Thompson, 1989: Ch. 1). 
Even in physics, the theory of light is still 
represented by two models: wave and particle. 
Since the semantic conception does not 
require axiomatic reduction, it tolerates mul-
tiple theories and models. Thus, ‘truth’ is not 
defined in terms of reduction to a single 
model. Set-theoretical, mathematical, and 
computational models are considered equal 
contenders to more formally represent real-
world phenomena. In physics both wave and 
particle models are accepted because they 
both produce highly reliable predictions. In 
evolutionary theory there is no single ‘theory’ 
of evolution. In fact, there are even lesser 
families of theories (multiple models) within 
the main families. All social sciences also con-
sist of various families of theories, each having 
families of competing models within it.

EXTENDING REALISM TO 
GELL-MANN’S SECOND REGULARITY

Translating chaos into new 
regularities to be explained

Gell-Mann (2002) distinguishes between two 
fundamentally different ‘regularities’ – what 
Bhaskar (1975) calls ‘underlying generative 
processes’. As I noted earlier, Gell-Mann 
sees ‘effective complexity’ as ‘regularities’ 
or ‘schemas’ found or judged to be useful. 
They appear as equations in physics, genotypes 
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in biology, laws and traditions in social 
science, and business best practices in man-
agement or organization science. What is 
new is Gell-Mann’s recognition of a new 
scalability-derived regularity. He defines two 
regularities: (1) the old simplicity of reduc-
tionism, equations, linearity, and predictions 
of classical physics; and (2) the new simplic-
ity of tiny initiating events – what I call 
‘butterfly-events’ (based on Lorenz, 1972) – 
that initiate causal dynamics leading to non-
linearity, similar causal dynamics at multiple 
levels, power laws, and scale-free theory – 
what Gell-Mann (2002) calls historical frozen 
accidents. They are:

1 Reductionist law-like regularities Reductionist law-like regularities : The reductionist 
causal processes of normal science, which stem 
predominantly from independent-additive causal 
processes that are predictable and easily repre-
sented by equations (2002: 19) – the data and 
information much preferred in classical physics 
and neoclassical economics.

2 2 Multilevel scale-free regularities Multilevel scale-free regularities : Outcomes over 
time that stem from connectivity and interac-
tive multiplicative causal processes; they are set 
off by the random occurrence of tiny initiating 
events that are compounded by positive feed-
back effects over time; they may have lasting 
effects and become the ‘frozen accidents’ of 
history (2002: 20).

The first regularities have been the subject 
of science and philosophy of science and 
within the latter, positivism and scientific 
realism, which I extend to Campbellian real-
ism, all of which are reframed by the Semantic 
Conception. These are the equilibrium-trend-
ing regularities that economists and thence 
management and organizational researchers 
have presumed could be lifted over from 
physics – the science of dead things – to the 
sciences of living things, particularly neo-
classical economics. Where probability sub-
stituted for exact physics, Gaussian statistics 
became the order of the day; and still is.

The second regularities result from the 
effects of ‘tiny initiating events’ (what 
Holland (2002: 29) calls ‘small inexpensive 
inputs’ or ‘lever point phenomena’) – my 

‘butterfly-events’. Lots of them occurring in 
a short time frame can create all of the 
bifurcation points giving rise to chaos and 
deterministic chaos theory (Gleick, 1987; 
Guastello, 1995). The butterfly-events of 
chaotic histories are never repeated, are not 
predictable, and can produce significant non-
linear outcomes that may become extreme 
events. Consequently, descriptions of these 
systems are at best problematic and easily 
outside the explanatory/scientific traditions 
of normal science. The underlying causes are 
self-organization and emergence – the core 
concerns of the Santa Fe Institute (SFI) (see 
for example: Cowan et al., 1994; Holland, 
1995; Arthur et al., 1997).

SFI emphasizes the spontaneous coevolu-
tion of agents in complex adaptive systems.6 
Agents restructure themselves continuously, 
leading to new forms of emergent order 
consisting of patterns of evolved agent 
attributes and hierarchical structures 
displaying both upward and downward causal 
influences. Bak (1996) extends this treatment 
in his discovery of ‘self-organized criticality’, 
a process in which butterfly-events can lead 
to complexity cascades of avalanche propor-
tions best described as an inverse power law 
(PL).7 I show how a Pareto distribution turns 
into an inverse PL when plotted on double-
log scales in Figure 6.1. The signature ele-
ments are self-organization, emergence and 
nonlinearity. Kauffman’s (1993) ‘spontane-
ous order creation’ begins when three ele-
ments are present: (1) heterogeneous agents; 
(2) connections among them; and (3) motives 
to connect so as to improve fitness (better 
performance, learning, innovation, etc.). 
Remove any one element and nothing hap-
pens. According to Holland (2002) we recog-
nize emergent phenomena as multiple level 
hierarchies, bottom-up and top-down causal 
effects, and nonlinearities. Gell-Mann (2002) 
concludes by noting that when butterfly-
events spiral up such that their effects appear 
at multiple levels and are magnified, we 
see self-similarity, scalability, and PLs. 
Scalability, especially, applies to all living 
systems (Gell-Mann, 2002).
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Seldom in the literature have scientific 
realists applied their epistemological views 
to butterfly events and consequences – an 
exception is Worldviews, Science and Us: 
Philosophy and Complexity (Gershenson 
et al., 2007). Underlying most PLs is a 
causal dynamic explained via scale-free 
theories. Each theory points to a single gen-
erative cause to explain the dynamics at 
each of however many levels at which the 
scalability effect applies. Whereas tradition 
rests on the idea that lower-level dynamics 
can explain and predict higher-level phe-
nomena and simplicity comes in the form of 
(usually) linear mathematical equations – 
i.e. reductionism (Gell-Mann, 2002), scale-
free theories point to the same causes 
operating at multiple levels – the ‘simplic-
ity’ is one theory explaining dynamics at 
multiple levels. Andriani and McKelvey 
(2009) apply fifteen of these scale-free 
theories to organizations.

Explaining butterfly regularities 
via scale-free theories

Many complex systems tend to be 
‘self-similar’ across levels. That is, the same 

dynamics drive order-creation behaviours at 
multiple levels (West et al., 1997). These 
processes are called ‘scaling laws’ because 
they represent dynamics appearing similarly 
at many orders of magnitude (Zipf, 1949). 
Scalability results from what Mandelbrot 
(1982) calls ‘fractal geometry’. Fractals often 
show Pareto distributions and are signified 
by PLs. Researchers find PLs in intrafirm 
decisions, consumer sales, salaries, size of 
firms, movie profits, director interlocks, bio-
tech networks, and industrial districts, for 
example – Andriani and McKelvey (2007, 
2009) assemble studies about ~140 PLs. 
They are mostly explained by scale-free 
theories. They (2009) also identify 15 scale-
free theories applying to organizations. 
From the foregoing, two new complexity 
thrusts are identifiable.

First, roughly one-third of complexity 
science theory is missing in organizational 
and managerial applications to date, i.e. the 
econophysics phase – PLs and the underly-
ing fractals, scalability, and scale-free theory. 
Organizations are multilevel phenomena. 
Almost by definition then, we can take PL 
signatures as the best evidence we have that 
emergence dynamics are operating at multi-
ple organizational levels. We know for sure 
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Figure 6.1 Pareto distribution reformed into a power-law distribution

Plots from Glaser (2009). They show the rank/frequency of the 30 largest software firms by market capitaliza-
tion. The power-law distribution has a 0.97 correlation with the straight line
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that PLs apply at the industry level (Stanley 
et al., 1996; Axtell, 2001; Glaser, 2009). If 
PLs are not evident in a particular firm, we 
can conclude only that ‘emergence’, if it 
exists at all, is not multilevel. Building from 
the interacting food-web literature (Pimm, 
1982; Solé et al., 2001; McKelvey et al., 
2011), we can also conclude that, absent the 
PL signature, a firm’s emergence dynamics 
are not capable of keeping it competitive 
with its changing competitors, suppliers, and 
customers. Thus, if emergence produces 
scale-free dynamics, but PLs are not evident, 
then whatever emergence actually exists is 
pretty much competitively useless. The 
bottom line is that PLs are significant indica-
tors of crucially important managerial and 
organizational dynamics (Andriani and 
McKelvey, this volume). This puts the 
practical relevance of current empirical 
research in an especially bad light. No 
wonder people say b-schools (and their 
research) are increasingly irrelevant (Pfeffer 
and Fong, 2002; Bennis and O’Toole, 2005; 
Ghoshal, 2005).

Second, organization change and entrepre-
neurship researchers should be especially 
interested in scale-free dynamics and related 
theories. Who more than entrepreneurs 
wouldn’t like to let loose scale-free dynamics 
in their firms? Think of how many small 
entrepreneurial ventures stay that way simply 
because the emergent growth dynamics they 
had at the one- or two-level size failed to 
scale up as levels increased. Think how many 
large organizations show failing intrapre-
neurship for the same reason – the hundreds 
of ‘butterfly-ideas’ never become meaningful 
butterfly-events, never produce butterfly-
effects, and never spiral into multilevel scale-
free causal dynamics producing PL signatures. 
We now have recent research showing that 
PLs do indeed indicate changing firms (Dahui 
et al., 2006; Ishikawa, 2006), transition econ-
omies (Podobnik et al., 2006), and the UK’s 
broken industrial economy (McKelvey, 2011).

Extant complexity theory applied to organ-
izations and management is silent on both the 
foregoing points. I think the most important 

move we could take is to learn how, and then 
more aggressively, apply scale-free complex-
ity theory to organization change, OD, and 
entrepreneurship/intrapreneurship. Teaching 
and preaching complexity theory is useless in 
our organizational world absent scale-free 
theory. These points are further elaborated in 
chapters by Andriani and McKelvey, and 
Boisot and McKelvey (this volume).

CONCLUSION

Complexity Science Epistemology (CSE) 
cannot gain ontological and epistemological 
legitimacy and consequent truth claims by 
mirroring classical physics, which is to say 
mirroring its:

1 Lower-bound homogeneity assumption (e.g. all 
H2O molecules, as agents, may be treated as 
similar);

2 Entropy-production based equilibrium-centred 
math modelling syntactic-equation-based 
practices;

3 Reductionism and prediction based on instru-
mental variables (prediction-useful as opposed 
to explanation-useful); and

4 Reliance on axiomatically-based syntactically-
correct math expressions/proofs as opposed to 
semantically-relevant effectively-complex models.

Instead, CSE has to reflect an ontological 
jump from Gell-Mann’s First Regularities to 
his Second Regularities. This means CSE’s 
truth claims require developing the following 
– mostly new – epistemologies:

First: CSE shifts from ontologies, models, 
and epistemologies presumed to be based on 
constituent elements that are independent 
and combine additively to ontologies and 
agent-based computational models in which 
constituent elements (the agents) show con-
nectivity and can interact so as to produce 
multiplicative, nonlinear outcomes, which 
give rise to Gell-Mann’s scalability-based 
Second Regularities. Complexity science, 
centred around emergent order-creation 
and complexity from the interactions of 
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autonomous heterogeneous agents, has devel-
oped an agent-based model-centred episte-
mology that parallels the social and language 
connectivities and individual-research-based 
truth claims emphasized in postmodernism 
and poststructuralism (Cilliers, 1998).

Second: CSE retains reliance on Camp-
bellian realism and evolutionary epistemol-
ogy: Campbellian realism – coupled with the 
Semantic Conception and evolutionary epis-
temology – bases scientific legitimacy on (a) 
theories aimed at explaining (and not just 
predicting) transcendental causal mecha-
nisms or processes (i.e. including variables 
above and below the human senses); (b) the 
insertion of effectively-complex models as 
an essential element of sound epistemology; 
and (c) the use of changing real-world phe-
nomena as the criterion variable leading to: 
(i) an evolutionary winnowing out of less 
plausible social constructions and individual 
interpretations; as well as (ii) constant 
updating of truth-claims.

Third: CSE recognizes four basic onto-
logical forms stemming from the Second 
Regularity – which results in Pareto and PL 
distributed phenomena. Figure 6.2 depicts a 
stylized PL distribution. Within this figure 

we see four kinds of ontologies, each calling 
for different epistemologies. Since these 
ontologies are described in more detail by 
Andriani and McKelvey (this volume), I just 
describe them briefly here:

1 Extreme outcomes:Extreme outcomes: At the lower right we 
have what Siggelkow (2007) and Andriani and 
McKelvey call ‘talking pigs’ – really strange, 
un usual, one-of-a-kind outcomes: a once-a-
century #9 earthquake; Walmart and Microsoft 
(the largest firms in the world in their industries), 
the Challenger disaster, the Bay of Pigs confron-
tation between Russia and the U.S., etc. For this 
ontology, CSE truth claims should come from 
epistemologies such as hermeneutics and coher-
ence theory (Campbell, 1991; Hendrickx, 1999), 
multimethod research (Jick, 1979) and abduc-
tive reasoning (Peirce, 1935; Hanson, 1958; 
Paavola, 2004; see also Boisot and McKelvey, 
this volume).

2 Normal distributions:Normal distributions: At the upper left we see 
the PL representation of the opposite Pareto 
long tail. This is where we usually see high 
enough frequencies of some phenomena that 
Gaussian statistics applies. While there is only one 
Walmart at the lower-right, there are millions of 
Ma&Pa stores at the upper left. CSE truth claims 
based on Campbellian realism and evolutionary 
epistemology fit this ontology very well.

Figure 6.2 Stylized power-law distribution
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3 Anderson’s long tail:Anderson’s long tail: Also at the upper left, 
Anderson (2006) describes a variety of phe-
nomena that appear in micro-niches, Amazon 
book sales being a good example; it can 
supply one weird book to one idiosyncratic 
customer and still make a profit from doing 
so. This perspective has been validated by 
Brynjolfsson et al. (2006). This epistemology is 
not well developed.

4 Horizontal scalability:Horizontal scalability: Going horizontally in 
Figure 6.2, the ontology is that of, for example, 
Southwest Airlines going from a start-up regional 
airline in Texas to now being worth more than 
all the rest of the US airlines combined (Maxon, 
2008). Sam Walton’s initial Ma&Pa-type store 
grew from very small to extremely large; most 
stores didn’t. Here the ontology is one of tiny ini-
tiating events – sometimes – leading to extreme 
outcomes. Truth claims here rest on epistemolo-
gies yet to be developed since Pareto distribu-
tions have been mostly ignored by statisticians 
and researchers for over a century. Andriani and 
McKelvey (this volume) describe the ontology 
in more detail. As power law science develops, 
a relevant CSE epistemology will presumably 
follow.

Model-centred science is a two edged 
sword. On the one hand, formalized models 
are reaffirmed as a critical element in the 
already legitimate sciences and receive added 
legitimacy from the Semantic Conception 
in philosophy of science. On the other, the 
more we learn about models as autonomous 
agents – that offer a third influence on the 
course of science, in addition to mirroring 
theory and/or data – the more we see the 
problematic moulding effects math models 
have had on social science. In short, math 
models are mostly inconsistent with living 
phenomena. A model-centred epistemology 
based on agent-based computational models 
(see Prietula; Tracy; Vidgen and Bull; all this 
volume) (and some math) is required for 
efficacious management research and 
practitioner advice giving. It is only a begin-
ning, but I note that CSE truth claims call for 
radically different ontologies, models, and 
epistemologies calling for new developments 
in scientific realism.

NOTES

1 Originally: O. Neurath, with R. Carnap and 
H. Hahn, Die Wissenschaftliche Weltauffassung, Der 
Wiener Kreis. Wien: Artur Wolf 1929. [A pamphlet 
reprinted and translated in M. Neurath and 
R.S. Cohen (eds) Empiricism and Sociology, Dordrecht, 
The Netherlands: Reidel, 1973: 301–318.]

2 The paper is reprinted in Boyd, Gasper, and 
Trout as ‘Positivism and Realism’ (1991: 37–55).

3 While there is no global controller in bee and 
ant colonies, firms have CEOs earning $$millions to 
be in charge. Hence, complexity science applied to 
organization and management has to deal with vary-
ing amounts of global control.

4 Lalonde’s test includes James Heckman’s two-
stage method, for which he (Heckman) won the 
Nobel Prize.

5 Includes ontologically and/or epistemologically 
nihilistic subjectivist postpositivisms such as eth-
nomethodology, historicism, radical humanism, phe-
nomenology, semioticism, literary explicationism, 
hermeneuticism, critical theory, and postmodernism, 
all of which are ‘post’ positivist and in which subjec-
tive and cultural forces dominate ontological reality.

6 Since the SFI complexity approach is discussed 
elsewhere in this volume, I only touch on it here.

7 ‘A Pareto rank/frequency distribution plotted in 
terms of double-log scales appears as a PL distribu-
tion – an inverse sloping straight line. … PLs often 
take the form of rank/size expressions such as F ~ 
N –b, where F is frequency, N is rank (the variable) and 
b, the exponent, is constant. In exponential functions, 
e.g. p(y) ~ e(ax), the exponent is the variable and e 
(Euler number) is constant (quoted from Andriani 
and McKelvey, this volume).
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7
Exploring Organizational 
Effectiveness: The Value 

of Complex Realism as a Frame 
of Reference and Systematic 

Comparison as a Method

D a v i d  B y r n e

Almost everything Byrne knows about 
organizations in any formal sense, as opposed 
to a considerable amount of knowledge gen-
erated by lived experience working in organ-
izational settings of rather different kinds,1 
comes from Mouzelis’ Organization and 
Bureaucracy (1967) which he read as a 
graduate student just about 40 years ago. One 
key point stuck with him which Mouzelis 
derived from Herbert Simon. Organizations 
were about achieving objectives. We can add 
to that that they do so not by maximizing, but 
by satisficing – just one of Simon’s great 
achievements was to recognize the limita-
tions of human capacity in relation to avail-
able information and the necessity of seeking 
to seek to achieve adequacy rather than opti-
mal outcomes. We are going to push this a bit 
or perhaps even a great deal further. Simon’s 
background was in mathematical economics 
and operational research and very much 

informed by the mathematical techniques 
involved in the development of Physics. 
There is a way in which that kind of mathe-
matics has built into it a version of the world 
in which all is mutable by degree. In other 
words optimization is definable by maxima 
in terms of some sort of multi-dimensional 
state space where all the dimensions of the 
state space can be measured in ways which 
assigns the full set of properties of number to 
the variables being measured.

Well organizations are complex systems 
and complex systems are in general not muta-
ble by degree but mutable in relation to kind 
– change is not incremental but qualitative. 
The level of measurement which is appropri-
ate in dealing with them is not continuous/
ratio scale but nominal/categorical. The whole 
idea of phase shift which is central to an 
understanding of change in complex systems 
necessarily involves an understanding of 
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measurement of change in categorical terms.2 
In relation to organizations whose outputs can 
be defined in financial terms, this reality can 
be obscured by the reality of money as a con-
tinuous variable. Rates of return on capital 
employed and changes in share value certainly 
are measurable in ratio scale terms. However, 
even for commercial organizations significant 
change is often qualitative. Bankruptcy/failure 
certainly is a qualitative change. Changes in 
form are usually nonlinear and involve radical 
shifts in size and complexity of functions. In 
any event the focus in this chapter is going to 
be on organizations whose purposes are not 
measurable in financial terms, although of 
course financial aspects are very important for 
them. In effect all devalorized organizations, 
i.e. organizations where the fundamental 
objective is not the accumulation of capital 
and enhancement of the rate of return on capi-
tal, should be considered as having objectives 
where change in effectiveness of outcome 
must be understood in categorical terms. 
Those categories may very well be ordered 
in terms of normative conceptions of their 
desirability, but ordered categories remain 
categories. Ragin and Rihoux put this very 
well in relation to a review of the technique – 
Qualitative Comparative Analysis (QCA) – 
which will be presented as a way of 
understanding causality in relation to outcome 
in complex systems in this chapter:

… policy researchers, especially those concerned 
with social as opposed to economic policy, are 
often more interested in different kinds of cases 
and their different fates than they are in the extent 
of the net causal effect of a variable across a large 
encompassing population of observations. After 
all, a common goal of social policy is to make 
decisive interventions, not to move average levels 
or rates up or down by some miniscule fraction. 
(Rihoux and Ragin, 2004: 18)

So we want to develop an account of the 
nature of significant organization change in 
terms of qualitative transformation and pro-
pose that systematic comparison provides a 
means by which the complex and multiple 
causal processes which can generate particular 

desired states in relation to change can be 
understood, and being understood, managed. 

In order to do this we need to spell out an 
ontological position – be absolutely explicit 
about the nature of the elements with which 
we are dealing and about the context of those 
elements. Most of the preceding discussion 
has been ontological. In particular by speci-
fying organizations as complex systems and 
asserting that changes in those systems has 
to be understood in qualitative/categorical 
terms, we have already committed to the 
notion that what matters for us is complexity 
rather than simplicity. We want to add to that 
the implications of the realist understanding 
of the character of the world and of our proc-
esses of production of knowledge about that 
world as this has been outlined by Reed and 
Harvey (1992) who argue for a synthesis of 
the general description of complex systems 
in complexity theory, and especially for the 
significance of emergence and the nature of 
radical transformation which is part of the 
potential of complex systems, with critical 
realism after Bhaskar (see Archer et al., 
1998) and in particular both the layered 
theory of reality and how we know it which 
informs that position. We can think of gen-
erative mechanisms, Bhaskar’s real, as the 
potential causal drivers of complex systems 
– equivalent in complexity terms to control 
parameters, the actual expression of these in 
what Bhaskar calls the actual as the state of 
complex systems, and our description of 
complex systems as Bhaskar’s empirical. 

Pawson and Tilley’s (1997) formulation of 
the realist causal principle, as slightly modi-
fied by Byrne (2002) serves as a summary of 
the understanding of causality which we can 
consider to inform complex realism:

Mechanism & Context => Outcome

In words, generative mechanism in interaction 
with context (hence the & rather than + sign as 
the latter implies simple additivity) generates 
directionally (hence => rather than = because 
= always implies reversibility and complex 
causality is directional) outcome. 
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The complex realist position will be 
developed in relation to the exploration of 
causality in complex systems, with that cau-
sality understood as almost always being 
contingent, complex and multiple. By contin-
gent we mean here that causality is always 
dependent on context, on the surrounding 
environment in which any complex system is 
embedded. In other words causality is local. 
By complex we mean that causality in com-
plex systems seldom depends on the opera-
tion of any single specific cause but rather is 
a consequence of the interaction of multiple 
causal factors, which may themselves be 
‘interactions’ rather than discrete variate 
characteristics or interventions. By multiple 
we mean simply (!) that complex causality 
may operate in different ways. In other words 
the same outcome may be generated by 
different causal combinations. 

This ontological specification is necessary 
because it predicates a very different under-
standing of causality from that which under-
pins traditional approaches to exploring 
cause, and in particular to the specific 
aetiology which lies behind randomized 
controlled trials. At a time when the 
Campbell collaboration (see http://www.
campbellcollaboration.org/) whilst not quite 
following the Cochrane Collaboration’s 
absolute privileging of the RCT (see Shadish 
and Myers, 2004), in their wholly admirable 
pursuit of evidence as to effectiveness of 
social interventions, nonetheless still see ran-
domization and control as an ideal, it is really 
rather important to apply a complexity per-
spective to our understanding of how to find 
out ‘what works’. 

Teisman et al. (2009) develop these kind 
of arguments in specific relation to Managing 
Complex Governance Systems. They 
remark:

Our starting point is the empirical observation that 
governance systems and networks are often in 
states of change which make them difficult to 
analyze, let alone manage. Stability of governance 
systems seems to be the exception rather than the 
rule. Furthermore, any changes that do take place 
are often capricious. Processes seem to unfold in 

unique and non-replicable ways, making it diffi-
cult to learn from successes and failures and to 
develop general theories. … This then begs the 
question of how to develop knowledge about 
such an elusive subject of research. An attempt is 
made here by starting from a complexity theory 
perspective, with the assumption that the interac-
tions in governance networks are complex: the 
outcomes of interactions between parties do not 
only result from the intentions and actions of 
these two parties, but also from interferences 
from the context in which the interaction takes 
place and the emerging results of such interac-
tions. This means that the output and outcomes 
of the same interaction can differ in different 
places and at different times. A governance 
approach or organizational arrangement applied 
in two different contexts can result in very differ-
ent outcomes. (2009: 2)

In other words finding out ‘what works’ 
for complex governance systems or indeed 
any sort of complex organizational system, 
is not a straightforward business. This chap-
ter will develop this argument illustrating 
how a complex realism frame of reference 
can help us to develop a systematic com-
parative case based approach to understand-
ing the different ‘whats’ that work. It will 
use the example how we can explore 
‘Spearhead Areas’ (local authority areas with 
high deprivation and poor health outcomes) 
in relation to what complex sets of control 
parameters/complex causes (for us these 
terms are synonymous) generate outcomes 
in relation to specific sets of health targets. 
We will show how the techniques of 
Qualitative Comparative Analysis (QCA) 
(see Ragin, 1987) can provide the basis of an 
exploratory approach to the whole operation 
of complex organizations in relation to the 
achievement of objectives. In doing so it 
develops primarily the technical side of the 
argument advanced by Buijs et al. that: ‘… it 
may be possible to make a systematic com-
parison across systems as a way of exploring 
situated complexity (complexity in which 
we have to take account of the specific 
character of a particular complex system in 
context)’. (2009: 37).

The proposal to work through cases is in 
itself not radical. After all the case study has 
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been a or even the crucial tool of organiza-
tional analysis for a long time. However, we 
have to think carefully about the content and 
form of case study work and recognize that 
what we need above all else to handle an 
understanding of causality through case 
based approaches is comparison. In other 
words we need to get beyond the unique 
description of the ideographic account of the 
individual case but not work in terms of the 
establishment of nomothetic universal rules 
through some ersatz version of the experi-
mental approach. Here the foreword to the 
third edition of Yin’s classic account of Case 
Study Research (2003) written by the Donald 
Campbell for whom the Campbell collabora-
tion is named makes two interesting and 
apposite points:

More and more I have come to the conclusion that 
the core of the scientific method is not experimen-
tation per se but rather the strategy connoted by 
the phrase ‘plausible rival hypotheses’. This strat-
egy may start its puzzle solving with evidence, or it 
may start with hypotheses. Rather than presenting 
this hypothesis or evidence in the context inde-
pendent manner of positivist confirmation (or even 
of post-positivist corroboration), it is presented 
instead in extended networks of implications that 
(although never complete) are nonetheless crucial 
to its scientific evaluation. (2003: ix)

… in addition to the quantitative and quasi-ex-
perimental case study approach that Yin teaches, 
our social science methodological armamentarium 
also needs a humanistic validity-seeking case study 
methodology that, although making no use of 
quantification or test of significance, would still 
work on the same questions and share the same 
goals of knowledge. (2003: ix–x)

Actually QCA seems to us to offer an 
approach which rather than focusing on plau-
sible rival ‘hypotheses’ (although we prefer 
the term model to hypothesis), allows for 
multiple alternative accounts of how causes 
work in specific contexts which are alterna-
tive without being rival. In other words the 
adjective rival is wholly appropriate in 
relation to the word hypothesis since that 
term implies absolutely a single account of 
how causes work in a specific instance. In 
contrast the term ‘model’ allows for multiple 

and different causal processes. Also the proc-
esses of QCA actually combined the kind of 
qualitative methodology which Campbell 
calls for in the second of the above quota-
tions with a quantitative process of clarifica-
tion and specification through the construction 
of truth tables. 

George and Bennett (2005) have a take on 
case studies which helps us here. They identify 
three components to case based qualitative 
work which is concerned with understanding 
causality – with helping us to work out in our 
language ‘what works’. These are:

Cross case comparison  •
Congruence testing •
Process tracing •

In some ways these interesting commen-
tators remain trapped in a variable centred 
understanding of causation. This is particu-
larly the case in relation to their discussion 
of congruence testing (see Chapter 9 of their 
book) which in effect involves advance 
specification through a hypothesis of the 
relationship between an independent varia-
ble and an outcome and the examination of 
cases to see if this relationship holds up, 
with of course the caveat that even the obser-
vation of such an association may lead us 
into the trap of the fallacy of affirming the 
consequent. In contrast process tracing 
which requires detailed engagement with the 
actual historical development of specific 
cases, results in the development of causal 
narratives. They quote Hall citing George 
himself:

… process-tracing is a methodology well-suited to 
testing theories in a world marked by multiple 
interaction effects, where it is difficult to explain 
outcomes in terms of two or three independent 
variables – precisely the world that more and more 
social scientists believe we confront. (2000: 14; 
quoted in George and Bennett, 2005: 206)

The point about QCA is that it enables us 
to move from the detailed narrative of process 
tracing through specification of attributes 
which characterize multiple cases into the 
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construction of configurations which repre-
sent multiple combinations of attributes lead-
ing or not leading to outcomes. Indeed Byrne 
(2009) shows how we might in an explora-
tory fashion start actually with an array of 
attributes for large N sets of cases and then 
explore the relationship of these with out-
comes, prior to detailed qualitative explora-
tion of processes in relation in particular to 
configurations of attributes which generated 
different outcomes. In other words we can do 
what qualitative comparison always suggest 
– find things which seem the same but lead to 
different outcomes, and then go into the 
cases further to find what else is different 
about them. To cross over into the technical 
language of complexity theory itself, we are 
actually interested in the differing trajecto-
ries of near neighbours in the state space. 
Systematic cross case comparison lets us 
explore trajectories which differ going for-
ward albeit that the state from similar loca-
tions in the position of cases/systems in the 
ensemble of systems as located in the possible 
state space. 

Cross case comparison is of course the 
fundamental basis of the comparative method. 
In all case comparison, particularly when we 
are dealing with case comparisons across 
large N data sets, a central theme is the con-
struction of typologies. We might do this in 
an exploratory fashion using numerical tax-
onomy techniques, in particular cluster anal-
yses. A realist complexity account actually 
suggests that classification deployed in rela-
tion to specific related attribute sets gener-
ates types which represent complex sub-sets 
of the whole complex systems, and may thus 
be considered to constitute descriptions of 
control parameters for those systems. This 
idea is developed in Byrne (2002) but an 
example will illustrate. If, for example, we 
are exploring differences in outcome across 
English secondary schools, organizations 
which certainly do constitute complex sys-
tems, we might well have data describing the 
pupils coming into the school in terms of 
initial ability as measured on tests, deprivation 
usually measured in terms of eligibility for 

free school meals, ethnicity and particularly 
the use of a language other than English in 
the home, and special needs being either or 
both cognitive and physical disabilities. 
Aggregate data about pupil cohorts can be 
clustered to yield input types for those 
schools and we would be hard put to argue 
that these factors in interaction have no 
determinant effect on outcome. Constructing 
clusters generates typologies which embody 
those interactions and which constitute vari-
ate traces of the systems under consideration. 
It is really rather important to emphasize that 
the foregoing is still to some extent trapped 
in the language of variables. The measures 
from which we construct clusters for cases 
do not exist outside those cases and/or the 
environment of those cases. The measures 
themselves are not ‘real’ nor are they, as 
factor analysis would have it, traces of some 
hidden real underlying variables with causal 
powers independent of the case/environment 
complex. They are variate traces and are best 
thought of as measured attributes. What is 
real – and here we are very close to Bhaskar 
– is the complex and fuzzy/fluid generative 
mechanism sets – the plural is important 
here. These exist only in action – only when 
they work. As Edward Thompson said of 
class we are dealing not with labels which 
exist outside people and situations, but with 
the noise, sound and smoke of things in 
action.

Of course this kind of clustering is a very 
useful technique of data reduction, and this is 
particularly valuable when we are dealing 
with dichotomous QCA in which attributes 
and outcomes have two values – 1 if present 
and 0 if absent. The number of possible con-
figurations for N binary attributes is 2N and 
that can become very large for large N. 
However, there is more to the approach. This 
can be illustrated by comparing classification 
of cases through cluster analyses with factor 
analyses which focus on variables. The whole 
logic of factor analysis remains trapped in 
the idea of causal determination as being due 
to variables external to cases. In that style we 
use matrix algebra to identify these factors 
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from large numbers of variables measured 
for cases which are considered to be traces of 
these real underlying variables we call fac-
tors. In contrast in cluster analysis we iden-
tify sets of cases which have membership of 
multiple categories which in the language of 
complexity we might equate with attractor 
locations for those cases in a multi-dimen-
sional state space.

One writer who has addressed the role of 
QCA in relation to organizational analysis is 
Peer Fiss who explicates configurations in a 
helpful fashion:

What emerges, then, is a picture of configurations 
as embedded in space and time and involving 
varying levels of complexity, dynamism and analy-
sis. Simple configurations may involve only a few 
and linear interdependencies. In contrast, complex 
configurations may involve multiple interdepend-
encies that are furthermore characterized by inter-
actions such as complementarity or substitution 
effects leading to synergies and trade-offs between 
the different elements. Furthermore, configura-
tions need not be static, but may be dynamically 
changing, suggesting that organizations follow 
dynamic constellations that change over their life 
cycles. … Finally, configurations may be cutting 
across several levels of analysis. For example, 
organizational configurations may involve ele-
ments at the organizational, intra-organizational, 
and supra-organizational level. (2009: 429–430)

Let us apply this to considering outcomes 
in relation to real organizational entities. 
I want to pick as an example the performance 
of a subset of English Primary Care Trusts in 
Health. There are just over 150 of these 
bodies each covering a defined geographical 
area with a population averaging 350,000. 
They do directly provide some important 
community services but their main function 
is commissioning patient oriented health 
services from secondary providers (hospitals, 
etc.) and GP practices. They control some 
80% of the English NHS budget. In defining 
outcomes for these organizations, the 
approach adopted by English central govern-
ment (not UK because the devolved adminis-
trations have different approaches) is the 
specification of a very detailed set of targets 
defined in terms of sets of indicators. Under 

the current regime – a reasonable complaint 
by health service managers and other person-
nel is that the UK health service has been 
subject to continuous managerial revolution 
– there has been a change from the summary 
ordinal indicator of performance of the kind 
previously represented by the ‘star’ system 
where four stars indicated high performance 
and zero poor performance. Instead across a 
range of domains the PCT is identified 
in terms of ‘Green, Amber and Red’ 
lights. Three Green represents satisfactory 
performance. 

Most PCTs are co-terminous with unitary 
local authority areas which means that the 
Local Strategic Partnerships (LSPs) – the 
‘joined up governance’ bodies which bring 
together PCTs, Local Authorities and a range 
of other governance bodies at the local level, 
operate in a straightforward fashion. However, 
some PCTs cover multiple authority areas. In 
any event it is the local authority areas – the 
territorial reach of the LSPs – which are the 
focus of this study. These Spearhead areas 
comprise just about half the total set of PCTs 
and are those where health outcomes have 
been significantly worse than for the average 
in England as a whole. Of course the PCTs 
operate in contexts, that is to say they have 
environments with health relative impacts. 
Health outcomes are ‘unequal’ for the popu-
lation of their territories, but it is evident that 
there is a close relationship between health 
inequalities and general social inequalities 
and the Spearhead PCTs have territories 
which contain substantial populations of 
poor and deprived people. They are also 
typically located in areas of post-industrial 
decline. So setting targets which require the 
PCTs to reduce the gap between cancer and 
coronary vascular premature death rates, and 
the rate of teenage conceptions, in their areas 
as compared with national averages means 
that they are required to redress through 
health service activity, inequalities which to 
a substantial degree originate outwith the 
form and content of health service provision 
itself. The formula on which PCTs are funded 
in relation to their operations includes a 
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needs based element, so there is a system 
based attempt to compensate for general 
social inequalities. However, most deprived 
PCTs are not funded fully in relation to this 
aspect and therefore are in deficit in relation 
to needs. 

It is helpful to construct a process 
description model of the determination of 
health outcomes here – noting immediately 
that of course the set of three ‘closing gap’ 
targets set for PCTs are precisely the kind of 
continuous indicators which I have argued 
above (following Ragin and Rihoux) are not 
appropriate in public and social policy. 
Indeed I am going to work with cluster 
derived categories as outcomes using not the 

raw scores but whether gaps are narrowing or 
not as input into the clustering process. 
Anyhow, see Figure 7.1.

This figure indicates that the PCT 
operations are embedded in a local socio-
economic environment which has an impact 
on them and directly on health outcomes. 
PCT operations have an impact which is in 
part determined by socio-economic environ-
ment but is also a function of their own 
activities. Resources both reflect environ-
ment and contribute to operations. We can 
visualize this alternatively in Figure 7.2. 

Some interesting measurement issues 
arise. We can describe social context in terms 
of aggregate data since this plainly is descrip-
tive of the whole social environment. Whilst 
personal aspects (traditionally in public 
health we would think of these as personal 
behaviours), have an influence, we can con-
sider these as themselves products in part of 
socio-economic circumstances and in any 
event averaging out to some degree over 
populations. Our choice of socio-economic 
indicators is largely conventional. Here we 
will use some educational indicators and the 
index of multiple deprivation. Measurement 
in relation to outputs is also conventional or 
perhaps determined, in that we can use the 
‘narrowing’/‘widening’ measures in relation 
to the specified targets.

The difficulties arise in relation to meas-
uring thruputs in terms of PCT organization 
and operations. Gradings determined by 
external assessors offer one route, and 

Socio-economic
environment 

PCT
operations

Outcomes

Resources

Figure 7.1 The inter-relationships of health 
outcomes

Inputs
determined by 
interaction of 
socio-economic 
circumstances 
and personal 
aspects and
resources

Thruputs in the 
form of PCT 
operations and 
actions 

Outcomes in 
relation to 
health factors 

Outputs as 
health and 
related 
interventions 

Figure 7.2 The causal chain for health outcomes
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Blackman and Wistow have developed a set 
of self reporting measures interactively with 
health service managers. In the following 
both will be employed as in summary as 
part of an attribute set using Qualitative 
Comparative Analysis to explore complex 
and multiple patterns of causation in relation 
to specific outcomes. The method used is 
binary QCA in which attributes are either 
present or absent. The focus will be on the 
truth tables. These consist of lines represent-
ing configurations, i.e. combinations of 
attributes, organized in relation to the pres-
ence or absence of a binary outcome. If all 
the cases which possess a particular set of 
attributes, i.e. belong in a particular configu-
ration, have the outcome then there is a con-
sistency measure of 1. If none of the cases in 
the configuration have that outcome there is 
a consistency measure of zero. A problem 
even with binary QCA is that with large 
numbers of variables the number of possible 
configurations becomes very large – for N 
variables there are 2N possible configura-
tions. A method which seems appropriate for 
this ‘set theoretic’ approach to causality is to 
reduce the number of variables by clustering 
related variables and establishing binary 
clusters to describe sets. So in this example 
we are working with the following variables, 
some of which are based on clustering of sets 
of related variables:

Allgreen – the PCT has green scores on all three  •
domains of performance.
Bincomp – binarized total competency score –  •
less than 18 is low, 18 or more is not low. 
Newdepcl – binary clustering based on social  •
deprivation variable set. 
Newperfcl – binary clustering based on a set of  •
PCT performance measures.
Cvdactcl – binary clustering based on self assess- •
ment in relation to coronary vascular disease 
commissioning and interventions.
Cancactcl – binary clustering based on self  •
assessment in relation to cancer commissioning 
and interventions.
Narrcan – gap between this PCT and national  •
average for premature deaths from cancer is 
narrowing.
Dichotbudg – budget is either below needs target  •
or equal to/above needs target. 
Narrcvd – gap between this PCT and national  •
average for premature deaths from coronary 
vascular disease is narrowing.

In all the clustering instances, SPSS two 
step cluster was used and the binary cluster-
ing structure emerged as the optimum (see 
Table 7.1).

Let us examine the second row in 
Table 7.1. There are three cases and one 
does not have a narrowing cancer gap. The 
cases are not all green on performance indi-
cators, are below 18 on overall competency 
score, are not in the most deprived category 
in relation to social context, are not high in 

Table 7.1 Configurations in relation to cancer outcomes

allgreen bincomp newdepcl newperfcl cancactcl dichotbudg number % cases with 
narrowing 
cancer gap

0 0 0 0 0 1 4 25

0 0 0 0 1 1 3 67

0 0 1 0 0 1 2 50

1 1 1 1 0 1 2 50

1 1 1 1 1 1 2 50

0 0 0 0 0 0 1 0

0 0 1 0 1 1 1 0

0 1 0 0 0 1 1 0

0 1 1 0 1 1 1 0

1 1 0 1 1 1 1 0
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the performance set, do rate themselves 
highly in relation to cancer commissioning 
and intervention, and are below their needs 
budget level. Configurations lead us imme-
diately to path dependency. Essentially each 
configuration can be thought of as a cell in 
a multi-dimensional contingency table, in 
other words as a polythetic classification 
set. All the cases in that configuration are 
the same for values of attributes in the 
specified attribute set. Of course we do not 
have a deterministic resolution of outcome 
for this set but we can now proceed to proc-
ess tracing by examining the deviant case in 
relation to the other two cases and exploring 
what is different between it and them. Note 
that in contrast with regression based meth-
ods this approach makes no attempt to 
assign a degree of importance to each of the 
individual attributes. Rather it takes all of 
them in combination. This is in some ways 
equivalent to fitting a regression equation, 
say in a logistic regression, with all interac-
tion terms specified. However, QCA allows 
for all existing – i.e. actually present among 
the cases examined – configurations to be 
addressed at one go which is rather different 
from a fully saturated regression model. 
We should also note that there is no signifi-
cance testing here. It is not at all necessary 
because, as so often when we work with 
institutions, we have all possible cases in 
the data set so no statistical inference is 
required. 

In Table 7.2 we present the configurations 
for these PCTs in relation to Cardio-Vascular 
outcomes. It is interesting that all of the path-
finder PCTs fell into the category of assess-
ing current performance across CVD 
commissioning and interventions as good. It 
is also interesting that on an individual 
attribute level there is no systematic relation-
ship between external assessment gradings 
and outcomes for either outcome set. 

The two configuration sets presented are 
not particularly impressive in explanatory 
terms but that is not the point here. Rather 
they offer possibilities for further path depend-
ent exploration. QCA is being used as a 
screening tool for comparative investigation. 
They sort things into kinds in relation to 
causal outcomes and show up similarities and 
differences in relation to those outcomes. 

A crucial issue in relation to the deployment 
of QCA in causal analyses has been the 
problem of time. Caren and Panofsky (2005) 
have developed a method for ordering 
attributes which takes account of the way in 
which causal effects may be dependent on 
the sequence in which things have happened. 
In the project which generated the data from 
which Tables 7.1 and 7.2 are taken, the data 
elicitation included descriptions by respond-
ents of the character of their organization 
around particular targets three years previ-
ously. It is in principle possible to use such 
‘time before now’ description in relation to 
Caren and Panofsky’s approach. However, 

Table 7.2 Configurations in relation to cardio-vascular outcomes

allgreen bincomp newdepcl newperfcl cvdactcl dichotbudg number % with 
narrowing 
CVD gap

0 0 0 0 1 1 5 80

0 0 1 0 1 0 3 33

1 1 1 1 1 1 3 0

0 0 0 0 1 0 2 50

0 0 1 0 1 1 2 50

0 1 0 0 1 1 1 100

0 1 1 0 1 1 1 0
1 1 0 1 1 1 1 100
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there was a real practical difficulty here 
which has the potential for arising in relation 
to any organizational study. Respondents 
were required to construct a reflexive evalua-
tion of the current character and orientation 
of their organization and also, if possible, to 
remember back three years and do the same 
for that time point. Let alone problems of 
memory, in many instances the key personnel 
had moved on and the respondents were not 
able to reconstruct from personal experience 
any version of times past. Nonetheless a cen-
tral issue for work of this kind is the elicita-
tion of systematic accounts of previous state 
as a basis for the exploration of the temporal 
ordering of complex causation and that 
requires the construction of histories as part 
of our exercise. Of course that is exactly 
what process tracing is – the making of his-
tories focused on the processes of causation. 

QCA is an interesting technique with con-
siderable potential and can be used in much 
more sophisticated ways than represented by 
the very simple demonstrations presented 
here. It is possible to work with fuzzy set 
memberships and with multi value rather than 
binary attributes. Moreover, the techniques 
have a ‘reduction process’ which uses Boolean 
logic and De Morgan’s law to achieve more 
parsimonious causal descriptions. Ragin 
(2000) and Ragin and Rihoux (2009) can be 
consulted for a full description. However, 
what we want to emphasize here is the quali-
tative element in the process. Attribute assig-
nation and truth table construction are ways 
of exploring by summarizing. If we are going 
to deal with real cases we need to know lots 
about them. Blackman and Wistow’s approach 
to getting to know lots about them has 
involved a very detailed quantitative engage-
ment with key informants with the very form 
of the data construction (note construction, 
not collection) instrument itself being the 
product of dialogue with experts who were 
drawn from the field of informants. At the 
same time they were able to add to the 
products of that engagement by drawing on 
available secondary data describing the cases. 

The combination of these processes tells 
us a lot.

However, there is a missing element – a 
statement made not to criticize, far from it, 
but rather to demonstrate the forward poten-
tial of qualitative work developed from an 
interpretation of essentially quantitative infor-
mation. Byrne (2009) has called this process 
‘machining hermeneutics’. We can find out 
both what we know about causality and, even 
more importantly, what we don’t know. That 
takes us forward to more qualitative engage-
ment. In the project examined here we can 
clearly see that this work can be taken for-
ward by a combination of documentary 
research and oral testimony to develop a 
fuller historical account, and ongoing inter-
views and discussions (including focus 
groups) with the informant group. In this 
process we are inevitably engaged in dialogi-
cal research. We are not just eliciting informa-
tion from informants. We are processing it 
and then taking the results of that processing 
back to informants for further discussion – we 
know this much and, even more importantly, 
don’t know this much. Where do we go now? 
That seems a good note on which to end. 

NOTES

1 In academic contexts these include the previous 
collegiate system of my own university, a much more 
managed system in a then Polytechnic (and my own 
university in common with all old UK universities is in 
transition towards such a system), but perhaps more 
importantly work in a small community development 
team and with a range of community organizations 
and political groups over many years. 

2 See Byrne (2009) for a development of the 
implications of this position for our understanding of 
social measurement.
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Complexity, Poststructuralism 

and Organization

P a u l  C i l l i e r s

INTRODUCTION

Poststructural perspectives have had a 
profound effect on the intellectual landscape 
at the start of the twenty-first century. It has 
been received with attitudes ranging from 
blind worship to outright hostility – the one 
extreme most probably caused by the other. 
Whether one likes it or not, Poststructuralism 
has important implications for the way in 
which we understand the world, and there-
fore it has to be taken seriously. The resist-
ance to poststructural thought is partly the 
result of its critique of positivistic and reduc-
tionist methods in the natural and social sci-
ences. This critique is often deemed to be 
anti-scientific or relativistic. A thorough 
engagement with the tradition of poststruc-
tural thinking will show that this is not the 
case (see Cilliers, 2005a). A critical position 
does not necessarily imply dismissal, it 
argues primarily for transformation.

It is particularly fruitful to view Poststruc-
turalism as a position inherently sensitive to the 
complexity of the phenomena it investigates. 
This view allows for a two-way interaction: 
Complexity allows us to generate a more 
rigorous interpretation of Poststructuralism 
and Poststructuralism enables us to generate a 

critique of Complexity which could prevent 
it from reverting to traditional reductionist 
perspectives – a real danger.

The impact of Poststructuralism on 
Management in general, falls outside the 
scope of this book. The focus here is specifi-
cally on how Complexity supplements the 
argument. However, if the discussion is 
strictly confined to positions which explicitly 
combine all three notions – Complexity, 
Poststructuralism and Management – there 
will not be that much to discuss. This combi-
nation needs to be developed further, and we 
will return to this development towards the 
end. The strategy will therefore be to unpack 
the varied relationships between Complexity 
and Poststructuralism in a way that will open 
up the possibility for future work in organi-
zational studies. To make this possible, some 
reflection is required on how the notions 
‘complexity’ and ‘poststructuralism’ will be 
used in this chapter.

COMPLEXITY

Since Complexity is the theme of the book, 
the basic ideas will not be explained here. 



COMPLEXITY, POSTSTRUCTURALISM AND ORGANIZATION 143

It is necessary however, to make two 
important points which reflect some of the 
differences and tensions in how the notion is 
understood.

In the first place, one should maintain a 
distinction between Complexity and Chaos. 
These notions share a certain history, but are 
sometimes intertwined with too much ease 
(e.g. Taylor, 2003). It may be useful to 
reserve the notion ‘chaos’ for that slice of 
theory concerning itself with deterministic 
and recursive nonlinear equations, fractal 
mathematics, self-similarity, bifurcations, 
power laws and universal constants. 
‘Complexity’ refers to a more general under-
standing of complex systems which focuses 
on (nonlinear) relationships, systemic inter-
action, boundary problems, emergence and 
adaptation. Maintaining this distinction is 
significant since it results in a completely 
different understanding of the limits of what 
we can do with Complexity, which brings us 
to a second distinction.

By its very nature, Complexity is a diversi-
fied field (Heylighen et al., 2007). The differ-
ences between some strands are of such a 
nature that they lead to different if not oppos-
ing epistemologies. Edgar Morin (2007) 
explicates these differences by distinguishing 
between what he calls ‘restricted’ and ‘gen-
eral’ complexity.1 Restricted complexity is, 
for Morin, exemplified in those approaches 
to complexity that developed from chaos 
theory and fractal mathematics. These 
approaches focus on underlying patterns and 
universal principles which are still highly 
reductive in nature.

Restricted complexity made […] possible important 
advances in formalization, in the possibilities of 
modelling, which themselves favor interdisciplinary 
potentialities. But one still remains within the epis-
temology of classical science. When one searches 
for the ‘laws of complexity’, one still attaches com-
plexity as a kind of wagon behind the truth loco-
motive, that which produces laws. A hybrid was 
formed between the principles of traditional sci-
ence and the advances towards its hereafter. 
Actually, one avoids the fundamental problem of 
complexity which is epistemological, cognitive, 
paradigmatic. To some extent, one recognizes 

complexity, but by decomplexifying it. In this way, 
the breach is opened, then one tries to clog it: the 
paradigm of classical science remains, only 
fissured. (p. 10)

General complexity, Morin argues, is not 
merely a methodology; it involves a rethink 
of our fundamental definitions of what knowl-
edge is. When dealing with complexity, the 
traditional method of analysis does not work. 
What is more, the divide between subject and 
object cannot be maintained in any clear way. 
This is how Morin formulates it:

In opposition to reduction, [general] complexity 
requires that one tries to comprehend the relations 
between the whole and the parts. The knowledge 
of the parts is not enough, the knowledge of the 
whole as a whole is not enough … Thus, the prin-
ciple of reduction is substituted by a principle that 
conceives the relation of whole-part mutual impli-
cation. The principle of disjunction, of separation 
(between objects, between disciplines, between 
notions, between subject and object of knowl-
edge), should be substituted by a principle that 
maintains the distinction, but that tries to establish 
the relation. (pp. 10–11)

From this formulation it should be clear 
that Morin is not advocating a relativistic 
position, nor is he arguing for a ‘generality’ 
which is naively holistic or vague. One 
cannot say anything without making dis-
tinctions, but these distinctions are always 
contextualized within a set of relationships 
(Morin, 2007: 18–20). If one is concerned 
with the understanding and modelling of 
specific phenomena which are bounded 
more or less clearly, then one naturally 
operates within the ambit of restricted com-
plexity – as long as one remembers the 
associated limitations (Georgiou, 2000; 
Cilliers, 2005b). If one is concerned with 
complex (social) phenomena which are vol-
atile, self-reflexive, adaptive and where 
boundaries are ill-defined, restricted com-
plexity is less useful.

The problem, one Morin agrees with, is that 
there is no unambiguous discourse for dealing 
with general complexity. It operates on a level 
which includes interpretation and disruption. 
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The object of discussion and the discussion 
itself are folded into each other. There are 
normative issues which cannot be eliminated. 
We are in trouble.

It is exactly in the recognition of this 
‘difficult’ position that Poststructuralism pro-
vides an intellectual strategy which helps us 
in or engagement with a complex world. It 
provides us with reasons why restricted, 
reductive strategies fail, and it opens up a 
space where innovation can take place. This 
combination of complexity thinking and 
poststructural critique leads to something I 
would like to call Critical Complexity.

POSTSTRUCTURALISM

Although much more specific than the label 
‘postmodern’, the term ‘poststructural’ is 
nevertheless used to refer to a group of posi-
tions which contains sharp differences. It 
would be extremely reductive to lump 
Derrida, Foucault, Lacan, Levinas, Lyotard, 
Deleuze, Guattari and Althusser together 
under a single description. The scope of this 
chapter unfortunately does not allow us to 
explore all these differences.2 As always, 
when dealing with complex things (Cilliers, 
2002), some generalization and reduction is 
required.

In the present context, the notion ‘structur-
alism’ refers to the set of ideas which devel-
oped out of the work of the linguist Ferdinand 
De Saussure and the anthropologist Claude 
Lévi-Strauss. For both of them the meaning 
and significance of linguistic and social 
things result from the relationships between 
them. In order to understand such things one 
should not look for some ‘essential’ mean-
ing, rather one should unpack the structure of 
the sets of relationships which constitute 
these objects. Thus both were essentially 
‘system’ thinkers.3 Nevertheless, similar to 
approaches in restricted complexity, they 
believed that if you worked hard enough, you 
could uncover the structure of the system, 
and thus get it ‘right’.

Poststructuralism builds on the essential 
systemic ‘method’ of structuralism by sup-
plementing, or deconstructing it with insights 
from amongst others Nietzsche, Freud, Marx, 
Heidegger and Bataille. Perhaps the most 
important philosophical result of this devel-
opment of structuralism is the claim that the 
meaning of things can never be closed down 
or finalized.4 The very structures which make 
meaning possible introduce a distortion in 
the system of relationships. These structures, 
sometimes called hierarchies, can therefore 
not be final, but are in constant transforma-
tion, both through external intervention and 
by their own dynamics. This process is what 
is often called ‘deconstruction’ – a term 
which has nothing to do with destruction. As 
a result, the poststructural position has a 
number of important implications, also for 
how we think of organizations and manage-
ment. It suggests that:

1 A system is constituted relationally. These rela-
tions, following Saussure, are relations of differ-
ence. The differences in a system are therefore 
crucial. Attempts to reduce the difference will 
destroy its complexity. This realization is central 
to the work of especially Derrida and Deleuze.

2 If a system is constituted through a vast array of 
nonlinear relationships in constant transforma-
tion, and the meaning (emergent properties) 
of the system is a result of the play of these 
relationships and not of some essential charac-
teristics of the components of the system, then 
we cannot have complete knowledge of complex 
systems. The introduction of some metaphysical 
position in order to fix the play of differences, 
and thereby the meaning, cannot capture this 
dynamic complexity.

3 There is no objective or neutral position from 
where we can give a complete description of 
complex systems like language, society or organ-
izations. We have to ‘frame’ these descriptions. 
There can be no meta-position which can be 
used to determine the correct frame – the com-
plexity would then have to be known at that 
level. Consequently, there are always normative 
issues involved in the way in which we approach 
systems. To claim objectivity is thus, from the 
poststructural perspective, not only technically 
incorrect, it is unethical.
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These insights can be examined in a little 
more detail with specific reference to the 
different understandings of Complexity 
discussed above.

POSTSTRUCTURALISM 
AND COMPLEXITY

In this section the way in which Complexity 
and Poststructuralism inform each other will 
be explored in a general way, primarily fol-
lowing Morin’s characterization. In subse-
quent sections the focus will be on more 
specific thinkers. Morin himself is not a 
poststructural thinker, nor is his position 
directly informed by it. Nevertheless, he is a 
sophisticated thinker of complexity (see 
Morin, 2008). His arguments help to clarify 
the relationship we are concerned with, 
without introducing too much philosophical 
jargon.

The first important insight follows from 
his description of a ‘restricted’ understanding 
of complexity. This understanding can clearly 
be related to the Saussurian position. It 
acknowledges the basic structure of com-
plexity, but balks before its more radical 
consequences. In Morin’s terms, it opens up 
the understanding towards relational think-
ing, but it cannot get rid of the reductive 
apparatus that should qualify this work as 
‘science’. As a result, this approach to com-
plexity – and one could put a fair amount of 
the work done under the umbrella of the so-
called Santa Fe School in this category – 
reverts to an instrumental strategy in the hope 
of making purely objective claims in the 
same way as Saussure’s claim that we can get 
at the correct meaning of the sign. It is pre-
cisely this denial of a normative element in 
our dealing with complexity which makes 
this position ‘restricted’. In developing a 
deeper understanding of what a ‘general’ 
understanding of complexity could be, some-
thing for which Morin thinks we do not yet 
have a language, insights from deconstruction 
could play a vital role.

One such insight could be the idea of the 
‘double movement’. Derrida argues that the 
strategy of deconstruction involves a ‘double’ 
activity. In deconstructing a system, one has 
to make use of the resources provided by the 
system itself. One is thus simultaneously 
confirming and undermining central ele-
ments of the system. This simultaneous give 
and take is a much more complex process 
than simply replacing something with some-
thing else. It implies that one transforms 
something by using the thing itself in novel 
ways. Deconstruction is thus not a critique 
from the outside, a critique which knows 
where it stands and what it wants to do. It is 
a critique which acknowledges that it is in 
transformation itself because it cannot depart 
from a perfect understanding, neither of 
itself, nor of that which it is transforming.

In On Complexity Morin (2008) describes 
the way in which he thinks we should deal 
with complexity in very similar terms to that 
of deconstruction. He argues that when deal-
ing with complexity, we cannot escape con-
tradiction, and that we should not mask this 
contradiction with a ‘euphoric vision of the 
world’ (p. 42).

[The order/disorder/organization relationship] is a 
typically complex idea in the sense that we have to 
bring together two notions – order and disorder 
– that logically seem to exclude each other. In 
addition, we might think that the complexity of 
this idea is even more fundamental. … We arrive 
by entirely rational means at ideas that carry a 
fundamental contradiction (p. 41)

He continues:

In the classical view, when a contradiction appears 
in reasoning, it is a sign of error. You have to back 
up and take a different line of reasoning. However, 
in a complex view, when one arrives via empirical 
rational means at contradictions, this points not to 
an error but rather to the fact that we have 
reached a deep layer of reality that, precisely 
because of its depth, cannot be translated into our 
logic. (p. 45)

The point he wants to emphasize is that 
we cannot deal with complexity without 
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employing a self-critical rationality, that is, a 
rationality which makes no claim for objec-
tivity, or for any special status for the grounds 
from which the claim was made.

Humanity has two types of madness. One is obvi-
ously very visible, it’s the madness of absolute 
incoherence, of onomatopoeia, of words spoken 
randomly. The other is much less visible: it is the 
madness of absolute coherence. Against this 
second madness, the resource is self-critical ration-
ality and recourse to experience. (p. 48)

In order to maintain this self-critical ration-
ality, he argues ‘that there are three principles 
that can help us to think complexity’. The 
first he calls ‘dialogic’. ‘The dialogic princi-
ple allows us to maintain the duality at the 
heart of unity. It associates two terms that are 
at the same time complementary and antago-
nistic’. (p. 49)

The second principle is that of ‘organized 
recursion’. This principle argues for an 
understanding which ‘has broken away from 
the linear idea of cause and effect, of prod-
uct/producer or structure/superstructure, 
because everything that is product comes 
back on what produces it in a cycle that is 
itself self-constitutive, self-organizing, and 
self-producing’. (pp. 49–50)

The third is the ‘holographic principle’. 
This principle argues that the characteristics 
of a system is distributed, not localized. The 
activities of the parts and the occurrences on 
the macro-level participate in producing the 
system. ‘The idea of the hologram surpasses 
both reductionism, which can see only the 
parts, and holism, which sees only the 
whole’ (p. 50)

These three principles are clearly inter-
linked. The holographic principle is an effect 
of the recursive principle which is linked to 
the dialogic principle. This constellation of 
ideas thus argues for a kind of double move-
ment, an acknowledgement of the play of 
différance, very similar to that of deconstruc-
tion. There is a coupling between the what is 
being observed and how it is being observed; 
they are folded into each other. Despite our 
bravest attempts, we cannot extract ourselves 

from these folds cleanly. Nevertheless, this is 
what we do, and, in a contradictory way, 
have to do when we do science.

… every system of thought is open and contains a 
breach, a gap in the opening itself. But we have 
the possibility to hold meta-points of view. The 
meta-point of view is only possible if the observer–
conceiver integrates himself or herself into the 
observation and the conception. This is why com-
plex thought requires the integration of the 
observer and the conceiver in its observation and 
conception. (p. 51)

The kind of understanding of complexity 
proposed here certainly does not produce a 
clear ‘method’ which can be followed in any 
automatic way.5 Morin is also clear on this: 
‘I can’t pretend to pull a paradigm of com-
plexity out of my pocket’ (p. 51). When we 
deal with complexity a certain ‘modesty’ is 
inevitable (Cilliers, 2005a). That does not 
imply that we are disempowered. It means 
that we have to engage with these complexi-
ties in a creative way. Two paradigms of this 
engagement can be mentioned specifically: 
approaches which involve the work of 
Derrida and of Deleuze.

COMPLEXITY AND DERRIDA

Derrida (1988: 119) famously claimed that ‘if 
things were simple, word would have gotten 
around’. Despite the fact that he did not 
engage with Complexity in any direct way, 
his whole oeuvre displays an acknowledge-
ment of the complexity of the world we live 
in. His reflections on language and the emer-
gence of meaning in particular can be used to 
make links with Complexity specific.

Saussure (1964) describes language as a 
system of signs where the signs acquire their 
meaning through their relationships (of dif-
ference) with other signs. The collection of 
differences which constitute each sign add up 
to its meaning, what Saussure calls the ‘sig-
nified’. This meaning, for him, is structurally 
determined in this way. Derrida deconstructs 
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this position by showing that the play of 
differences – or traces, as he calls them – is 
perpetual. Every constituted meaning imme-
diately re-enters into the network of interac-
tion, thereby transforming it. In this way, the 
meaning is never determined, but always 
postponed. He coined the term différance to 
describe this process. Meaning is not only 
the result of difference, but also of deferral. 
In this way he introduces a temporal dimen-
sion to the way in which meaning emerges.6

A complex system can be seen as a network 
of dynamic nonlinear relationships (Cilliers, 
1998: 2–7). These relationships can be 
equated with Derrida’s notion of traces. The 
dynamics of the system is a result of all the 
interactions in the system, but since this inter-
action also consists of multiple simultaneous 
nonlinear feedback, with a constant flow of 
energy through it, it operates in a state far 
from equilibrium. This perpetual activity is in 
effect a form of différance. This notion is 
extremely useful to describe the way in which 
the emergent properties of the system can 
manifest themselves, yet be in constant trans-
formation. Always already but never quite.7

The way in which something can have 
manifest meaning, yet simultaneously be in 
transformation, is best described by Derrida’s 
notion of iterability.8 For him, a sign has to be 
recognizable as that sign, but this fact does 
not determine the meaning of the sign. Since 
the sign, when used again, operates in a differ-
ent context, different relations come into play 
which will animate the meaning of the sign 
differently. Iterability is a notion which ties 
repeatability with alterity (Derrida, 1988).

If these ties between Deconstruction and 
Complexity hold, it also has implications for 
our knowledge of complex systems. Since 
the system is in constant transformation – as 
a result of large numbers of nonlinear inter-
actions with feedback – the emergent proper-
ties can never be simply reduced to some 
specific state of the system. In fact, they are 
in constant transformation themselves. It is 
thus not possible to know them in any final 
way. Our understanding is thus always partial 
and provisional. This does not mean that our 

knowledge is arbitrary, but it does mean that 
the knowledge produced through (inevitable) 
reductive means should not be presented as 
final or complete (Cilliers, 2000, 2005a).

Reflections on complexity form a central 
part of the work of Niklas Luhmann. He is not 
a poststructural thinker, thus a discussion of 
his ideas falls outside the scope of this chapter. 
Nevertheless, a number of thinkers (Baecker, 
2001; Teubner, 2001; Bjerge, 2006) use the 
work of Derrida to supplement Luhmann’s 
ideas. Teubner emphasizes the differences 
between the two, arguing that Luhmann tries 
to resolve the paradoxes of complexity which 
Derrida insists should be kept alive. For 
Teubner, and Bjerge, it is exactly the working 
of différance that interrupts the closure pro-
duced by autopoiesis and thereby resists 
Luhmann’s move towards deparadoxification. 
Baecker focuses more on the problems of 
causality, but insists that Luhmann’s under-
standing of systems already contains a decon-
structive element, although this can be 
expanded through the working of différance.9

There is of course also resistance to the 
idea that poststructural thinking resonates 
with complexity. Morcol (2002) finds 
Poststructuralism too relativistic, and argues 
that we should rather look to the postpositiv-
ist ideas of Popper, Kuhn and Feyerabend if 
we wish to remain in the realm of what can 
be called ‘scientific’.10

COMPLEXITY AND DELEUZE

Like Derrida, Deleuze is a wide-ranging and 
disruptive thinker. Although they differ from 
each other in many respects, they share a 
number of central concerns, in particular a 
concern with the centrality of ‘difference’ 
and with moving beyond conventional ethics. 
Protevi (2001: 1) argues that Complexity 
theory provides a framework within which 
these two thinkers can be placed in dialogue.11

Deleuze also disrupts this chapter somewhat. 
There is no doubt about his appropriation of 
concepts from Complexity. Nevertheless, when 
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he and his regular co-author Guattari refer to 
Complexity, it is mostly to ideas from chaos, 
fractals and the non-equilibrium dynamics of 
Prigogine (see Escobar, 2000; Popolo, 2003; 
Bonta and Protevi, 2004). This may lead one to 
suspect that Deleuze could fall in the category 
of ‘restricted complexity’, and some critics 
indeed argue something of this kind (see 
Badiou, 1999; Žižek, 2003). All the same, there 
is no doubt about the fruitfulness of Deleuze’s 
employment of these terms, and there is really 
no way in which he can be classified as a 
reductive thinker.12

Deleuze’s central philosophical concern is 
with the notion of ‘difference’. One of his 
foundational texts remains Difference and 
Repetition (Deleuze, 1994) and Ansell Pearson 
(1997) refers to him as ‘the difference engi-
neer’. ‘Difference’ Deleuze argues, should not 
be seen as the difference between things 
which already have an identity. To the con-
trary, identity is the result of the combination 
of differentiations. Just as in a complex system, 
identity is constituted through relations of dif-
ference. Thinking Complexity means thinking 
difference. Repetition is never the recycling of 
the same. Difference simultaneously has a 
unifying and a creative component.

The Deleuzian notion which resonates 
most strongly with Complexity, is that of the 
‘rhizome’.13 This notion describes the non-
hierarchical, systemic relationships between 
things. Similar to Derrida’s notion of ‘trace’, 
the rhizome does not signify by itself, it 
relates, and can be described by six princi-
ples, summarized by Bonta and Protevi 
(2004: 136) as follows:

connection (all points are immediately connecta-
ble); heterogeneity (rhizomes mingle signs and 
bodies); multiplicity (the rhizome is ‘flat’ or imma-
nent); ‘asignifying rupture’ (the line of flight is a 
primary component, which enables heterogeneity-
preserving emergence or ‘consistency’); cartogra-
phy (maps of emergence are necessary to follow a 
rhizome); decalcomania (the rhizome is not a 
model like the tree, but an immanent process).

The affinities with a network model of 
complexity are clear.

Given the importance of a foundational 
difference and of rhizomatic interaction, it 
follows naturally that the notion of ‘emer-
gence’ can also be investigated in a Deleuzian 
context. Following DeLanda (1997, 2002), 
Protevi (2006) does this by elaborating the 
differences between emergence as an autopoi-
etic activity as described by Maturana and 
Varella, and the dynamic emergence result-
ing from a rhizomatic process. Autopoiesis, 
argues Protevi, remains caught in a model of 
homeostasis, whereas emergence for Deleuze 
and Guattari is in itself a dynamic process 
with a logic tied to perpetual change.

Two of the central thinkers who develop 
and apply the work of Deleuze with reference 
to Complexity are Ansell Pearson (1997, 
1999) and DeLanda (1997, 2002). In Germinal 
Life, Ansell Pearson (1999) situates Deleuze 
within a tradition of biophilosophy in the 
company of Darwin, Bergson and Freud. 
These authors, while elaborating very differ-
ent positions, were all sensitive to the philo-
sophical consequences of insights gained 
from natural science. He points in particular, 
to the appropriation of Bergson and contem-
porary complexity theory as a turn to self-or-
ganization in Deleuze and Guattari’s thought. 
Ideas from Complexity allow Deleuze and 
Guattari the conceptual tools to think about 
living systems as dynamical systems which 
are not passive in their adaptation to the envi-
ronment. Unlike Freud, they do not under-
stand evolution as an accident determined 
by the outside acting on a passive organism 
(p. 40); and unlike Darwin, they also do not 
think at the level of the species. Change and 
transformation are intrinsic to form.

DeLanda’s central thesis in A Thousand 
Years of Non-linear History is that every-
thing around us – mountains, animals, people, 
cities, languages – are structures that have 
arisen from complex and contingent historical 
processes. Through this analysis, he claims 
that the same structures of difference and 
individuation created history, language and 
rocks (p. 215). He suggests that complexity 
thinking in the physical and natural sciences 
has been sharpened over the past few decades, 
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but that the same has not happened in the 
human sciences (p. 14). The methodologies 
of the physical sciences are of philosophical 
significance and thus there is a need to 
engage with them. One way would be to 
theorise the ‘nonlinear dynamics of human 
interaction’ (p. 15).

DeLanda (2002) continues the argument in 
Intensive Science and Virtual Philosophy 
where he focuses again on Deleuze’s ontol-
ogy. Deleuze’s materialism is given a special 
place apart from other postmodern philo-
sophical positions. De Landa weaves com-
plexity thinkers such as Kauffman and 
Prigogine into the corpus of his argument. 
These scientific arguments, he claims, take 
Deleuze’s philosophy from the metaphorical 
to the material.

Despite its often esoteric nature, the work 
of Deleuze is seen to have practical implica-
tions. It is sometimes referred to as 
‘geophilosophy’ (e.g. Bonta and Protevi, 
2004) and both Ansell Pearson and DeLanda 
find the implications for biology important. 
We will briefly look at some implications for 
organizations below.

COMPLEXITY AND POSTMODERNISM

The notion ‘postmodern’ has come to mean 
so many different things, that it cannot be 
given a coherent overview. The term is nev-
ertheless often – and often incorrectly – used 
to refer to poststructural thought. There are a 
number of relevant papers which make gen-
eral reference to a varied number of post-
modern thinkers in the context of Complexity. 
These include Clark (2000, 2005), Dillon 
(2000), Urry (2002), Lafontaine (2007), 
Morais (2008), and Dillon and Lobo-Guerrero 
(2009). For a very insightful discussion in the 
context of Management, see McKelvey 
(2002, 2004).

It is also clear from an overview of the 
literature that thinkers like Deleuze and 
Derrida have been associated with complex-
ity more often than thinkers like Foucault 

and Lacan. Hayles (2000) does explore some 
implications of their positions. Dillon and 
Lobo-Guerrero (2009) revisit Foucault’s 
biopolitics in light of developments in com-
plexity theory as it has emerged in the study 
of life and organization.14 Cowling (2006) 
criticizes a Lacanian position (via chaos 
theory) in the context of criminology.

Postmodern attitudes often elicit severe 
criticism, of which a good example is the so-
called ‘Science wars’ triggered by Alan Sokal 
(Sokal and Brickmont, 1998). There is not 
space here for a defence against these often 
ill-informed accusations (see Cilliers, 2005b), 
but it is worth noting that there is space open-
ing up in which a new interaction between 
different traditions can take place. Byrne 
(1998), for example, is critical of both dog-
matic reductionist arguments and of relativis-
tic postmodern positions. He prefers to 
explicate his position in the context of critical 
realism. Nevertheless, he also recognizes the 
reductive tendencies in some complexity 
theorists and argues for a more nuanced, 
pluralist position employing case based 
comparisons.

ISSUES IN ORGANIZATION

As indicated in the Introduction to this 
chapter, the literature that explicitly com-
bines Complexity, Poststructuralism and 
Management is limited. This is especially the 
case if one maintains a distinction between 
Chaos and Complexity. Linstead (2004) 
edited a useful volume on links between 
Organization Theory and a number of post-
modern thinkers, but there is little reference 
to Complexity.15 One has the feeling that 
there are a number of important ideas con-
tained in the relationship between Complexity 
and Poststructuralism which still need to be 
worked out in the context of Management 
and Organizational Theory. A few of them 
can be framed briefly.

Poststructural philosophy is often con-
cerned with the notion of the boundary – what 
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is ‘in’ and what is ‘out’. Studies of complex 
systems share this concern. Complex systems 
are open; their environment is co-constitutive 
of the system. It is often difficult, if not 
impossible, to determine the boundary of 
many systems. Identifying the boundary can 
be as much an effect of your description of 
the system as of the system itself. The choice 
of boundary will determine one understand-
ing of the system. Since the choice of boundary 
is usually not a ‘neutral’ act, our understand-
ing of the system is not ‘neutral’ either. This 
has clear implications for how we understand 
an organization. What belongs to the organi-
zation and what does not? What is the rela-
tionship between the organization and its 
environment, and what is its environment? 
How flexible should boundaries be? 
Organizations clearly have boundaries, but 
how we conceive of them will affect the way 
we understand it, and the way in which we 
intervene and interact with it (see Georgiou, 
2000; Cilliers, 2001; Clark, 2005).

Complex systems, like organizations, are 
not chaotic. They have structure and are often 
robust. The ‘nature’ of this structure should 
be examined in detail. For example, if there 
is structure, there are hierarchies, despite the 
fact that the system is not determined by 
these hierarchies alone, and that the hierar-
chies are not neatly nested (Cilliers, 2001). 
The existence of hierarchies, and the way in 
which they are subverted and transformed is 
one of the central issues in deconstruction 
(see e.g. Culler, 1983: 85–110).

If the structure of systems, like organiza-
tions, are in constant transformation, one 
should be concerned with the rate of this 
transformation (Cilliers, 2006). Not enough 
work has been done on the temporal nature 
of complex systems. Derrida’s notion of dif-
férance can be extremely useful in this regard 
since it ties the temporal to the spatial.16

The issue of difference and identity was 
discussed in the context of Poststructuralism 
above. This issue is also vital for our under-
standing of an organization. How do we 
understand and develop the identity of an 
organization? What is part of that identity? 

Do we need a specific identity at all, or is the 
identity in itself a divided thing? How do we 
deal with differences within the organiza-
tion? How do these considerations impact on 
notions like a ‘mission statement’ or the idea 
of ‘core business’? Any organization will 
have an identity – even if it is not the one it 
thinks it has, or the one it wants – but this is 
not something simply decided on by manage-
ment or something fixed by a statement of 
intent. Identity is historically constituted and 
is constantly deconstructed (see Cilliers and 
de Villiers, 2000; Cilliers and Preiser 2010).

Perhaps the most important result of the 
interaction between Complexity and 
Poststructuralism is the significance it finds 
in ethical and political considerations. This 
issue has been explored (Kellert, 1996; 
Protevi, 2001; Clark, 2005; Dillon and Lobo-
Guerrero, 2009; Fenwick, 2009), but there is 
much urgent work to be done in this respect.

The poststructural perspective urges a cer-
tain inversion. Ethics is not something we 
‘also do’, it constitutes our knowledge of 
complex things, and this ‘knowledge’ consti-
tutes who we are – where ‘we’ can refer to 
both individuals and organizations. The argu-
ment can be made from Complexity in the 
following way: We cannot know complex 
things in their complexity. We have to reduce 
the complexity in order to grasp anything. 
Since there is no meta-position from where 
this reduction can be done objectively – the 
‘framing’ problem – we have to make certain 
choices. These choices introduce a normative 
component into our very understanding of 
complexity. What we leave out may seem 
trivial, but since the remainder (the ‘supple-
ment’ in deconstructive terms) has a nonlin-
ear relationship with the rest of the system, 
we cannot predict the magnitude of the error 
produced by the reduction in time. When we 
consider the boundary of the system under 
investigation, we are not simply engaged in a 
technical task, we are ethically involved (see 
Cilliers, 2004, 2005b).

A number of ethical considerations do 
form part of ‘conventional’ reflection on 
organizations. These include notions of 
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responsibility, accountability, respect and 
trust. Acknowledging complexity affects 
these considerations in a twofold way. In the 
first place, these considerations are not 
peripheral to the essential nature of the 
organization. They are part of what consti-
tutes the organization. In the second place, 
many issues which may appear not to be 
specifically ethical, like hierarchical struc-
ture, business plans, mission statements, 
financial statements, infrastructure, as a 
matter of fact, everything, has ethical 
import.

When we talk of the ‘ethical organization’, 
we are not simply talking about something 
which should run more efficiently – although 
that is not excluded in any way. We are 
talking about projecting into a better future 
for all of us.

CONCLUSION: AN ETHICS 
OF PROVISIONALITY

The links between Complexity and 
Poststructuralism do not lead to a ‘positive’ 
programme which spells out precise strate-
gies with exact goals. What emerges is a more 
‘modest’ attitude which is critical at heart. It 
is concerned with limits and with reflection. 
It is not destructive, but transformative. It 
acknowledges the historical nature of what 
we are, but it does not see us as being deter-
mined by that history. It is sensitive to the 
enormous ethical and political problems we 
face, and it urges that we engage with them. 
Since we cannot have complete knowledge of 
complex things we cannot ‘calculate’ their 
behaviour in any deterministic way. We have 
to interpret and evaluate. Our decisions always 
involve an element of choice which cannot be 
justified objectively. What is more, no matter 
how careful our actions are considered, they 
may turn out to have been a mistake. Thus, 
acknowledging that values and choice are 
involved does not provide any guarantee that 
good will come of what we do. Complexity 
tells us that ethics will be involved, but does 

not tell us what that ethics actually entails. 
The ethics of complexity is thus radically or 
perpetually ethical. There is no a priori prin-
ciple we can follow nor utility we can com-
pute. We do not escape the realm of choice.

The perspective from Complexity via 
Poststructuralism thus constitutes a radically 
critical position. The question is, can it be 
made more substantial? A first response 
would be that it is better to make the value 
judgements explicit than to claim a false 
objectivity. In this way the complexity of the 
problem can be opened up and the differ-
ences respected. But perhaps the critical 
position itself constitutes a kind of ethical 
strategy. An initial attempt can be made by 
acknowledging the following aspects of the 
critical view argued for:

1 our knowledge of complex things is radically 
contingent in both time and space;

2 since we cannot predict its outcome, any decision 
we make concerning something complex has to 
be irreducibly provisional; yet

3 we have to act in a way which distinguishes the 
action from its alternatives otherwise we are not 
acting at all;17

4 meaning emerges through the mutual interac-
tion (both constraining and enabling) amongst 
components in the system, not through some 
pre-defined essence. Thus, as subjects we are 
constituted through interactions with others 
(both human and non-human) around us. My 
state depends on the state of others.18

These principles can, following a sort of 
Kantian logic, be reformulated in the form of 
an imperative, what one could call the 
Provisional Imperative. The following are 
possible ways of doing it:

1 justify your actions only in ways which do 
not preclude the possibility of revising that 
justification;

2 make only those choices which keep the possibil-
ity of choice open;

3 your actions should show a fundamental respect 
for difference, even as those actions reduce it;

4 act only in ways which will allow the con-
straining and enabling interactions between the 
components in the system to flourish.
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The general importance of a critical 
position, especially in the context of organi-
zations, is still to be developed in detail, 
these are just first steps. It is important to 
show that such a position does not entail 
negativity or inaction, but that it is neverthe-
less critical to remain perpetually critical. 
Three characteristics of such a position can 
serve as a platform for such a development.

A critical position informed by complexity 
will have to be transgressive. It can never 
simply re-enforce that which is current. 
Transformation takes place continually, 
despite all efforts to contain it. In this respect, 
I would argue, we need some bold alterna-
tives to the orthodoxy of liberal democracy 
and a brash capitalism. We should resist the 
macho nature of most political and economic 
cultures, irrespective of whether it is politi-
cally correct to do so or not. We should not 
be coerced, frightened or shamed into a state 
where we relinquish being transgressively 
critical.

A critical position will, in the most posi-
tive sense of the word, be an ironical posi-
tion. There is no final truth which 
operationalizes our actions in an objective 
way. Irony also implies, in a very systematic 
way, a self-critical position. Given the hor-
rors of the world, this claim may be contro-
versial. Nevertheless, we require a sense of 
humour if we are not to lose our humanity.

In the third place, a central role for the 
imagination is indispensable when we deal 
with complex things. Since we cannot calcu-
late what will or should happen, we have to 
make a creative leap in order to imagine what 
things could be like. Aesthetic and creative 
activities are thus not interesting diversions, 
they open up the possibility of imagining 
better, more sustainable futures.

Organizations are an inextricable part of 
the social fabric. The future of humanity 
depends on their role. We should therefore 
not only think of organizations in a func-
tional way, but also, or perhaps primarily, in 
an ethical way. The development of an under-
standing of organizations and what they do, 
which takes the provisional ethics of 
Complexity seriously, stands as a challenge.
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NOTES

 1 These may not be the best terms to use, but 
they have gained a certain currency. Byrne (2005) 
distinguishes between what he calls ‘simple’ com-
plexity and ‘complex’ complexity. He maintains, like 
Morin, that simple (restricted) complexity plays in the 
court of current orthodoxy:

This is why simplistic complexity is so attractive to 
the worst sort of evolutionary psychology and con-
temporary ideologues of market models. Write a 
few rules – the selfish gene, the territorial impera-
tive, profit maximization, rational choice, or, prefer-
ably, a combination of all of these, and away we go. 
Simplistic complexity does deal with a kind of com-
plex emergence but it remains reductionist. (p. 103)

 2 For introductions to some of these issues, see 
Culler (1983), Harland (1987), Ansell Pearson (1997) 
and Norris (1997).

 3 For a further discussion on the importance of 
recognizing ‘systems’, especially in the social sci-
ences, see Pickel (2007).

 4 Although this may be more true of Derrida 
than, of say, Foucault.

 5 Carol Grbich (2004) attempts to spell out 
some implications for doing social research. The 
book is also a useful introduction to the relationships 
between Complexity, Poststructuralism and the Social 
Sciences. Complexity and Chaos are more or less 
equated, and none of the themes is discussed in 
depth, but the text is accessible and can serve as a 
first encounter. See also Ketterer (2006) for a view 
from Chaos.

 6 Further aspects of the temporality of complex 
systems are discussed in Cilliers (2006).

 7 For more detail, see Cilliers (1998: 37–47).
 8 This is a term of art in deconstruction – not 

equivalent to the way the notion ‘iteration’ is used in 
mathematics or computational theory. A misunder-
standing of this notion has lead to some misguided 
critique of deconstruction, particularly by Searle. See 
Culler (1983:110–134) and Derrida (1988).

 9 An excellent array of discussions on Luhmann, 
Complexity, Poststructuralism and Ethics can be 
found in Rasch and Wolfe (2000).

10 See also Eve et al. (1997).
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11 See also Clark (2000, 2005).
12 For a defence against the accusation that 

Deleuze is inaccurate in his use of notions from sci-
ence and complexity, as argued by for example Sokal 
and Bricmont (1998), see Marks (2006).

13 Deleuze and Guattari (1987) unpack this 
notion in A Thousand Plateaus, particularly in the 
introduction.

14 See also Olssen (2008).
15 See also Linstead and Thanem (2007).
16 See Culler (1983: 95–97) and Cilliers (1998: 

44–45).
17 These characteristics resonate with what 

Derrida, in The Force of Law, calls the aporia of jus-
tice. This similarity, and the similarity with Morin’s 
idea of a general complexity, still needs careful 
elaboration. The idea of the provisional imperative 
can also be used to explore Derrida’s notion of the 
‘quasi-transcendental’. See Cornell (1992), Derrida 
(1992) and Morin (2007, 2008).

18 These ideas are elaborated on in Cilliers (2001) 
and Cilliers and de Villiers (2000).
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Causality and Explanation

A l i c i a  J u a r r e r o

INTRODUCTION

Studies on organization and management 
made their appearance at a moment in history 
when the natural sciences were not only well 
established; they were veritably basking in 
the string of spectacular experimental and 
theoretical discoveries that marked the first 
decade of the twentieth century. Although 
the concept of a division of labor can be 
traced as far back as Plato’s Republic, Henry 
Ford’s revolutionary implementation of the 
notion arguably provided the impetus to 
adapt scientific discoveries to principles on 
workplace management, and thereby trans-
formed productivity and the way business 
conducts itself. The term scientific manage-
ment appeared during these extraordinary 
times.

It was to be expected, therefore, that the 
cognitive scaffold defining what even 
counted as scientific – and what didn’t – 
would provide the intellectual foundation 
around which theories of organization and 
management would be based. Chief among 
these often uncritically accepted ideas were 
the concepts of causality and explanation. 
That causal forces everywhere operated like 
colliding billiard balls and could be explained 

as such; that small perturbations produced 
only small effects; that what appeared to be a 
tangled mesh of causal influences could in 
principle be disentangled into one-to-one 
relationships in which one cause inexorably 
led to the one effect – these were a few of the 
many assumptions embodied in the 
Newtonian clockwork worldview. They were 
also the assumptions that informed the 
principles of scientific management.

Until the seventeenth century, philosophy 
and science’s understanding of causality was 
governed by rules laid down by Aristotle in 
works such as the Physics and the 
Metaphysics. Adequate explanations of any-
thing, Aristotle argued, must make reference 
to the four causes responsible for any phe-
nomenon. These causes are: final cause (the 
goal or purpose toward which something 
aims); material cause (the stuff out of which 
it is made), and efficient cause (the force that 
brings the thing into being). The fourth 
cause, formal cause, refers to the essential 
properties that make something that kind of 
thing and no other – the information in its 
dictionary definition. Aristotle’s account of 
causality, however, includes another claim: 
that nothing, strictly speaking, can move, 
cause, or act on itself in the same respect. 
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Unlike the four Aristotelian causes, most of 
which was discredited during the scientific 
revolution wrought by Newton and his con-
temporaries, this second principle – that 
anything caused is caused by something 
other than itself – remained unchallenged 
until recently. It was also an influential if 
unrecognized assumption permeating aca-
demic discourse, including works on busi-
ness and management.

A number of different but interrelated 
assumptions were entangled in the cognitive 
map drawn by the revolution that ushered in 
modern science:

1 Isolated, closed systems. Real phenomena are 
enmeshed in their environment. But after Galileo’s 
success in determining that a falling body falls 
with uniform acceleration despite the apparent 
interference of friction and other contextual dis-
turbances, the methodological principle that any 
system, whether natural or manmade, could be 
studied as if it were a closed isolated system under 
examination in a laboratory became an inviolable 
pillar of scientific method. The principle that 
abstract, universal rules could also be discovered 
to govern organizations belongs to this tradition.

2 Analytic reductionism and atomism. The labo-
ratory science approach was accompanied by 
Francis Bacon’s and Rene Descartes’s emphasis 
on analytic method. Despite Rene Montaigne’s 
warning that one must kill and dissect to analyze, 
modern belief in reductionism was also buttressed 
by the works of David Hume and other empiricists 
who argued that wholes are no more than the 
sum of their parts. With this principle the scientific 
revolution of the seventeenth century abandoned 
the organismic philosophy of Aristotle in favor 
of the belief that atomic particles are the funda-
mentally real constituents of the universe. Holism 
became irrelevant as formal cause dropped out 
altogether from the scientific picture.

3 Acontextuality. All advances in knowledge, 
accordingly, were believed to originate in care-
ful study of those essential, primary properties 
of fundamental particles, such as mass, all of 
which are identical to each other. Any other 
properties such as those resulting from either 
the particles’ relations with their environment 
(such as temperature and color), or those due to 
their combination, were thought not to identify 
truly emergent characteristics. These features 

were not a part of the ‘furniture’ of the world; 
they were merely subjective and secondary. In 
a Newtonian world of absolute space and time, 
context and circumstance become irrelevant and 
the goal of science is to formulate universal 
eternal laws that apply everywhere and at any 
time. The reality of wholes was thus reduced 
once again to that of aggregates with no novel 
or real characteristics of their own; as a result, 
any consideration of formal cause, or of the pos-
sibility that the environment or niche in which an 
organism is situated might be partially responsi-
ble for its very nature, was excised once again 
from scientific discourse.

4 Randomness and emergence. As evidence of 
the interrelated nature of all these assumptions, 
determinism in turn supported the belief that 
bringing something entirely new into being is 
impossible. Underwriting the principles of atom-
ism and determinism, and the view that wholes 
are inert epiphenomena, was the unquestioned 
belief that all change was the mere unfolding of 
potentialities which became manifest as second-
ary, unessential alterations. Randomness, postu-
lated as the source of novelty since Plato, could 
not be real, it was believed, because foundation-
ally nothing essentially changed.

5 Atemporality and irreversibility. Newton’s equa-
tions of motion, the paradigm to which all 
sciences aspired for centuries, are atemporal 
and as such permit both precise retrodiction 
as well as prediction. Despite the fact that our 
intuitive understanding of causal relations are 
dynamic and temporal, the Newtonian frame-
work assumed an eternal present: Newton’s 
equations are reversible, making it as possible to 
retrodict as well as to predict.

The mathematics of science adopted in the 
seventeenth century thus warranted the exclu-
sion of any form of goal-directedness from 
nature. Along with the elimination of formal 
cause, this concomitant banishment of final 
cause from ontology was a principle that 
once again fit in with the reductionistic 
method mentioned above, according to which 
particles in motion are the only constituents 
of reality. The resulting world view was that 
of a stable clockwork universe with no 
remarkable fluctuations; it was, not coinci-
dentally, also a worldview that held out the 
very attractive promise of absolute control.
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CAUSALITY

Once an essentialist, atomistic ontology was 
in place, Aristotle’s four causes reduced to 
one, the forceful impact of one atom on 
another, a process, moreover, that obeys laws 
that can be mathematically formulated in 
strictly (one to one) deterministic, reversible 
equations. That these equations described 
mathematically abstract entities gave no 
pause to modern scientists and philosophers: 
as mentioned earlier, since contextual rela-
tions were secondary and determinism was 
the correct metaphysical position, the role of 
unique individuals or contextual and histori-
cal detail could be safely ignored. Those 
areas of study such as the social sciences, 
where individuals and circumstances play a 
major role, were also thereby relegated to the 
realm of the ‘subjective’. Accordingly, they 
did not qualify as sciences.

1 Linearity. In the modern perspective, moreover, 
causal relationships were assumed to be linear 
in two senses of the term. Small changes were 
assumed to produce only small effects and 
novelty was relegated to consisting only in the 
unfurling of previously hidden potentiality. That 
nothing absolutely new was possible also fit in 
nicely with the theological and religious context 
in which the seventeenth century European 
philosophers and scientists wrote. That math-
ematical equations describing second order, non-
linear relationships are not analytically solvable, 
contributed to their expulsion from the scientific 
worldview. These equations were labeled ‘intrac-
table’ and dismissed from further consideration.

2 Nothing can cause itself. Causal relationships 
were also thought to be linear in a different 
sense. Following Aristotle, the belief that circular 
causality is impossible and that nothing can cause 
itself or self-organize, was a central tenet in the 
new worldview. As mentioned earlier, and fol-
lowing a principle of Aristotle’s which modernity 
did not discard (not the least of which because it 
meshed with these other assumptions) any form 
of self-cause was also forbidden. Since wholes 
were no different from aggregates, the idea 
that particles could interact to produce wholes 
with global properties that are truly novel and 

cannot be predicted from its components was 
thought to be nonsensical; the corresponding 
idea that global structures might loop back down 
and modify or otherwise alter their components 
was similarly scoffed at and top-down causation 
was thereby discarded. In organization theory, 
management and labor were thought to be 
two separate entities, with the former forcefully 
exacting change from the latter. The idea that 
the two groups could be viewed as one organi-
zation interacting reflexively with itself would 
have violated any accepted notions of causality, 
implying as it would have that something could 
change itself.

EXPLANATION

A particular logic of explanation corre-
sponded to this approach. At the same time 
as he insisted that formal deduction from 
universal premises was the appropriate logic 
of explanation proper to science only (epis-
teme), Aristotle maintained that because 
human beings are temporally and contextu-
ally embedded, episteme cannot be used to 
explain their behavior. Instead, practical 
wisdom (phronesis), which varies ‘as the 
occasion requires’ must be utilized in any 
satisfactory explanation of human affairs. 
Narrative thus becomes the appropriate logic 
of explanation in the domain of human activ-
ity. In contrast to this dual approach to 
understanding, the scientific revolution of 
the seventeenth century brought with it a 
particular interpretation of how explanation 
must proceed: solely by deduction. After 
David Hume’s demotion of causality to an 
inductive habit and the generalized suspicion 
of inductive reasoning as problematic, phi-
losophers and scientists concluded that logi-
cal derivation from timeless and contextless 
laws is the ideal not only of the natural sci-
ences but of any legitimate reasoning pro-
cess. Any law – not just a generalization, but 
a universal law supporting counterfactuals – 
when combined with statements specifying 
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the initial conditions – must warrant the 
logical deduction of whatever is being 
explained. By the middle of the twentieth 
century, such a ‘covering-law model’ was the 
standard format into which all forms of 
explanation must be formulated.

INCLUDING PEOPLE 
AND THEIR ORGANIZATIONS

In consequence, every effort of the ‘special 
sciences’ turned towards reshaping their dis-
ciplines into scientific and therefore respect-
able enterprises. Merely descriptive narratives 
were disparaged. From Comte in sociology 
to Freud in psychology, the search for uni-
versal scientific laws covering social interac-
tion or the human mind – and the possibility 
of deductive proofs derived therefrom – 
brought with it the inexorable mathematiza-
tion of each of those disciplines. Even when 
deterministic algorithms were not forthcom-
ing, social scientists continued to maintain 
that mathematics was the indisputable lan-
guage of nature. We saw this progression 
most especially in economics; but even the 
newly burgeoning sciences of sociology, 
psychology, and anthropology – now often 
grouped together as the ‘social sciences’ – 
sought a reputation as ‘sciences’ precisely in 
light of their scholarly efforts to couch expla-
nations in scientifically acceptable format. 
W. Edwards Deming’s application of statisti-
cal controls to production is a later illustra-
tion of applying a mechanistic conceptual 
framework to management.

There had been early warning signals 
about the limits of this model prior to the 
twentieth century. Newton himself was well 
aware of what we now know as ‘the three 
body problem’ – that linear causal relation-
ships go haywire once three bodies are 
involved. That nonlinear second-order equa-
tions describing such relations are not for-
mally solvable also posed a challenge to the 
dominant paradigm of analytic reductionism. 
Newton’s followers, however, continued to 

maintain that causality was exclusively a 
deterministic, one-to-one event of forceful 
collisions. Given one cause, only one effect 
follows, and it follows inexorably, thereby 
underwriting a deductive logic of explana-
tion, not to mention prediction and control. 
But despite Newton’s reservations, this 
mechanical interpretation of Aristotelian 
efficient causation continued to inform our 
modern view of cause and effect relation-
ships for centuries, a framework that consid-
ered systems, societies and wholes to be 
nothing more than the aggregate or average 
of their component parts, and devoid of 
internal top-down causal power.

During most of the twentieth century and 
in accordance with this scientific paradigm, 
business managers and corporate executives 
during most of the twentieth century adopted 
these same assumptions, methods, and goals, 
all of which were thought to be assured, for 
example, by time and motion studies and 
well-crafted organizational flow charts. 
Making an organization emulate a well-oiled 
machine ensured that administrative and 
managerial interventions would increase 
efficiency and productivity. Although men-
tion of the benefits of division of labor 
appear as far back as Plato’s Republic, and 
had been implemented in Henry Ford’s 
assembly line, the approach became known 
as ‘scientific management’ with the publica-
tion of Francis Taylor’s The Principles of 
Scientific Manage ment (1911). The applica-
tion of seventeenth century science and phi-
losophy in business and organization held 
out the promise of a new industrial age. 
From Frederick Winslow Taylor and Frank 
Bunker Gilbreth to Edwards Deming and 
Peter Drucker, management and organiza-
tion theorists thus followed a path analogous 
to that of Comte in sociology and Freud in 
psychology as theories about the logic of 
explanation also made inroads into discus-
sions about the kind of explanations best 
suited to organizations and businesses.

In addition to Newton himself, one of his 
followers, Immanuel Kant, was another 
doubter of the universality of mechanical 
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causality. Even though this form of causality 
is the only account warranted by the so-
called categories of the Understanding, 
explanations in terms of forceful collisions 
often failed when applied to living things, 
Kant realized. Thus in the Third Critique of 
Judgement, Kant wonders about the causality 
operating, for example, in trees. We find 
here, he says, a ‘form of causality unknown 
to us,’ a circular form of self-cause wherein 
the tree both produces the leaves and is 
produced by them. By identifying intrinsic 
goal-directedness with a circular type of self-
organization, Kant reintroduced teleology 
and purpose into philosophy (Juarrero-
Roque, 1985). But the entrenched Newtonian 
framework led him to limit the notions of 
self-organization, circular causality, and pur-
posiveness to the realm of epistemology, not 
ontology.

Later on in the nineteenth century two 
additional challenges to the standard under-
standing of causality appeared. First the 
inexorable increase in entropy postulated by 
the second law of thermodynamics returned 
time to nature by identifying a universal and 
irreversible arrow of time: everything moves 
from order to disorder. At the same time as 
classical thermodynamics postulated the 
deterministically predictable and inevitable 
heat death of the universe, however, this new 
science posed a different challenge to reduc-
tionism and atomistic ontology: because 
properties such as temperature and pressure 
are emergent insofar as they apply only to the 
overall system, and are described in statisti-
cal laws that apply at the global level. The 
apparent contradiction of the reversibility of 
Newton’s equations was also starkly prob-
lematic, but rethinking the entire paradigm 
was postponed when Ludwig Boltzmann 
appeared to reconcile mechanics and thermo-
dynamics by arguing that the apparent irre-
versibility of the latter was due only to the 
statistical averaging of large numbers, as was 
the apparent emergence of novel properties. 
At the level of ontological bedrock, scientists 
continued to maintain that the equations gov-
erning the motion of fundamental particles, 

described exclusively in terms of their 
essential properties, remained reversible.

Additional anomalies soon appeared. On 
the face of it, biology and even cosmological 
evolution contradict the second law. Whence 
the increasing complexity and order-creation 
so much in evidence in development and 
evolution, both biological and cosmological? 
In opposition to both reductionism and the 
relentless heat death predicted by classical 
thermodynamics, Charles Darwin’s theory of 
evolution, particularly its concept of selec-
tion, appeared to account for the increasing 
complexity and order we find in the living 
world; in Darwin’s notion of natural selec-
tion, too, context was given a causal role to 
play for the first time in centuries. And to 
make matters even more complicated, the 
strict determinism of classical mechanics 
appeared to break down as a result of the 
self-organizing consequences of a spiraling 
reflexive causality. Darwin himself, how-
ever, believed that his accounts, although 
correct, did not offer a respectably scientific 
‘explanation’ precisely because of their lack 
of deductive character. Given that chance 
and randomness were supposed to play at 
best only a minor role with respect to second-
ary, not essential characteristics, Darwin was 
at a loss as to how to incorporate random 
mutations into the received view of causality 
and explanation. One easily forgets the ety-
mology of ‘evolution: the unfolding of pre-
existing potentialities’. Nevertheless, with 
the Darwinian theory of evolution and despite 
Darwin’s own reservations came a renewed 
appreciation of the role both randomness and 
the environment play in causing qualitatively 
emergent, not just developmental changes in 
the realm of biology.

What went largely unnoticed in the nine-
teenth century was the fact that although 
classical thermodynamics reintroduces the 
arrow of time, it deals in systems that are 
closed, isolated, and near equilibrium, and 
that are temporal but not historical: despite 
their origins they march relentlessly towards 
increased disorder and disintegration. As 
dramatic evidence to the contrary, open, far 
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from equilibrium systems such as individual 
organisms and organizations – whether bee-
hives or international corporations – become 
increasingly complex and individuated over 
time before senescence sets in, and they 
carry their history and the context in which 
they are embedded in their very structures. 
Since history plays an essential role in all 
living things, including human beings, it is 
unsurprising that their behavior, and the 
organizations they form and in which they 
play a part, did not yield well to a treatment 
that did not truly embed organisms in their 
environment or took their history into 
account. The new science of ecology high-
lighted the inadequacy of the classical model. 
The Lotke–Volterra equations, for example, 
showed that rather than tending towards a 
final unitary state of equilibrium, predator–
prey relationships oscillate back and forth 
from one steady state to another. The one-
way, one on one determinism assumed to 
hold everywhere in nature was under attack.

The pendulum began to swing definitively 
against the established paradigm with the 
articulation of general systems theory by 
organismic biologist Ludwig von Bertalanffy 
(1968). The fundamental claim of the sys-
tems perspective is that iterated feedback 
causes properties to emerge and become inte-
grated into an orderly context, novel proper-
ties that are absent when things exist in 
isolated or relative independence from each 
other. In an aggregate, the properties of the 
parts do not alter depending on whether or 
not they are part of the aggregate, but in a 
system, the properties of the components 
depend on the systemic context within which 
the components are embedded. Dynamic cor-
relation and coordination among parts cause 
the emergence of new properties in living 
systems and organizations. The dynamic 
integration of parts into an orderly whole 
makes it function more like an ‘organic 
unity’ than a machine or a clock. A strong 
echo of Aristotle’s concept of formal cause 
reappears in the concept of a system.

In the last quarter of the twentieth century, 
a new branch of thermodynamics dealing 
specifically with systems that exchange 

matter and energy with their environment 
and that are far from equilibrium also began 
receiving increased attention. Often going by 
the appellation ‘complex adaptive systems 
theory’, or ‘complexity theory’, several key 
concepts of this new approach are better 
suited to historical, contextually embedded 
processes such as those pertaining to human 
beings and their organizations than is the 
mechanistic model. Complex systems are 
characterized by a peculiar circular causality 
whereby the product of the process is neces-
sary for the process itself. Interactions among 
dynamical processes create systems with 
new properties that are not the aggregate or 
sums of the components that comprise the 
global level. Contrary to Aristotle, this type 
of positive feedback is a type of self-cause. 
Moreover, when hierarchical complexifica-
tion occurs, multiple realizability becomes 
the norm: the higher level system can be 
instantiated in different token arrays. And 
predictability soon becomes impossible when 
even small perturbations affect the system at 
a crucial moment. Unlike their near equilib-
rium counterparts, far from equilibrium sys-
tems are exquisitely sensitive to initial 
conditions, which is another way of saying 
that small differences, nudges or blips can 
cause major, unpredictable changes. Within 
a few iterations, the behavior of two systems 
that are in practice indistinguishable from 
each other at the start will radically diverge, 
which makes the trajectory of all complex 
systems de facto impossible to predict and 
therefore totally control.

When parts interact to produce a higher-
level organization and the resulting global – 
but distributed – structure in turn affects the 
behavior of the parts that make it up, inter-
level causality is in play. Far from being inert 
epiphenomena that modern science claims all 
wholes are, complex dynamical structures 
exert active power on their parts so that the 
overall system remains dynamically robust. 
This regulatory control preserves the organi-
zation’s integrated system of values – its 
invariant relations – that give the global 
system its identity. Despite significant varia-
bility at the component level, the higher level 
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is thus able to maintain itself in a meta-stable 
dynamic equilibrium robust to perturbations.

Complex dynamical structures also regu-
late and constrain the lower level parts that 
constitute them, but not forcefully, as effi-
cient causes. These causal relationships have 
recently been explained as context-sensitive 
or context-dependent constraints or condi-
tional probability distributions (Juarrero, 
1999). In particular, efforts to reformulate 
formal and final cause have used the 
self-organization of dissipative structures as 
the theory-constitutive metaphor around 
which to reconceptualize causality in general, 
this time in terms of the context-sensitive 
constraints responsible for the differen tiation 
and complexification characteristic of 
both organic development and evolution. 
Contextual constraints make complex dynam-
ical systems more than the sum of their parts 
and therefore different from and irreducible 
to their aggregation. A complex system’s 
contextual constraints also control its 
components top-down by altering, for exam-
ple, their natural frequency and thereby 
restricting their phase space.

In organization theory, the human rela-
tions movement of the second quarter of the 
twentieth century, and the more recent 
emphasis on group dynamics, team building, 
and the like, were early attempts to incorpo-
rate non-mechanistic principles into manage-
ment practices once the drawbacks of that 
approach were recognized. Replacing techni-
cal experts with behavioral scientists in 
organizations and firms reflected this con-
ceptual change as well.

As the interactions and nonlinearities at 
work in open systems became better under-
stood, these new ideas, many of which are 
now gathered under the rubric ‘complexity 
theory,’ forced the rethinking of many of 
the general assumptions underlying the classi-
cal model of causality entrenched in the natu-
ral and social sciences, including organization 
management. With the rise of complex science 
it suddenly became respectable to question the 
notion of linear causality supporting deter-
minism and exact predictability, particularly 
with respect to living things, as Kant had 

anticipated. The discovery of a world not of 
random chaos but of an intricate, higher level 
order has been nothing short of revolutionary.

Complex systems became more tractable 
with the reintroduction of the Aristotelian 
concepts of formal and final cause by making 
it easier to account for the contextual embed-
dedness and goal-directedness of organisms 
and organizations. Accordingly, complexity 
scientists applying its concepts to organiza-
tion theory have noted the significance of 
Aristotle’s four causes to our ability to 
understand, if not predict, the workings of 
firms and other types of human organiza-
tions. Bill McKelvey in particular explicitly 
adapted the four Aristotelian causes to the 
context of organizations, and offered a new 
understanding of their complex causal inter-
actions in that domain.

According to the received mechanistic 
model of explanation, a phenomenon was 
considered fully explained only when it could 
be inferred from a covering law together with 
initial conditions, and thereby predicted. 
Although causes and effects cannot be the 
same in all respects, traditional views of cau-
sality also assumed that similar causes, under 
similar conditions, always produce similar 
results. The nonlinearity of positive feedback 
and circular causality present in complex 
systems vitiates these two assumptions. As a 
result, a different logic of explanation becomes 
necessary. When nonlinear interactions cause 
interlevel relationships like those described 
above, the meaning of individual events can 
be understood only in context: in terms of the 
higher-level constraints (the dynamics) that 
govern them. Those higher-level constraints, 
in turn, are produced by the very interactions 
occurring at the lower, particulate level. The 
logic of explanation of hermeneutic narrative 
and story telling is therefore more appropriate 
for phenomena whose very nature is a prod-
uct of the strange causal circle between whole 
and part, with feedback tentacles reaching out 
into the environment and back in time. In the 
business and organizational world, David 
Snowden applied these insights to develop a 
series of techniques based on the use of 
storytelling and narratives as an advanced 
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knowledge depository to track tacit knowledge 
in organizations and firms.

The recognition that precisely because of 
the tangled causal networks in which com-
plex systems are embedded and with which 
they co-evolve dynamical, adaptive systems 
are not predictable in detail the way plane-
tary motions are has had a profound effect 
on management and organization theory. 
How are we to explain and understand a 
phenomenon other than by capturing its 
essence in an equation, then plugging in the 
variables describing the situation being 
studied so as to be able, through deduction, 
to predict and anticipate its future course? 
Fortunately, in the last half of the twentieth 
century the computing power of personal 
computers allowed researchers to simulate 
the second-order nonlinear differential 
equations that were analytically intractable 
but which captured the behavior of phenom-
ena as diverse as chaotic turbulence and 
population dynamics.

Changes in our concept of explanation 
made parallel appearances in management 
books as business theorists began to incorpo-
rate this cognitive framework. Knowledge 
management theorists were quick to recog-
nize the significance of the shift in the logic 
of explanation. Because of the role time and 
context play in complex systems, attempting 
to explain complex systems deductively is 
otiose. In management and organization stud-
ies, early attempts to incorporate history and 
environmental context can be found in the 
Total Quality Management’s (TQM) empha-
sis on life cycle issues. Max Boisot and Ian 
MacMillan (2004) used agent-based mode-
ling to track knowledge flows within and 
between organizations to the learning strate-
gies of organizational players.

It was not until the advent of complex 
adaptive systems theory that the notions 
of stability and resilience were properly 
disentangled and their causal links explained. 
Resilience, in ecological terms, was described 
as the ability to adapt and survive despite 
serious shocks and perturbations. Some very 
stable systems, it was discovered, were not at 
all robust or resilient. When perturbed beyond 

a particular threshold, they quickly perished. 
It also became clear that when evolution 
selects for resilience, not stability.

Ralph Stacey was among the earlier authors 
on business management to recognize both 
the pervasive influence that the mechanistic 
model in general and the billiard-ball under-
standing of causality in particular had on 
organizational theory. In a series of books 
beginning with Complexity and Management, 
Stacey (2001) addressed issues of complexity 
in organizations. In particular, Stacey empha-
sizes the distributive nature of complex sys-
tems, including organizations, especially the 
distributive property of the latter’s knowledge 
assets. Whereas in its early years, manage-
ment theory aimed at controlling individuals, 
tasks, and actions, once the interrelationships 
among tasks and roles were recognized, 
organizational theory then focused on manag-
ing and controlling those so-called tacit 
knowledge relationships, which included 
organizational culture and values. The increas-
ing importance given to intellectual capital 
gave rise to various theories concerning 
Knowledge Management. In particular, 
knowledge was first thought to reside either 
in the employees’ minds or in the organiza-
tion’s explicit procedures. Once Baumard 
application of Michael Polanyi’s notion of 
tacit knowledge to organizations was pub-
lished (Baumard, 1999), Stacey carried the 
implications of understanding that knowledge 
as a distributed and participative, self-organ-
izing process to its logical conclusions. As 
such it can neither be stored, measured, nor 
managed. So how is a manager to manage?

Systems whose components are tightly 
connected often possess a high degree of 
integration relative to the disintegrating 
perturbations entering from their surround-
ings. However, at times, the cohesion of the 
system’s subsystems can challenge the pre-
eminence of the global system. Coordination, 
on the other hand, is a different, functional 
phenomenon: if coordination among the 
components fails, the system undergoes 
functional breakdown. A complex machine 
out of kilter is a good example of the latter. 
If we ask, What are the causes of resilience 
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and stability? How is resilience enhanced? 
What makes complex dynamical systems 
different is the fact that their components 
are interrelated with each other and are 
embedded in their environment through 
feedback loops. Stability is usually inversely 
related to integration: the more flexible the 
coupling between the subsystems the more 
stable the overall system. Usually too, the 
more homogeneous and stable the environ-
ment in which the system is located, the 
more stable the system. Resilient systems 
are flexible and nimble, capable of modify-
ing their specific structure to ensure the 
adaptability and survival of their overall 
organization. Complex systems are usually 
more resilient than simple ones, with com-
plex open systems that interact with their 
environment exhibiting the highest degree 
of resilience. It is now known that the more 
diverse the component types and the greater 
the variety and number of internal couplings 
the higher a system’s resilience will be. In 
recent years, research into these kinds of 
causal links and pioneered by Peter M. 
Allen’s (1988, 1990) group at Cranfield 
University in the UK, showed that microdi-
versity is the engine that propels a species’s 
fitness. The implications for management 
and organizational theory are clear, and 
have already been widely adopted in busi-
ness. Notably, business and military leaders 
have been at the forefront with respect to the 
issue of affirmative action in their organiza-
tions: both sectors recognized the need for a 
diverse workforce and military in promoting 
successes in a globalized world.

The implications this new way of looking 
at causality holds for business managers and 
organizational leaders are evident: no matter 
how precisely organizational functions and 
roles were compartmentalized, the very 
nonlinear dynamics that integrate them inevi-
tably also cause major, unpredictable and 
uncontrollable change, a good example of 
which is the financial crisis that began in 
2007. And since tacit knowledge is distrib-
uted, the best managers can aim for is to 
ensure that the business is organized dynami-
cally in such a way as to be as resilient 

as possible. Doing so will provide the organ-
ization with the agility to self-organize at 
crisis points. The role of any manager and, 
leader, therefore, is more like that of a cata-
lyst than a clockmaker, a fact that requires 
managers and other business leaders to aban-
don the ideal of stability and change and 
adopt resilience as a goal in its stead (Juarrero-
Roque, 1991; Stacey, 2001).
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Complexity and Limits 

to Knowledge: 
The Importance of Uncertainty

P e t e r  A l l e n  a n d  J e a n  B o u l t o n

INTRODUCTION

This chapter examines how complexity 
science faces up to the material fact of 
uncertainty and the very real limits to knowl-
edge. Indeed it shows how ignorance, the 
impossibility of having full knowledge and 
the inevitability of uncertainty, are both the 
result of, and the driving force behind, evolu-
tion and change. The chapter will review how 
this affects the exploration of complex 
problems and in particular the approaches to 
the mathematical modelling of their embed-
ded but often un-defined limitations. This 
involves examining the assumptions that are 
necessary in order to represent a ‘situation’ in 
terms of changes in the values of a particular 
set of variables and the ways this whole struc-
ture moves forwards over time. Our feeling of 
‘understanding’ seems to correspond to the 
degree of predictability such methods imply, 
since we feel that we do not ‘understand’ a 
situation when we are unable to predict future 
behaviour. This definition of ‘understanding’ 
is questionable, however, since it assumes that 
the future already exists within the present 
and that it can therefore be determined. But 

this does not allow for learning, adaptation, 
change, exploration or creativity of any kind. 
In short it corresponds to an assumption of 
the stability and fixity of:

the initial system – the mechanisms that link  •
the variables
the internal responses inside each individual  •
element
the system’s environment •

In other words we ‘understand’ things by 
assuming that they will continue to do what 
they are doing; we pay less attention to 
how, why or when they came to be like this, 
and to what they may do, individually and 
collectively, in the future.

In addition to this great simplification 
that assumes fixity and unchanging behav-
iour, often a further assumption is made of 
dynamic ‘equilibrium’ whereby even the 
trajectory of the system of fixed mecha-
nisms is supposed to have run itself to a 
stationary state, independent of the particu-
lar history or movements that actually took 
place. So we assume that it is generally 
appropriate and possible to understand most 
situations through investigating a static end 



COMPLEXITY AND LIMITS TO KNOWLEDGE 165

point rather than by exploring how things 
change. Clearly this is an even-more- 
unlikely assumption than believing in fixed, 
deterministic dynamics; but nevertheless 
this idea has been dominant in economics, 
creating a false impression of certainty and 
of the existence of a deterministic relation-
ship between the state of a market and the 
external conditions in which it sits.

Complexity, and indeed the presence of 
coupling and feedback between interacting 
elements, shows the limits of these simplifying 
assumptions. The sources of uncertainty are 
manyfold-:

Uncertainty in the behaviour of individual  •
elements inside the system
Uncertainty in the collective behaviour of the  •
system
Uncertainty in the way the system interacts with  •
other systems
Uncertainty in the boundaries of what we define  •
as a system or systems
Uncertainty in the environment in which the  •
system is immersed and the way the system 
responds to changes in this
Uncertainty in how any description of elements,  •
systems or the environment may change 
over time

We argue that, in the real world, uncertainty 
is a real experience and ‘exists’; and this 
embracing of uncertainty is the fundamental 
underpinning of complexity science. It is the 
science that arises when the questionable, 
even incredible, simplifications that lead to 
assumptions of determinism and prediction 
cannot be made.

In this chapter we explore the ontology of 
uncertainty, from ancient cosmologies 
through Darwin to Prigogine and the begin-
nings of complexity theory. We then transfer 
our interest to the epistemological questions 
as to how you explore, or indeed ignore, 
uncertainty. We take an overview of ways of 
exploring complex problems, focusing in 
particular on mathematical modelling; we 
look at how uncertainty is handled or ignored 
or even denied through the use of various 
simplifying assumptions.

We then move our focus more specifi-
cally to human systems and take the exam-
ple of economics; we consider how 
uncertainty has been considered, histori-
cally, in the field of economics. Finally, we 
present an example of the impact of includ-
ing uncertainty in an evolutionary model of 
a market.

THE HISTORICAL ROOTS 
OF UNCERTAINTY

The pre-Socratics and ‘becoming’

Our current dominant worldview which 
underpins most mainstream schools of 
thought in economics, policy-making, 
management, education and development 
still centres on the mechanistic idea that the 
world is objective, measurable, predictable 
and controllable and that is despite almost 
overwhelming evidence to the contrary. 
Uncertainty has not had a place in this view, 
apart from as a limiting irritation, to be over-
come by increasing knowledge and greater 
scholarship. Has this always been the case? 
Early philosophers in both the East and West 
held a much more sophisticated position: they 
have seen the world as changing and flowing, 
but yet with a degree of order and patterning 
that arose intrinsically, from within.

This image of flow and change is 
captured in the following fragment, part of 
the few remaining writings of Heraclitus 
(Kirk et al., 1957).

Upon those that step into the same rivers different 
and different waters flow … They scatter and … 
gather … come together … and flow away … 
approach and depart.

The Hindu Upanishads and the Dao de 
Jing present a similar sense of temporary pat-
terning emerging without the need for extrin-
sic design or planning.

And Democritus (Monod, 1970) said:

Everything existing in the universe is the result of 
chance and of necessity.
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Plato, however, refused to believe that 
form or patterning could arise without external 
design and introduced the idea of a Creator 
who, guided by pre-existent perfect forms, 
created a world, which emulated and aspired 
to them. Uncertainty and fluctuations were 
seen as irritating limitations and something 
to be overcome; they were not seen to serve 
any useful purpose.

This theme of perfection and order then 
paved the way for the seizing of Newton’s 
mechanics, in the seventeenth century, by 
French Enlightenment thinkers and became 
the dominant world view; where order, 
prediction and control are regarded as 
attainable and desirable and variation is viewed 
both as a nuisance and largely irrelevant. How 
did this happen? Why was Newton’s theory of 
physics, which in fact applied, merely, to cer-
tain limited problems of interaction between 
discrete objects, seized on as the dominant 
worldview? Many authors (for example 
Toulmin, 2001) have written on this topic at 
length. In summary, Newtonian thinking sup-
ports the notion of ‘the grand design’, and of 
the view that logic and reason will lead to the 
‘right’ answer; indeed it implies there is a 
predictable ‘right’ way and ‘right’ answer. So 
it represents a way, a rationale, to control 
chaos, to be efficient, to overcome supersti-
tion, to make things happen in a predictable 
fashion; this is very beguiling.

Darwin and variation

In contrast to this view of achievable perfec-
tion, stands the messy and inefficient and 
surprising process of evolution. It was Darwin 
(1859) who recognised that uncertainty is 
indeed necessary for change to happen. 
Whilst the realisation that animals and plants 
evolve had been recognised for decades 
before Darwin’s expedition on the Beagle, 
indeed by his own grandfather (Darwin, 
1794), Darwin’s contribution was to suggest 
that variation was a fundamental part of how 
this happened.

Charles Darwin wrote (1978: 169):

In 1838 … I happened to read for amusement 
Malthus on Population, and being well prepared to 
appreciate the struggle for existence which every-
where goes on …, it at once struck me that … 
favourable variations would tend to be preserved, 
and unfavourable ones to be destroyed. The results 
of this would be the formation of new species.

The notion of messiness as playing a 
useful role, fundamental to innovation, 
adaptability and change, is very significant. 
Despite its seeming acceptance there is still 
much resistance to its implications as evi-
denced by the continued focus on prediction, 
design, control, measurement and an endless 
search for certainty.

The idea that variation is a pre-requisite 
for evolution and change to happen was a Big 
Idea that subsequently captured the imagina-
tion of philosophers, psychologists, sociolo-
gists – and eventually physical and biological 
scientists. For example, the Pragmatist 
Charles Peirce (1955) was one of the first to 
recognise the wider implications of evolution 
as a worldview. In 1891, he wrote:

Now the only possible way of accounting for the 
laws of nature and the uniformity in general is to 
suppose them results of evolution. This supposes 
them not to be absolute, not to be obeyed pre-
cisely. It makes an element of indeterminacy, spon-
taneity, or absolute chance in nature.

Equally, William James (1995) explains in 
1884:

Of two alternative futures which we conceive, 
both may now be really possible; and the one 
become impossible only at the very moment when 
the other excludes it by becoming real itself. … To 
that view, actualities seem to float in a wider sea 
of possibilities out of which they are chosen; and, 
somewhere, indeterminism says, such possibili-
ties exist, and form a part of truth.

So, the early philosophers noticed the 
world changed in an uncertain way but 
nevertheless had form; Darwin recognized 
that variation and uncertainty were in fact 
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central to the emergence of new form; it was 
the physicist Prigogine (1947) who took the 
next step. He started to explore how uncer-
tainty led to emergence and evolution, and 
how the future is in principle unknowable. 
This was the beginning of the new science of 
Complexity.

Prigogine’s early insights 
into the relationship between 
function and variation

Prigogine (1997), in his autobiography, tells 
us that, in his adolescence, Henri Bergson’s 
(1911) book ‘L’évolution créatrice’ cast a 
spell on him. Bergson posed the question as 
to why, if physics, in the form of the second 
law of thermodynamics, proposes that matter 
and form degrades into structureless dust, 
does life mount the incline that matter 
descends (Bergson, 1911: 245). He focused 
on the image of the universe as ‘becoming’ 
rather than ‘being’ and recognized that what 
is real is the continual change of form: form 
is only a snapshot view of a transition 
(Bergson, 1911: 301).

Prigogine’s initial interest was in non-
equilibrium thermodynamics and led to con-
siderations of how patterns in certain chemical 
and hydrodynamic systems open to the envi-
ronment came to emerge. He was inspired by 
the work of Bénard (Jantsch, 1980), a French 
physicist who discovered patterns of convec-
tion cells in a liquid layer when heat is 
applied from below, and through the experi-
ments of two fellow Russians, Belousov and 
Zhabotinsky (Jantsch, 1980), who discov-
ered, in a particular mix of chemicals, that 
the colour of the mix oscillated between 
yellow and clear. Alan Turing (1950) was 
also making similar discoveries.

Prigogine (1947, 1996) is perhaps best 
remembered for these explorations of non-
equilibrium thermodynamics. His subsequent 
work (Prigogine, 1978), showed that the 
emergence of patterns (later called self-or-
ganization) came from the inter-relationship 
of the function of the underlying process 

together with fluctuations. Monod (1970) 
explores a similar theme in his book, Chance 
and Necessity though he assumes that the 
chance of creative events is small whereas 
Prigogine took such events to be inevitable 
and frequent. By function, Prigogine was 
referring to the underlying internal dynam-
ics; in an ecology, for example, this would 
define what drove the ‘rules’ of interactions; 
who can eat whom, what food intakes are 
typical, how long it takes for mature fish to 
grow and so on. He also underlined the fact 
that the particular history of a particular ecol-
ogy or market or chemical system depends 
on the particularity of chance events or vari-
ations. This complex, systemic view intro-
duces ‘history’ into science (Prigogine, 
1978). It implies that most situations cannot 
entirely be understood through mathematical 
equations defining universal laws.

As an example, if we consider a pond, and 
consider the density of pondweed, the tem-
perature of the water, the size, age and type 
of fish, the size of the ripples on the water, 
such factors will not be uniform over the 
pond or with time. Furthermore, if we ignore 
these variations, we run the risk of throwing 
out the very information that determines 
future states. It is this fine-graining, which 
Allen (1997) termed micro-diversity, that is 
fundamental to the potential for self-organi-
zation, self-regulation, the potential for emer-
gence of radically new qualities and forms  
and for the fact that the future is under per-
petual construction (Prigogine, 1997: 1). 
Prigogine emphasized that fluctuations play 
an essential role (1978: 781) and affect the 
direction the system subsequently follows. 
As Jantsch (1980: 6) states:

a system now appears as a set of coherent, evolv-
ing, interactive processes which temporarily mani-
fest in globally stable structures.

This combination of coherent behaviour 
and yet random variation gives the tension 
between ‘chance and necessity’, between 
‘uncertainty and prediction’. Chance fluc-
tuations give the system its unique history 
and yet the movements take place in the 
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context of coherent dynamics which are 
stable, at least for a time. As Allen (1997: 
16) explains:

[this] begins to throw light on the basic difference 
thought to exist between ‘science’ and ‘history’. In 
the former, explanation was believed to be trace-
able to the working of eternal, natural laws, while 
the latter provided explanation on the basis of 
‘events’. In this perspective of self-organising sys-
tems we see that both aspects are present and 
that such systems are not described adequately 
by either laws (their internal dynamics) or events 
(fluctuations) but by their interplay.

THE DEVELOPMENT 
OF COMPLEXITY SCIENCE

Hiding complexity

Following the early insights into complexity 
and the importance of non-average events and 
non-average types, we can situate the many 

different ways that the real complexity of the 
world is hidden in contingent, closed and 
simplified representations. This is shown in 
Figure 10.1 which illustrates the different types 
of representation and mathematical models 
that arise from successive assumptions about 
stability within and outside the system.

Figure 10.1 represents, starting from 
‘reality’ on the left, which is full of uncer-
tainty and doubt, and, making successive 
assumptions about the piece of ‘reality’ 
under study, one passes from complete 
uncertainty, through various intermediate 
views to one of complete deterministic cer-
tainty when prediction is believed possible. 
We will look at these in turn to see how the 
actual complexity and uncertainty of ‘real-
ity’ is hidden from view and tools and 
models are developed that appear to offer 
control and knowledge to those that possess 
them. In essence the things that make 
prediction ‘possible’ are closure to outside 
influences and fixity within.
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Figure 10.1 The different kinds of models and understanding attained by making successive 
assumptions about uncertainty in moving from the left to the right of the figure
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‘Reality’
One can argue that we need make no assump-
tions and should just engage with ‘reality’. 
Whilst we can interact with particular situa-
tions and contexts in ‘real life’, it is impos-
sible, in general, to work in this way as the 
amount of information required to look at 
every detail, every nuance, is prohibitive. 
Lyotard (1984), in The Postmodern Condition 
gives the example of an emperor wishing to 
make a perfectly accurate map of his empire; 
the project leads the country to ruin as the 
entire population is needed to devote all its 
energy to cartography.

But, on the other hand, neither can we 
argue that problems have stable outcomes 
and are open to abstraction. Quoting Lyotard 
(1984) again: the continuous differentiable 
function is losing its pre-eminence as a para-
digm of knowledge and prediction. So what 
is to be done? Figure 10.1 shows us how, in 
scientific models, understanding and predic-
tion are achieved in practice by making suc-
cessive assumptions concerning the situation 
under study. On the left-hand side, where no 
assumptions have been made, there are no 
established types, variables or equations. We 
are in the realm of literary and historical 
endeavour, where we are describing and 
perhaps responding to what is happening, but 
are limited in our ability to learn or general-
ize or predict. It is the realm of post-
modernism, of action research and of many 
anthropological methods where we are 
reminded that any generalizations are likely 
to be misleading. Emphasis is placed on stay-
ing with the actual experience of what is, on 
focusing on the particularity of an actual, 
living situation and working with all the 
variation and all the uncertainty that is 
present.

Such heuristic methods are indeed very 
important and stop us from blindly applying, 
and indeed uncritically accepting, models 
and theories. However, we would argue that 
modelling plays its part as an aid to exploring 
complex problems and we are interested 
here in critiquing differing approaches to 

modelling and understanding their differing 
assumptions.

Evolutionary complex models
The first assumption, in moving away from 
‘raw reality’, is to say that there is a 
‘boundary’ and that some things will be 
considered to be inside and others will be 
outside, in the environment; even this assump-
tion must be handled carefully as boundaries 
may shift or may be permeable and any 
assertions or selections regarding boundaries 
will typically be open to the criticism that 
they are assumed or constructed. However, 
modelling allows us to explore and test such 
assumptions and understand the sensitivity to 
such choices.

The second assumption concerns that of 
‘classification’ in which we decide to label 
the different types of thing that populate our 
system. This might be biological species and 
perhaps their age cohorts, or, in social sys-
tems, people classified according to their 
ethnicity or philosophical beliefs, or their 
skills or professional activities; so in this way 
we specify the variables of the system.

What happens if we make only these two 
simplifying assumptions but still work with 
nonlinear interactions and feedback and 
allow ‘noise’ or variation in the system? We 
are in the realm of evolutionary complex 
models. In Figure 10.2 we see the results of 
a computer run in a 200 × 200 character 
space in which we study the populations over 
time where we have reproduction, explora-
tion (mutation) into neighbouring character 
cells, and both synergy and competition for 
resources for any particular type. What we 
find is the creation over time (time is down-
wards) of a simple ecology of populations 
(Corliss et al., 1990).

In this approach, we find that over time 
the constituent types may change. New types 
and activities emerge and others leave. Over 
time qualitative evolution occurs and the 
system is not structurally stable in that 
the variables and therefore the equations 
describing the mechanisms and processes at 
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work within it can change; there are a 
series of instabilities as new things emerge 
and others disappear.

Variations both determine which possible 
outcomes emerge and furthermore they 
shape the future possible dynamics. In other 
words, the microscopic variability and ran-
domness in the system drive evolution, 
confer on the system the ability to learn and 
hence to adapt and in so doing impact on 
the environment which co-evolves with it. 
There is no way that we can exclude ‘luck’ 
from the evolution and changes that occur in 
the system, and there is no way that we can 
banish uncertainty from our considerations.

Probabilistic dynamics; The 
Master Equation
With only two assumptions (boundary and 
classification) we see that the general evolu-
tionary model shows us that qualitative 
change will occur, that new qualities will 
emerge and others disappear; but cannot say 
exactly in what way or when. What happens 
if we make a further assumption that the 

dynamics, the basic interaction mechanisms 
that govern the situation cannot change, but 
we still allow fluctuations and non-
linearities?

Prigogine had established the central and 
creative role of variation and fluctuations 
in creating the future. Prigogine (Nicolis 
and Prigogine, 1977; Prigogine et al., 1977) 
and also Haken (1978) wanted to understand 
the way in which fluctuations play their part. 
Traditionally there were two distinct meth-
ods of exploring how a number of elements 
interacted. If there were a small number of 
elements, then it was possible (at least in 
principle) to track the movement and interac-
tion of each element. In contrast to this 
dynamical, mechanical method, if there were 
large numbers of elements, then statistical 
mechanics was used and the behaviour of the 
system was treated essentially as if it were a 
fluid and average qualities such as density 
or temperature, were tracked; elements were 
classified into categories and were assumed 
to be identical and unchanging and, most 
importantly, only the most probable events 
were assumed to occur. In both cases, gener-
ally, only first-order effects were calculated; 
so the interaction of any two elements in the 
dynamical case were assumed not to be 
affected by the presence of other elements; 
and in both cases interactions were assumed 
not to be influenced by previous interactions. 
These two methods, basic mechanics and 
statistical mechanics, sit off to the right of 
the processes shown in Figure 10.1; they are 
‘off the map’ in terms of their simplicity 
and their inability to deal with complex 
interactions and change.

Dynamical systems are deterministic but 
are sometimes very sensitive to initial 
conditions (when the parameters correspond 
to a ‘chaotic’ attractor); probabilistic systems 
are also deterministic but are largely 
independent of initial conditions and move 
towards equilibrium. How then do these 
two methods relate to each other and how 
can either method make sense of the role 
of fluctuations and the propensity for 

Figure 10.2 The emergence of a simple 
ecology over time for a population diffusing 
in a 200 × 200 character space. Each 
population has synergy and competition 
for resources
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self-organization and multiple possible 
outcomes?

Progress was made to resolve this dilemma 
through the use of the so-called ‘Master 
Equation’ that governs the dynamics of a 
probability distribution (Allen, 1988). This 
method allows one to work with all possible 
sequences of events, taking into account their 
relative probability, rather than just assume 
the most probable events occur, as would 
happen using ‘normal’ statistics. The collec-
tion of all possible dynamical paths is taken 
into account in a probabilistic way. But for 
any single system this allows into our scien-
tific understanding the vital notion of ‘free-
dom’ or ‘luck’ or ‘uncertainty’ in the behaviour 
of the system. Although, a system that is ini-
tially not at the peak of probability will more 
probably move towards the peak, it can per-
fectly well move the other way; it just happens 
to be less probable that it will. A large burst of 
good or bad luck can therefore take any one 
system far from the most probable average, 
and it is precisely this constant movement that 
probes the stability of the most probable state. 
It also points us towards the very important 
idea that the ‘average’ for a system should be 
calculated from the distribution of its actual 
possible behaviour, not that the distribution 
of its behaviour should be calculated assum-
ing the average is fixed.

Allen (1988), in the first instance, investi-
gated a simple grazing predator–prey system 
of two species; both species can reproduce 
and die. Traditional statistical mechanics 
would assume equilibrium and give an aver-
age outcome corresponding to a balance of 
numbers between the two species, depending 
on the food resources available. However, 
working with less simplification through using 
the Master Equation, Allen shows that for 
some conditions the probability distribution 
moves from whatever its initial condition is 
towards a distribution with two distinct peaks 
of probability. The first corresponds to the 
extinction of both species and the second to a 
stable balance between them. In other words, 
when the individual events that underlie the 

mechanisms are treated probabilistically, 
allowing for different possible sequences of 
events according to their probability, the state 
of the system demonstrates path-dependence, 
moving to one or other of the possible stable 
configurations. We see also that the word 
‘outcome’, which seems so innocuous, really 
hides an assumption of equilibrium, of 
having got to where it must go. But with non-
linearities in the interactions the system may 
have several different possible configurations 
to which it could ‘go’.

This simple example was very important. 
It shows how, if qualities are averaged as in 
‘normal’ statistical methods, the very detail 
that determines the path of the system is lost; 
that is to say a bifurcation occurs. It shows 
that working only with the most likely ‘out-
comes’, as with statistical mechanics, can be 
qualitatively misleading. So, the use of the 
Master Equation shows us the importance of 
the actual history of a particular real situa-
tion. Can we know which outcome would 
have happened in practice in the ‘real’ world? 
What would have tipped the system into one 
direction rather than the other? Or could both 
outcomes occur simultaneously in different 
places?

Stationary probability; solving 
the dynamic equations
The dynamic equations of probability that we 
have described in the last section are quite 
difficult to handle, involving correlated prob-
abilities of interacting variables and so fur-
ther assumptions are often used to make the 
problem simpler. There is a choice; either we 
can adopt a traditional scientific approach 
and try to ‘solve’ the dynamic equations 
to find their stationary solution; or we can 
decide to retain only the dynamics that 
results from the most probable events and 
follow the path that unfolds. This second 
approach, the dynamical systems approach, 
we will explore in the next section.

The first of these methods, ‘solving’ the 
dynamic equations to find their stationary 
solution, leads to particular probability 
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distribution functions shaped by the 
mechanisms contained in the Master Equation 
and gives a view of the final probability 
distribution to which, it is assumed, the prob-
lem has settled. For particularly simple mech-
anisms such as a ‘sand pile’ to which grains 
are continually being added (Bak, 1997) the 
probability of an avalanche of a given size can 
be calculated. These ideas have been applied 
to many different systems such as the proba-
bility of earthquakes, city sizes and firm sizes. 
The distribution of probability is often that of 
a ‘power-law’ that describes the probability of 
different-sized events. For instance, it might 
suggest that the probability of finding a city 
or firm twice the size of another is only one 
quarter, i.e. it follows an inverse square law. If 
this pattern holds for cities or firms of all 
sizes, then the distribution is said to be ‘scale 
free’ (Bak, 1997).

We would question this approach on two 
counts. First, how often, in practice, do we 
find data that corresponds to this kind of sta-
tionary, stable, scale-invariant distribution? 
For city and firm sizes the data over time tells 
us that there is still a great deal of dynamic 
change occurring, as cities and firms grow 
and decline (Batty, 2008). We may wish to 
assume stationarity, but even within a sta-
tionary probability distribution, there can 
still be considerable underlying changes 
occurring. In the spectrum of automobile 
manufacturers for example, Toyota recently 
replaced GM as the largest company, but 
recent problems may lead to further re-order-
ing in the distribution. And how can we 
decide whether the variations occurring at 
any given moment are simply fluctuations 
within the stationary probability distribution 
or instead reveal a changing distribution? For 
example, in considering climate change it is 
very difficult to tell whether some ‘freak 
weather’ event is simply an extreme event 
within the pre-existing distribution or is in 
fact an indicator of a change in the distribu-
tion. It is very difficult from the data to 
decide whether the assumption of stationar-
ity is justified.

Second, when nonlinear terms are present 
in the interactions between elements we 
know that different possible ‘attractors’ can 
exist and the corresponding probability func-
tions will be multi-modal (have different 
peaks corresponding to different possible 
solutions) and not tend to a single peak, a 
single stable outcome. Clearly, where there 
are multiple equilibria, the shape of the prob-
ability distribution will be described by much 
more complex mathematical functions than a 
power law, x-a, since it will have to describe 
several different peaks of probability. This is 
the situation we considered in the previous 
section as exemplified by the grazing 
predator–prey model.

Dynamical systems
If instead of asking ‘what will actually 
happen to this system?’, that requires us to 
deal with all possible system trajectories 
according to their probability, we ask ‘what 
will most probably happen?’ then we have a 
much simpler approach. We proceed by 
assuming that only the most probable events 
occur; that things happen at their average 
rates. This leads us into ‘system dynamics’ 
which is in general a nonlinear set of 
dynamical equations that appear to be predic-
tive and deterministic. In other words, they 
seem to allow the future trajectory of the 
system to be calculated. Such an approach 
would seem to provide a basis for policy and 
strategy analysis by comparing the differ-
ences made over time by investigating the 
impact of one intervention as opposed to 
another, that is, by running the model several 
times using different assumptions. This is a 
very tempting picture for any decision or 
policy maker. It appears to offer a way to test 
different decisions and allow their advantages 
and disadvantages to be compared.

In situations where not much is changing 
in the broader environment or indeed within 
the system itself, then system dynamics 
models may well provide a good representa-
tion of system behaviour. They can show the 
probable effects of a particular intervention, 
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assuming that no structural changes are pro-
voked. They can also show the factors to 
which the system is potentially very sensitive 
or insensitive, and this can provide useful 
information. But systems dynamics models 
are still deterministic; they still only allow 
for one solution or path from a particular 
starting point. It is the path into the future 
traced by average elements interacting through 
average events, and is only reasonable if non-
average elements and non-average events 
have no systemic effect; that is to say there is 
no self-organization or learning for example. 
Such systems can function but not evolve.

Risk, uncertainty and prediction

The important point that we need to reflect 
on is that such apparent powers of prediction, 
as implicit in deterministic models, is only 
real if, and only if the assumptions made in 
achieving it are in fact true. In other words 
the real uncertainty that may characterize the 
long-term evolution of an ecology, economy, 
market or firm is only banished by assump-
tion. In this light therefore, we must admit 
that understanding and predictions will only 
hold until things change and our expectations 
are confounded. Our methods therefore do 
not scientifically eradicate the uncertainty of 
an evolving world, but instead mask it and 
tell us that providing the system doesn’t 
change then we can predict what it will do. 
But clearly the uncertainty is now as to 
whether the system will change or not.

While it may be reasonable to believe that 
the system may hold its structure for short 
times, this becomes increasingly unlikely for 
longer times, since history has shown us that 
over longer time periods everything of inter-
est seems to change as new entities and types 
appear in the system and others become 
extinct.

What indeed is uncertainty? We would 
argue, along with Knight (1921), that uncer-
tainty is defined as that which cannot be 
known, as an ‘unknown unknown’; it is 

associated with the underlying structures and 
constructs themselves shifting, or disappearing 
and new ones appearing.

This is something more than risk. Risk 
refers to situations in which the variables and 
mechanisms are known as well as the dimen-
sions of the model and its environment, and 
signifies the case where these do not change. 
So stochastic nonlinear dynamics allow us to 
investigate risk, or known unknowns, but only 
evolutionary models allow us to consider true 
uncertainty.

COMPLEXITY AND UNCERTAINTY 
IN HUMAN SYSTEMS

The evolution of complex, resilient natural 
systems is linked to the retention of mecha-
nisms of adaptability within them and 
reflects an underlying lack of specific pur-
pose. Human beings, on the other hand, 
want to improve, direct or control systems 
for some particular end and because of this 
tend to eliminate any apparently unneces-
sary parts and to streamline operations. This 
leads to vulnerability, however, because 
though the system may operate better for a 
particular purpose it lacks alternative mech-
anisms that may be needed if circumstances 
changed. For example, the potential for 
growth and diversity of any society or city 
depends to an extent on the imagination of 
its people. But ideas cannot be produced by 
dictat, according to some rational plan. They 
depend on a population’s diversity and orig-
inality of thought; on its individual freedom 
and ability to experiment; and on the finer 
details of its history, culture and social inter-
actions. Generally speaking, microscopic 
diversity resulting from the mixing of cul-
tures and diverse doctrines will be an impor-
tant ingredient for a population’s survival, 
although nearly all rational planning aims at 
minimizing such ‘inefficient’ eclecticism.

In this chapter we cannot look at the way 
complexity and uncertainty are handled over 



FOUNDATIONS174

the whole breadth of social systems. We will, 
however, look at one example, that of 
economics.

Limits to knowledge in economics

Introduction
Complexity thinking has influenced the emer-
gence of evolutionary economics (Nelson and 
Winter, 1982; Metcalfe, 2007), ecological 
economics (Boulding, 1950, 1981; Georgescu-
Roegen, 1971; Daly, 1999; Costanza et al., 
2007), behavioural economics (Simon, 1955) 
and complexity economics itself (Beinhocker, 
2007). However, it is a self-evident truth 
and perhaps never more self-evident than in 
current times that there is a huge uncertainty 
in how any particular economic policy will 
play out in practice. For example, the neo-
liberal policies of the last several years have 
been predicated on the view that market 
forces, if left largely free, give the ‘best’ 
chance of ‘success’ and that regulation should 
be kept to a minimum; but ‘best’ in what 
respect, and success for whom? It appears 
that, whilst growth has been substantial, the 
divide between the incomes of the rich and 
the poor with this reliance on market forces 
has significantly increased (Harvey, 2005) 
and there has been a general tendency for 
diversity and consumer choice to reduce with 
markets increasingly dominated by decreas-
ing numbers of increasingly large players.

Equally, the deregulation of the money 
markets has led to a sort of pyramid selling, 
with a consequent collapse. And of course 
we are now, more than ever before, facing the 
question as to whether some natural resources 
are running out, whether population growth 
will overtake the ability of the land to feed it, 
whether climate change will rend many parts 
of the globe too hot or too dry or too drowned 
for human use. How can economics deal with 
these factors?

Perhaps what is most concerning about 
economic policies is that the system in ques-
tion, the global economic system, is hugely 
complex and full of uncertainties; we cannot 

assume the rationality and consistency of 
actors, nor that they act with all the informa-
tion they need; we cannot assume that the 
past is a good predictor of the future; we 
cannot assume stability; we cannot assume 
simple cause-and-effect relationships and be 
certain what causes what. This is hardly a 
surprise, yet the methods and assumptions of 
neo-classical economics still largely prevail. 
And on top of this, we cannot really isolate 
economic decisions from issues of social 
justice, the environment, security and the 
longer-term.

Equilibrium
How is uncertainty viewed within econom-
ics? Traditional neo-classical economics 
parallels and indeed borrows the assump-
tions embedded within the physics of 
equilibrium thermodynamics and implicitly 
assumes the economy is not far from 
equilibrium and that the mechanisms that 
influence it can be described as simple, 
linear, causal relationships. Any uncertainty 
or variety or learning or historicity or the 
possibility of multiple and reflexive 
inter-relationships are largely ignored within 
the models. Change is largely treated as an 
optimizing move towards equilibrium. If 
such a statistical approach were positioned 
on the diagram in Figure 10.1, such an 
approach in fact sits to the right of the 
models described due to the restrictiveness 
of its assumptions.

Why should things find balance or move 
towards equilibrium? Economists have bor-
rowed equilibrium theory from the natural 
sciences. But in physics this is based on the 
behaviour of certain types of closed systems 
and reflects the conservation of mass, energy 
and momentum at the microscopic level of 
molecular collisions. Is the transfer of this 
mathematical framework valid when model-
ling the economy, and is there evidence to 
support this approach? This attribution of 
science is very compelling. The economist 
Leon Walras, in ‘Elements of Pure Economics’ 
written in 1874 is unequivocal in asserting 
its validity. He says: this pure theory of 
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economics is a science which resembles 
the physico-mathematical sciences in every 
respect.

Social theorist Thorstein Veblen, as early 
as 1898, challenged these assumptions in 
his paper, Why is Economics not an Evolu-
tionary Science? In this he points out that 
assuming the economy moves towards equi-
librium or balance is a teleological argument; 
that is to say, it is assuming a pre-ordained 
end point to which things naturally move. 
Why should there be such an end point?

Veblen in fact, argued that to see the 
economy as evolutionary, constantly shifting 
as variations and new things challenge the 
status quo, is a much more rational perspec-
tive. Complexity economist Brian Arthur 
(1994) recognized that, to assume a move 
towards equilibrium, one had to assume that 
negative feedback loops prevail in economic 
relationships, leading to the notion of perfect 
competition based on supply and demand 
balanced by price; but there is no reason to 
suppose that this always prevails. Arthur 
points out that in many circumstances, posi-
tive feedback or increasing returns is the 
norm, and competition can be affected by 
small events and choices which ‘lock-in’ 
certain solutions and where successful 
firms keep growing at the expense of the 
competition.

Arrow (1994), points out that this insight 
was not new, but has surfaced every decade 
or two, throughout the history of economics, 
starting with Cournot in 1838. The idea that 
there are in practice multiple potential and 
temporary points of stability has been well-
aired in economic literature.

Economic Man
As well as assumptions about the underlying 
dynamics of the economy, neo-classical 
economic approaches need to assume, for 
ease of calculation, that consumers act ration-
ally, in the sense that Economic Man makes 
consistent, rational, easily analysable choices 
typical of his ‘type’; furthermore, competi-
tion is deemed to drive the economic proc-
ess; competition is regarded as ‘perfect’ in 

the sense that it is undertaken with full 
and perfect information available to all 
the players and that it plays itself out to 
completion.

The nature of Economic Man’s rationality 
is taken to mean that his decisions are about 
satisfying his own, and largely immediate, 
needs in a cost-effective manner. As Frank 
Knight (1921) points out:

economic man … is postulated as knowing defi-
nitely and accurately all the facts and magnitudes, 
knowledge of which would influence his behav-
iour. … The economic subject would in many cases 
have to have perfect foreknowledge as well as 
perfect knowledge.

In reality, Alan Greenspan (2008), reminds 
us that: the innate human responses that 
result in swings between euphoria and fear 
repeat themselves generation after genera-
tion with little evidence of a learning curve.

Risk and uncertainty in economics
The fact that the economic landscape is 
uncertain and risky is not a new thought. 
Frank Knight (1921) made his famous dis-
tinction between ‘risk’ (randomness with 
knowable probabilities) and ‘uncertainty’ 
(randomness with unknowable probabilities). 
Keynes (1937) reflected similarly:

By ‘uncertain’ knowledge …, I do not mean merely 
to distinguish what is known for certain from what 
is only probable. The game of roulette is not sub-
ject, in this sense, to uncertainty … The sense in 
which I am using the term is that in which the 
prospect of a European war is uncertain, or the 
price of copper and the rate of interest twenty 
years hence … About these matters there is no 
scientific basis on which to form any calculable 
probability whatever. We simply do not know.

The sociologist Zygmunt Bauman, reflect-
ing on what he calls the current ‘liquid times’ 
(2007) postulates that uncertainty and fast 
change are defining features of our age. He 
says that:

social forms (structures that limit individual choices, 
institutions that guard repetition of routines, 
patterns of acceptable standards) can no longer 



FOUNDATIONS176

(and are not expected) to keep their shape for 
long, because they decompose and melt faster 
than the time it takes to cast them, and, once they 
are cast, for them to set.

Uncertainty, in economics, has, perhaps, 
generally been considered a limitation; some-
thing to aim to diminish through risk assess-
ments or standardisation. In contrast 
evolutionary and complexity thinking sug-
gest that a level of variation and messiness is 
necessary for adaptability and development 
as we have already discussed. Nowotny et al. 
(2001), for example, say:

The inherent generation of uncertainties in both 
science and society is one of the crucial elements 
in their co-evolution.

And, indeed Shackle (1958) also recognized 
the generative quality of uncertainty. He said:

the word uncertainty suggests an objectively-
existing future about which we lack knowledge 
rather than [more positively] a void to fill with new 
creation.

So uncertainty is not a new thought to 
economists; the difficulty is, of course, that if 
the economist accepts uncertainty in its 
entirety then he is limited in what he can do 
to try and advise on how to predict or to con-
trol the future. So the economist makes do, 
perhaps, with deterministic models because, 
otherwise, he is limited in what he can 
achieve.

This is not to say that economists have not 
developed approaches which, in terms of the 
range of models shown within Figure 10.1 do 
not move us towards the left of the diagram, 
more towards uncertainty and the messiness 
of the real world. The field of evolutionary 
and complexity economics is increasingly 
well-developed (e.g. Foster and Metcalfe, 
2001; Witt, 2008).

Alan Greenspan (2003) states: Uncer tainty 
is not just an important feature of the mone-
tary policy landscape; it is the defining char-
acteristic of that landscape, and (Greenspan, 
2003) states: Our problem is not the 

complexity of our models but the far greater 
complexity of a world economy whose under-
lying linkages appear to be in a continual 
state of flux.

Modelling market evolution

Instead of simply assuming that a market is 
populated with decision makers having per-
fect information and knowledge the com-
plexity view leads us to consider the more 
realistic situation in which investors, manag-
ers and consumers have very incomplete and 
imperfect knowledge about what will happen 
and in which we do not imagine that there is 
only one possible outcome. They are trying 
to learn and to adapt according to outcomes, 
in line with the notions of exploration and 
exploitation described in March’s (1991) 
classic paper.

Allen et al. (2007) have developed models 
that explore the likely probabilities of suc-
cess where firms adopt not just different 
particular strategies (price/quality) but 
different meta-strategies. For example, these 
may be: (a) a strategy of incremental learning, 
(b) a strategy of imitating the strongest com-
petitor, and (c) an intuitive, entrepreneurial 
strategy represented in the simulations by 
choosing ‘randomly’. These meta-strategies 
are related to those discussed by March 
(2006) in his paper entitled ‘Rationality, 
Foolishness and Adaptive Intelligence’. In 
the case of Allen et al. (2007) the meta-
strategies of incremental learning and of 
imitation of the current winner represent dif-
ferent forms of rationality, while the entre-
preneurs are ‘foolish’. The paper explores the 
relative effectiveness of these different 
approaches, as well as their interdepend-
ences.

Allen et al.’s (2007) model tests the benefits 
or otherwise of ‘learning’ as a meta-strategy, 
which is important because if ‘random strate-
gies’ were found to work better, there would 
be no point in studying, or in obtaining and 
analysing sales and market data; we could 
simply rely on our intuitive powers, or flip a 



COMPLEXITY AND LIMITS TO KNOWLEDGE 177

coin, to decide what strategy to adopt. This 
relates to Schumpeter’s (1939) important 
ideas about creative destruction; Schumpeter 
makes no real comment on whether firms can 
actually improve their survival rates as a 
result of internal processes. Instead, it is 
really the introduction of new firms that 
will have randomly better or worse technolo-
gies and internal structures that shapes the 
evolution of the market. Ormerod (2005), 
similarly, shows how it appears from the data 
that firms do not in fact learn.

In building a model such as Allen et al. 
describe, the modeller is confronted with 
the problem of what knowledge and uncer-
tainty an agent can sensibly be assumed to 
have concerning the sales and revenue gen-
eration that will result from a given strat-
egy. If no firm ever went bankrupt then we 
might make the mistake of thinking that 
considerable knowledge was present. 
However, an examination of the statistics 
concerning firm failures (Foster and Kaplan, 
2001; Ormerod, 2005) shows that, whatever 
it is that entrepreneurs or firms believe, they 
are clearly, often completely wrong. The 
bankruptcies, failure rates and life expect-
ancies of firms all attest to the fact that the 
beliefs of the founders, managers or inves-
tors are often not correct. Clearly, what 
really happens is that agents adopt, and 
probably believe in, particular initial strate-
gies relating to product, quality and price, 
and the marketplace is then the theatre of 
learning in which some of them discover 
that their meta-strategy does take them on a 
successful trajectory, and others discover 
that it does not.

For the mathematics of such a model, see 
Allen et al. (2007).

The model generates a market evolution as 
goods or services are produced and con-
sumed. The revenues from the sales of a firm 
are used to pay the fixed and variable costs of 
production, and any profit can be used either 
to increase production or to decrease the 
bank debt if there is any (see Figure 10.3).

All bankrupt firms are ‘re-launched’ into 
the simulation with a randomly chosen 

strategy, but they retain their identity as 
learner, imitator or entrepreneur, so that there 
are always six of each kind competing in the 
system. The program runs a simulation with 
random initial strategies (quality and choice 
of mark-up), and replacements dependent on 
a random sequence of numbers; ‘seeds’ are 
used so that particular random starting points 
can be reproduced.

Results

Summarizing the results of multiple simula-
tions for different random sequences (seeds 1 
to 10) then we find the overall results of 
Figure 10.4. The message from this is clear. 
Learning by experiment is the best meta-
strategy. Adopting entrepreneurial random-
ness is good, and imitating winners is the 
least successful meta-strategy.

It is indeed interesting that entrepreneurs 
really do better than might be expected; in 
addition provide exploratory behaviour of 
use to the rest of the system. This finding 
rather supports the remark made by March 
(2006): Survival may also be served by the 
heroism of fools and the blindness of true 
believers. Their imperviousness to feedback 
is both the despair of adaptive intelligence 
and conceivably its salvation.

Allen et al. (2007) also studied the spread 
of results obtained by all the different ‘learn-
ing’ curves and this showed that the results 
are robust.

Allen et al. (2007) concluded that, 
alt hough in general ‘learning’ is better than 
‘not learning’ the spread of the results shows 
that in any particular case this may turn out 
not to be true. This suggests that, even if a 
player owned the simulation model, it would 
still not be possible to use it to predict the 
exact strategy and meta-strategy to use in 
order to be sure of ‘winning’, because the 
strategy choices that will be made by other 
firms, represented in the simulation by the 
particular random sequence selected, cannot 
be known at any particular moment (Allen 
et al., 2006).
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Figure 10.3 The evolutionary market model

Of course, over time, evolution will occur 
and new technologies, innovations, organiza-
tional changes would change the parameters, 
the mechanisms and the behaviours of the 
agents involved, as with full-blown evolution-
ary models. Over longer times, it is necessary 
to widen the perspective of the exploration 
and try to discern whether or not the dynamical 
system is evolving qualitatively.

DISCUSSION

One important error that we need to expose is 
that after recognizing the shortcomings of 
‘classical science’ in dealing with highly-
connected real-world situations, we can 
simply turn to ‘complexity science’ to provide 
a set of ‘tools’ that can be applied to obtain 
prediction, control and the knowledge neces-
sary to make decisions and policies. We have 
to recognize that prediction, control and 
complete understanding are always an illusion, 

except for exceptional, controlled, closed and 
fixed situations, usually in laboratories.

However, this does not mean that ‘model-
ling’ has no role to play in complex situations. 
On the contrary, the alternative to ‘trying to 
build a model’ is ‘not trying to build one’, 
which can require us to rely on the use of 
intuition and plain pragmatism instead. And, 
as Einstein said: Intuition is the summation 
of prejudices acquired up to age eighteen. 
Thinking itself is a form of modelling.

Faith and hope would mark such an ‘intui-
tive’ approach and the bankruptcy data tells 
us that, except for the very lucky, this is not 
an effective strategy. Pointing out the nature 
of the assumptions that need to hold for a 
particular type of model to be correct can 
help us to explore the behaviour of domains 
of linkage which, for some time, may be 
useful. In other words, complexity tells us 
that ultimately we are involved in pragma-
tism; but instead of simple intuitive pragma-
tism we can adopt a pragmatic approach to 
models and see them as experiments in 
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Figure 10.4 The average results for 10 random sequences, each with six firms of each type

representation, where we retain those that 
seem useful and continue to modify those 
that fail and treat all as an adjunct to think-
ing, not as defining ‘the answer’.

We would argue that information about 
many technical systems cannot be obtained 
in any way other than by simulation. Where 
such simulation and modelling methods fail 
is often where human reactions and responses 
are included, and some simple rationality has 
been assumed. Humans are more compli-
cated, more confused and more heterogene-
ous than that, and also they get bored, 
change, learn and imitate, often incorrectly. 
However, in dealing with many management 
issues there are production systems, logisti-
cal supply and distribution systems, collabo-
ration, competition and changing market 
conditions. In order to ‘manage to survive’ it 
seems clear that trying to understand and 
perhaps ‘model’ the situation is advanta-
geous, providing that any outcomes are not 
taken as the incontrovertible truth. As shown 
in the example in the section ‘Complexity 
and uncertainty in human systems’ it is on the 
whole better to try to ‘learn’ from experiments 
than not. Learning beats intuition or imitation 
on the whole. The learning that is possible is 

limited and needs to be constantly tested and 
re-worked on a constant basis. We can never 
sit back and say, ‘that’s it, I know how the 
system works and can simply continue like 
this’. The world, other agents, and techno-
logical possibilities will move on and what-
ever assumptions are contained in a particular 
representation will be found inadequate at 
some point.

This implies that we are destined and 
indeed evolved to live always with uncer-
tainty. Certainty only arises for closed sys-
tems and correspondingly closed minds. But 
the real world, outside the laboratory, is not 
closed from outside connections or from 
internal heterogeneity and micro-diversity. 
Without uncertainty, we would argue that 
life would not be worth living, since all 
would be pre-determined. But evolution has 
fashioned us to face it and even enjoy it, 
while working all the time to try to reduce it 
through our actions of organizing, construct-
ing and protecting. Uncertainty is one face 
of evolution and complexity, and our game 
is to try to counter it with actions and inno-
vations that actually, whether we mean to or 
not, create new uncertainties as we go. This 
is a never-ending (we hope), multi-level 
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game of creation and response that is far 
more appealing and interesting than the 
closed, controlled and predictable world that 
we may have believed was where science 
had led us. Uncertainty and complexity are 
therefore part of a modern, deeper, scientific 
understanding of the evolutionary processes 
in the universe.
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11
Complex Thinking: 

Towards an Oblique Strategy 
for Dealing with the Complex

R o b e r t  C h i a

Complexity fascinates and confounds. At 
times it is reminiscent of that proverbial 
enigmatic, shadowy and elusive nocturnal 
creature that appears only fleetingly for us to 
catch a glimpse of before it disappears mys-
teriously back into the darkness and beyond. 
Despite its profound effect on virtually every 
aspect of modern life, full understanding and 
comprehension of complexity eludes us at 
every turn. Its reticence in revealing itself 
fully to our scholastic gaze may have some-
thing to do with our academic temperament 
and the nature of our investigative approach. 
In this chapter, I propose a more oblique and 
circuitous strategy for understanding and 
managing the complex: one in which, para-
doxically, the act of detour allows better 
access to its hidden nature and inner work-
ings. In other words, I suggest, we need to 
complexify our thinking in order to learn and 
better appreciate the nature of complexity. In 
this effort to complexify thought, this chapter 
resonates with the concerns raised by several 
other chapter contributions in this handbook 
including that of Shotter and Tsoukas and 
Kurt Richardson in seeking to wean our 
thought processes from the dominance of 
natural scientific thought on the nature of 
complexity. More specifically, it advocates 

learning from the arts the art of complex 
thinking for the arts have long explored and 
appreciated the subtleties, paradoxes and 
nuances associated with the human condi-
tion. It urges us to set aside our natural incli-
nation to apprehend social phenomena 
‘head-on’ by showing how in that very act of 
direct apprehension we unwittingly forfeit 
access to those very insights we so very 
much seek. Social and managerial complex-
ity retreats into the shadows when directly 
confronted. They are best approached through 
stealth. We propose here an indirect strategy 
for gaining access to the phenomenon of 
complexity in social life and suggest their 
implications for management.

INTRODUCTION

The difficulty of complex thought is that it must 
face messes … interconnectedness among phe-
nomena, fogginess, uncertainty, contradiction. 
(Edgar Morin, On Complexity, 2008: 6)

The natural, social, economic and political 
worlds are increasingly characterized by 
instability, volatility and disruptive change. It 
is a world in which the improbable, the 
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unanticipated and the downright catastrophic 
seem to occur with alarming regularity. 
Witness the shocking events of 9/11, the 
Asian Tsunami disaster of December 2004, 
the global financial crisis of 2008 precipi-
tated by the collapse of the sub-prime mort-
gage sector in the United States, and the 
recent boldly-coordinated terrorist attack in 
Mumbai in November 2008. ‘Black Swans’ 
(Taleb, 2007), those outlier events that occur 
beyond the realms of regular expectation and 
that turn out to have dramatic consequences 
for our everyday lives, abound in virtually 
every aspect of society; from the natural to 
the political, the economic and the social. 
What we do not know or do not expect seems 
intent on thwarting our best laid plans and 
disrupting our everyday lives in innumerable 
ways. We are constantly forced to reassess 
our understanding of how the world works 
and how we may learn to adapt to and cope 
with the challenges we face as best as we can 
given the uncertainties we find ourselves in. 
In other words, it is a genuinely complex, 
multi-faceted and globally intertwined world 
that we live in today.

A complex world, however, calls for 
complex thinking: thinking that issues from 
the intimacy and immediacy of pure lived 
experience (James, 1912/1996: 23; Nishida, 
1921/1990: 3; Ruskin, 1927, Vol. XV: 27; 
Morin, 1977/1992: 392–393); thinking that 
acknowledges and embraces the inherent 
messiness, contradictions and puzzling char-
acter of reality (James, 1911/1996: 50; Morin, 
2008: 6); thinking that resists or overflows 
our familiar categories of thought (James, 
1911/1996: 78–79; Whitehead, 1926/1985: 64; 
Bergson, 1946/1992: 161–162; Morin, 
1977/1992: 393); and thinking that is sensi-
tive to the suppressed/marginalized ‘other’ 
that is denied legitimacy in our dominant 
scheme of things (Marcuse, 1964: 144–147; 
Ehrenzweig, 1967: 38–39; Said, 1978: 2–9; 
Lacan, 1986: 203–207). It acknowledges that 
we must remain constantly alert to the taken-
for-granted assumptions that continue to 
exert a vice-like grip on our habit of thought. 
Our thought, says Edgar Morin, ‘must lay 

siege to the unthought which commands and 
controls it … we need a principle of knowl-
edge that not only respects but reveals the 
mysteries of things’ (Morin, 1977/1992: 16, 
emphasis original). It entails recognition that 
all forms of seeing and knowing involve the 
simultaneous act of foregrounding and back-
grounding: that there is an inevitable blind-
ness in seeing and an unacknowledged 
‘owing’ in our ‘kn-owing’. In directing our 
attention to the unthought, complex thinking 
heightens awareness of our ignorance. We 
must start by extinguishing false certainty, 
says Morin, setting out only in ‘igno-
rance, uncertainty, confusion. … Uncertainty 
becomes viaticum; doubt of doubt gives 
doubt a new dimension, the dimension of 
reflexivity … the acceptance of confusion … 
becomes a means of resisting mutilating sim-
plification’ (Morin, 1977/1992: 10). This 
is the radical starting point for genuinely 
thinking complexity.

The rather paradoxical ‘argument’ that we 
make here is that complex thinking is better 
appreciated as a cultivated predisposition 
resulting from the gradual complexifying and 
subverting of efficiency-based habits of 
thought. In other words, a complex way of 
thinking is attained indirectly and ‘ineffi-
ciently’: obliqueness in approach is key to 
the apprehension of complexity. Complex 
thinking, as such, arises non-deliberately as a 
‘negative capability’ (Keats, 1817); the abil-
ity to think complexly is an emergent out-
come of sustained resistance to the dominant 
orthodoxy rather than a deliberately culti-
vated predisposition. The direct and instru-
mental approach to inquiry and knowledge 
acquisition that characterizes the scientific 
approach must, therefore, be set aside and an 
intellectual space or conceptual ‘clearing’ 
created for the pristine experiences of life to 
speak to us on their own terms and in their 
own time. Instead of confronting our objects 
of inquiry directly, we need to embrace more 
subtle strategies of engagement that acknowl-
edge the primacy of the heterogeneous and 
multidimensional becoming of things, events 
and situations (Bergson, 1911; Whitehead, 
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1929; Prigogine, 1981). The nature and 
quality of emergence from the simple to the 
complex constitutes a multifaceted, inter-
twined and unfolding drama; an adventure 
into the unknown that unavoidably and simul-
taneously shapes our own futures and our 
sense of self. We show here how, in philoso-
phy, the arts, literature and the humanities, 
this awareness of the value of complex rela-
tional thinking and the deficiencies associ-
ated with a simplifying, frontal approach in 
understanding and dealing with the world, 
has led to the development of a more nuanced 
set of ‘suggestive’ strategies for apprehend-
ing the complexities of social life. We end by 
exploring some implications of complex 
thinking and the indirect approach associated 
with it for understanding managerial action.

LEARNED IGNORANCE: 
ON COMPLEXITY AND INNOCENCE

Layman: I am amazed at your pride because 
although in perusing countless books you tire 
yourself with continual reading, you have not yet 
been brought to a state of humility. … True 
knowledge makes one humble. …’ (Nicholas of 
Cusa, Idiota de sapienta, 1450/1996: 497)

Socrates was wise because he was acutely 
aware of his ignorance and of how much 
effort it took to confront it. But as Allan 
Bloom (1987: 40–43) points out, ‘Socrates 
only knew, after a lifetime of unceasing 
labour, that he was ignorant. Now every high 
school student knows that. How did it become 
so easy?’ How indeed has it become possible 
for us to take our ignorance so lightly? How 
have we become so comfortable and blasé 
with knowing that we do not know? One pos-
sible answer lies in the fact that within 
conventionally established frameworks of 
understanding, ignorance is generally defined 
as a ‘gap’ in our knowledge; a technical prob-
lem, something that can be easily overcome 
or rectified through the incremental process 
of acquiring more knowledge or information. 
Socratic ignorance, however, is an ignorance 

that is acutely attuned to the background 
‘unthought’ that circumscribes the thinkable 
and knowable. Socrates was acutely aware of 
what he did not know. He was always already 
the exemplary complex thinker acutely 
attuned to the possibility of otherness. The 
literary critic Barbara Johnson echoed this 
deeper insight on the importance of the 
unthought when she wrote most passion-
ately: ‘Ignorance, far more than knowledge, 
is what can never be taken for granted. If I 
perceive my ignorance as a gap in knowledge 
instead of an imperative that changes the 
very nature of what I think I know, then I do 
not truly experience my ignorance’ (Johnson, 
1989: 16). In other words, it is only when we 
become painfully aware that it is ignorance 
of our ignorance, and not simply a gap in 
knowledge, that prevents deep insights into 
the human condition, only then do we begin 
to glimpse that illusive realm of complex 
thinking that characterizes Socratic 
ignorance.

The fifteenth century German cleric 
Nicholas of Cusa (1440/1981) calls this 
enlightened state of reflexive awareness 
learned ignorance. It is a condition that recog-
nizes the inherent limitations and hence falli-
bility of conceptual knowledge and draws us 
to the realization that the richness and com-
plexity of social phenomena we apprehend 
must be allowed expression on their own 
terms rather than in terms of pre-established 
categories of thought that have been inspired 
by the imperatives of high modernism. In this 
spirit of learned ignorance we begin to appre-
ciate more deeply that the modern conscious-
ness has been shaped by a ‘paradigm of 
simplification’ (Morin, 1977/1992: 376); a 
reductionist impulse which elevates the 
abstract linear, the fixed, the atomistic, and the 
bounded. This paradigm of simplification 
‘disenchanted’ and ‘devastated’ the universe 
‘tearing her secrets from Nature … Reduction 
and simplification, necessary to analysis, 
became the fundamental generators of research 
and explanation, hiding all that was not sim-
plifiable … things became objective: inert, 
fixed … bodies always moved by exterior 
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laws … Science is totally unconscious of the 
praxic, metaphysical, anthropocentric charac-
ter of its vision … Doctor Jekyll does not he is 
Mr Hyde’ (Morin, 1977/1992: 373–374).

As a result, we are not good at thinking 
process, movement, flux, or transformation 
on their own terms. Our instinctive concep-
tual skills favour the static, the separate and 
the self-contained. Taxonomies, hierarchies, 
systems, structures and isolatable agencies 
represent the instinctive vocabulary of institu-
tionalized thought in its determined subordi-
nation of dynamic complexity, inextricable 
relationality and precarious emergence that is 
so characteristic of lived experiences. The 
‘blooming, buzzing confusion’ (James, 
1911/1996: 50) that is very much the reality 
of our lived experiences is denied conceptual 
legitimacy even as they overflow our con-
ceptual apparatus with rampant disdain. 
Consequently, the kind of knowledge acquired 
through this paradigm of simplification ‘is 
forever inadequate to the fullness of the real-
ity to be known’. They are ‘secondary forma-
tions, inadequate, and only ministerial … 
they falsify as well as omit’ (James, 
1911/1996: 78–79). What we are provided 
with, therefore, is a distorted and reductive 
view of reality; the kind of ‘mutilating think-
ing’ that causes us to miss much of what life 
as actively lived offers us. ‘When you under-
stand all about the sun and all about the 
atmosphere and all about the rotation of the 
earth’ says the philosopher Alfred North 
Whitehead, ‘you may still miss the radiance 
of the sunset’ (Whitehead, 1926/1985: 248). 
In short, possession of such knowledge in no 
way assures an intimate appreciation of the 
richness of lived reality. Instead, it is a more 
intimate form of knowing that is inextricably 
associated with what we call here complex 
thinking; thinking that works relentlessly to 
exhaust itself of dependence on categories in 
order to open itself to re-discovering the inno-
cence of lived experiences. It ‘exhumes and 
reanimates the innocent questions that we 
have been trained to forget and despise … 
there are more affinities between complexity 
and innocence than between innocence and 

simplification’ (Morin, 1977/1992: 392–393). 
But how have we come to take this paradigm 
of simplification, this systematic disenchant-
ment of the world as the founding basis for 
our comprehension of social life? How have 
we come to develop and privilege strategies 
of engagement that have downplayed the 
importance of the innocuous, the vague, the 
peripheral and the innocent in our dealings 
with affairs of the world? The starting point is 
to examine a most self-evident epistemologi-
cal stance underpinning both academic 
research and modern human action; the wide-
spread belief in the superior efficacy of a 
direct, rational approach in dealing with 
social phenomena in order to render them 
more comprehensible and hence amenable to 
productive action.

THE DIRECT APPROACH IN HUMAN 
ENGAGEMENTS

[i]n the Gaze, the painter arrests the flux of the 
phenomena, contemplates the visual field from a 
vantage-point outside the mobility of duration, in 
an eternal moment of disclosed presence … The 
Gaze is penetrating, piercing, fixing, objectifying. 
(Bryson, 1982: 94)

Within the still-dominant Western tradition 
of thought it is generally accepted that the 
way to understand and deal with both mate-
rial and social phenomena is to directly 
apprehend them using the most efficient 
investigative tools and/or conceptual appara-
tus available to arrive at a thorough and com-
prehensive understanding of the latter. The 
natural instinct is to address that which inter-
ests us, differentiating it from that which 
does not, meticulously dissecting and reduc-
ing the isolated phenomenon under investi-
gation to its component parts, and then 
proceeding to systematically represent each 
of these part-elements using pre-established 
concepts and categories. A closely-coupled 
causal explanation involving the identifying 
of a constant conjunction of precedent and 
antecedent events is then employed to 
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produce a satisfactory and comprehensive 
account of the phenomenon under investiga-
tion. This sequence of analytical steps pro-
vides the basis for a rigorous form of scientific 
research that is by now familiar to most. Yet, 
it is this very analytical procedure of focused 
separation, reduction and abstraction that 
ultimately ‘mutilates’ and distorts that which 
we are seeking to comprehend. For Morin, 
the ontology of Western science has been 
‘founded on closed entities, such as substance, 
identity … causality, subject, object’ etc. 
(Morin, 2008: 34). According to this sub-
stance ontology (Rescher, 1996: 27), proc-
esses, relations, and interactions are construed 
as epiphenomenal attributes of essentially 
self-identical entities. Commitment to this 
substance ontology entails prioritizing: sub-
stance over activity; discrete individuality 
over interactive relatedness; descriptive fixity 
over productive energy; and classificatory 
stability over fluidity and evanescence 
(Rescher, 1996: 31–35). What Rescher 
usefully clarifies and what Morin is alluding 
to is a whole tradition of Western thought 
since Aristotle which has been based on a 
metaphysical assumption regarding the 
unproblematic self-identity of things.

According to this Western tradition, 
something is not deemed real unless it is capa-
ble of enduring in time and hence is capable of 
being assigned an identity. Things, events and 
situations are believed to present themselves 
fully to us at any moment in time so much so 
that their meaning and significance is fully 
exhausted by the immediacy of their presence 
before us. We are deemed to have an unmedi-
ated access to meaning in all its totality with-
out there being any hidden remainder. This 
metaphysical stance has been problematized 
by the German philosopher Martin Heidegger 
(1962) and labelled ‘metaphysics of presence’ 
by the French philosopher Jacques Derrida 
(1984) in his deconstruction of Western logo-
centrism. What Morin is alluding to and what 
Rescher has usefully clarified is this wide-
spread reliance by Western thought in general 
and Western science in particular on such 
a ‘metaphysics of presence’ which treats 

substance, presentness, and self-identity as 
ontologically unproblematic. This unques-
tioning acceptance, in turn, encourages a 
confident direct approach in apprehending a 
phenomenon when attempting to understand 
and explain it. The methods of research and 
inquiry inspired by this intellectual predispo-
sition are thus underwritten by the desire to 
gain direct and immediate access to that which 
we are attempting to comprehend. This is an 
approach which appears to work particularly 
well when dealing with relatively stable and 
unchanging physical entities. It is less effec-
tive when dealing with living systems such as 
biological entities and becomes highly ques-
tionable when addressing the more ephemeral 
realms of the social and the symbolic. Yet, 
these potential limitations have not discour-
aged sustained attempts to address issues in 
the social world with this approach developed 
primarily within the physical sciences.

Such directness of approach is deemed to 
be more efficient in the production of proper 
knowledge, more consistent with established 
scientific practices and ultimately more reso-
nant with the progressive values of a modern 
democratic society where order, transparency 
and accountability are highly prized. Clarity, 
precision and parsimony are highly valued 
aspects of this dominant Western disposition 
well exemplified by ‘Occam’s razor’ and 
widely employed as guiding principles in 
scientific investigations as well as for dealing 
with the world of human affairs. The clamour 
for clarity in any programme of action, deci-
siveness in implementation, and immediacy 
in the attainment of results is everywhere 
present in the functioning of modern society 
and in particular in the world of business. 
Witness the ever-widening demand for focus, 
transparency, control, accountability and evi-
dence-based practice as well as the almost-
obsessive use of statistics and league tables in 
virtually every domain of social, economic 
and political life to aid rapid decision-making. 
The underlying Western disposition, whether 
it be addressing issues in science, politics, 
society or business remains one of direct, 
frontal engagement with identified issues and 
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problems in order to assure their expedient 
resolution. But where has this penchant for 
approaching directly and decisively in the 
realm of human affairs come from and what 
are its wider consequences for our under-
standing of the human condition? One 
possible explanation comes from a study of 
the history of warfare in the West.

ADVOCATING THE VIRTUES 
OF DIRECT ENGAGEMENT IN 
WARFARE AND PUBLIC AFFAIRS

[w]hat might appear pure carnage in this frontal 
clash corresponds to a principle of economy. 
(Jullien, 2000: 41)

The ancient military scholar Victor Davis 
Hanson maintains that there is much evi-
dence to suggest that this preference for and 
advocacy of the virtues of direct engagement 
and confrontation in human affairs is tracea-
ble to a decisive shift in the manner in which 
warfare was conducted in ancient Greece 
after about the period beginning from the 
seventh century BC. For Hanson, it was the 
ancient Greeks during this period who first 
insisted on the superiority of a face-to-face 
frontal clash between opposing armies as the 
most appropriate way to do battle. Henceforth, 
a new structure, the phalanx, was introduced 
in which two bodies of heavily armed and 
cuirassed hoplites were made to advance in 
tight formation towards the enemy with no 
possibility of fleeing from a direct head-on 
confrontation with the latter. This frontal 
spectacular clashing of opposing forces rep-
resented a mode of engagement deemed most 
laudable in the practice of warfare. To win by 
any other means such as through harassment, 
evasion, ambushes or skirmishes was to 
‘allow … one side to “cheat” in a victory 
achieved by some means other than their own 
bravery in battle’ (Hanson, 1989: 224). Skill 
in strategic manoeuvres and the use of cun-
ning and deceit were rejected in favour of the 
supreme display of courage exhibited at the 

crucial moment of encounter. Heroic and 
spectacular engagements and interventions 
became the preferred modus operandi first in 
warfare and then subsequently in dealing 
with human affairs.

François Jullien (2000: 44) notes that a 
certain irresistible homology exists between 
the form of strategic engagement employed 
on the battlefield and that in theatre of social 
life. The ‘face-to-face confrontation of the 
phalanxes on the battlefield (has) an equiva-
lent in the face-to-face oratory and debate 
characteristic of modern democracies’. What 
is ubiquitous to the latter is its receptivity and 
willingness to embrace open dissent, public 
confrontation and debate and the employ-
ment of the art of disputation as the founding 
basis for societal progress. For Jullien, this 
‘agonistic structure of confrontation’ exists 
‘whether in the dramatic, the judicial, or the 
political realm’ (ibid.). Hence, if a homology 
exists between warfare and public perform-
ances it is because both share the same 
confrontational habitus or predisposition 
(Bourdieu, 1990) as their preferred mode of 
engagement; one that leads to the valoriz-
ing of agency, intentionality, decisiveness, 
immediacy and spectacular outcomes; it is a 
practice that is ennobled by the language of 
radical discontinuities, revelations and revo-
lutions. Victory is accomplished in triumphal 
terms.

This figure of confrontation highlights the structure 
of the antagonistic thrust. Once two lists enumer-
ating the advantages of the two sides of an argu-
ment have been established like two opposing 
phalanxes one settles the question merely ‘by 
saying which list is longer or present greater 
advantage’ … it is always by surplus – of argu-
ments presented, not of secret obliqueness – that 
a victory is won. (Jullien, 2000: 47)

This penchant for dramatic, spectacular 
actions and interventions may be found in 
virtually every walk of life in the West particu-
larly in the United States and, increasingly, 
with its vast reach and global influence, in 
virtually every other part of the world. From 
the glitz and glitter of presidential campaigns 
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to the high drama of reality television, the 
glamour and hero-worshipping of movie stars 
and sporting super-heroes, to the insatiable 
appetite for eye-catching and attention-grab-
bing marketing stunts and ultimately, in the 
world of business, to the irresistible tendency 
to lionize successful corporations and captains 
of industry for their impressive short-term 
achievements; all these are symptomatic of a 
deeply-entrenched adulation for the dramatic 
within the realm of human affairs. The natural 
attitude of the democratic West, born of this 
ancient legacy, therefore, has been to eulogize 
transparency of intention, openness of compe-
tition, and the direct and heroic mobilization 
of available resources and capabilities to spec-
tacularly achieve a widely publicized end. 
Yet, such directness in approach, both in deal-
ing with human affairs and in human inquiry, 
carries with it inevitable downsides.

THE DOWNSIDE OF DIRECT 
APPREHENSION

[u]like with action, which is always ‘one-off’, 
transformation affects the concerned collection of 
elements at every point … transformation is ‘with-
out locale’. Not only is it not local, as action is, but 
it is impossible to localize … its effects are diffuse, 
all-pervading, never limited. (Jullien, 2004: 57)

In his detailed comparison between spectac-
ular action and silent transformation, Jullien 
(2004: 46) suggests that there are significant 
downsides to the direct approach in appre-
hending and dealing with phenomena. This is 
why, unlike many of their Western counter-
parts, ancient Chinese military strategists 
advocated relying on the natural ‘propensity 
of things’ to bring about social and political 
transformations. Avoiding confrontation and 
‘going with the flow’ is almost second-nature 
to Orientals. In all forms of direct engage-
ment, the explicit aim is the immediate over-
powering and subjugating of an adversary, be 
it an enemy, a competitor, an object of inquiry 
or even passive nature itself. In warfare for 
instance, the aim is the annihilation of the 

enemy, while in a free market situation, busi-
ness strategy is directed at eliminating or 
overcoming the threat of competition. 
Similarly, in research and inquiry, the object 
of investigation is treated in many ways like 
an adversary to be tamed, subdued and 
brought into the orderly fold of proper knowl-
edge. In all three instances, this direct form 
of engagement results in the active destruc-
tion or ‘mutilation’ of the adversary in ques-
tion. As an old Chinese saying goes, ‘wherever 
he treads, the grass under his feet shrivels 
and dies’. Our insensitivity and clumsiness in 
directly approaching and handling the phe-
nomenon of complexity frontally may well 
cost us that very comprehensive understand-
ing we seek. But why exactly is it that direct 
frontal engagement often destroys? This is a 
question that must be explored in some 
depth.

Spectacular action is, by definition, 
external action that decisively intervenes and 
hence interrupts the natural course of things. 
It is as such unavoidably intrusive.

Because it impinges from outside … by forcing 
itself into the course of things, it … tears at the 
tissue of things and upsets their coherence … 
(and) inevitably provokes elements of resistance, 
or at least of reticence … that … block and quietly 
undermine it. (Jullien, 2004: 54)

Moreover, such external intervention, because 
it intervenes at one moment and not another, 
tends to attract attention; it becomes a spec-
tacle that forces itself onto our attention 
thereby becoming an ‘event’ to be accounted 
for. Its ‘asperity … provides a hook on which 
to hang a story’ (Jullien, 2004: 55). Yet, 
despite its spectacular nature, it is more 
likened to a momentary ‘shower of spray, 
against a silent background of things … The 
tension that it produces may well satisfy our 
need for drama … but it is not efficacious’ 
(ibid.). In other words, direct, spectacular 
heroic and decisive action may provide us 
with drama and excitement but it is not nec-
essarily the most efficacious or productive 
both in terms of deep learning and/or longer-
lasting effectiveness. In contrast, a more 
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oblique and circuitous form of engagement, 
because it harmonizes with the status quo 
and is perceived to be non-threatening, may 
surprisingly bear more productive fruit than 
the direct, frontal approach widely advo-
cated. The efficacy of such an elliptical 
approach in apprehending and dealing 
with complexity is all the greater the more 
discreet and unnoticed it is.

APPROACHING COMPLEXITY 
OBLIQUELY: ANAMORPHOSIS 
AND COMPLEX THINKING

… ‘to point at the chicken to insult the dog’ … the 
obliquity of the trajectory leads to a depth of 
meaning. (Jullien, 2000: 49–53)

Anamorphosis is an optics term which refers 
to a seemingly deformed and distorted image 
that only appears recognizable when viewed 
from a certain oblique angle. It is a visual 
cryptogram in which the image escapes 
immediate coherence when viewed frontally 
but becomes only comprehensible when 
viewed obliquely from a tangential point of 
view. In order to decipher the anamorphic 
configuration one must first relinquish one’s 
dominant perspective and embrace a com-
pletely new perceptual vantage point so as to 
lose the ‘obviousness’ of what one sees in 
order to discover its new sense. The etymol-
ogy of the word derives from a combination 
of two Greek terms “ana” meaning ‘turning 
back’, and “morphosis” meaning ‘a shaping’.

One of the most well-known illustrations of 
this unusual feature in art which has caused 
much controversy in terms of its interpretation, 
is Han Holbein’s The Ambassadors painted in 
1533. In showing the portraits of Jean de 
Dinteville and Georges de Selves, prominent 
figures at the court of Henry VIII, amidst a 
plethora of Renaissance objects Holbein cre-
ated a timeless masterpiece whose meaning 
and symbolism have been argued over for cen-
turies now. The by-now familiar background 
objects in The Ambassadors – navigational 

instruments, a book of arithmetic, a lute, etc. 
– are drawn in a linear, frontal and single-
pointed perspective bringing into focus the 
ambitions and achievements of Renaissance 
man. In contrast, the indistinct spot or elon-
gated, oval-shaped blot that cuts diagonally 
across the lower half of the painting interrupt-
ing the spectacle presented draws attention to 
the limits of direct frontal vision. It is a 
blurred, seemingly incomprehensible smear. 
Viewed from an oblique angle rather than 
frontally, however, the blot turns out to be the 
distorted image of a human skull.

The classic interpretation of the skull is 
that it marks Holbein’s ironic commentary on 
the vanitas of Renaissance science. The skull-
blot in Holbein’s painting signifies the funda-
mental antagonistic relation between frontal 
order and obliquity; that of the explicitly 
known and directly accessible and the tacit 
and unknown background upon which the 
achievements of the Renaissance are founded 
and sustained. The anamorphic figure of the 
skull renders explicit the limitations and one-
sidedness of human vision and knowledge: 
we can either see the painting frontally or 
from the side but not both at the same time.

Anamorphosis reminds us that the direct, 
frontal apprehension and manipulation of 
reality has its limits: that there is an inevita-
ble lack in all forms of knowledge gained 
through this direct mode of engagement; our 
forms of knowing, for which direct appre-
hension and representations plays a central 
role, always implies a certain ‘debt’ or owing 
that can only be grasped obliquely rather 
than frontally. Contemplating the skull 
renders us more acutely aware of the outer 
limits of representational knowledge. Thus, 
for all its detailed attention on the material 
achievements of the Renaissance and the 
rational structure associated with it, arguably 
the true subject of The Ambassadors is para-
doxically what is directly unknowable and/or 
unrepresentable. In this encounter with 
Holbein’s anamorphic figuration, and the 
disruptive experience it provokes, complexity 
becomes fundamentally an existential 
experience of the sublime that issues from an 
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immersed and prolonged engagement 
between the beholder and the beholden. 
Complexity is not merely an external phe-
nomenon to be studied, understood and 
objectively applied in the resolution of prob-
lematic situations. Rather, it is fundamentally 
a subjectively felt disorienting experience 
involving the breaking down and blurring of 
categories, boundaries and distinctions; of 
that between the observer and the observed; 
of that between knowledge and action; and of 
that between identity and difference. In this 
regard, we are more aligned with Morin’s 
insistence that ‘complexity asserts itself first 
of all as an impossibility to simplify, it arises 
when … distinction and clarities in identities 
are lost, where disorder and uncertainty dis-
turb phenomena, (and) where the subject/
object surprises his own face in the object of 
his observation’ (Morin, 1977/1992: 386). 
What this implies is that complexity is neces-
sarily an acutely-experienced sense of the 
inadequacy of representation coinciding with 
‘the limits of our ability to comprehend’ 
(Morin, 2008: 20). It is a humbling recogni-
tion and acceptance that there is no ultimate 
‘god’s eye point of view’ from which to com-
prehensively apprehend the world to affirm 
any presumed certainties and that each sense-
making attempt and grasping action is no 
more than a tentative wager, an attempt to 
structure some much-needed coherence 
around ourselves so as to make life more 
meaningful and hence liveable.

THE MYSTERY OF COMPLEXITY 
AND THE VIRTUES OF VAGUENESS

It is, in short, the reinstatement of the vague to its 
proper place in our mental life which I am so anx-
ious to press on the attention. (William James, 
‘Stream of Thought’, Principles of Psychology, 
1890: 252–253)

The French existentialist philosopher 
Gabriel Marcel in his Gifford lectures 
delivered at the University of Aberdeen in 
1949 and subsequently published in a book 

entitled The Mystery of Being (1951) makes 
a useful distinction between a ‘problem’ or 
‘puzzle’ and a ‘mystery’. Whilst a problem or 
puzzle can in principle be solved to some 
degree of satisfaction, a mystery can be illu-
minated through inquiry and investigation, 
yet despite such illumination the mystery is 
never ever dispersed. Each illumination 
only serves to further deepen the mystery. 
Problems are generally perceived as situa-
tions that are effectively detached from one-
self and one’s identity. I may choose to take 
up a problem, ignore it or circumvent it in 
order to get on with my life. A mystery, on 
the other hand, is a different thing. It gnaws 
at our being. How each of us confronts and 
responds to a mystery reveals who we are, 
what we think of ourselves and how we learn 
to cope with it. A mystery is unavoidably and 
inextricably intertwined with our own sense 
of identity. In seeking to resolve an irresolv-
able mystery, I am in effect embarking on an 
interminable quest to discover myself; seek-
ing to forge my own destiny and self-identity. 
The questions who I am, why I am here and 
what am I to be, become inseparable from 
what I do. In this regard, whilst the solving of 
problems reflects our expertise, skill and 
competence, engagement with a mystery 
constitutes the passage towards self-discov-
ery, self-cultivation and self-enlightenment.

It is just such an acknowledgement of the 
mysteries and complexities of life that ani-
mates the work of great artists, thinkers and 
poets, whose works are invitations to us to 
immerse ourselves in the vagaries of our own 
lived experiences. Their works are necessarily 
evocational rather than informational; they 
seek to illuminate rather than to problem-
solve. They invite our active participation, 
reflection and hence self-transformation. One 
such memorable and provocative piece of 
work is that of the poet John Keats who draws 
us into the mystery of a Grecian urn which he 
happened upon in one of his visits to a museum 
in London. Ode on a Grecian Urn (Keats, 
1884: 41) invites us to ponder on what is 
contained in the history of an ancient piece 
now standing quietly and unobtrusively in a 
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corner in the British museum. The urn’s deco-
rative carvings depicts characters and plants 
that possibly betray the happenings of a bygone 
age and this makes Keats ponder on what tale 
lay hidden behind its physical presence.

Thou still unravished bride of quietness
Thou foster child of silence and slow time
Sylvan historian, who canst thus express
A flowery tale more sweetly than our rhyme
What leaf-fringed legends haunts about thy 
 shape
Of deities or mortals, or of both
In Tempe or the dales of Arcady?
What men or gods are these? What maiden 
 loath?
What mad pursuit? What struggle to escape?
What pipes and timbrels? What wild ecstasy?

Keats here invites us into the unfathomable 
mystery that surrounds the Grecian urn by 
drawing our attention to the historical back-
ground, to its rich unaccounted and unac-
countable absence that renders possible its 
eventual presence as a solitary showpiece in a 
faraway British museum. Reading Keats, we 
are left with a sense of incompleteness and of 
irreducible uncertainty. We cannot ever really 
know. Nevertheless, by dwelling in the unan-
swered mystery that is the Grecian urn, we are 
led to gradually appreciate more and more the 
power and fecundity of vagueness and ambi-
guity in evoking our inner sensibilities. There 
is a certain inexhaustible richness and com-
plexity about whatever is met in human expe-
riences. Vagueness, it seems, can be a virtue 
in that it elicits our awareness of the necessity 
for complex thinking. The same impulse 
towards the complex can be discerned in our 
encounters with the imperfect.

THE SUBLIMINAL APPEAL 
OF THE IMPERFECT: RUSKIN’S 
‘NOBLE PICTURESQUE’

Imperatively requiring dexterity of touch, they 
gradually forgot to look for tenderness of feeling; 
imperatively requiring accuracy of knowledge, 
they gradually forgot to ask for originality of 

thought. … they were left to felicitate themselves 
on their small science and their neat fingering. 
(Ruskin, 1903–1912, Vol. XI: 15)

The love for the richness and the oftentimes 
inexplicable attractiveness of the old, the 
gnarled and the decayed – an appreciation of 
the detailed variety of life experiences, in 
contrast to the neat and well-ordered sym-
metries we ordinarily encounter – led the art 
critic and social reformer John Ruskin to coin 
a phrase the ‘noble picturesque’ to describe 
the sentiment that the former seems to inex-
plicably evoke in many of us. He reflects on 
this experience on one of his many visits to 
Calais:

I cannot find words to express the intense pleasure 
I have always in first finding myself, after some 
prolonged stay in England, at the foot of the old 
tower of Calais church. The large neglect, the 
noble unsightliness of it; the record of its years 
written so visibly, yet without sign of weakness or 
decay; its stern wasteness and gloom, eaten away 
by the Channel winds; and overgrown with the 
bitter sea grass; its slates and tiles all shaken and 
rent, and yet not falling; its desert of brickwork, 
full of bolts, and holes, and ugly fissures, and yet 
strong like a bare brown rock; its carelessness of 
what anyone thinks or feels about it, putting forth 
no claim, having no beauty or desirableness, 
pride, nor grace; yet neither asking for pity. … 
(Ruskin, 1903–1912, Vol. VI: 11)

Ruskin contrasts this with the ‘spirit of 
trimness’ found in nineteenth century 
England; the predictable ‘spikiness and 
spruceness’ exemplified by their neat and 
orderly fencings and gates, their well-cared 
lawns, the smooth paving stones and hard, 
even, rutless roads. Here in this orderly and 
ordered Victorian world, there was little 
‘confession of weakness’ that made it all the 
more unattractive. For Ruskin, somehow, the 
gnarled, the weathered, and the decayed 
harbour a strange attractiveness that awakens 
in us an appreciation for the nobility of 
impoverishment and the ‘unconscious suffer-
ing’ endured by ‘unpretending strength of 
heart’ (Ruskin, 1903–1912, Vol. VI: 14). It is 
such an aesthetic appreciation for the noble 
picturesque that helps us to recognize that the 
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complexity in social life and management is 
not reducible to the trimness and predictabil-
ity of an established order. Rather, social life 
is ennobled by the chaos and inherent messi-
ness found in everyday situations and the 
way they often surprisingly generate multiple 
possibilities and outcomes of their own 
accord.

The obsessive desire to always intervene, 
to make things tidier and to restore what is 
considered imperfect, results in a lack of 
substance; a simplifying uniformity that is 
relatable to Morin’s ‘paradigm of simplifi-
cation’. In modern designed architecture, 
for instance, buildings lose their distinction 
for want of contrast. Each architect and 
worker is compelled by the imposed common 
purpose to achieve a unitary outcome. The 
character of the buildings become ever more 
anodyne. In gothic architecture, however, 
the contrasts are changed, almost at whim, 
lest they become too uniform; squares are 
met with diamonds, verticals with curves 
and courses with alternates. The whole is a 
local assemblage, making full use of avail-
able materials in their most unadorned form 
and free from the over-weaning strictures of 
an imposed end-point or purpose. This 
gothic sensibility intimately associated with 
Ruskin’s notion of the ‘noble picturesque’ 
encapsulates an attitude, not of passivity, 
but of enduring life as naturally as is possi-
ble, to immerse oneself in the open-ended 
intricacies of nature without hankering after 
completion, essences and certainty. The 
gothic takes as a pattern nature itself; its 
tempering and massing of light and shade, 
of colours, of rock and foliage, of sky and 
earth, in ways that cannot be reduced to 
constituent elements or repeating sym-
metries. Ruskin’s veneration of the great 
gothic cathedrals of Europe was born of this 
recognition. The buildings hit you not 
because of their perfection and complete-
ness, but their animated endurance. They 
were built over generations in a spirit of 
belonging, penitence, humour and emer-
gence; becoming collective expressions of 
lived tradition.

Ruskin’s ‘noble picturesque’ and gothic 
sensibility in their elevation of the varied, the 
nuanced, and the imperfect, mirror the inher-
ent frailties and the limitations of human 
comprehension and encapsulate obliquely 
the kind of complex thinking we have identi-
fied to be well appreciated in the arts and 
humanities. Against the spectacular, confi-
dent, well-ordered precision of Renaissance 
designs, the gothic sensibility, with its open-
endedness, transparent honesty and frank and 
public confession of weakness, reverberates 
much more with the lived experiences and 
vulnerability of everyday lives, including 
especially those of organization and manage-
ment practitioners. These are the very quali-
ties that make for a deeper appreciation of 
what a ‘paradigm of complexity’ implies in 
researching and understanding organization 
and in the practice of management.

COMPLEXITY AND THE OBLIQUE 
APPROACH IN MANAGEMENT: 
DISCERNING THE HIDDEN 
PROPENSITY OF THINGS

The history of strategy is, fundamentally, a record 
of the application and evolution of the indirect 
approach … The indirect approach is as fundamen-
tal to the realm of politics as it is to the realm of 
sex. (Basil Liddell-Hart, Strategy: 1967, pp. xix–xx)

An appreciation of the ubiquity of complexity 
leads to the cultivation of an oblique and 
nuanced approach to management; one that 
recognizes the limitations and frequently 
self-defeating consequences of directly 
attempting to confront and overcome prob-
lems when dealing with the world of human 
affairs. Paradoxically, the more a specific 
management situation is directly and deliber-
ately apprehended, the more likely it is that 
such actions generate adverse ripple effects 
that eventually work to undermine their own 
initial successes. This is because direct inter-
ventionist action is by nature intrusive: it 
forces itself into the natural course of things 
and ‘inevitably … tears at the tissue of things 



COMPLEX THINKING 193

and upset their coherence’ (Jullien, 2004: 54, 
in Chia and Holt, 2009: 191) invariably 
provoking elements of resistance that work 
to undermine it. Thus, the more obsessively 
bottom-line and success-focused an organi-
zation is, the more it tends to gloss over the 
very crucial, but mundane factors that make 
such success possible in the first place. Or as 
the eminent economist John Kay (2010: 8) 
rightly observes, in his latest book Obliquity: 
Why Our Goals are best Achieved Indirectly, 
‘Happiness is not achieved through the pur-
suit of happiness. The most profitable busi-
nesses are not the most profit-oriented. The 
wealthiest people are not the most assertive 
in the pursuit of wealth. The greatest paint-
ings are not the most accurate representations 
of their subjects’. This counterintuitive 
thinking is very much in keeping with a 
deep appreciation of the real significance 
of complexity in human affairs.

A corollary of this profound insight is that 
action that is generally deemed peripheral to 
explicitly-stated ends may surprisingly prove 
more efficacious in bringing about the desired 
outcome sought. Indirect, oblique action is 
often more silently efficacious. Action that is 
deemed oblique in relation to specified ends 
can often produce more dramatic and lasting 
effects than direct, focused action (Chia and 
Holt, 2009: x). Seemingly insignificant small 
gestures, that often go unnoticed, may pro-
duce transformational effects that reach far 
beyond their scene of initiation. It appears 
that there may be more wisdom in approach-
ing managerial situations more modestly and 
elliptically allowing priorities to emerge 
spontaneously through local ingenuity and 
adaptive actions taken in situ than in directly 
addressing and confronting the deficiencies 
identified. Such an unspectacular approach 
often proves more sustainable than dramatic 
interventions. Indeed, there is much evidence 
to suggest that in the history of social progress 
and evolution, favourable outcomes are often 
not the deliberate design and machinations of 
any one individual or institution but the col-
lective unintended outcome of a multitude of 
individuals each merely seeking to respond 

constructively to the predicaments they find 
themselves in. In other words:

in seeking to explain individual, corporate and 
societal accomplishments there is no need to recur 
to deliberate intention, conscious choice and pur-
poseful intervention. Collective success need not 
be attributable to the pre-existence of deliberate, 
planned and coordinated action. (Chia and Holt, 
2009: x)

This idea that outstanding accomplish-
ments are not necessarily the product of 
deliberate intention and action has been 
noted by the Scottish Enlightenment thinker 
Adam Ferguson in his study of the progress 
of civil society:

Mankind … in striving to remove inconveniences, 
or to gain apparent and contiguous advantages, 
arrive at ends which even their imagination could 
not anticipate … Every step and every movement 
of the multitude, even in what are termed enlight-
enment ages, are made with equal blindness to 
the future, and nations stumble upon establish-
ments, which are indeed the result of human 
action, but not the execution of any human 
design. (Ferguson, 1767/1966: 122, in Chia and 
Holt, 2009: 31, emphasis added)

Such un-designed spontaneous emergence 
identified by Ferguson has been taken up and 
advocated by the Austrian economist 
Frederich Hayek (1948) as the basis for 
understanding complex economic and social 
phenomena and this has also been shown, to 
have affinities with the new science of com-
plexity. It is an approach that provides us with 
an alternative basis for understanding and 
managing complexity. Contrary to the notion 
of deliberate, decisive and boldly executed 
action, this notion of ‘silent’ spontaneous 
emergence carries with it a number of impli-
cations with regards to how social phenom-
ena and especially managerial situations are 
to be viewed, investigated, apprehended, and 
dealt with.

There are three key orientations that can be 
associated with this more oblique approach 
to the management of complexity. First, the 
widespread notion that focused, decisive, 
and overt action is most efficient in engaging 
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with the world of affairs, must be tempered 
by a more subtle appreciation of how it is 
that oftentimes such direct interventions 
create unintended negative consequences 
because of the internal resistances they pre-
cipitate. Conversely, desired outcomes are 
often the unintended effect of mundane local 
coping actions that appear impressive only in 
retrospect. Hence, looking for and attribut-
ing successful achievements to the heroic 
intentions and rational actions of individuals 
or agents may prove counterproductive in 
our attempt to understand how it is in prac-
tice, positive results have actually been 
achieved. Second, in seeking a compelling 
explanation for such positive outcomes, we 
must resist the instinctive tendency to look 
towards externally-initiated spectacular or 
dramatic interventions as decisive ‘turning 
points’ in accounting for success. Rather the 
cause for transformation may be latent and 
immanent; there is an internal momentum or 
‘propensity of things’ (Jullien, 1999) that 
drive events and situations and this must be 
recognized and capitalized upon in the art of 
management. Finally, both researchers and 
practitioners must re-tune their sensitivities 
towards the hidden, the inconspicuous and 
the peripheral to fully appreciate the labyrin-
thine nature of everyday happenings.

Seeking the hidden, the 
inconspicuous and the peripheral

Complex thinking with its sense of the gothic 
and the ‘noble picturesque’ implies looking 
at the overlooked; sifting through the frag-
ments, cracks, variations and inconsistencies 
beneath the superficial gloss and appreciat-
ing how these surface appearances of coher-
ence and unity belie a deeper messier and at 
times logically incoherent managerial reality. 
It demands a certain resistance to the seduc-
tions of the dramatic, the spectacular and the 
eye-catching and the cultivation of an aes-
thetic sensitivity for the potentiality of the 
unshapely, the unsightly, the unwieldy and 
the unattractive. It requires a ‘re-education of 

attention’ (Chia, 2004); one that is particularly 
attentive to the hidden, the inconspicuous, 
and the marginalized ‘outliers’ (Gladwell, 
2008) that reside at the periphery of attention. 
For, it is only through painstakingly attend-
ing to the detailed and mundane matters of 
daily life that we begin to truly appreciate 
what goes on in the real world of organiza-
tion and management. Practising managers 
are so immersed in their everyday worlds 
that, for the most part, there is virtually no 
distance between thought and action. Their 
knowledge is, as the French sociologist 
Michel de Certeau puts it well, ‘as blind as 
that of lovers in each other’s arms’ (de 
Certeau, 1984: 93) and the logic of practice 
‘is not that of the logician’ (Bourdieu, 1990: 
86). Positive outcomes may ensue even 
though actors themselves may be unaware of 
how their actions and preferences belie an 
acquired consistency not of their own making. 
In pointing the way and creating a space for 
the legitimacy of non-deliberate action, de 
Certeau and Bourdieu, like Hayek and the 
Scottish Enlightenment thinkers, have made 
it possible for us to think more complexly 
about how successful management like social 
accomplishments such as language, money 
and social institutions may be achieved 
without anyone actually having a clear and 
justifiable plan of action.

In thinking complexly, in accounting for 
any form of managerial success we must be 
mindful of unconscious, oblique and obscure 
causes that may affect the balance and 
potentiality of situations such that desirable 
outcomes ensue without anyone being par-
ticularly aware of how they have come to 
pass. In his most recent book entitled Outliers: 
The Story of Success the popular writer 
Malcolm Gladwell shows that oftentimes a 
cause as inconspicuous as birthdates and cut-
off points for recruitment can have a dra-
matic overall effect on the fortunes of a 
young aspiring Canadian hockey player. 
Citing the sociologist Robert Merton’s anal-
ysis of ‘The Matthew Effect’ (Merton, 1968), 
in which there is a built-in tendency in social 
systems to give those who have even more 
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and those who do not even less, Gladwell 
(2008: 30–33) shows how it is that a closer 
examination of the birthdates of those deemed 
successful in hockey revealed that they were 
largely born between January to March and 
this was surprisingly a major contributory 
factor to their success. Something as innocu-
ous as birthdate can tip the scales for or 
against any individual youngster aspiring 
to be a professional hockey player. Citing 
research on this phenomenon of success 
amongst hockey players and other sports, 
Gladwell shows that, in any sporting season, 
because those nine and ten year olds born in 
the beginning of the year are invariably 
bigger than those born later in the year, they 
tend to get more coaching and practice than 
their counterparts and this makes them appear 
naturally better than those born later. As a 
result they get the best treatment and best 
breaks and are more likely to become profes-
sionals in their sport. Success, it turns out, is 
not so much about innate individual abilities, 
but a result of cumulative advantages built 
into the system not through any one deliber-
ately intending it to be so. The real reason 
for success may be more serendipitous and 
obscure than generally acknowledged.

How can this indirect and more complex 
approach to understanding the nature of suc-
cess be brought into the realms of manage-
ment and what implications do they have for 
the way management should be practiced?

The silent efficacy of oblique action

In a recent Harvard Business Review paper 
entitled ‘Strategy as Active Waiting’ Donald 
Sull argues that oftentimes golden opportuni-
ties have a tendency to ‘come from afar’ such 
that the moment of maturation, ‘the window 
of opportunity’, is often rare and fleeting. 
As such managers must pay attention to hidden 
anomalies and try to identify and understand 
possible subtle shifts that create new opportu-
nities for exploitation. ‘The variables that 
influence the magnitude of an opportunity 
shift constantly. One window might open a 

crack, while another widens abruptly and a 
third threatens to slam shut’ (Sull, 2005: 123). 
Central to understanding the inner propensity 
of things is the idea that opportunity or the 
opportune moment is not something that 
needs to be grabbed, but subtly discerned a 
long way before it becomes an actuality. 
Hence, the skill of a manager is in ‘spotting a 
propensity’ in such a way that s/he sees at the 
earliest stage a tendency that emanates from 
this and thus does not need to needlessly 
strive to achieve the effect. Rather like 
patiently waiting for a fruit to ripen before it 
is plucked, one lets the course of things to 
work its way towards one’s own advantage. 
This is something that the ancient Chinese 
thinkers well understood.

As Mencius points out, one must neither pull on 
plants to hasten their growth (an image of direct 
action), nor must one fail to hoe the earth around 
them so as to encourage their growth (by creating 
favourable conditions for it) … You must allow it to 
grow … allowing things to happen constitutes 
active involvement. (Jullien, 2004: 90–91, emphasis 
original)

Sull’s (2005) use of ‘active’ in describing 
waiting alludes to a ‘non-doing’; it is an 
oblique or silent form of doing. By eschew-
ing grand visions and spectacular strategies, 
and focusing on long-term trends and priori-
ties, what Sull urges is going with the pro-
pensity of things. As Jullien aptly states, ‘one 
can “act without acting” just as one can 
“taste a nontaste”. Acting, like tasting, can 
then extend of its own accord, excluding 
nothing; it is “inexhaustible”’ (Jullien, 2004: 
89). This unspectacular and non-confronta-
tional approach to achieving longer-term 
tangible outcomes resonates with another 
recent contribution to strategic management.

In Blue Ocean Strategy, Kim and 
Mauborgne (2005) argue that rather than 
follow the logic of confronting competitors 
and attempting to out-perform them thereby 
creating a ‘bloody’ red ocean of competition, 
corporations ought to seek out new blue 
oceans of as-yet-untapped opportunities 
thereby making the competition irrelevant. 
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This indirect and non-confrontational 
approach contains an implicit recognition that 
efficacy can often be achieved by avoiding 
and circumventing the opposition rather than 
directly clashing with the latter. Although 
Kim and Mauborgne’s propositions are 
couched in the more familiar strategy lan-
guage of deliberate and calculated interven-
tion, in this instance into new market spaces, 
what belies their thinking is an implicit 
awareness that the potentiality inherent in a 
situation can be exploited to one’s advantage 
without adverse costs in terms of resources. 
Instead of setting out a goal for our actions, 
we could try to discern the underlying factors 
whose inner configuration is favourable to the 
task at hand and to then allow ourselves to be 
carried along by the momentum and propensity 
of things. Jullien (2004: 17) writes:

Two notions thus lie at the heart of ancient 
Chinese strategy, forming a pair: on the one hand, 
the notion of a situation or configuration (xing) as 
it develops and takes shape before our eyes (as a 
relation of forces); on the other hand, and coun-
terbalancing this, the notion of potential (shi), 
which is implied by that situation and can be made 
to play in one’s favour.

Jullien points out that these two notions, 
embedded in ancient Chinese thinking, call 
into question the ‘humanist concept of effi-
cacy’ which presupposes efficacy to result 
from direct, spectacular human interventions. 
According to this more oblique way of 
engaging with the world of affairs, all one 
needs to do is to allow the momentum and 
potential of the situation to unfold itself 
almost inexorably towards its natural end and 
to position oneself to benefit from it. Thus 
with very little effort one can seemingly pro-
duce ‘great effects’. What is crucial in this 
approach is not so much grand visions or 
bold, spectacular plans but subtle sensitive 
reading and evaluation of the unfolding situ-
ation. The art of success, given the multiplic-
ity and complexity of the social world, then, 
it seems is the ‘silent’ art of discernment.

Both Sull’s (2005) notion of ‘strategy as 
active waiting’ and Kim and Mauborgne’s 

(2005) blue ocean approach point towards a 
new-found preference for the subtle efficacy 
of obliqueness of engagement. Both eschew 
the instrumental, action-oriented, frontal and 
heroic confrontational approach that is not 
just second nature to much of Western mili-
tary, social and political life but very much in 
evidence in the American-inspired academic 
literature and practice of management. This 
shift of attention towards the efficacy of the 
oblique is also being played out in the surpris-
ing global turn of events in recent years where 
a shift in the balance of economic power from 
West to East is gradually taking place. What 
the celebrated Scottish Harvard-based histo-
rian Niall Ferguson calls ‘Chimerica’ – where 
China saved to fuel America’s unsustainable 
spending extravagance over the past decade 
– has given rise to the most bizarre situation 
where China has effectively ‘become banker 
to the United States of America’ (Ferguson, 
2008: 334). Whilst America was seduced by 
its own rhetoric of national and corporate 
success during the boom years prior to the 
financial crisis, it was cheap Chinese money 
which kept the American economy going. To 
keep the good times rolling, during the boom 
years, America imported cheap Chinese 
goods, outsourced manufacturing to China 
and sold ‘billions of dollars of bonds to the 
People’s Bank of China’ (Ferguson, 2008: 
334–335) in order to enjoy low interest rates. 
Chimerica was ‘the underlying cause of the 
surge in bank lending, bond issuance and 
new derivatives … It was the underlying 
reason why private equity partnerships were 
able to borrow money left, right and centre to 
finance leveraged buyouts’. And, Chimerica, 
or the Asian ‘savings glut’ (Bernanke, 2005) 
was the ‘underlying reason why the US mort-
gage market was so awash with cash in 2006 
that you could get a 100 per cent mortgage 
with no income, no job, no assets’ (Ferguson, 
2008: 336).

This inextricably entangled nature of the 
globalized world suggests to us that oblique-
ness of influence and the ripple effects of 
peripheral actions and non-local causality 
have become important considerations in our 
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evaluation of local circumstances and their 
wider ramifications. Learning to think com-
plexly is learning to appreciate and discern 
the seemingly inconspicuous, the peripheral 
and the as-yet undisclosed. Managing com-
plexity entails the art of seeking out the 
obscured, the hidden and the implicit and 
dealing with them before they manifest them-
selves explicitly. It encourages us to recog-
nize obliquity as a legitimate and oftentimes 
more efficacious strategy in dealing with 
human affairs.
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Applications of Kauffman’s 

Coevolutionary NKCS Model 
to Management and 
Organization Studies

R i c h a r d  V i d g e n  a n d  L a r r y  B u l l

INTRODUCTION

A number of studies have used tuneable, 
abstract models of organism evolution like 
Kauffman’s (1993) NK model to capture and 
explore aspects of organizations and their 
adaptation in the business environment (e.g. 
Levinthal, 1997; Rivkin, 2000; Lenox et al., 
2007; Rivkin and Siggelkow, 2003, 2007). 
However, these studies have not typically 
considered the fact that organizations exist 
within an ecosystem of other organizations, 
and further that a large organization may be 
seen as an ecosystem of semi-autonomous 
departments itself. Whereas the NK model 
has been adopted and extended by many 
researchers, applications of the coevolution-
ary NKCS model are sparse. A number of 
researchers have used the NKCS model as a 
theoretical lens but few have built an NKCS 
implementation and experimented with it in 
the social science domain.

In the NK model, N refers to the number of 
genes in a genotype and K the number of 

links between those genes (internal epistasis). 
Agents are thrown on to a fitness landscape 
(Wright, 1932) at random and then seek to 
improve their fitness by engaging in an adap-
tive walk. A key feature of the NK landscape 
is that it is fixed: agents walk on it without 
deforming. Further, these agents are typically 
oblivious of other agents, although Lazer and 
Friedman (2007) introduce communication 
networks within the NK model, allowing 
agents to share knowledge about their fitness 
level. By contrast, the NKCS model allows 
for coupled landscapes (through external 
epistasis, C) and multiple species, S. A move-
ment by one species on its NK landscape 
deforms the landscapes of those species with 
which it is coupled and thus the NKCS model 
represents the dynamics of a coevolutionary 
system.

The aim of this chapter is to explore the 
NKCS model and to understand its implica-
tions and possibilities for informing manage-
ment and organizational research. To this end 
we first explore the idea of coevolution, then 
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introduce the details of the NKCS model and 
its implementation in an agent-based model-
ing environment – Sendero (Padget et al., 
2009). Having shown the mechanics of the 
NKCS model we then review the applications 
of the NKCS model in the management and 
organizational studies literature. To demon-
strate how the NKCS model can be extended 
and applied to the management discipline we 
show how the NKCS can be used to explain 
the dynamics of competition in the micro-
computer industry. The chapter concludes 
with thoughts about future directions for the 
NKCS model and coevolutionary research in 
management studies.

EVOLUTION AND COEVOLUTION

The study of organizational evolution in the 
management literature builds on work in 
organizational ecology (Carroll, 1984; 
Hannan and Freeman, 1989). Nelson and 
Winter (1982) view organizations as com-
prising routines and sets of activities. 
McKelvey (1982) labels these routines 
‘comps’, a shorthand for the competencies 
that represent an organization’s capabilities. 
Routines can also be thought of as rules and 
standard operating procedures, which may or 
may not be observable. Regardless of how 
they are defined these routines (or comps) 
are assumed to be subject to the evolutionary 
process.

Aldrich and Ruef (2006) see the evolution-
ary process as consisting of variation, selec-
tion, and retention within a background of a 
struggle for scarce resources. Aldrich and 
Ruef (ibid.) aim to show how evolutionary 
concepts can be applied to organizations and 
thus their examples are couched in organiza-
tion language. Variation is any change in an 
organization’s routines, competencies, or 
form and can be intentional (alternatives and 
solutions are actively sought by actors in an 
organization) or blind (independent of 
conscious planning). Others, e.g. Campbell 

(1965), would argue that variation is always 
blind in the sense that the evolutionary 
outcome cannot be known at the time of the 
variation event and therefore intentional 
variation is at best an educated guess. 
Regardless, not all the variations will sur-
vive; the selection force results in the elimi-
nation of some of the variations. Selection 
pressure on routines and competencies can 
be either external (e.g. market forces and 
competitive pressures on an organization) or 
internal (e.g. a pressure toward stability). 
Through retention the selected variations are 
preserved and duplicated (e.g. standardization 
and institutionalization of a new role).

Although coevolution arises in the 
nineteenth century from Darwin’s The Origin 
of Species the first half of the twentieth 
century was a barren time for coevolutionary 
research and it was not until the 1950s that 
work in evolutionary ecology and population 
genetics set the scene for work by Ehrlich and 
Raven (1964) on plants and insects and by 
Janzen (1966) on ants and acacias (Thompson, 
1999b). Where evolution considers a single 
population, coevolution is concerned with 
how populations interact and coevolve. 
Coevolving populations are each subject to 
the evolutionary dynamics of variation, selec-
tion, and retention. For two populations to 
coevolve requires each population to apply a 
reciprocal selection force on the other. As one 
species responds to a selection pressure from 
a second species it evolves and in turn applies 
a selection process to its coevolving partner. 
Thus, a species of seashell that is being pre-
dated by a crab may, over time, evolve a 
thicker shell. This development of the sea-
shell in turn applies a selection pressure on 
the crab, which may in response evolve yet 
more powerful claws. In such a case, the 
selection pressure is reciprocal and the spe-
cies can be said to be coevolving. Janzen 
(1980) defines coevolution as follows:

‘Coevolution’ may be usefully defined as an evolu-
tionary change in a trait of the individuals in one 
population in response to a trait of the individuals 
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of a second population, followed by an evolutionary 
response by the second population to the change 
in the first. (p. 611)

Bateson (1979) similarly sees coevolution 
as reciprocal where changes in one species, 
species A, ‘set the stage for the natural 
selection of changes in a species B’ (p. 227) 
such that later changes in species B in turn 
set the stage for the selection of further 
changes in species A. In talking about how 
the genomes of different species become 
intermeshed Thompson (1999a) also empha-
sizes the reciprocal nature of coevolution and 
recognizes that this intermeshing can be 
competitive or mutually beneficial:

The organizing framework for attacking the 
problem is the theory of coevolution, the process 
by which species undergo reciprocal evolutionary 
change through natural selection. Not all interac-
tions are highly coevolved, but the potential for 
coevolution to drive rapid and far-reaching change 
is always there. Unlike adaptation to the physical 
environment, adaptation to another species can 
produce reciprocal evolutionary responses that 
either thwart these adaptive changes or, in mutu-
alistic interactions, magnify their effects. (p. 2116)

Although these examples come from 
biology, demonstrating coevolution is not 
straightforward in the natural world given 
long generation times and the difficulty of 
establishing that species are truly coevolving 
rather than each merely adapting to their envi-
ronment (or coevolving via a third but unob-
served species). In an organizational setting 
change can be intentional and action reflexive 
making coevolution a particularly useful and 
tenable concept. Aldrich and Ruef (2006) 
look at the relationship between coevolving 
populations in terms of symbiosis and mutu-
alism. Symbiosis refers to mutual dependence 
of dissimilar units, each in different niches 
but each benefiting from the presence of the 
other (e.g. venture capitalists and high tech-
nology companies). Mutualism is concerned 
with over-lapping niches with a spectrum of 
cooperation (species benefit from the presence 
of other species) and competition (growth in 

one population restricts growth in another 
population). Metcalfe (1998) identifies three 
configurations of coevolution: competition, 
exploitation, and mutualism. In competition 
one configuration seeks to hinder the fitness 
of other configurations (full competition). In 
exploitation one configuration stimulates 
the fitness of another but is in turn inhibited 
by that other (predatory competition). In 
mutualism each configuration stimulates 
the individual and collective fitness (full 
mutualism).

Coevolutionary relationships of symbiosis 
and the various forms of mutualism would be 
expected to occur between and within organ-
izations. Full mutualism may be an appropri-
ate outcome for inter-organizational processes 
established between cooperating organiza-
tions, such as in a supply network, although, 
depending on the balance of power between 
customers and suppliers, there may well be 
exploitation. In other configurations full 
competition would be appropriate, as would 
likely be the case for organizations targeting 
the same market with undifferentiated prod-
uct offerings. Similarly, within organizations 
different configurations of mutualism would 
be expected to be found although this might 
not necessarily be healthy, for example where 
an IT strategy seeks to improve its own fit-
ness at the expense of the host organization 
as a result of misplaced viability seeking 
(Beer, 1979). In summary, coevolutionary 
theory would appear to provide management 
researchers with a rich and insightful way of 
thinking about inter- and intra-organizational 
relationships.

THE NKCS MODEL

Kauffman and Johnsen (1992) introduced the 
NKCS model to allow the systematic study of 
various aspects of natural coevolution 
between interacting species (although, since 
the model is abstract it can be applied to the 
study of any collection of interacting agents 
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that are adapting to the current state of other 
agents). In the NK model a given agent is 
represented by a set of N genes, each with A 
possible states. In the NKCS model a popula-
tion is assumed to be converged to all indi-
viduals having the same value for each 
constituent gene, i.e. there is a single agent 
that represents the fitness of a species and 
therefore an ecosystem with five species 
would be represented by a coevolutionary set 
containing five agents.

The fitness of the individual agent depends 
upon the contribution made by each gene, 
each of which depends upon K other genes 
(randomly chosen) within the agent (epista-
sis). Increasing K, with respect to N, increases 
the epistatic linkage, increasing the rugged-
ness of the fitness landscape of an agent by 
increasing the number of fitness peaks, 
increasing the steepness of the sides of the 
peaks such that the space becomes increas-
ingly complex. Each individual gene is also 
said to depend upon C genes (randomly 
chosen) in the other agents with which it 
interacts. Hence, the adaptive moves made by 
one agent may alter the fitness landscapes of 
its (S) partners; altering C, with respect to N, 
changes the extent to which adaptive moves 
by each individual deforms the landscapes of 
its partnering agents. As C increases, mean 
evolutionary fitness drops and the time taken 
to reach an equilibrium point increases, where 
the fitness level of the equilibrium decreases.

The model assumes all inter-agent (C) and 
intra-agent (K) interactions are so complex 
that it is only appropriate to assign random 
values (uniform random distribution) to their 
effects on fitness. Therefore for each of the 
possible K+C interactions, for each given 
replicator and assuming that the number of 
states a gene can take is A = 2, a table of 
2(K+1+CxS) fitness contributions is created, 
with all entries in the range [0.0, 1.0], such 
that there is one fitness for each possible 
combination. The fitness contribution of each 
agent within an experiment is found from its 
individual table. These contributions are then 
summed and normalized by N to give the 
actual fitness of the individual.

Kauffman and Johnsen (1992) used 
random hill-climbing to evolve each agent in 
turn, i.e. each agent uses the current context 
of the others to determine whether a random 
alteration to its configuration represents 
progress. That is, from a given configuration, 
an agent randomly alters one gene’s state and 
calculates the resulting fitness. If the new fit-
ness is greater than the agent’s current fit-
ness, in the current environment, the agent 
adopts the new configuration. This is repeated 
for all agents over a number of generations. 
They show how both intergenome (C) and 
intragenome (K) epistasis affects a coevolv-
ing system, particularly in the attainment of 
Nash equilibria: ‘a combination of actions by 
a set of agents such that, for each agent, 
granted that the other agents do not alter their 
own actions, its action is optimal’ (Kauffman, 
1993: 245).

As an example, in Figure 12.1 frog and fly 
species are each characterized by an NKCS 
landscape. Each gene in the frog depends on 
K + C inputs; for gene n3 (this could be the 
sticky tongue of the frog) in Figure 12.1 
fitness depends on K = 3 other traits in 
the frog and C = 2 traits in the fly (such as 
slippery feet). A movement by the frog popu-
lation on its landscape deforms the fly’s 
landscape, and vice versa.

Emergent regimes in the 
NKCS model

Kauffman (1995b) identifies two extreme 
behaviors relating to coupled landscapes. The 
first is the ‘Red Queen Effect’ (RQE), coined 
by Lee Van Valen (1973) from the Red Queen 
saying to Alice ‘it takes all the running you 
can do, to keep in the same place’. In this 
regime the species keep changing their geno-
types in a never-ending race to improve their 
fitness level. The population never settles down 
to an unchanging mix of genotypes as spe-
cies chase peaks that recede into the distance. 
The second scenario is of coevolving species 
that reach an evolutionary stable strategy 
(ESS) and then stop changing genotypes. 
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Species that have attained an ESS have suc-
ceeded in climbing to a peak and remaining 
on it – coevolution ceases and an ordered 
regime emerges, although it is likely that this 
peak is not a particularly high one. As in 
the prisoner’s dilemma, a species has no 
incentive to change as long as its partnering 
species do not change. Kauffman (1995a) 
sees Red Queen behavior as chaotic with 
species climbing and plunging while the ESS 
is an ordered regime that is overly rigid and 
unable to move away from suboptimal local 
peaks (p. 221). Kauffman (ibid.) demon-
strated that ‘the highest average fitness in 
coevolving systems appeared to arise just at 
the phase transition between Red Queen 
chaos and ESS order’ (pp. 257–258). This 
phase transition is a place favored by 
coevolution, the so-called ‘edge of chaos’ 
(Kauffman, 1995a):

An ecosystem deep in the ordered regime of an 
evolutionary stable strategy will be too rigid, too 
frozen into place, to coevolve away from low 
local peaks. Under the chaos of the Red Queen 
effect, on the other hand, species climb and 
plummet on heaving fitness landscapes, never 
staying at a peak. But between these two 
extremes of low fitness, in the transition between 
chaos and order at the ‘edge of chaos’, peaks are 
high but can be attained. Here, fitness can be 
optimized.

Brown and Eisenhardt (1998) say that 
organizations that achieve the edge of chaos 
will compete more effectively than those 

that don’t; at the edge of chaos ‘organiza-
tions never quite settle into a stable equilib-
rium but never quite fall apart, either’ (p. 12). 
This view is supported by Anderson (1999) 
who claims ‘Systems that are driven to (but 
not past) the edge of chaos out-compete sys-
tems that do not’ (pp. 223–224). Lewin and 
Volberda (1999) summarize the importance 
of achieving the edge of chaos for 
organizations:

At this ‘edge of chaos’, an organization is assumed 
to optimize the benefits of stability, while retaining 
capacity to change by combining and recombining 
both path dependence and path creation proc-
esses. Such an organization creates sufficient 
structure to maintain basic order but minimizes 
structural interdependencies. It evolves internal 
processes that unleash emergent processes such as 
improvisation, self-organizing, emergent strategies 
and strange attractors (e.g. product champions). 
(p. 530)

In the context of organizations it is better, 
perhaps, to think of a complex region rather 
than an ‘edge’. This region lies between 
stasis and chaos and is defined by two criti-
cal values. If an organization falls below the 
first critical value because it exhibits mini-
mal response to addressing the adaptive 
tensions it faces then order will prevail. If 
the organization over-responds to its adap-
tive tensions, for example by initiating 
many change programmes too quickly, then 
it may exceed the second critical value and 
chaos will ensue. Kauffman finds that the 

Figure 12.1 Coupled landscapes in the NKCS model (adapted from Figure 8.16 from 
"Investigations" by Kauffman (2000), p. 200). 
By permission of Oxford University Press, Inc.
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ecosystem settles to an ESS if the internal 
density of connections, K, within species 
are high (there are a lot of low peaks to be 
trapped on) and the coupling between the 
species is low (landscapes do not deform 
much as a species makes an adaptive move). 
The ESS ordered regime also emerges when 
the number of species is low (e.g. moves by 
one process do not deform the landscape of 
many other processes). An ordered regime, 
therefore, emerges when K is high and C or 
S is low. A chaotic regime emerges when K 
is low and C or S is high. Somewhere in 
between is the complex region. In the next 
section we introduce an implementation of 
the NKCS model, Sendero, and demonstrate 
these three regions.

AN AGENT-BASED MODELLING 
IMPLEMENTATION OF THE
NKCS: SENDERO

Sendero implementation in Repast

The following description of the software 
implementation of the NKCS model is taken 
from Padget et al. (2009). The approach 
taken to constructing the NKCS model was to 
first build a basic version of the NK model 
and to dock it to Kauffman’s (1993) reported 
results. Having done this, Padget et al. then 
extended the NK model to address the more 
complex NKCS landscape, using the same 
techniques wherever possible.

The model was implemented using the 
RepastJ (North et al., 2006) agent-based 
simulation toolkit. To generate random fit-
ness values and landscape locations the Colt 
Mersenne Twister random number generator 
supplied with RepastJ was used. In the NKCS 
model each coevolutionary set was imple-
mented in the Repast framework as an agent. 
These sets contain a number of species, each 
with its own distinct landscape. At each 
generation of the simulation, the species take 
turns to move on their own landscapes, which 
are perturbed by the movements of the other 

species in the set. To describe the co-
evolutionary process, data is collected at the 
level of the individual species.

From the implementation perspective the 
calculation of fitness is almost identical 
between NK and NKCS and is performed by 
the same method. In both cases, for each 
characteristic, a string is built representing 
the state in base A (A is typically dichoto-
mous and therefore set to 2 but it can take 
any value equal to or greater than 2), of the 
characteristic itself, and the K characteristics 
that influence it. To extend this to NKCS 
Padget et al. add to the string the states of the 
C characteristics of each of the S other spe-
cies to which the species under examination 
is linked. This string is then assigned a 
random fitness value and stored.

Having decided on the specification of 
the models, a significant challenge was the 
representation of the fitness landscape itself. 
In both the NK and NKCS models the land-
scape possesses a finite number of states 
(albeit an extremely large number in the 
case of NKCS). The fitness of agents at 
given locations is randomly assigned in 
response to the characteristics of the loca-
tion (and, for NKCS, the location of other 
species in the set). At the same time, an 
agent arriving at a location that it (or another 
agent) has previously visited must be 
awarded the same fitness value as reported 
earlier. Sendero computes and stores loca-
tion fitness values only when they are first 
visited by an agent (or checked as a possible 
candidate to be moved to). In this way the 
need to store the entire landscape is avoided 
(much of which may never be visited in the 
course of the simulation). However, there is 
no alternative to storing the fitness values 
for all of the locations that have been visited 
or checked. This space requirement repre-
sents the major constraint on simulation size 
in the Sendero implementation. In runs 
where the required landscape is large (or 
numerous landscapes are used, in NKCS), 
or large numbers of organizations walk 
extensively on the landscape, gigabytes of 
memory can be consumed.
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Results of the base NKCS model

We saw above that an ordered regime emerges 
when K is high and C or S is low and a chaotic 
regime results when K is low and C or S is 
high. More specifically, Kauffman (1993: 
253) finds that when K < S × C the properties 
of an ESS are observed; when K > S × C the 
system is characterized by the RQE, and when 
K = S × C (the region of intermediate com-
plexity) fitness is best. We illustrate this using 
a range of C and K values for a pair of species 
in Table 12.1. On the diagonal K = S × C and 
it can be seen that fitness is highest for a given 
value of C. In Figure 12.2 the data in Table 
12.1 is presented in graphical form as the per-
centage of coevolutionary sets still walking.

With the ESS the coevolutionary sets 
quickly stop walking as Nash equilibria are 
attained readily, most strongly for the case 
where C = 1 and K = 16 (Figure 12.2). 
Chaotic behavior is most extreme when C = 
8 and K = 2 – by 1500 generations all 100 
coevolving pairs are still walking as each 
species continues to disturb its partner and 
Nash equilibria cannot be found. For each 
value of C, fitness is best at the edge of chaos 
(the complex region) where K = S × C.

APPLICATIONS OF THE NKCS MODEL

General applications

Whilst the NK model has been used quite 
extensively in areas such as function optimi-
zation (e.g. Altenberg, 1994; Smith and 
Smith, 1999; Correia and Fonseca, 2007) and 

evolutionary biology (e.g. Macken and 
Perelson, 1989; Ohta, 1998; Welch and 
Waxman, 2005), the NKCS model is less 
well exploited. As noted, Kauffman and 
Johnsen (1992) used it to explore aspects of 
ecosystem evolution. Bäk et al. (1994) 
continued this line of research, suggesting 
that when the coevolving species exist on 
maximally rugged landscapes, i.e. when 
K = N-1, no state of ‘poised criticality’ can 
be reached, only an equilibrium or chaos. 
Such considerations continue (e.g. Suzuki 
and Arita, 2005). Kauffman (1995a) later 
applied a spatially distributed version of the 
model to consider the effects of central 
control in government, and receiver-based 
communication protocols for pilot coordina-
tion by the US Air Force. Bull has used the 
framework to explore function optimization 
where the (large) global problem space is 
divided into (smaller) codependent sub-
spaces, each being searched individually 
(e.g. Bull, 1997). He has also used it to con-
sider the evolution of symbiogenesis (e.g. 
Bull and Fogarty, 1996) and multicellularity 
(e.g. Bull, 1999).

NKCS APPLICATIONS 
IN MANAGEMENT AND 
ORGANIZATIONAL STUDIES

Ahouse et al. (1992) argued that NKCS 
models need not be limited to coevolving 
species in biology and that the models 
could be applied ‘in such diverse fields as 
economics, political science, organizational 
theory, and social psychology’ (p. 349). 

Table 12.1 For N = 24 and varying values of C and K, fitness is best in the 
complex region (the ‘edge of chaos’, EoC) where K = S × C (note: fitness is the 
average of 100 coevolving pairs after 1500 generations)

K C = 1 C = 4 C = 8

S × C = 2 S × C = 8 S × C = 16

 2 0.7160 EoC 0.6110 RQE 0.5638 RQE

 8 0.6900 ESS 0.6748 EoC 0.6049 RQE

16 0.6551 ESS 0.6507 ESS 0.6379 EoC
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Figure 12.2  Percentage of 100 coevolving pairs still walking after 1500 generations for 
N = 24, C = 1, 4, 8 (note: EoC = ‘edge of chaos’)
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Marion (1999) and Monge and Contractor 
(2003) have provided useful descriptions of 
the NKCS model and insightful critiques of 
the model’s applicability in management 
studies. However, in conducting a review of 
previous work in management studies our 
criteria for work to be included was that it 
went beyond simply describing the NKCS 
model and attempted to apply the model to 
some domain of relevance to management 
researchers. Many of the studies reported in 
Table 12.2 take the basic NKCS model and 
show how it could, in conceptual form, be 
applied to management research (e.g. Baum, 
1999). Other studies extend the NKCS (e.g. 
Chang and Harrington, 2003), while others 
go further and test the NKCS (with or with-
out extensions) using a computer simula-
tion (e.g. Levitan et al., 2002). Studies that 
apply the NKCS to empirical data are rather 
shorter in supply. Marion reinterprets a case 
study of the microcomputer industry using 
the NKCS as a lens, while Su and Mylopoulos 
(2006) conduct a behavioral study with 
information system analysts. Only one 
study uses the NKCS in a qualitative way: 
Colovic and Cartier (2007) use it to analyze 
case study data of inter-firm networks in 
Japan.

Monge and Contractor (2003) note that 
Chang and Harrington’s (2000) application 
of the NKCS model introduces changes that 
remedy some of the simplifying assumptions 
of the NKCS model. Monge and Contractor 
(ibid.) also point out some of the simplifying 
assumptions in the NKCS that make it limited 
when applied to social systems:

The  • K links between N traits are a constant 
value, e.g. each trait is linked to exactly three 
others. More realistically, K can be allowed to 
vary around a mean value (three, for example). 
Yuan and McKelvey (2004) were the first to run 
the NK model with K varying around the mean. 
A similar argument is made for C. Both of these 
extensions are implemented in Sendero (Padget 
et al., 2009).
The number of links,  • X, between species is the 
same for all S species and the species each links 

to are chosen at random. In social systems the 
number of links between species will vary and 
the species will not be chosen at random. This 
facility is implemented in Sendero as a directed 
graph. For example, a supply network can then 
be modelled as an ecosystem in which the buyer/
supplier links are specified explicitly, with varying 
degrees of C-coupling.
Fitness values in the  • NKCS model are assigned 
randomly. Monge and Contractor (ibid.) argue 
that in social systems we have at least an 
intuitive sense of which traits may contribute 
more to overall fitness as compared with other 
traits (p. 288).

Marion (1999) also critiques the 
applicability of the NKCS to social systems, 
arguing that Kauffman ‘is a bit naïve on the 
subject of social systems’ (p. 268) and inno-
cent in assuming that social systems func-
tion only on a fitness landscape with 
effectiveness the only motivation. In social 
systems factors such as the desire to control, 
power, preference for growth, preference 
for the status quo, and the desire to avoid 
change suggest that many interrelated land-
scapes need to be considered. A peak on a 
landscape represents a complex mix of pref-
erences and is only partly understood. 
Marion concludes ‘it really doesn’t matter 
what the peaks are composed of, for the 
dynamics described by Kauffman still apply. 
Different preference landscapes, like differ-
ent species, interact with and distort one 
another’ (p. 269). And, through coevolution 
preferences are balanced relative to one 
another in a unique blend of ‘power and 
efficiency and prestige and effectiveness 
and security’ (p. 269) such that fitness in a 
broader sense is maximized.

Thus, once a basic NKCS model has been 
constructed there is a quickly reached limit 
to the findings and insights that can be 
achieved. Extensions to the NKCS model 
allow researchers to add features that cap-
ture aspects of social systems and acknowl-
edge that management are not blindly 
walking a fitness landscape – they can inter-
vene through tuning the model parameters.
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Author Application Research method Findings and implications

 Ahouse et al. (1992) Two applications of the NKCS are proposed: coevolution 
of firm strategies and coevolution of belief systems. For 
belief systems, species represent individuals who have N 
beliefs where each belief is reinforced or contradicted by 
K other beliefs. Each individual’s beliefs are also affected 
by C beliefs of other individuals (species). Fitness is a 
measure of cognitive consistency. The model is also 
applied to nations to show how public opinion coevolves 
(see also Monge and Contractor (2003) for further 
details).

Conceptual Claims that the NKCS can be applied outside of biology and 
coevolving species. Provides short descriptions of how the NKCS 
might be applied to competitive strategy and belief systems.

 Kauffman (1995a) Technological coevolution: the economy as an ever-
changing web of increasing complexity in which new 
technologies (e.g. cars) enter and drive others (e.g. 
saddlery) extinct while creating new niches that create 
opportunities for further technologies (e.g. traffic lights).

Conceptual Coevolution as an explanation of complements and substitutes 
in economics.

 Caminati (1999) For a given technology, the complementarity of its 
components increases over time and changes in a 
technology in one sector can transform technology 
in another sector. The NKCS is used to explain how 
technologies coevolve over time.

Conceptual In the early stages of innovation the regime tends to be chaotic 
as technologies compete for dominance. The regime stabilizes 
as a winner emerges and large investments are made in that 
technology. Caminati (1999) speculates that this coevolving 
system can tune K and C through self-organization to achieve 
the complex region.

Baum (1999) Kauffman’s (1993: 248–249) findings for coevolving pairs 
of species with various C and K values are used to identify 
strategies for managing whole-part coevolutionary 
competition in organizations such that critical values are 
maintained and the organization attains the intermediate 
complex region.

Conceptual Organizational interventions are identified for four strategies: 
(1) how to raise an organization’s K when C is high (e.g. engage 
in incremental reorganizing), (2) how to lower an organization’s 
K when C is low, (3) how to balance an organization’s K and C, 
and (4) how to lower C 
(e.g. by increasing internal differentiation).

 McKelvey (1999) Value chain competencies of computer notebook 
manufacturers. A manufacturer has N competencies that 
are internally constrained by K other competencies and 
externally constrained by C competencies of competitors.

Conceptual Firms need to match their internal complexity to their 
environment and focus on a moderate number of competencies.
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Marion (1999) Applies the NKCS to Anderson’s (1995) review of the 
microcomputer industry. Early manufacturers were small 
with low K and as the market developed large K players 
emerged (e.g. IBM) and competition, C, evolved while S 
reduced. In the early stages the industry is chaotic – S is 
high, K low, and C inconsequential. As K increased and S 
reduced the industry moved toward a stable regime.

Conceptual with 
reinterpretation of an 
empirical case study

Microcomputer industry fitness is a function of two interrelated 
activities: interdependence among actors in the network and 
the agreement on standards (e.g. the 3.5 inch floppy drive). 
Perturbations in the form of major technological changes 
become less frequent and of less magnitude as the industry 
matures and focuses on incremental fitness increases (e.g. clock 
speed).

Chang and Harrington 
(2000; 2003); Harrington 
and Chang (2005)

Coevolution of stores in competing retail chains serving 
customers in multiple markets. The N traits of each store 
represent store practices. K represents reinforcing and 
contradicting relationships between the practices. C 
reflects the interactions between the N practices of the 
competing stores. Fitness is concerned with attracting 
customers who make purchases proportional to their 
ideal practices and those offered by the store. Stores 
evolve and coevolve as they try one-step mutations to 
get closer to the ideal store practices of their customers. 
A headquarters species can propose mutations based on 
stores in its chain or on observed behavior of competitor 
stores. In centralized form the stores have little discretion 
in accepting HQ proposals; in decentralized form stores 
can override HQ.

Theoretical development 
with computer 
simulation

In cases of low market heterogeneity the population of stores 
does best with centralization (more inter-store learning). 
Decentralization is best in conditions of high heterogeneity. With 
increased rivalry between chains, centralization performs best 
(see also Monge and Contractor (2003) for further details).

Stewart (2001) Coevolving organization: a broad introduction to the 
NKCS model and its application to the structuring of 
business organizations, covering competition, branding, 
communication, knowledge management, management 
styles. Case studies include the UK national health service, 
a medical network, and telecoms.

Conceptual Practical guidelines for managers thinking about applying the 
NKCS to their business, principally in a qualitative way, with 
advice to then build a computer model.

Table 12.2 (Contd.) 

(continued)
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Levitan et al. (2002) The NKC is used to model the web of interactions within 
and between groups. Attention is directed toward greater 
tuning of NKC parameters and to the temporal dimension.

Theoretical development 
with computer 
simulation

For short search periods larger organizational sizes fare better 
because larger interconnected groups can experiment with a 
larger number of initial alternatives. For longer periods smaller 
groups with a small number of external connections perform best 
as they are able to experiment and exploit random opportunities. 
Over time, as the number of external connections increases, 
then small increases to group size improve performance. In all 
circumstances performance is best in the complex region.

Su and Mylopoulos (2006) The TEMPO model extends the TROPOS information 
system development model by adding NKCS-style 
coevolution to information systems goals. Goals in an 
existing information system are coupled and can coevolve 
with newly elicited goals such that the information system 
as an entity coevolves with its environment. The TEMPO 
model is applied to the evolution of a retail Web site and 
the method tested using graduate students.

Theoretical development 
with behavioral case 
study

Both novice and experienced developers in agent-oriented 
information systems development performed better when given 
a TEMPO model of the Web site. TEMPO provided a guide to 
developers in the evolution of more complete and higher quality 
information system models.

Curşeu (2007) Complex adaptive systems theory is used to build a 
model of virtual team effectiveness. The strengths 
and weaknesses of the NKCS model are considered in 
modeling virtual team behavior and the dimensions of 
cognition, trust, cohesion, and conflict.

Conceptual The author speculates that neural network models could be a 
more viable alternative to NKCS models in simulations of virtual 
team cognition. Neural networks would be more suitable for 
modeling constraints that are related to the diversity of the 
agents and would better capture the relationships between 
agents.

Vidgen and Wang (2007) Coevolution of business processes and Web services 
technology. Business process management relies on 
invoking Web services to execute a business process. The 
processes and Web services have internal complexity and 
external linkages with each other.

Conceptual A business process infrastructure may become chaotic 
if processes and Web services are simple (low K) but 
interconnected (high C) and freeze if they are internally complex 
(high K) but loosely coupled (low C) with implications for 
organizational agility. The role of patching and granularity of 
Web services and processes is considered. The NKCS is further 
advanced as a way of thinking about co-evolution of human and 
non-human species.

Colovic and Cartier (2007) NKCS is used in a qualitative case study of exploration and 
exploitation in nine inter-firm networks in Japan. Individual 
firms were interviewed and their networks elicited (size of 
network and intensity of ties) and then categorized as low/
high for internal and external coevolution.

Qualitative case study Different patterns of network are identified: colony (strong 
internal, K, and strong external coevolution, C), herd (weak 
internal, weak external), pack (strong internal, weak external), 
and migratory (weak internal, strong external).

Table 12.2 (Contd.) 
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APPLYING AND EXTENDING THE 
NKCS TO MANAGEMENT RESEARCH

In this section we introduce an extension to 
the NKCS that has been implemented in 
Sendero – differential species change rates – 
and illustrate the findings by application to a 
topic of relevance to organizational and man-
agement studies, namely the development 
of the microcomputer industry. We take 
Anderson’s (1995) case study of the develop-
ment of the microcomputer industry as 
reinterpreted by Marion (1999) through an 
NKCS lens. We then show how Marion’s 
reading of the development of the microcom-
puter industry can be further illuminated 
with an extension to the NKCS model, i.e. 
differential species evolution rates.

The microcomputer industry

The microcomputer emerged in the mid-
1970s as a new configuration of existing 
technologies creating a new species sepa-
rate from the prevailing mainframe compu-
ter. In Holland’s terms this new configuration 
represents an aggregation; the components 
were in place and once they had reached a 
critical level could come together to create 
a new level of technology (Holland, 1995). 
Micros were cheaper than mainframes but 
were not a direct competitor at first as they 
targeted different markets – home users 
rather than corporations. The architectures 
of micros were competing with each other 
and in the early days of the micro there were 
numerous architectures, reflecting the dif-
ferent chip sets and a range of operating 
systems. This first period of the micro we 
label the contagion phase, typified by many 
microcomputer producers and architectures 
and no clear idea of who and what would 
prevail.

In NKCS terminology, the contagion phase 
is represented by a large number of com-
petitors (S) with low K values. Although the 
early producers of microcomputers might 

not in actuality have been lone engineers 
working from their garage, these producers 
were typically small and were often led 
and managed in an idiosyncratic fashion. 
Initially, C coupling between the producers 
was low but as they found their niches, and 
acted to defend them from invaders, compe-
tition between them increased and thus C 
increased. This profile, high S and low K 
with C increasing over time, suggests a 
chaotic regime.

In 1981 IBM entered the micro market 
with a new operating system and quickly 
came to dominate in the business market. 
Apple was strong in the educational market 
and its VisiCalc spreadsheet had secured it a 
place in the business market. Other suppli-
ers were working in niches, such as 
Commodore (popular at the low end of the 
market and in Europe) and Radio Shack, 
who sold the Tandy micro through its sub-
stantial retail network. By the mid-1980s 
IBM’s operating system was dominant and 
other architectures dwindled away. The only 
architecture to survive with a strong market 
presence was Apple, who introduced the 
Macintosh in the mid-1980s. At this time 
IBM was still running the DOS operating 
system – a command-line driven and some-
what arcane operating system – whilst Apple 
had introduced its simple mouse-based 
system with a graphical user interface, the 
Mac OS. In response Microsoft introduced 
its Windows operating system but it took 
quite a few years and versions for it to 
match up to the simplicity and elegance of 
the Mac OS. The microcomputer market of 
the 1980s and 1990s was dominated by IBM 
and Apple and users were typically adher-
ents of one or the other. IBM was the de 
facto business computer while educational 
users and creative business people, such as 
graphic designers, were the typical Apple 
audience. This second phase we label the 
dualistic phase.

Thus, as the number of suppliers fell and 
niches were built and defended, the dualistic 
phase came to be dominated by a small 
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number of players (S), each of whom had 
increasingly large K values as their organiza-
tions grew in size and internal complexity. 
Users tended to be faithful to either PC or 
Mac and the switching costs of moving from 
one to the other were high, involving finan-
cial outlay (new hardware, software, and 
peripherals; data and applications to port; 
training and familiarization to undertake). 
The high costs of switching and the separate 
development of the architectures suggest a 
relatively low C value. The dualistic profile 
(low S or low C, and high K) points to an 
ordered regime.

In the twenty-first century the gap between 
IBM-architected personal computers (PCs) 
and Apple Macs has narrowed as the 
operating systems become ever more similar 
and applications and data are easier to port 
from one architecture to the other. Although 
IBM has now withdrawn from the manufac-
ture of microcomputers its architecture lives 
on in the form of the generic PC. The dis-
tinction of PCs for business use and Macs 
for more creative applications still persists 
but the distinction is rather more blurred. 
Innovations in the micro industry are now 
incremental rather than radical, dealing with 
processor speed, hard drive access speeds, 
improvements to RAM, and peripheral tech-
nologies such as CD and DVD drives. Major 
innovations are less frequent and more dif-
ficult to achieve. This phase we label the 
open market phase.

In the open market phase PCs and Macs 
had somewhat converged such that interop-
erability increased (Mac programs could 
run on PCs and vice versa, common data 
formats allow data to be shared between 
platforms) and the switching costs became 
less of an issue. This suggests that C cou-
pling is increasing as the architectures 
become more inter-woven, while K values 
are reducing as new and more agile 
organizations (S) find niches in the ecosys-
tem to exploit. This reading points toward a 
regime that is moving toward the complex 
region.

Differential rates of innovation 
in the microcomputer 
industry – NKCS-R

In the base NKCS model each species moves 
at each time tick and in a generation all spe-
cies in the set get the opportunity to make 
their move. This need not be the case: some 
species may be able to move faster and inno-
vate more than others. Ahouse et al. (1992) 
argued that larger genomes (i.e. those with 
larger values of N) should take fewer steps 
and so explore a smaller subset of their local 
genotype neighborhood, i.e. species with dif-
ferent N would have different relative rates of 
evolution. Interesting effects have been 
reported by Bull et al. (2000) who allow spe-
cies to move at different rates to simulate the 
coevolution of memes and genes. For 
example, species S0 might move at every 
time tick while (R = 1) while species S1 
moves at every tenth time tick (R = 10), i.e. 
S0 moves ten times faster than S1. This in 
effect provides a further tuning parameter, R, 
over and above K and C for a coevolving 
system (i.e. the NKCS-R model). This exten-
sion is likely to be particularly relevant to 
organizational coevolution where organiza-
tions can move and develop at different rates, 
reflecting, for example, differential rates of 
innovation in the marketplace.

Inspection of Table 12.1 and Figure 12.2 
shows that the combination of C = 1 and K = 
16 leads to a strongly ordered/ESS outcome 
(the coevolutionary sets stop walking 
quickly), while C = 8 and K = 2 leads to a 
chaotic/RQE (none of the coevolutionary 
sets stops walking). For C = 4 the complex 
regime emerges when K = 8. Thus we will 
use the RQE regime to represent the conta-
gion phase, the ESS regime for the dualistic 
phase, and the complex regime for the open 
market phase of the microcomputer industry. 
For simplicity, we hold S = 2 and manipulate 
C and K to demonstrate the emergent behav-
iors. In each case and for each value of R the 
NKCS-R model was run ten times with ten 
coevolving sets (100 scenarios).
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Figure 12.3 Differential rates in an RQE regime (N = 24, ten runs of ten coevolving pairs, 
5000 generations)
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Contagion
Figure 12.3 shows two species coevolving 
at different rates. Species S0 moves on 
every tick and has a constant rate value, R, 
of 1. Species S1 starts with an R value of 1 
increasing to 30, at which point S0 is 
making 30 adaptive moves for every one 
move of S1. When the standard NKCS 
model is run all the species in a coevolution-
ary set achieve roughly equal fitness. In the 
NKCS-R model the species start together 
but quickly diverge with S0 achieving a fit-
ness of close to 0.7, substantially higher 
than the starting fitness of both species of 
around 0.55. Interestingly, the improvement 
in fitness for S0 is not mirrored by the 
decline in fitness of S1 and the average fit-
ness of the two species increases. This sug-
gests that when the regime is chaotic there 
is considerable benefit to being innovative; 
the differential rates of movement provide a 
damping effect on the disturbance caused by 
relatively high C coupling. Those micro-
computer producers that can move quickly 
are likely to be most successful.

Dualistic
Once the regime becomes ordered the story 
is very different (Figure 12.4). The fitness 
attained when both move on every tick is not 
substantially different from the fitness 
attained when R = 30 for S1. Thus, it would 
not seem to matter whether the PC or Mac 
architectures innovate faster than their 
competitor since the C coupling is low and 
moves by one do little to disturb the other, 
even after relatively long periods of 
inactivity.

Open market
In the complex regime (at the edge of chaos) 
the gain and loss are roughly symmetrical – 
the benefit to S0 of moving faster than S1 is 
about the same as the loss of fitness for S1. 
Figure 12.5 shows that there could be a 
small decrease in average fitness for the two 
species as a result of differential change 
rates.

The NKCS-R model provides organizations 
with an additional tuning variable over and 
above K and C: R, the rate of movement on 
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the landscape. In chaotic environments, such 
as those typical of emerging industries and 
periods of disruptive change the benefits of 
moving faster than competitors are substan-
tial and improve the average fitness of the 
industry overall. In ordered regimes, such as 
an established industry with a small number 
of large (high K) players with well-defined 
market niches (low C) the benefits of innova-
tion are likely to be low, at least until the time 
that a new and disruptive technology makes 
an appearance. Where the industry is in the 
complex region then gains by one party are 
offset by losses in a coupled species and it is 
best for the industry if species’ moves are 
coordinated.

Our reading of the microcomputer is 
based on mutualism and competing species; 
a similar reading can be made for symbiotic 
configurations such as the alignment of a 
firm’s business strategy and IT strategy 
(Chan and Reich, 2007). For example, our 
analysis would suggest that for a firm work-
ing in the chaotic region overall fitness 
would be greater for that firm if the rate of 
innovations made by the IT organization 
were constrained (Figure 12.3). Where the 

firm is characterized by stasis then the 
implication is that the effectiveness of inno-
vations made by the IT organization will be 
overwhelmed by the internal complexity of 
the business, K, and the intra-organizational 
complexity, C, between business and IT 
(Figure 12.4).

CONCLUSIONS AND FUTURE 
DIRECTIONS

The NKCS is often used in an abstract way, 
where researchers describe the NKCS model 
and then show how it might be applied in a 
particular domain (e.g. Baum, 1999; Vidgen 
and Wang, 2007). Other researchers take the 
basic NKCS implementation and extend it 
(e.g. Bull et al., 2000; Chang and Harrington, 
2000) and report the results from their soft-
ware simulations. These simulation studies 
should follow a research method, such as that 
identified by Davis et al. (2007), who recom-
mend a process that runs through: the selec-
tion of an intriguing and simple research 
question, the selection of a simulation 
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Figure 12.4 Differential rates in an ESS regime (N = 24, ten runs of ten coevolving pairs, 
5000 generations)
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Figure 12.5 Differential rates in the complex region (N = 24, ten runs of ten coevolving 
pairs, 5000 generations)

approach (e.g. the NKCS model), the creation 
of a computational representation (e.g. 
Sendero), verification of the computational 
representation (e.g. benchmarking of results), 
experimentation to build novel theory, and 
finally, validation with empirical data. 
However, research that adopts the NKCS and 
uses empirical data is sparse. Indeed, we 
found only one example of NKCS research 
that used empirical data – and in that instance 
the NKCS was used in a qualitative way 
(Colovic and Cartier, 2007). Although there 
is value in framing the relevance of NKCS in 
different domains and applications, and in 
extending the model to make it more realistic 
for social science research, there is signifi-
cant scope for coevolutionary researchers in 
applying the NKCS in practice within an 
organizational setting (Braa and Vidgen, 
1999). In an organizational setting the NKCS 
can be used:

in a descriptive way (how well does the  • NKCS 
explain empirical evidence?)
in a qualitative way (what can we learn about  •
organizations and how to manage them through 
the lens of coevolution?)

in an interventionary way (how might we use the  •
NKCS to guide change?)
and for prediction (how well does the  • NKCS fit 
observed behavior and what is its predictive 
power, if any, in statistical terms?)

Finally, a major limitation of the NKCS is 
that it operates at a single level. Coevolution is 
a multi-level process and Lewin and Volberda 
(1999) list multilevelness/embeddedness 
as a core requirement for conducting coevolu-
tionary research in organizations. They argue 
that coevolutionary effects take place at mul-
tiple levels, within firms as well as between 
firms. They also note that most research is 
either at the population level focusing on 
macroevolutionary theory of the firm or at the 
microevolution, intra-firm level investigating 
capabilities and competencies of the individ-
ual organization in its competitive context (p. 
526). McKelvey (1999) asserts that coevolu-
tion at lower levels occurs in the context of 
higher levels of coevolution. Multi-level, 
emergent, and recursive implementations of 
the NKCS are a major challenge for research-
ers wishing to apply coevolutionary ideas in 
an organizational and social context.



FOUNDATIONS218

REFERENCES

Ahouse, J., Bruderer, E., Gelover-Santiago, A., Konno, 
N., Lazer, D., and Veretnik, S. (1992). Reality kisses 
the neck of speculation: a report from the NKC 
workgroup. In: L. Nadel and Stein, D. (eds) 1991 
Lecture in Complex Systems, SFI Studies in the 
Science of Complexity, 4: 331–353. Reading MA: 
Addison Wesley.

Aldrich, H. and Ruef, M. (2006). Organizations Evolving. 
Thousand Oaks, CA: Sage.

Altenberg, L. (1994). Evolving better representations 
through selective genome growth. In: Proceedings 
of the 1st IEEE Conference on Evolutionary 
Computation. IEEE Press, pp. 182–187.

Anderson, P. (1995). Microcomputer manufacturers. In: 
G.R. Carroll and M.T. Ford (eds) Organizations in 
Industry. New York: Oxford University Press, pp. 
713–740.

Anderson, P. (1999). Complexity theory and organiza-
tion science. Organization Science, 10(3): 216–232.

Bäk, P., Flyvbjerg, H., and Lathrup, B. (1994) Evolution 
and coevolution in rugged fitness landscapes. In: 
C. Langton (ed.) Artificial Life III. Reading MA: 
Addison-Wesley, pp. 11–42.

Bateson, G. (1979). Mind and Nature. London: 
Wildwood House.

Baum, J. (1999). Whole-part coevolutionary competi-
tion in organizations. In: J. Baum and B. McKelvey 
(eds.) Variations in Organization Science: in Honour 
of Donald T. Campbell. Thousand Oaks, CA: Sage, 
pp. 113–135.

Beer, S. (1979). The Heart of Enterprise. Chichester: 
Wiley.

Braa, K. and Vidgen, R.T. (1999). Interpretation, inter-
vention and reduction in the organizational labora-
tory: a framework for in-context information systems 
research. Information and Organization, 9(1): 25–47.

Brown, S. and Eisenhardt, K. (1998). Competing on the 
Edge: Strategy as Structured Chaos. Boston: Harvard 
Business School Press.

Bull, L. (1997). Evolutionary computing in multi-agent 
environments: partners. In: Proceedings of the 
Seventh International Conference on Genetic 
Algorithms. Morgan Kaufmann, pp. 370–377.

Bull, L. (1999). On the evolution of multicellularity and 
eusociality. Artificial Life, 5(1): 1–15.

Bull, L. and Fogarty, T.C. (1996). Artificial symbiogen-
esis. Artificial Life, 2(3): 269–292.

Bull, L., Holland, O., and Blackmore, S. (2000). On 
meme–gene coevolution. Artificial Life, 6(3): 
227–235.

Caminati, M. (1999). Complementarity, Opportunity 
and the Co-Evolution of Techniques, Università di 

Siena, Dipartimento di Economia Politica, n.260, July 
1999.

Campbell, D.T. (1965). Variation and selective reten-
tion in socio-cultural evolution. In: H.R. Barringer, 
G.I Blanksten, and R.W. Mack (eds.) Social Change 
in Developing Areas: A Reinterpretation of 
Evolutionary Theory. Cambridge, MA: Schenkman, 
pp. 1948: 19–49.

Carroll, G.R. (1984). Organizational ecology. Annual 
Review of Sociology, 10: 71–93.

Chan, Y.E., and Reich, B.H. (2007). IT Alignment: what 
have we learned? Journal of Information Technology, 
22: 297–315.

Chang, M. and Harrington, J. (2000). Centralization vs. 
decentralization in a multi-unit organization: a com-
putational model of a retail chain as a multi-agent 
adaptive system. Management Science, 46(11): 
1427–1440.

Chang, M. and Harrington, J. (2003). Multimarket 
competition, consumer search, and the organiza-
tional structure of multiunit firms. Management 
Science, 49(4): 541–552.

Colovic, A. and Cartier, M. (2007) Appropriability, 
Proximity, Routines and Innovations. ‘DRUID 
conference’.

Correia, M. and Fonseca, C. (2007). On the roles of 
redundancy and neutrality in evolutionary optimi-
zation: an experimental study. In: Proceedings of 
Gecco 2007, ACM Press, pp. 1504.
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13
Using Genetic Algorithms to 
Model Strategic Interactions

W i l l i a m  M a r t i n  T r a c y

There is a fairly close analogy between the earlier 
stages of economic reasoning and the devices of 
physical statics. But is there an equally serviceable 
analogy between the later stages of economic 
reasoning and the methods of physical dynamics? 
I think not. I think that in the later stages of eco-
nomics better analogies are to be got from biology 
than from physics; and consequently, that eco-
nomic reasoning should start on methods analo-
gous to those of physical statics, and should 
gradually become more biological in tone.1 (Alfred 
Marshall, 1898)

The use of Genetic Algorithms (GAs) in stra-
tegic modelling constitutes a promising 
application of complexity tools to the field of 
management. There are at least two benefits 
to modelling strategic interactions with GAs. 
First, unlike analytical models, GAs allow 
researchers to observe the modelled systems’ 
dynamic, disequilibrium behaviour (Holland 
and Miller, 1991). This is particularly impor-
tant for strategists, as corporate strategy is 
most useful when a firm’s external environ-
ment is in a state of disequilibrium. Modelling 
this disequilibrium is even more important 
for strategists if strategies employed during 
the disequilibrium period can effect the even-
tual equilibrium selection. Second, there are 
reasons to believe that GA-based models 
might be better predictors of human and firm 

behaviour than classical game theory analyti-
cal models.

This chapter is organized as follows. First, 
I explain genetic algorithms and provide an 
example of a GA-based strategic model. The 
next section traces out the history of thoughts 
that underlie the application of GAs to strate-
gic analysis. The third section examines 
the process validity of GA-based models. In 
other words, the third section describes why 
the mechanisms of a GA-based model reflect 
the processes real world decision makers use 
to select strategies. The fourth section of this 
chapter surveys the existing research apply-
ing GA-based models to strategy. The final 
section outlines future directions for the 
application of GA-based models to strategic 
analysis.

AN INTRODUCTION TO 
GA-BASED MODELS

GA-based models of strategic behaviour are 
a refinement of the game theoretic approach 
to strategic modelling. Both classical game 
theoretic models and GA-based models of 
strategic interaction consider the behaviour 
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of economic agents. However, there are some 
key differences between these approaches. 
Game theoretic models focus on hyper-
rational homogeneous agents. GA-based 
models consider the heterogeneous actions 
of moderately intelligent agents.

In orthodox game theory, the researcher 
typically assumes that all agents are intellec-
tually capable and employ their intelligence 
in a similar fashion. Indeed, most classical 
economic models assume that if two agents 
have the same resources, and the same infor-
mation, they will behave identically. This 
conceptual focus on the similarities across 
agents often allows a modelling focus on the 
behaviour of a single representational agent. 
Many game theoretic models also assume 
each agent knows all of its opponents employ 
the homogeneous, profit-maximizing, brand 
of rationality. With such assumptions, the 
modeller can apply logical deduction to 
refine the set of possible outcomes.

In contrast, the GA approach emphasizes 
the differences among agents. GA-based 
models explicitly consider many agents even 
if all the agents face the same problem, have 
the same level of intelligence, and are choos-
ing from an identical set of strategies. As 
such, GA-based models can be considered as 
being a part of the Agent-based Modelling 
approach. The need to model many agents in 
a GA-based model stems from this approach’s 
treatment of agent intelligence. Unlike the 
game theoretic approach, GA-based models 
do not assume that individual agents are 
hyper-intelligent and hyper-rational. Rather, 
GA-based models assume that agents who 
experience relatively poor outcomes might 
copy the strategies of more successful peers. 
This process of stochastically adopting the 
strategies of more successful peers eventually 
enables a population (or a system) of agents 
to evolve quite sophisticated strategies.

Genetic Algorithms are a computation 
technique used to operationalize this stochas-
tic emulation process. Introduced by John 
Holland (1975), GAs evolve a population of 
agents. Each agent is primarily defined by a 
set of rules.2 The rules govern the agent’s 

behaviour. During the course of a generation, 
some measure of fitness is associated with 
each agent in the population. A stochastic 
selection of the fittest mechanism and basic 
genetic operators are used to populate the 
successive generation with agents. Much as 
natural Darwinian evolution produces 
increasingly fit species, the GA evolves 
increasingly fit agents.3

Each agent’s rules condition the agent’s 
behaviour on the state of the external envi-
ronment. Hence, each agent’s behaviour is 
dependent on what is going on around the 
agent. In models of strategic interaction, the 
state of the environment is often a function of 
the past behaviour of other agents. The 
agents’ rules can be understood as actions 
associated with a simple classification 
scheme; if the world is in state Y, execute 
action Z; if the world is in state X, 
execute action W. In GA-based strategic 
models, the complete set of rules typically 
assigns a behaviour to every possible state 
of the world. The representation of the 
agent’s rules is called a chromosome. The 
chromosome is structured to allow for 
the genetic operators such as crossover and 
mutation.

In a simple GA the chromosome is often 
a finite string of zeros and ones. Such a 
chromosome could determine how an agent 
makes a ‘yes’ or ‘no’ decision. A mapping 
scheme associates a state of the world with 
each bit in the string. These bits are typically 
called genes. Figure 13.1 displays an exam-
ple chromosome-mapping scheme for an 
Iterated Prisoners’ Dilemma (IPD) game in 
which an opponent’s last three decisions 
impact the agent’s current behaviour.

In a single stage Prisoners’ Dilemma game, 
each player must decide whether to cheat or 
cooperate with the other player. If one player 
cheats and the other cooperates, the cooper-
ating player obtains a very poor outcome, 
and the cheating player achieves a very good 
outcome. If both players cheat, both obtain 
relatively poor outcomes. If both cooperate, 
both obtain a moderately good outcome.4 In 
an IPD game, a set of players repeat the 
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interaction and can condition their behaviour 
on their opponent’s past behaviour.

In this example, the rule governing agent 
behaviour is defined as a 15-bit binary 
string. Each gene in the bit string follows a 
particular three-stage history. In Figure 13.1, 
each gene is represented by a ‘?’. In an 
actual agent, however, each ‘?’ would be 
either a ‘1’ or a ‘0’. According to Figure 
13.1, the first gene determines how the 
agent behaves the first time the agent 
encounters a particular opponent. If the 
value of the first gene is a ‘1’, the agent 
cheats in the first round. If the value of the 
first gene is a ‘0’, the agent cooperates in 
the first round. The second gene determines 
how the agent will behave if the opponent 
cooperated in the first round. The third gene 
determines how the agent will behave if the 
opponent cheated in the first round, and so 
on. After the first three rounds, this scheme 
truncates the history used by the agent. In 
the 48th round, an agent will only consider 
what the opponent did in the 45th, 46th, and 
47th rounds. If an agent’s opponent cheated 
in the 45th round, but cooperated in the 46th 
and 47th rounds, then the value of the 12th 
gene will determine the agent’s behaviour in 
the 48th round.5

Figure 13.2 displays the typical flow of a 
one-population genetic algorithm. In the 
example above, the GA’s fitness function 
would be based on the IPD game. Following 
the conventions of game theory, this fitness 
function can be operationalized by assigning 
a pair of utility-based payoffs to each 
outcome.6

As Figure 13.2 shows, the population used 
in the first generation is typically drawn at 
random. If there are 20 agents in the 
population, the GA will start by generating 
20 random rules, or chromosomes. Each of 
these chromosomes will be a 15-bit binary 
string. To assign a fitness score to each agent, 
the agents will be broken into pairs. Each of 
the 10 pairs of agents will play a fixed 
number of rounds of the IPD game. Each 
agent’s fitness will be the sum of the payoffs 
that the agent earns in all the rounds played 
in a generation.

Once each agent has a fitness score, a sto-
chastic ‘selection-of-the-fittest’ sub-mecha-
nism is used to select parents for the next 
generation. Three-agent tournament selec-
tion is a common selection sub-mechanism. 
Under this mechanism, three agents are 
drawn from the population at random. The 
drawn agent with the highest fitness score is 
selected as the first parent. This tournament-
based, parent-selection process is repeated to 
select a second parent. The chromosomes of 
the two parents are combined to create a 
child agent.

Two genetic operators are used to add sto-
chastic variation to the child agent; crossover 
and mutation. Crossover takes place in 
between two genes. The crossover point is 
randomly chosen between any two genes in 
the chromosome at random. All genes before 
the crossover point come from the first 
parent. All genes after the crossover point 
come from the second parent.7 Next, muta-
tion alters some of the genes. Genes subject 
to mutation are selected at random and their 

Gene Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

∗ c d c d c d c d c d c d c d

∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ c c d d c

c c c c d d d d

c d d c c d d

Gene Value

Opponent’s
History

Figure 13.1 Sample rule codification scheme



USING GENETIC ALGORITHMS 223

value is ‘flipped’. For example, if the initial 
value of a gene selected for mutation is 
originally ‘0’, the value of that gene will be 
‘1’ after mutation.8 This parent-selection/
child-production process is repeated, with 
replacement,9 until the number of agents in 
the child generation equals the number of 
agents in the parent generation. Once the 
next generation of agents are created, the 
entire process is repeated. This continues for 
as many generations as the researcher wishes 
to conduct the experiment.

It should be emphasized that the parame-
ters and evolutionary sub-mechanisms used 
in the above example are for illustrative pur-
poses, and are not intrinsic to the definition 
of a genetic algorithm. A far more complete 
introduction to GAs can be found in Melanie 
Mitchell’s An Introduction to Genetic 
Algorithms (1996).

THE INTELLECTUAL HISTORY OF 
GA-BASED STRATEGIC MODELS

GAs were originally employed as optimiza-
tion techniques, and were primarily used to 
locate near-optimal solutions to difficult 
problems, such as the travelling salesperson 

problem. GAs have also been used as a 
‘black-box’ optimization process in the eco-
nomic and management literatures.10 A 
second stream of strategy research uses GAs 
to model strategic interaction. This second 
stream of research appeals to biology in 
order to build social science models. This 
heterodox appeal to biology is best under-
stood in contrast to the orthodox approach to 
economics, which primarily appeals to 
Newtonian physics.

The application of Newtonian physics to 
strategic interactions dates back to Cournot 
(1838). Cournot’s approach was itself con-
sidered heterodox for decades. With the rise 
of Walrasian economics, Cournot’s approach 
began to gain some prominence. During the 
twentieth century, Newtonian techniques 
dominated the economic orthodoxy. In order 
to justify the use of methodological tech-
niques borrowed from Newtonian physics, 
twentieth century economics assumed near-
perfectly rational, profit-maximizing agents.

Armen Alchian (1950) challenged that 
dominant economic dogma by asserting that a 
firm’s profit maximizing intentions are irrel-
evant to the firm’s success. Instead, Alchian 
proposed that realized profits determine a 
firm’s likelihood of survival. Alchian further 
asserted that realized profits are as much a 

Figure 13.2 Flow of a typical GA

Population of Random Agents (Generation1)

Each Agent obtains a Fitness Score

Fitness-based Selection

Stochastic Variation

New Generation

Create Agents for New Population
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function of chance as planning. ‘Even in a 
world of stupid men there will still be profits’, 
noted Alchian. To Alchian, the most profitable 
firm does not need to implement the perfect 
business model; it merely needs to implement 
a business model superior to the models of its 
competitors. The more uncertain the world, 
the more luck, and not rational planning, 
determines profitability.

Although luck is important in Alchian’s 
views of firm and market behaviour, he 
strenuously asserts that, on aggregate, indus-
try behaviour is not random. Through a 
process similar to Darwinian evolution, a 
population of increasingly competent agents 
will emerge. Alchian made the analogy to 
evolutionary operators explicit by noting that 
‘the economic counterparts of genetic hered-
ity, mutations, and natural selection are imi-
tation, innovation, and positive profits’.

Alchian’s analysis in this area was mostly 
based in qualitative analogies. Quantitative 
models applying these principals began 
appearing in the early 1980s. Invoking (i) the 
evolutionary logic of Alchian (1950) and (ii) 
the theoretical premises of Schumpeter’s 
dynamic superstructure of an economic system 
(Schumpeter, 1934), Nelson and Winter (1982) 
proposed using finite Markov chains to model 
the evolution of firms’ routines. Although they 
discussed the absorptive states that might 
serve as equilibria for such models, Nelson 
and Winter also posited that such an approach 
might provide insight on an economic sys-
tem’s dynamic, disequilibria behaviour.

Like the models introduced by Nelson and 
Winter, GAs are a class of finite Markov 
chains (Goldberg and Segrest, 1987). Also, 
like the models introduced by Nelson and 
Winter, most work uses GAs to model a 
system in which firms’ strategies or routines 
evolve. The method of codifying agent rules 
(e.g. routines), however, typically differs 
between the two approaches. Additionally, 
while the Nelson and Winter approach placed 
a great emphasis on individual agent search, 
the GA-based approach puts more emphasis 
on imitation.11

PROCESS VALIDITY 
AND GA-BASED MODELS

It is fruitful to model strategic behaviour 
with a GA if (and only if) the strategy updat-
ing mechanisms used by real-world agents 
are sufficiently similar to the evolutionary 
process in the GA. Behavioural game theory 
has recently started to focus on how players 
use the limited information they are provided 
with to update their strategies. Traulsen et al. 
(2010) suggest that when players can ascer-
tain the strategies employed by peers and the 
payoffs associated with those strategies, they 
initially copy the strategy of the most suc-
cessful peer they can observe over 60% of 
the time. The propensity with which the most 
successful strategy is copied (or maintained), 
however, increases as the experiment contin-
ues, reaching more than 80% after 25 rounds. 
The authors of this study interpret the remain-
ing instances of strategy updating to repre-
sent random experimentation, or mutation. 
These findings are parsimonious with the 
strategy updating sub-mechanisms embodied 
in GA-based models with tournament selec-
tion, and moderate levels of mutation.

In addition to data from behavioural exper-
iments, justification for a GA-like, evolution-
ary approach to strategic updating can also 
be found in case studies. One particularly 
compelling example comes from the online 
social networking industry. In the summer of 
2008, social networking site MySpace was 
the most popular website in the United 
States, boasting more page views than 
Google.12, 13 The first mover in this market, 
Friendster, originally dominated the social 
networking space. By the summer of 2008, 
however, MySpace had more than three 
times as many unique monthly visitors as 
Friendster.14

According to a recent history of MySpace 
(Angwin, 2009), its creators explicitly set out 
to imitate Friendster. Like the many Friendster 
copycats who entered this industry, MySpace 
consciously altered a few aspects of 
Friendster’s model. For example, MySpace 
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allows ‘fake’ identities, while Friendster 
attempts to force users to verify their own 
identity. MySpace’s most significant altera-
tion to the Friendster model, needless to say, 
was accidental. MySpace was originally 
coded in a computer programming language 
called Pearl. One month after the site 
launched, the company’s Pearl expert quit. 
Rather than hire a new Pearl expert, the com-
pany hired an engineer to replicate the soft-
ware in a programming language called 
ColdFusion. The ColdFusion coders forgot 
to add code to prevent users from uploading 
markup languages, such as HTML, in the 
user comment sections. This constituted a 
major security flaw, but before the company 
could block the use of markup language, 
young tech-savvy users began uploading 
HTML to alter the appearance of their 
MySpace page. As Angwin noted, ‘Suddenly 
teenage girls could decorate their MySpace 
page with hearts and glitter and smiley faces 
the same way they decorate their lockers and 
book bags’.15 This feature proved popular 
with younger users and fuelled an early boost 
in MySpace’s subscriber base. As MySpace 
began to grow its subscriber base, it also 
attempted to blend successful aspects of 
other internet-based business models into its 
operations. For example, after viewing the 
success of HotOrNot.com, MySpace added a 
similar feature called Hot or Cold.

The process through which MySpace 
developed its business model and beat out 
Friendster closely follows the sub-mecha-
nisms that drive a GA. A GA’s fitness-based 
selection can be understood as a firm’s imita-
tion of more successful, or fit, peers. At 
MySpace’s inception, Friendster had achieved 
a large number of subscribers and a high 
level of venture capital. This signalled that 
the Friendster’s strategy was ‘fit’, and should 
be imitated by new entrants. A combination 
of total venture capital funding and number-
of-subscribers is a suitable fitness metric in 
the early online social networking industry, 
and other industries dominated by internet 
start-ups. A combination of profits, earnings, 

and stock performance, instead, might be a 
more suitable fitness metric for more mature 
industries.

The GA’s crossover operation represents 
the processes through which a less successful 
firm combines the strategies of two or more 
successful incumbents to create a new strat-
egy. In the MySpace example, crossover can 
be understood by the blending of the func-
tionality from HotOrNot.com into the 
Friendster model.16 More generally, crosso-
ver represents a process’s partial imitation. 
Management consulting firms and business 
schools facilitate this type of partial imitation 
by drawing ‘lessons’ from evolutionarily fit 
firms. These lessons are typically a set of 
routines that other firms are encouraged to 
adopt to improve their performance. In the 
GA-based models, routines selected for par-
tial emulation are chosen at random. In con-
trast, when selective emulation is employed 
in the real world, a logical argument is typi-
cally offered to support drawing a particular 
lesson from a successful firm. However, the 
validity of such logic can only be ascertained 
ex post. There is enough error in the identifi-
cation of helpful routines that operationaliz-
ing selective emulation at random should 
constitute a reasonable approximation of the 
actual mechanism in the real-world system. 
For example, as late as January 2001, many 
business school professors still extolled the 
positive lessons one could learn from Enron. 
It is now clear that Enron’s outstanding 
financial performance in late 2000 and early 
2001 was driven by fraud, not the ‘best prac-
tices’ that MBA students were taught at the 
time. Although this is an extreme example, it 
supports the notion that, at the system level, 
the selection of lessons, or sets of routines, 
from successful peers can be modelled with 
random selection.

Mutation can be understood to represent 
small modifications to strategy. It is easy to 
see how mutation represents the uninten-
tional deviations from the target business 
model, such as MySpace user’s ability to 
upload mark-up language. However, mutation 
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can also be understood to represent conscious 
changes to the target strategy, such as 
MySpace’s decision to allow fake identities. 
The intuition behind this interpretation 
invokes Alchian’s (1950) arguments concern-
ing the role of luck in determining firm per-
formance. At the time of MySpace’s launch, 
there was genuine uncertainty regarding 
which suite of features would be most appeal-
ing. All entrants into the online social net-
working space could produce logic asserting 
that their company’s suite of features was 
optimal. MySpace’s logic can only be vali-
dated ex post. Ex anti, a system-level model 
with a sufficient number of agents can treat 
both unintentional and intentional deviations 
at random.

CURRENT USES OF GAs IN 
STRATEGIC MODELLING

Strategic game theory was the first manage-
rial sub-field to build models with genetic 
algorithms. These models highlighted the co-
evolution of agents competing against each 
other, and compared the results to game-
theoretic predictions. Co-evolutionary GAs 
typically exhibit a high degree of stability 
around Nash Equilibria (NE). However, in 
some situations where human behaviour 
deviates from the predictions of game-theo-
retic NE, GAs have displayed limited success 
in predicting the deviations.

In 1987, Robert Axelrod used GAs to co-
evolve a population of agents that played the 
Iterated Prisoner’s Dilemma (IPD) (Axelrod, 
1987). Axelrod observes that these popula-
tions frequently converged to a Tit-for-Tat 
strategy, with the phenotypical outcome of 
‘always cooperate’. Although the codification 
scheme Axelrod uses is more complex than 
the example at the start of this chapter, my 
example captures the approach Axelrod took.

The game theory community largely mis-
interprets Axelrod’s work by assuming that 
Axelrod supports ‘always cooperate’ as the 
stable outcome of a finite IPD. However, 

Axelrod’s model actually examines an 
indefinite IPD. Axelrod’s work eventually 
leads to a realization that co-evolutionary 
GAs often evolve strategies that lead to 
game-theoretic NE. Significant subsequent 
work uses GAs as a black box technique to 
locate NE.17

Dawid (1999) provides a more detailed 
account of the relationship between NE and 
the solution space of simple co-evolutionary 
GAs. Dawid’s study focuses on NE as 
Evolutionarily Stable Strategies (ESS). John 
Maynard Smith (1982) defined an ESS as 
being a strategy that, ‘if all the members of a 
population adopt …, then no mutant strategy 
could invade the population under the influ-
ence of natural selection’. To apply the ESS 
concept to co-evolutionary GAs, Dawid 
modifies this definition by asserting that a 
mutant is ‘most probably repulsed … if the 
number of mutants is sufficiently small’. By 
(a) restricting his analysis to a limited subset 
of selection and mutation rules, (b) approxi-
mating the behaviour of the Markov process 
with difference equations, and (c) focusing 
exclusively on cases with genotypical con-
vergence, Dawid is able to examine which 
convergent ESS attracts the dynamic co-
evolutionary system and which repels it. 
While some non-NE are asymptotically 
stable under certain crossover operators, only 
pure NE are stable under all crossover opera-
tors. He also shows that pure NE are asymp-
totically stable with respect to mutation.

Dawid supports his theoretical findings 
with numerous simulation experiments. He 
notes that GAs cannot locate the mixed NE 
associated with circulant payoff schemes. He 
also observes that if the mutation is set to 
zero, GAs cannot converge to pure NE in so-
called ‘deceptive games’. However, Dawid 
concludes that ‘in most cases, where no cir-
culant or misleading best-reply structure 
occurs, the GA has no problems in reaching 
one of the Nash equilibria’.18

There is some evidence suggesting that in 
games with multiple NE, GAs can further 
refine the equilibria selection. Arifovic (2001) 
applies a co-evolutionary GA to an iterated 



USING GENETIC ALGORITHMS 227

tacit cooperation game to observe the 
system’s transitions between the various NE. 
She concludes that the GA can be induced to 
reach any NE in that game; however some 
NE are persistently more stable than others.

There is a wealth of experimental game-
theoretic work revealing a disconnect between 
human behaviour and game theory’s predic-
tions (e.g. McKelvey and Palfrey, 1992; 
Hoffman et al., 1996; McCabe and Smith, 
2000; Alvaed, 2003; Colman, 2003; Henrich 
and Smith, 2003; Hill and Gurvan, 2003; 
Tracer, 2003. In some of these cases, genetic 
algorithms have been shown to deviate from 
the game-theoretic prediction in ways that 
mirror the deviations of actual human agents. 
Two important papers in this area are 
Andreoni and Miller (1995) and Ünver 
(2001).

Andreoni and Miller (1995) apply co-evo-
lutionary GAs to the auctions detailed in 
Kagel and Levin (1986). As in Kagel and 
Levin’s human experiments, the computa-
tional experiments in Andreoni and Miller 
show evidence of ‘the winner’s curse’, which 
is a deviation from the predictions of the 
standard, game-theoretic, risk-neutral, Nash 
equilibrium. This work suggests that while 
co-evolutionary GAs are drawn towards NE, 
they also deviate from NE in a way that 
reflects the behaviour of real economic 
actors.

Ünver (2001) also shows evidence that co-
evolutionary GAs can marginally out-perform 
game-theoretic induction in predicting the 
stability of entry-level, medical job matching 
schemes. Ünver’s work extends Roth’s (1991) 
game-theoretic work, which analyzes the 
pairwise stability of matching mechanisms.

During the 1960s, the UK labour market 
for new physicians experienced a time-based 
unravelling; in an effort to secure better doc-
tors, and better appointments, hospitals and 
medical students entered into binding con-
tracts earlier and earlier in the medical school 
process. This resulted in sub-optimal match-
ings, because both parties entered the bind-
ing contract before they had full knowledge 
of their options. Starting in the late 1960s, 

the UK’s National Health Service began 
implementing voluntary matching schemes 
at the regional level. Some of these schemes 
worked and prevented unravelling. Others 
collapsed, and were either discontinued or 
replaced with a scheme that worked.

Alvin Roth (1991) uses game compliance 
with game theory’s incentive-compatibility 
constraints as a criterion to evaluate the 
various schemes implemented in the UK. 
Roth discovers that all the schemes collaps-
ing in real life failed to meet the incentive-
compatibility constraints. However, two of 
the schemes that survive also fail to meet the 
incentive-compatibility constraints. Human 
subject behavioural work by Kagel and 
Roth (2000) confirms performance differ-
ences between the non-incentive compatible 
schemes that persist in real life and those that 
collapse in real life. From this we can con-
clude that the game theoretic notion of pair-
wise stability miscategorizes functioning 
mechanisms as unstable

In 2001, Ünver used a multi-agent, co-ev-
olutionary GA to compare the non-incentive 
compatible schemes that collapsed with those 
that persisted. The earlier agents entered into 
a binding contract, the higher the simulated 
social cost associated with that scheme. This 
embodies the notion that earlier matches are 
less efficient because the student’s true poten-
tial has not yet been revealed. Over multiple 
runs, Ünver found that the non-incentive 
compatible schemes that persisted had mar-
ginally lower cost than the mechanisms that 
collapsed. These experiments have led to 
continued use of co-evolutionary GAs in the 
analysis of other entry-level labour mecha-
nism design problems (Haruvy et al., 2006).

There are a large number of papers employ-
ing GAs to analyze game-theoretic problems. 
The above is intended to highlight the impor-
tant developments in the field, rather than 
provide an exhaustive list. Taken as a whole, 
the current state of work in this area suggests 
that GA-based models typically replicate the 
results of analytical game-theoretic models. 
However, in some cases where analytical 
game theory is a particularly poor predictor 
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of human behaviour, the predictions of 
GA-based models differ from their analytical 
game-theoretic counterparts. This strongly 
suggests a greater future role in the use of 
GAs in strategic modelling and analysis.

The existence of phenomena that can 
occur in a GA-based model but not in a more 
analytic treatment of evolution might explain 
the instances in which GAs outperform more 
traditional game-theoretic models in predic-
tion. For example, a process akin to genetic 
drift has been observed to push GA-based 
models out of a sub-game perfect equilibrium 
(Harrald and Morrison, 2001; Eaton and 
Morrison, 2003; Tracy, 2008). Conversely, 
this genetic drift is not observed in traditional 
game-theoretic models. Such phenomenon 
might enable GA-based models to account 
for possibilities that cannot occur in more 
analytical models.

FUTURE DIRECTIONS

This chapter argues that the process through 
which real-world agents update their strate-
gies often resembles the GA process. This 
suggests that GA-based models may be more 
insightful than traditional analytic models, 
which typically embody a lower degree of 
process validity.

Most work applying GAs to strategic 
game theory focuses on comparing the ESS 
selected by a GA to the equilibrium identi-
fied by game-theoretic solution concepts, 
such as the Nash Equilibrium. As discussed 
above, the ESS identified by GA-based 
models are often identical to the equilibria 
identified by classical game theory. However, 
there exist some cases in which the outcomes 
of GA-based models differ from game theory 
but more accurately reflect human behaviour 
(e.g. Andreoni and Miller, 1995; Ünver, 
2001; Casari, 2004). These results suggest an 
increased role for GA-based models in the 
analysis of strategy interactions.

There are at least two areas in which the 
application of GA-based models to strategy 

should progress over the next several years. 
First, the scope of strategic problems 
addressed with GA-based models should be 
expanded. For example, such an expansion 
could entail using GA-based models to 
explore the impact imitative learning on the 
decision to allow individual units to inde-
pendently learn strategies. Second, GA-based 
models should be refined to the point at 
which they can make meaningful predictions 
about a system’s dynamic response to a novel 
stimulus. For example, GA-based models 
could help us understand how a new regula-
tory policy will impact the competitive 
dynamics of an industry.

Scope of GAs in strategy

The preponderance of works applying 
GA-based models to strategy, focus on game-
theoretic questions. However, in other mana-
gerial fields, computational models are used 
to understand the impact of different proc-
esses in managerial and economic systems. 
This is particularly true in the study of 
organizational behaviour.

Computational modelling has a rich his-
tory in the field of organizational behaviour, 
dating back at least to Cohen, March, and 
Olsen’s Garbage Can Model (1972). There 
are many approaches to computational mod-
elling in organization theory. March (1991) 
used a computational model to examine the 
link between rates of social learning and the 
trade off between exploration and exploita-
tion. Other researchers interpret the informa-
tion flow along a network to draw conclusions 
about organization structure (e.g. see Carley, 
1991). Others examine how different struc-
tures affect search over topologies with vary-
ing levels of epitasis (e.g. Levinthal, 1997; 
Siggelkow and Levinthal, 2003).

Models based on GAs are less common in 
computational organization theory than other 
types of computational models (Davis et al., 
2007). However, the limited organization 
theory research that does build models based 
on GAs are less rigid than game-theoretic 
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models. Bruderer and Singh (1996) use a 
GA-based model to assert the potential coex-
istence of firm selection at the industry level 
and routine adaptation at the firm level in the 
determination of organizational forms. Miller 
(2001) uses genetic algorithms to explore the 
link between the depth of information proc-
esses in an organization and the number of 
problems the organization must solve.

Despite the limited work using GAs in 
organization theory, strategy research could 
profitably borrow from computational organiza-
tion theory’s experience. For example, many 
organization theory papers modify a model’s 
mechanisms to correspond with differences in 
the real underlying generative mechanism being 
studied. One paper already employs this 
approach in the field of strategy. Lee et al. 
(2002) employ a GA-based model to determine 
the preconditions under which a population of 
firms will segment into distinct strategic groups. 
Specifically, Lee et al. (2002) treat strategic 
groups as an emergent phenomenon, whose 
existence is associated with particular attributes 
of the various fitness functions. These fitness 
function attributes are intended to represent 
various aspects of competition in different 
industries (e.g. mobility barriers, strategic inter-
actions, etc.). The greater focus on the meaning 
of particular sub-mechanisms in a GA-based 
model (e.g. the fitness function) and the expan-
sion beyond game-theoretic problems are 
important areas of future GA-based strategy 
research.

Sub-mechanism selection and 
dynamic reactions to novel stimuli

Currently, GA-based strategic models are 
used to help us understand emergent phe-
nomena observed in real-world systems of 
strategic actors. For example, GA-based 
models help us understand the winner’s curse 
(Andreoni and Miller, 1995) and the survival 
of unstable pairwise matching schemes 
(Ünver, 2001). More generally, GA-based 
models also help us understand the dynamic 
process through which some strategic systems 

arrive at a Nash Equilibrium. Importantly, 
GA-based models show a dynamic process 
through which a NE can be reached even if 
the original assumptions used to justify Nash 
Equilibrium do not apply. While this is useful 
in its own right, policy makers and social 
scientists are always seeking tools that will 
enable them to form reasonable hypotheses 
regarding the dynamic response of complex 
social systems to novel stimuli. In these cases, 
the dynamic, pre-equilibrium behaviour of 
the system is likely to be of as much interest 
to the researcher as the long run equilibrium.

The following three-part process can help 
researchers build GA-based models that 
generate reasonable hypotheses about how a 
real-world system of strategic actors will 
respond to a novel shock. First, the researcher 
should determine whether evolution could 
possibly drive the strategic updating for the 
agents in question. Next, the researcher should 
identify the most likely sub-mechanism and 
bind the parametric specifications. Finally, 
the researcher can test the responses of the 
likely model to the stimuli.

Determine whether evolution can possibly 
drive the dynamics of a real-world system
The usefulness of a GA-based model depends 
upon the extent to which evolutionary-like 
processes actually drive strategy acquisition 
in the system being examined. For example, 
consider a firm trying to commercialize a 
radically new technology without a clear set 
of peers to emulate. In this case, it is unlikely 
that a model based on emulation of more suc-
cessful peers (such as the GA-based models 
discussed in this chapter) will be a useful 
platform for either existence proof testing or 
hypotheses generation. A model that learns 
from its own experiences might more fruit-
fully represent such a firm. Examples of 
these types of models include Learning 
Classifier Systems and reinforcement learn-
ing models.

There are many cases of strategic updat-
ing that are most likely driven by an 
imperfect, peer-emulation based mechanism. 
LeBaron and Yamamoto (2010) provide 
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evidence that financial traders use this type of 
strategy updating in an order-driven market 
similar to the London Stock Exchange. Their 
method is illustrative. First, they identify a 
number of irregularities in the real world, 
order-driven market data that are ill explained 
by mainstream finance theory. These statisti-
cally defined irregularities can be considered 
as emergent phenomena. Then they identify a 
GA-based model that can replicate these 
irregularities. From this, they conclude that 
an emulation-based mechanism is a possible 
driver of strategic updating among traders in 
such markets.

An Automated Non-linear Tests (ANTs) 
algorithm (Miller, 1998) can be used to search 
for sets of parameters and sub-mechanisms 
that replicate real-world results. Here, an 
ANTs algorithm is simply a second GA ‘top-
level’ that searches the parameter space of 
the GA-based model. In this case, the chro-
mosome of the top-level GA specifies the 
parameters and the sub-mechanisms used in 
the underlying model. The fitness function 
for the ANTs algorithm is inversely related to 
the distance between the model’s results and 
the results observed in the real world. That is, 
if a particular set of parameters and sub-
mechanisms cause the bottom-level model to 
produce results that are ‘close’ to the 
real-world results, the fitness associated with 
that model’s specification is high. Conversely, 
if a particular specification of the bottom-
level model produces results that are ‘far’ 
from the real-world results, the fitness asso-
ciated with that model’s specification is low. 
Sub-mechanisms in the model, such as 
whether to use a roulette-wheel or a tourna-
ment based parent selection process, can be 
parameterized so that these structural choices 
can be included in the ANTs algorithm’s 
search.

Identify the most likely sub-mechanism 
and parametric specifications
Even when the real-world agents being mod-
elled actually update their strategies through 
the imperfect emulation of more successful 
peers, improper selection of parameters and 

sub-mechanisms in the GA-based model can 
limit the model’s usefulness. Currently, most 
GA-based models use sub-mechanisms pro-
moted in literature that are oriented towards 
using GAs to quickly find near optimal solu-
tions to difficult optimization problems. The 
selection of these sub-mechanisms, and their 
parameters, can have a significant impact on 
the dynamic behaviour of the GA-based 
model. This is particularly true of co-evolu-
tionary models in which multiple populations 
evolve in competition with each other. 
The relevance of a model’s behaviour is 
likely tied to the extent to which these 
sub-mechanisms reflect the actual mecha-
nisms in the real world. This is not to say 
that the level of detail in a GA-based 
model should be increased. Rather, model-
lers should consider carefully their choices of 
sub-mechanisms.

The ANTs algorithm analysis discussed 
above is also useful in focusing the research-
er’s attention on the sub-mechanisms that 
appear most likely given the available data. 
Typically, however, there is not enough data 
to assert a single set of sub-mechanisms and 
parameters. Behavioural experiments and 
case studies can aid in the selection of these 
sub-mechanisms and parameters. Again, if 
the insights gained through behavioural 
experiments and case studies lead a researcher 
to conclude that the real-world agents being 
modelled do not update their strategies 
through the imperfect emulation of more suc-
cessful peers, then the researcher should 
consider other types of models.

It is worth noting that when GAs have 
proven most useful in explaining and/or 
foreshadowing human behaviour, the sub-
mechanisms operating in the real world natu-
rally resemble the sub-mechanisms borrowed 
from the optimization GA literature. Consider 
Ünver’s GA work which models the efficacy 
of schemes designed to match recent profes-
sional school graduates with jobs. His 
GA-based model outperforms the analytical 
game-theoretic approach.

University students update their strategies 
through the imperfect emulation of more 
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successful, senior peers. Members of one 
graduating class often copy strategies 
employed by successful members of the 
previous graduating class. These agents are 
likely to copy complete ‘genotypical’ strate-
gies, not just observed phenotypical behav-
iour: consider the role that career centres, 
clubs, sports teams, social organizations, and 
informal friendships play in facilitating the 
process through which successful upper-
classmen describe their complete strategies 
to underclassmen. Anyone who has repeat-
edly taught the same undergraduate course at 
a university with an active Greek life has 
heard their students remark that an older 
sorority sister or fraternity brother told them 
that X, Y, or Z is required to get a good grade 
in your course. As in an optimization ori-
ented GA, there are distinct generations in a 
university setting; every year, a class enters 
together while a different class graduates 
together. The similarities between this type 
of real world mechanism and the mecha-
nisms of a common GA help explain why 
Ünver’s model (2001) is more successful 
than game theory at predicting the efficacy 
with which voluntary-match schemes pair 
graduating students with available jobs.

Even when real-world agents update their 
strategies through the imperfect emulation of 
more successful peers, the different genera-
tions might not be as distinct as they are in the 
university setting. Finance is an area well 
suited to GA-based models (LeBaron, 2006). 
As in the university setting, there is reason to 
suspect that investors copy complete ‘geno-
typical’ strategies and not just the observable 
‘phenotypical’ strategies; the financial press 
typically publishes and promotes complete 
trading strategies, not one-off decisions about 
a particular trade. However, there is no reason 
to believe that trading strategies are updated 
in discrete generations. Indeed, LeBaron and 
Yamamoto (2010) present evidence suggest-
ing that a non-discrete generation updating 
sub-mechanism might generate more accu-
rate models of trading behaviour. This type of 
sub-mechanisms refinement should increase 
the efficacy with which GA-based models 

predict the dynamic behaviour of actors in 
real-world strategic systems.

Testing the model’s responses 
to novel stimuli
Based on behavioural research, case studies, 
and the results of the ANTs algorithm a 
researcher should select the most likely set of 
parameters and sub-mechanism for the 
model. The resulting model can then be sub-
jected to novel stimuli or shock. Once the 
response of this model is analyzed, a second 
ANTs algorithm may be used to determine if 
any combination of other likely sub-mecha-
nism or parametric settings will produce a 
qualitatively different response. Often, a 
researcher may wish to compare the outcome 
of different stimuli. This might be useful for 
a firm considering a new strategy or a policy 
maker considering a new regulatory scheme. 
Again, the researcher should not focus exclu-
sively on one set of sub-mechanisms and 
parameters, but should test combinations. 
This exercise should generate hypotheses 
about what might happen if a real-world 
system of strategic agents responds to novel 
stimuli.

NOTES

1 Marshall (1898: 39).
2 An alternative approach separates the strategies 

from the individual agents. See Alkemade et. al. 
(2006) and Waltman and Van Eck (2009) for a robust 
discussion of this alternative.

3 Because these models are stochastic, it is possi-
ble for the agents in one generation to be less fit 
than the agents in the previous generation. This is 
particularly likely after a population has converged 
around a local optimum in the solution space. 
However, the evolutionary process is generally con-
ceived of as increasing agent efficacy, at least in the 
early generations of the model.

4 Although subjective terms, such as ‘moderately 
good’, ‘very poor’, etc., are used in this description, 
the frame from which the outcomes are evaluated is 
immaterial. The important aspect is the relative value 
of the outcomes. Here, a ‘very good’ outcome is 
universally preferred to a ‘moderately good’ out-
come, which is universally preferred to a ‘moderately 
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poor’ outcome, which is universally preferred to a 
‘very poor’ outcome.

5 For example, if one player cheats and the 
other cooperates, the cheater receives 12 and the 
cooperator receives zero. If both cooperate, both 
receive 10. If both cheat, both receive 2.

6 In addition to all the points between genes, 
most GAs also allow for the random selection of the 
crossover to return the point before the first gene or 
the point after the last gene. When this occurs, the 
child chromosome effectively has only one parent.

7 This example is inspired by the works of Robert 
Axelrod, Michael Macy, and John Miller.

8 As with all the sub-mechanisms being described, 
there are many different ways to implement muta-
tion. When the number possible values of a gene is 
greater than two, mutation is often implemented as 
a random draw across all possible values of the 
mutation gene.

9 Here, sampling with replacement implies that 
one agent can be selected as the parent multiple 
times.

10 For an example of a black-box implementation 
of a GA in strategy research, see Fisch (2003).

11 This is not to imply that the GA approach does 
not embody local search. As discussed below, local 
search is one of the motivations for the use of the 
mutation operator. Nor should these statements 
imply that the models introduced by Nelson and 
Winter (1982) ignore imitation. Rather, this is a 
commentary on the relative emphasis across these 
two approaches.

12 According to Angwin (2009: 9), MySpace was 
the most trafficked website in America, in terms of 
pages viewed, in June 2008. Angwin notes that 
Google had more unique visitors, but that Google’s 
visitors did not view as many pages.

13 Social networking sites allow users to display 
photos and information on a personal homepage. 
Users identify other users as ‘friends’, who are 
allowed to view their homepage.

14 Source: www.comscore.com, queried 2008, 
author’s own calculations.

15 Angwin (2009: 60).
16 In a typical GA, the probability that the child 

chromosome draws evenly from all parents is quite 
low. Often, the majority of the chromosome comes 
from one parent.

17 As Nachbar (1992) notes, if Axelrod’s agents 
only have three periods of memory, they will be 
unable to tell that the game had a fixed length of 
151 iterations. At best, such agents could learn that 
there was a 1/148 chance the game will end any time 
after the first three iterations. The agents in Axelrod’s 
study were actually playing an indefinite IPD game, 
for which mutual adoption of the Tit-for-Tat strategy 
and the associated ‘always cooperation’ is well 
known NE.

18 Dawid (1999: 111).
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14
Organizing at the Edge 
of Chaos: Insights from 

Action Research

D o n a l d  M a c L e a n  a n d  R o b e r t  M a c l n t o s h

INTRODUCTION AND OVERVIEW

In this chapter we explore links between 
complexity theory and action research in the 
context of research conducted within organi-
zations. Researchers who choose to study 
organizational settings often do so with the 
aspiration of producing knowledge that 
would allow members of those organizations, 
and in particular managers, to work more 
effectively together (Beech et al., 2010). This 
concern is linked to the so-called ‘relevance 
debate’ since some argue that organizational 
research should be useful to those charged 
with running organizations (see Starkey and 
Madan, 2001; Starkey et al., 2009). Eminent 
scholars have repeatedly commented that 
much of the management research appearing 
in top-rated academic journals is of little 
relevance to most practitioners (see Smith 
and Robey, 1973; Schein, 1987; Gopinath 
and Hoffman, 1995; Kelemen and Bansal, 
2002).

Action Research has a long tradition in the 
social sciences but does not feature regularly 
in most major international journals; one 
analysis showed that action research appeared 
only sporadically and that the majority of 
published articles were either discussions of 
the merits of the method itself or calls for 

greater use of the method (MacIntosh and 
Wilson, 2003). In general terms, qualitative 
research is sometimes styled as the poor 
cousin of ‘real science’ and something which 
is best kept in ‘the closet’ (Sutton, 1997). If 
this is the case, action research is the poor 
cousin’s downtrodden neighbour (MacIntosh 
and Bonnet, 2007: 321).

We argue that there are obvious parallels 
between action research and complexity 
thinking. When conducting Action Research 
in an organizational setting, both the action 
and the research take place in real time. Both 
are affected by a large number of unforeseen 
variables. Seemingly small themes in both 
can come to dominate the process.

For us therefore, the potential implications 
of complexity theory for action researchers 
follow from turning complexity thinking 
towards the conduct of research itself. All 
management research, but perhaps in partic-
ular Action Research, might be seen as a 
complex and unpredictable dynamic whose 
practices, processes and outcomes emerge 
from the conduct of the research as it pro-
ceeds and which can neither be specified in 
advance nor controlled to any great degree.

The need to embrace the concepts of emer-
gence and self-organization in both the 
content of the research and the process of 
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conducting the research tends to preclude 
research designs which are fully specified at 
the outset. This chapter also discusses sig-
nificant differences in the way the role of the 
researcher is conceptualized.

COMPLEXITY AND CHANGE

The nature of organizational change is 
perhaps one of the most heavily researched 
topics in the field of management. A number 
of researchers adopt a punctuated equilib-
rium model of change which describes peri-
ods of relative stasis, periodically interrupted 
by episodes of rapid and often radical change 
(e.g. Abernathy and Utterback, 1978; Miller 
and Friesen, 1984; Tushman and Anderson, 
1986; Van de Ven, 1987; Gersick, 1991; 
Anjali Sastry, 1997). In some cases these 
punctuations are equated with changes from 
one organizational archetype to another (e.g. 
Greenwood and Hinings, 1993). Brown and 
Eisenhardt argued that whilst this punctuated 
equilibrium model was ‘in the foreground of 
academic interest’ (1997: 1) it was not the 
experience of many of the firms that they 
encountered.

A counter view exists in the literature, 
offering a description of change as continu-
ous or incremental process (see Burgleman, 
1991; D’Aveni, 1994; Brown and Eisenhardt, 
1997; Chakravarthy, 1997). Increased inter-
est in change as a continuous process may be 
linked to the emergence of highly turbulent 
operating environments across a range of 
industrial markets and not-for-profit sectors.

Weick (1979: 215) pointed to the need for 
organizations to display a mix of flexibility 
and stability and Chia (1999: 210) has called 
for alternative conceptualizations of change 
processes which take into account ‘the inher-
ent dynamic complexities and intrinsic inde-
terminacy of organizational transformation 
processes’. Leana and Barry (2000) have also 
attempted to move beyond the simple dichot-
omization of change as either continuous or 
discontinuous, to investigate stability and 

change as the simultaneous experiences 
which in many ways define organizational 
life. Huy (2002) has considered the issues of 
change and continuity at the level of the indi-
vidual, whilst Eisenhardt (2000: 703) has 
argued that these ‘co-existing tensions create 
an edge of chaos, not a bland halfway point 
between one extreme and the other’.

The term ‘edge of chaos’ was first coined 
in the natural sciences and has since been 
adopted by some management researchers 
seeking to apply complexity theory to the 
issue of organizational change (e.g. Anderson, 
1999; Pascale, 1999). Organizations ‘on the 
edge of chaos’ are attributed with the ability 
to exhibit spontaneous, prolific, complex and 
continuous change (Kelly, 1994; Kauffman, 
1995).

In this chapter, we offer both a theoretical 
and an empirical action research investiga-
tion of the ‘edge of chaos’ concept in organi-
zational settings based on a five-year study 
conducted within a network of 18 organiza-
tions drawn from the public and private sec-
tors in the UK. The study examined how 
common the ‘edge of chaos’ experience was 
in a range of different organizational settings, 
and what (if any) managerial and organiza-
tional practices were involved in operating 
on the edge of chaos.

We concur with Cohen’s view (1999: 375) 
that ‘we do not yet have a unified, theoreti-
cally coherent account of complexity’. Yet, 
as Anderson has remarked (1999: 217), man-
agement scholars have ‘passed the point 
where a summary of these ideas … or an 
assertion that an empirical phenomenon is 
consistent with them’ adds much value. 
Taking these observations on-board, we 
probe beyond the descriptive metaphor of 
organizations operating at the edge of chaos 
to seek empirical evidence of the managerial 
practices that characterize this state of 
affairs.

Using data from our study we developed 
two key constructs. First, in the two organi-
zations which did appear to operate on the 
edge of chaos, managerial practices such as 
acquisitions and hiring new staff (Marcus 
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and Nichols, 1999) are combined with less 
palatable processes of manipulating people 
and events, as well as deliberately circulating 
mis-information. We characterize these prac-
tices as ‘managing on the edge of some-
thing’. Second, we found two other cases 
where explicit attempts were made to posi-
tion organizations on the edge of chaos. The 
managers concerned in each case enacted 
practices which theorists recommend in order 
to produce edge of chaos behaviours, such as 
increasing participation in decision making 
(Ashmos et al., 2002) and attempting to 
encourage self-organizing processes (Pascale, 
1999; Stacey, 2003). We characterize these 
management teams as ‘the new Romantics’. 
Our conclusion is that organizations can 
operate on the edge of chaos, but that much 
of the advice offered in the literature to date 
is misleading, self-contradictory, ineffective 
and counter-productive. This might be related 
to the failure of extant research in complexity 
and management to develop the understand-
ing of context and practice that can result 
from rigorous action research.

COMPLEXITY AND THE 
EDGE OF CHAOS

An in-depth description of complexity theory 
and its origins would be inappropriate here; 
interested readers can find such descriptions 
elsewhere in this book or in other sources 
(we recommend Waldrop (1992) or Coveney 
and Highfield (1995)). Justifications of the 
use of complexity theory to study organiza-
tions (McKelvey, 1997; Matthews et al., 
1999) and why it might be important to man-
agers (Anderson, 1999; Lewin, 1999) also 
exist elsewhere. A brief introduction to the 
concepts used in the remainder of the chapter 
is, however, warranted.

The field of complexity theory offers two 
views of change processes, the edge of chaos 
view and a dissipative structures view. 
Organizational applications of these concepts 
mirror the pattern that has occurred in the 

natural sciences, in that usage of the 
dissipative structures view pre-dates its edge 
of chaos counterpart (see Gemmill and Smith, 
1985). Dissipative structures have been used 
to describe regional development (Allen, 
1997), organizational change (Gemmill and 
Smith, 1985; Leifer, 1989; MacIntosh and 
MacLean, 1999) as well as individual change 
(Gersick, 1991). The original research on 
dissipative structures was conducted in the 
fields of physics and physical chemistry 
(Jantsch, 1980; Prigogine and Stengers, 
1984) and describes qualitative, systems-
wide changes which occur episodically, in 
distinct phase transitions initiated by some 
external trigger. During these phase transi-
tions, the system concerned imports energy 
and exports entropy (a measure of disorder). 
Whilst in this highly unstable state the system 
becomes susceptible to tiny signals and 
random perturbations that would have had 
little impact were it still at equilibrium. 
Processes of positive feedback can turn these 
tiny changes into ‘gigantic structure breaking 
waves’ (Prigogine and Stengers, 1984: xvii). 
Since dissipative structures consume energy, 
they tend to stabilize again and return to 
equilibrium if, or when, the supply of energy 
stops. However, neither of these views made 
a clear distinction between change in the 
sense of a reconfiguration of existing ele-
ments, and real qualitative change where new 
types of element, with new behaviours or 
characteristics, emerge or invade the system 
(Allen, 1976: 2006).

Subsequent research in the field of biology 
(see Kauffman, 1993; Solé et al., 1993) 
adopted a different perspective claiming that, 
rather than experiencing periodic punctua-
tions, systems can exist in a zone on the edge 
of chaos. The edge of chaos perspective is 
most frequently associated with work in so-
called living systems (e.g. insect colonies, 
organisms, the human body, neural networks, 
etc.). Goodwin (1994: 169) claims that ‘com-
plex, non-linear dynamic systems with rich 
networks of interacting elements (have a 
zone which) … lies between a region of 
chaotic behavior and one that is frozen, with 



FOUNDATIONS238

little spontaneous activity’. Systems on the 
edge of chaos appear constantly to adapt, 
self-organizing again and again to create 
configurations that ensure compatibility with 
the ever-changing environment. This perpet-
ual fluidity is regarded as the norm in sys-
tems on the edge of chaos, as opposed to a 
periodic feature of systems that undergo dis-
sipative transformations from one stable state 
to another. Again these two views do not 
really consider change and adaptation as aris-
ing from the appearance of elements with 
novel behaviours and characteristics.

It has been noted that ‘the edge of chaos is 
a good place to be in a constantly changing 
world because from there you can always 
explore the patterns of order that are avail-
able and try them out … you should avoid 
becoming stuck in one state of order which is 
bound to become obsolete sooner or later’. 
(Brian Goodwin quoted in Coveney and 
Highfield, 1995: 273).

The concept of an organizational edge of 
chaos has been widely adopted with propo-
nents claiming that the level of innovation 
and creativity it confers on organizations 
may offer a source of competitive advantage 
(Brown and Eisenhardt, 1998). Such organi-
zations are said to ‘transcend fixed structures 
and centralized control; they are systems or 
processes that produce a constant stream of 
structural change throughout the organiza-
tion’ (Halal, 1993: 40). The visibility of early 
work at the Santa Fe Institute and the broad 
popular appeal of associated books on the 
new science (e.g. Waldrop, 1992; Wheatley, 
1992) saw the ‘edge of chaos’ develop into 
something of a saleable brand during the 
1990s. Populist managerial texts offered 
advice on ‘living on the edge’ (Youngblood 
and Renesch, 1997) and ‘leading at the edge’ 
(Conner, 1998), whilst management consult-
ants used the concept in relation to organiza-
tional strategy (see Beinhocker, 1997).

Despite this popularity however, Pascale 
(1999: 85) notes that ‘one cannot direct a 
living system, only disturb it’. Furthermore, 
Stacey’s extensive work in this area (1991, 
1995, 2003) centres on the assertion that we 

cannot accurately predict (or control) what 
happens in the future. For those adopting this 
view of organizations, the roots of unman-
ageability can be found in the fact that sys-
tems on the edge of chaos are both extremely 
sensitive to initial conditions and highly 
nonlinear in evolutionary terms. A number of 
authors argue that acknowledgement of this 
fact should be central to the quest to develop 
new ways of ‘managing’ our organizations 
(e.g. Shaw, 1997; Stacey, 2001; Streatfield, 
2001).

One of the critical issues in developing 
new ways of managing is ‘to figure out what 
to structure, and, as essential, what not to 
structure’ (Brown and Eisenhardt, 1998: 12). 
Maguire and McKelvey (1999: 31) point out 
that ‘the edge of chaos is not something 
which is necessarily there that managers 
have to contend with … it is a region that 
they create, consciously or inadvertently’. In 
the light of these observations, and in the 
face of the ‘tenuous connection between 
cause and effect’ (Pascale, 1999: 92), the 
action research discussed in this chapter 
sought to discover and understand what man-
agers could, and should do by actually work-
ing with them in change initiatives informed 
by complexity theory ideas.

RESEARCH SETTING

The study involved 18 organizations from the 
public and private sectors in the UK. Some of 
the larger multi-national organizations were 
not UK-based; in these cases research was 
conducted with UK-based subsidiaries or 
production facilities. Each organization was 
keen to explore the managerial implications 
of complexity theory (see MacLean and 
MacIntosh (2002) for a more detailed account 
of the study). Senior managers from each 
organization in the study met every six to 
eight weeks over a five-year period. 
Organizations in the study were sub-divided 
into three categories: large private sector 
firms, small to medium sized enterprises 
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(with under 250 employees, described as 
SMEs from this point) and public sector 
organizations (see Table 14.1).

METHODS

We felt that our study should adopt research 
methods which were consistent with the theo-
retical basis of our enquiry. The key question 
we faced was how to view our own involve-
ment, if the research process itself was a 
complex adaptive system subject to phenom-
ena such as non-linearity, disequilibrium, 
emergence, etc. Complexity theory indicates 
that small disturbances can be amplified into 
system-wide effects in unpredictable ways. 
Despite backgrounds (and PhDs) in engineer-
ing and physics, this led us as researchers, 
away from a view of ourselves as detached, 
unobtrusive observers and towards a role as 
creative participants in an unfolding (and 
essentially unpredictable) dynamic.

In the terminology of traditional research, 
we followed a research design akin to the 
multiple case method used by Brown and 
Eisenhardt (1997) and which had been devel-
oped from Yin’s work on case study research 
(1984). The organizations in the network 
were treated independently and a narrative 
account (Tsoukas and Hatch, 2001) was pre-
pared for each describing the most recent (or 
in some cases, on-going) organizational 
change experience(s). These accounts were 
shared within the network of organizations 
participating in the study (subject to the use 

of confidentiality agreements to deal with 
any commercial or other sensitivities).

To help move beyond superficial usage of 
the edge of chaos metaphor, we augmented 
this style of research with a more highly-
engaged, form of research which was more 
cognizant of complexity thinking. In part, 
this decision was influenced by Boje’s obser-
vation that context is essential for interpret-
ing narratives that occur in organizational 
settings and that without participating in the 
organization that contextualizes a narrative, 
meaning is difficult if not impossible to grasp 
(Boje, 1991), i.e. meaning (the meaningful-
ness of research) is itself an emergent com-
plex and participative dynamic.

We felt that using action research as a 
starting point would allow us to gain mean-
ingful access to the unfolding dynamic of a 
social system in a way that was necessary if 
we were to gain appreciation of the subtleties 
and nuances which might be important to our 
understanding and theory-building. Concerns 
about the extent to which our objectivity 
might be compromised by such a high-
engagement form of research were allayed 
partly by the use of mixed methods (includ-
ing more traditional case study research as 
indicated above). As a result, we developed a 
richer understanding of the concept of emer-
gent properties in research. From such a 
perspective, involvement is not cast as some 
distorting influence on objectivity but as the 
creative engine of the production of knowl-
edge and shared meaning.

Action research (as pioneered by Lewin, 
1947) has a long history in the field of 

Table 14.1 Organizations in the study (anonymized)

Large private sector firms SMEs Public sector organizations

Drinks Co
Power Up
Brand Co
Pharma 1
Electronix A*
CommuniCo*

Baker A*
Engineer Co*
Build It Ltd
Martin Bells Ltd
DPN Services
Smith & Assoc.

UK Univ 1*
Health Org B*
Media Comm
Local AuthoriT E
Economic Dev.
Environ Plus*

* Conducted extended action research projects with these organizations.
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management (see Reason and Bradbury, 
2001) yet Eden and Huxham (1996: 78) 
report that action oriented approaches can 
experience difficulty in finding acceptance 
on the grounds that they are not science. 
Proponents of such research argue that this is 
because such action-oriented research must 
be viewed and evaluated differently than tra-
ditional science (see Susman and Evered, 
1978). A more detailed exposition of our 
methodological stance for mode 2 manage-
ment research is available elsewhere (see 
MacLean et al., 2002).

In seven of the 18 organizations, we con-
ducted longer-term, action research studies 
ranging in duration from 8 to 20 months. 
Through the creation of the narrative accounts 
for all 18 organizations in the study, it 
became apparent that three types of change 
experience might be studied. The first type 
involved a stated intention to move from one 
relatively stable state to another. The second 
type would involve those organizations that 
already appeared to be operating in a manner 
consistent with the edge of chaos descriptors. 
The third, and perhaps the most interesting 
category in managerial terms, would involve 
those organizations that intended to switch 
from a stable state to a position on the edge 
of chaos. Given that the success or failure of 
these change processes could not be known 
in advance, we elected to establish a range of 
studies.

Our direct involvement in action research 
within seven organizations from the study, 
afforded us the opportunity to collect primary 
and secondary data, attend key management 
meetings, contribute opinions and sugges-
tions, conduct interviews and hold both on-
site and off-site workshops and reflection 
session with staff from the organization.

THEORETICAL INSIGHTS

Our first theoretically informed insight related 
to an inherent contradiction in some research-
ers usage of the edge of chaos concept. 

As we have already highlighted, those adopt-
ing the edge of chaos concept often point to 
the ‘unmanageability’ of systems in this state 
(e.g. Stacey, 2001; Streatfield, 2001). There 
appears to be an inherent contradiction 
between the observation that you cannot 
manage, direct or control systems on the edge 
of chaos and the normative suggestion of 
more populist writers that managers should 
attempt to manoeuvre their organizations into 
just this state. There are varying degrees of 
willingness to accept some level of manage-
rial control or influence with some authors 
(e.g. Stacey, 2001) pointing to the fallacy of 
attempting to manage the unmanageable, 
whilst Brown and Eisenhardt (1998) offer 
prescriptive advice on five building blocks 
for competing on the edge. The subtle dis-
tinction between creating edge of chaos con-
ditions in an organization and managing its 
behaviour once positioned at the edge of 
chaos also appears to be overlooked in the 
literature.

If this seems problematic, our second the-
oretically informed observation is potentially 
even more damaging to the edge of chaos 
concept. The edge of chaos concept first 
arose in the natural sciences when research-
ers at the Santa Fe Institute and the University 
of Illinois equated computational ability with 
the ability to adapt and survive, using cellular 
automata to explore their hypothesis that 
such ability became infinite in a regime 
which was between periodic and chaotic 
behaviour (reported in Coveney and 
Highfield, 1995: 273–277).

Separate empirical and theoretical work on 
ant colonies suggested that real colonies 
exhibit an organizational structure which in 
terms of spatial density corresponds to a tran-
sition between order and chaos, allowing the 
ants to behave as a ‘superorganism’ (Gordon 
et al., 1992). Yet prior work at Berkeley and 
subsequent work at Santa Fe suggests that 
whilst computational ability appears to 
increase in the transition zone between order 
and chaos, it does so at the onset of chaos 
(i.e. in the chaotic regime). There thus appears 
to be a case for arguing that order emerges 
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‘out of chaos’ (Prigogine and Stengers, 1984) 
rather than on the ‘edge of chaos’. This argu-
ment appears to be gaining broad acceptance, 
with some of the claims concerning the edge 
of chaos being attributed to different usage of 
the term chaos (which of course, is a well 
defined mathematical term describing a state 
which is intermediate between order and 
randomness in nonlinear dynamical systems). 
The lack of clarity surrounding the edge of 
chaos concept is further compounded by 
vagueness in relation to the definition of the 
‘edge’ in question, and which dimension(s) 
of the organization approach this edge, e.g. 
organizational structure, processes, culture, 
etc. (MacLean et al., 1998).

This lack of clarity may produce a false 
choice between the edge of chaos and the 
dissipative structures views of organizational 
change. If the organization is considered to 
exist in both physical and cognitive terms 
(e.g. as a set of physical structures and as a 
set of mental models, routines, etc.), then it 
could be that only one of these dimensions is 
subject to on-going, incremental change 
processes.

Finally, our theoretical inquiry raised con-
cerns about the way in which the edge of 
chaos concept is being translated from the 
natural sciences to social science settings. 
Much of the original research which led to the 
edge of chaos concept involved either the 
study of computer models (e.g. Kauffman, 
1995) or animal behaviour (e.g. Gordon et al., 
1992). The translation of findings from these 
settings to the social sciences obviously intro-
duces issues such as agency, but these are 
often glossed over managerial writings on the 
subject. We have argued elsewhere that, 
despite the fact that complexity theory itself is 
a new and rapidly changing field, manage-
ment scholars should focus on the develop-
ment of theories relating to complex adaptive 
social systems or CASS (see MacLean and 
MacIntosh, 2003) where the social dimension 
is embraced and made central to both the 
theory development and its application. 
Tsoukas and Hatch (2001: 981) deliberately 
adopt a metaphorical use of complexity as a 

means of expanding possibilities rather than 
taking a reductionist approach and searching 
for common laws underpinning everything.

We believe that the paucity of genuine 
attempts to build a social dimension into 
organizational applications of complexity 
theory is one of the primary causes of the 
criticism that we have not moved beyond the 
metaphorical. Interestingly, the only serious 
attempt to do so that we have found has 
rejected the notion of ‘system’ on which the 
whole of complexity theory is based (Stacey, 
2003).

To conclude our theoretical insights, we 
consider the confusion that exists at the over-
lap between organization theory and com-
plexity theory in terms of the relationship 
between stability and instability. In organiza-
tion theory, we earlier highlighted the calls 
for a mix of flexibility and stability (Weick, 
1979: 215; Brown and Eisenhardt, 1998). 
Yet, in complexity theory it is argued that 
complex adaptive systems naturally evolve to 
the edge of chaos (Bak, 1996) and that when 
positioned in this zone at the edge of chaos, 
systems naturally display the desired mix of 
flexibility and stability. Again these authors 
do not seem to make a clear distinction 
between the re-configuration of the existing 
elements of a system and the changes in the 
actual elements themselves or the nature or 
technology of the linkages between them. 
Our earlier observations about whether or not 
organizations can be managed towards the 
edge of chaos, whether such a zone exists 
at all and finally whether it is acceptable to 
treat organizational systems in the same 
way as ant colonies or arrays of light bulbs 
remain valid.

EMPIRICAL FINDINGS

The organizations included in our study were 
selected on the basis of the change experi-
ences each could share with other participat-
ing organizations from the study. One of our 
primary research goals was to investigate 
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how frequently edge of chaos style change 
processes occurred in the data and, where such 
behaviours were found, to characterize the 
managerial practices that underpinned them.

In establishing that an organization might 
be described as operating on the edge of 
chaos, we needed some criteria to make 
repeatable judgements across cases. The first 
criteria related to the duration of the change 
processes in the organizations concerned. In 
the organizations that experienced punctu-
ated or episodic change (typically in the form 
of re-engineering projects, corporate re-
structuring or merger), the change process 
lasted no longer that 24 months. Given the 
edge of chaos pattern of on-going, incremen-
tal, self-organized change processes, we con-
sidered any change experience extending 
beyond this 24 month cut-off as potential 
examples of edge of chaos behaviour in the 
organization concerned. The longitudinal 
nature of the research process was vital in 
enabling us to make such judgements about 
each of the participating organizations.

The second criteria we developed to iden-
tify edge of chaos behaviours related to the 
extent to which stability was sought, desired 
or achieved in the change process. In many 
of the cases we considered, the change proc-
ess was characterized by clear and distinct 
before and after states. Many of the change 
processes we studied involved preparation 
for and implementation of some new organi-
zational configuration (in terms of structure, 
roles, responsibilities, etc.) at a particular 
point in time. Again, by implication we clas-
sified those organizations where this was not 
the case as potentially exhibiting edge of 
chaos behaviour.

The final criteria which emerged from our 
data related to self-organizing processes 
where order spontaneously emerges out of 
disorder and chaos (Toffler, 1984: xv). 
Management theorists have described the 
benefits of such self-organizing processes in 
organizational settings as producing struc-
tures that are fluid, yet sensitive to the 
needs of the elements (Ashmos et al., 2002). 
Hence, we looked in each of the cases for 

instances of spontaneous events and inci-
dents which had nevertheless resulted in 
particular patterns of organizing being 
adopted. A succession of such self-organiz-
ing occurrences was again taken as an indica-
tor of possible edge of chaos behaviour.

In isolation, some of these criteria occurred 
in all of the cases we studied. Applying this 
test to the 18 organizations in our study, we 
discovered only two instances where the 
change processes studied were consistent 
with edge of chaos type behaviours at least in 
terms of the criteria we had established. 
Detailed analysis of the circumstances, man-
agerial practices and organizational outcomes 
associated with these two cases led to the 
development of our first key construct (as 
summarized in Table 14.2).

OPERATING ON THE EDGE

The change processes at Pharma 1 and 
Electronix A both extended beyond 24 
months. The case study at Pharma 1, the 
older of the two organizations, revealed a 
history of continuous change traceable over a 
15 year period whereas according to the CEO 
of Electronix A ‘the organization had been in 
a state of flux over its short 3 year history’. 
Both Pharma 1 and Electronix A appeared to 
be operating on the edge of chaos, had been 
doing so before our study began, whilst con-
tinuing to do so during the study.

Understandably, this meant that neither 
case highlighted distinct transitions from one 
discernible state to another. More interest-
ingly however, both organizations claimed 
that this was a deliberate ploy. The most 
senior operational manager at Pharma 1 was 
described by staff as ‘a bit like a chess player, 
making changes, reviewing the pattern, keep-
ing things interesting’.

This emphasis on continual change had led 
each organization to a propensity for resolv-
ing problems through self-organization. 
Those closest to the problem would often 
resolve issues through direct communication 
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Table 14.2 Key constructs

Organizations Managerial practices Organizational outcomes Key construct

Electronix A
and
Pharma 1

Acquiring new businesses – to 
maintain a sense of fluidity

Staff rotation – to avoid individuals 
building empires

Manipulation of both events and 
individuals – to maintain a sense 
of uncertainty

Peddling rumours and untruths – to 
induce a sense of anxiety

Produced a state of 
perpetual uncertainty 
and anxiety amongst 
staff. Staff seemed more 
likely to engage in self-
organizing behaviour to 
address problems.

Managing on the edge of 
something

Environ Plus
and
Engineer Co.

Move to new sites – to provide a 
symbolic break with the past

Introduce new Structures – to 
produce new forms of 
collaboration within the 
organization

Increase participation – to engage 
the whole organization in key 
decisions

Develop new Skills – often in the 
form of multiskilling, etc.

Produced a sense of 
scepticism about the 
changes. Staff expressed 
concerns that old power 
structures were still 
in operation despite 
repeated assurances 
in the early stages. 
Management become 
frustrated but when 
subsequently faced with 
crisis situations, the 
management acted in 
ways which confirmed 
staff suspicions. 

The New Romantics

with key players, but without recourse to 
higher levels of management. The CEO of 
Electronix A commented on several localized 
examples (re-organizing shift patterns, re-
designing products and production processes, 
etc.) which had just ‘happened’.

In what might already be considered a 
somewhat biased sample of 18 organizations 
with prior knowledge of the edge of chaos 
concept, the low frequency of its occurrence 
does run counter to Brown and Eisenhardt’s 
assertion (1997: 1) that many firms compete 
by changing continuously. Both organiza-
tions were, however, in knowledge-intensive, 
high technology industries (pharmaceuticals 
and electronics) and each organization did 
operate with shortening product life cycles 
and rapidly shifting competitive landscapes 
(Brown and Eisenhardt, 1997: 1).

The most striking feature of the two edge 
of chaos cases related not to the strategic 
behaviours that it produced but to the mana-
gerial practices which appeared to be required 

to manoeuvre the organization to the edge of 
chaos and maintain its position there. In both 
cases, the management practices employed 
indicated that organizations do not naturally 
migrate to the edge of chaos. Both Electronix 
A and Pharma 1 exhibited semi-structures 
(Brown and Eisenhardt, 1997) but these 
semi-structures were produced by the delib-
erate destabilizing activities of the managers 
concerned. This is consistent with complex-
ity theory in the natural sciences where it is 
argued that a continuous supply of energy is 
required to maintain the change process, but 
inconsistent with views that organizations 
were essentially unmanageable.

At any given point in time Pharma 1 and 
Electronix A were expected to be operating 
with a single structure but the pace of change 
was deliberately set at a level above that with 
which the organizations could cope. For 
example, Pharma 1 had adopted an aggres-
sive growth strategy fuelled by regular 
acquisitions (as many as 15 in a single year). 
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As each acquisition occurred a new set of 
structural arrangements would be drawn up 
dealing with both internal organization and 
the servicing of external markets. These 
plans rarely had the chance to become embed-
ded as some subsequent acquisition was in 
progress before this could happen. In parallel 
with this practice, both Pharma 1 and 
Electronix A used job rotation and restructur-
ing to maintain a level of instability that was 
viewed as crucial in delivering edge of chaos 
type behaviour. The CEO at Electronix A 
described these strategies as ‘a way of main-
taining uncertainty and the feel of a start up 
situation long after most other organizations 
would have settled down into a particular 
mode of operating’.

Another key conceptual contribution from 
Brown and Eisenhardt’s study of high veloc-
ity industries related to what they describe as 
‘links in time, practices that address the past, 
present and future … and transitions between 
them’ (1997: 29). In both Electronix A and 
Pharma 1, such links in time were not dealt 
with by the organization in a collective 
manner. Rather, the linkages between the 
past, present and future were the exclusive 
preserve of a single figure at the top of the 
organization. The description given earlier of 
the chess player captures the nature of this 
role, but it was also described by the two 
individuals concerned as ‘a lonely role, 
having perpetually to keep everyone on their 
toes … even to the extent that you deliber-
ately peddle untruths and misinformation to 
keep things from settling into a rhythm’.

These two organizations where edge of 
chaos behaviours were observed were char-
acterized by managerial practices which 
ensured a degree of physical instability (in 
terms of structures, roles, etc.). Both cases 
also featured practices designed to produce 
cognitive instability (through the use of con-
flicting information, rumours and misinfor-
mation). These latter practices could be 
considered unethical (Darley et al., 2001) 
and hence we have described Pharma 1 and 
Electronix A as operating at ‘the edge of 
something’ – the ‘something’ could as easily 

been read as being the edge of ethics as the 
edge of chaos.

THE NEW ROMANTICS

In two of the other extended action research 
studies, organizations initiated change pro-
cesses with an explicit desire to produce 
organizational behaviours consistent with the 
literature’s description of the edge of chaos. 
These attempts to develop edge of chaos 
behaviours were unsuccessful both in terms 
of the three criteria set out in our diagnostic 
test set out earlier, and in the opinion of staff 
from the organizations concerned. A detailed 
review of these cases led to the development 
of our second key construct, which we 
termed ‘the new Romantics’, since we were 
struck by parallels with the way in which the 
Romantic Movement (c. 1750 to c. 1900) 
cherished intuition, emotion, inspiration and 
creativity, in part as a revolt against the 
Renaissance’s preference for orderliness and 
logical methods of thought and design.

Environ Plus was a newly formed public 
sector organization created through the amal-
gamation of 63 smaller, independent, region-
ally based organizations covering a range of 
related activities. The formation of a new, 
national organization was accompanied by 
significant efforts on the part of senior man-
agement team to develop a new, innovative, 
flexible culture in what had been traditional 
and somewhat staid sector. High levels of 
physical instability were present in Environ 
Plus as new offices and a new location were 
chosen, roles changed, new processes were 
put in place, etc. Over time, the organization 
displayed surprisingly little cognitive insta-
bility and the various different professional 
groups slowly began to reassert both their 
power bases and their traditional ways of 
working. After a brief flirtation with the edge 
of chaos, Environ Plus reverted to a more 
stable pattern of behaviour and subsequent 
organizational changes were more consistent 
with the dissipative structures model.
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Over the same period, Engineer Co also 
attempted to adopt edge of chaos behaviours. 
The company, a traditional mechanical engi-
neering factory formed in the nineteenth 
century was under increasing pressure to 
improve performance in financial terms or 
run the risk of disposal and possible closure. 
The managing director who participated in 
the study recognized ‘the need for wholesale 
change and an enduring sense of ‘changeful-
ness’. The company had been organized 
along functional and hierarchical lines for as 
long as anyone could remember – with a ‘do 
as you’re told’ mentality pervading the organ-
ization. The kinds of performance improve-
ments required to make Engineer Co 
competitive (e.g. significant lead-time reduc-
tions and new rapid and radical product 
development), were unlikely to be realized 
unless a more dynamic, team-based, net-
worked organizational form could be intro-
duced. The espoused characteristics of an 
organization operating on the edge of chaos 
appealed greatly to the management team at 
Engineer Co.

In the action research we undertook, 
extensive work with the senior management 
team did seem to produce genuine changes 
in its behaviour. However, over a period of 
18 months, these changes appeared to be 
restricted to the management team and the 
remainder of the organization continued to 
resist efforts to encourage wider participation 
in the change process. A completely new 
structure based around business units was 
introduced but despite the best efforts of the 
management team there were very few 
instances of self-organized, spontaneous or 
non-directed change. Eventually, the manag-
ing director who had instigated the change 
programme admitted that Engineer Co could 
not be described as operating at the edge of 
chaos despite strenuous efforts to make this 
happen.

Ashmos et al. (2002: 190) argue the case 
for making organizations more internally 
complex by encouraging participative deci-
sion-making. Senior management at both 
Environ Plus and Engineer Co did attempt to 

introduce greater levels of participation in an 
effort to produce edge of chaos type behav-
iours in the organizations concerned. In both 
cases, this participative approach failed and 
any changes that the organizations did expe-
rience were more accurately described as 
punctuated or episodic. In the case of Environ 
Plus these attempts met with early success 
but later crises were eventually dealt with in 
an authoritarian fashion reminiscent of the 
predecessor organizations which had formed 
the basis for Environ Plus. In the case of 
Engineer Co, those outwith the management 
team never overcame their scepticism at 
attempts to involve them in decision making 
processes.

Of course, this may simply signal a mana-
gerial failure to operationalize the edge of 
chaos concept. We would argue however, that 
a more compelling explanation lies in the 
existence of a fundamental inconsistency 
between edge of chaos behaviour and the 
deliberate practices of progressive managers 
emphasizing the importance of widespread 
participation in organizational design and 
strategy making.

The other remaining 14 organizations in 
our study exhibited change processes which 
were consistent with a dissipative struc-
tures description (see Table 14.3a–c). These 
change processes were characterized by clear, 
stable before and after states which were 
separated by a short period of instability. In 
these cases, rather than naturally remaining 
poised on the edge of chaos, the organizations 
reverted to a stable format (either the old 
archetype or some new replacement – see 
MacIntosh and MacLean (1999) for a fuller 
account of such behaviours). Many of these 
14 organizations embarked on change proc-
esses as a response to some external stimuli. 
Baker A faced financial ruin when the slow 
erosion of their traditional markets was exac-
erbated by a national food safety scare relat-
ing to beef. Meat products represented 40% 
of Baker A’s output and the market for these 
products collapsed in a matter of weeks. 
Drinks Co. was a successful international 
company which embarked on a change 



Table 14.3 Overview of Data Set

Organization Description of change process Driver(s)

(a) Large Private Sector Firms

Drinks Co Drinks Co was a large, multinational firm operating in mature markets. Slow growth in the sector 
led to a merger with another similar sized competitor. The change process studied involved the 
planning and implementation of a new approach to manufacturing and distribution. Two sets of 
manufacturing plant and distribution channels were consolidated into a single operation. A BPR 
project was undertaken which spanned a 12-month period, after which the new processes ‘went 
live’. These new processes took products from 64 production lines at 4 different production sites and 
distributed them to over 200 markets world-wide.

Externally triggered by demands for improved shareholder value, 
the merger was presented to the stock market as a way of 
achieving significant cost reductions and doubling shareholder 
value within a 4 year period.

Power Up Power Up was formerly a publicly owned utility, providing a single service to a single domestic market. 
Following privatization and deregulation, Power Up sought to achieve rapid improvements in 
performance levels and to expand. This led to the acquisition of new businesses as Power Up sought 
to move from being a single utility to being a multi-utility organization offering gas, electricity, 
water and telecommunications services. The change process studies here related to the HR function 
of Power Up as it sought to co-ordinate training, development, remuneration, etc. across the newly 
acquired businesses. 

The initial triggers were legislative changes which first privatized 
a range of different public utilities over a period of time, then 
allowed ownership of more than one utility type by a single 
organization.

Brand Co A highly successful firm which developed and produced a diverse range of household products, 
Brand Co. undertook a major re-engineering project to improve the performance of its product 
development process. The re-engineering project involved key players from a range of organizational 
units which serviced a diverse range of markets. 

Alongside the objectives of reducing costs and lead times, a major 
driver for the project was the search for synergies between the 
vast range of markets and products which Brand Co managed.

Pharma 1 Pharma 1 offers a range of services to the pharmaceuticals industry and has experienced rapid growth 
as a result of the trend toward outsourcing of non-core activities in the sector. The change process 
studied was the rapid growth of the firm as it aimed to achieve $1 billion turnover through an 
aggressive pattern of acquisitions and developing new markets and services. High levels of growth 
were being achieved through an acquisition rate of between 10 and 14 new businesses each year.

The change process appeared to be internally driven by the desire 
to achieve a particular target which had been a feature of the 
organization for some time.

Electronix A Electronix A supply a variety of components for use in a range of electronic devices. This US based 
organization was establishing a manufacturing plant to service the European mobile phone industry. 
The change process being studied here was the establishment of a new manufacturing facility over a 
period of 36 months.

Whilst the initial trigger for change was external (i.e. the decision 
by the parent company to establish a new site), on-going 
changes once the plant was opened were driven internally.

CommuniCo This study took place within the UK division of a global IT services organization which employed 
over 100,000 staff world-wide and had an annual turnover of $15 billion. Several years of rapid 
expansion had come to an end, and as the business stabilized there was increasing pressure to 
reduce costs in order to maintain the kind of margins that shareholders had come to expect. The 
change process studied related to the development of new ways of delivering a key service contract. 
The new contract was to be arranged on a rolling basis, valid for 3 years but revisited every year. 

The driver for this change process was a corporate plan to 
improve productivity and profitability. This was generated by 
‘head-office’ and was being operationalized by the various 
divisions. 



(b) Small to Medium Sized Private Sector Firms

Baker A A family owned firm, Baker A had operated successfully for the majority of its 80 year history. However, 
recent trends in the market had led to a decline in sales as customers began to shop at large 
supermarkets (which Baker A did not supply) instead of small local shops (which were Baker A’s 
primary distribution channel). The organization recorded a substantial financial loss for the first time 
and this instigated a change programme to reduce costs, introduce new products and penetrate new 
markets. This change process occurred over an 18 month period.

The gradual changes in consumer behaviour were 
accentuated by the BSE crisis in the UK. This had the 
effect of decimating demand for meat-based products 
which, at the time, represented 40% of turnover.

Engineer Co A UK based subsidiary of a US engineering firm, Engineer Co manufactured complex products for the 
energy industry. Originally an independent company founded in the nineteenth century, Engineer Co 
was now under increasing pressure from its US parent to improve performance in financial terms or 
run the risk of disposal and possible closure. A new MD was appointed and he instigated a 24 month 
change programme aimed at restructuring the business and restoring profitability.

Trading difficulties had been exacerbated by exchange 
rates which effected the firm’s competitiveness in 
export markets. The key trigger was however, the 
appointment of a new MD.

Build It Ltd This firm offered sub-contracting services to large construction companies in markets as diverse as road 
building and domestic housing. The firm employed over 340 staff, many of whom had worked for 
Build It for over 20 years. The charismatic MD who had presided over a period of massive expansion 
now wanted to step down from his post and oversee the development of other new businesses which 
had been acquired. This change process involved the board of directors (who were technically rather 
than commercially trained) developing new skills and working together in new ways.

The acquisition of two new businesses, both of which 
required management attention, triggered the changes 
envisaged at top level in Build It. 

Martin Bells 
Ltd

A family owned firm which manufactures and distributes specialized components for use in the process 
industries. Martin Bells was operating successfully despite the appearance of large multi-national 
competitors in many of its key markets. The change process studies here involved changes in the 
senior management team as the existing MD (and co-founder of the business) handed over control to 
his son.

The trigger for change in this instance was the 
announcement by the existing MD that he wished 
to retire from the business, whilst still retaining a 
significant shareholding.

DPN Services DPN offered consultancy services to the construction industry. The change process studied here involved 
the development of a new product/service based around the electronic capturing and management 
of building details via a new piece of software. In a traditional and highly paper-intensive sector, this 
innovation appeared to be changing the very nature of DPN’s business.

An unforeseen development which evolved from 
one person’s attempts to improve their own data 
management and become a whole new area of 
business activity.

Smith & 
Assoc.

Smith & Assoc. started as a professional partnership and became a limited company as the senior partner 
attempted to ensure that everyone held some equity in the firm. The firm faced a series of changes 
culminating in the incumbent MD announcing that he no longer wanted to fulfil this role. The firm 
then faced a period of introspection as a new MD was sought and appointed.

Again, the trigger for change here was the announcement 
by the current MD that he wished to step down, but 
remain working for the firm.

(continued )



Table 14.3 Overview of Data Set (cont.)

(c) Public Sector Organizations

UK Univ 1 The change process here related to the University’s approach to managing student records. The 
existing system was cumbersome, distributed and duplicated. A BPR project was initiated to 
move all parts of the University to the use of a single, centrally held, electronic record. UK Univ 
1 employs over 5000 staff and a small team of 35 people was formed to undertake the process. 
The project has been running for over 4 years.

Increased pressure on resources led to a drive for 
improved efficiency. These pressures proved an indirect 
trigger for the change process at UK Univ. 1.

Health Org B Provided a form of quality assurance service to the rest of the National Health Service in Scotland. 
A small core team of staff was augmented by a much larger group of reviewers and a specific 
range of health services were audited on a rolling basis when one member of the core staff and 
a team of reviewers would visit a particular site for a one week period. Health Org B felt the 
need to transform the way it operated in light of the changes in its operating environment. This 
process extended over 12 months.

A number of triggers included changes in the political 
system (as a new Scottish parliament was established) 
and the fact that a new health inspectorate was set up 
covering a far broader range of health services.

Media Comm A publicly funded broadcaster faced a period of unprecedented upheaval as both the marketplace 
and broadcasting technology changed. The change process studied here related to Media 
Comm’s HR policies as they began to outsource more of their production services.

A drive by the government to ensure value for money 
for publicly funded services translated into specific 
initiatives within Media Comm.

Local AuthoriT E The change process studied here related to the introduction of new working practices in the Social 
Work department. These new practices involved multi-skilling, the use of flexi-time, etc. The 
change process took place over a period of 6 months and was characterized by a long period of 
planning followed by a short implementation phase.

The driver for this change was a desire to improve the 
responsiveness of the particular service concerned. The 
changes were not made in response to any specific 
external signal.

Economic Dev. One particular department of a national, government funded economic development agency was 
asked to participate in a ‘workplace of the future’ project. The project involved moving to 
new offices which would feature extensive use of mobile computing and telecommunications 
technology, hot-desking, remote working, etc. The project ran for an 18 month period but was 
preceded by a 6 month consultation, planning and preparation phase.

The trigger for change here was the opportunity to 
participate in a funded demonstration project.

Enviro Plus Enviro Plus is a national agency responsible for policing a range of environmental protection 
legislation. The formation of Enviro Plus involved the merging of a large number of smaller, 
regionally based organizations and the change process studied here ran over a period of 36 
months.

The driver for change in this instance was the introduction 
of new legislation which necessitated the creation of a 
new national agency.
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process following the announcement that it 
was to merge with a rival organization.

DISCUSSION

This chapter describes the use of action 
research, in combination with traditional 
case study research, to explore the applica-
tion of complexity theory in organizations. 
Specifically, the study described here sought 
to discover how common the edge of chaos 
experience was in a range of different organ-
izational settings, and what (if any) manage-
rial and organizational practices were 
involved in producing these behaviours.

In describing our theoretical insights, we 
pointed out that some researchers in the natu-
ral sciences have questioned the validity of 
the very concept of the edge of chaos. Mitchell 
has argued that, ‘to the extent that one can 
make sense of what (was) … meant by the 
“edge of chaos”, (the) … interpretations are 
neither adequately supported nor are they cor-
rect on mathematical grounds’ (quoted in 
Coveney and Highfield, 1995: 276).

Despite these criticisms, our research 
would seem to indicate that some organiza-
tions can operate whilst positioned some-
where between a stable, structured state and 
one of total randomness. Despite arguments 
that ‘change is the normal condition of 
organizational life’ (Tsoukas and Chia, 2002: 
567), our study indicates that this is not the 
natural, or default, state for organizations. 
Rather, we would concur with Brown and 
Eisenhardt’s contention that maintaining a 
position on the edge of chaos, where change 
is continuous, represents a serious challenge 
because such a position is a dissipative 
equilibrium and requires constant manage-
ment vigilance to avoid slipping into pure 
chaos or pure structure (1997: 29). Since 
only two of the 18 organizations studied 
displayed these edge of chaos behaviours, we 
would argue that the challenge of maintain-
ing a position on the edge of chaos is one 
which most management teams fail to meet. 

Part of the explanation of this may also lie in 
the desire of individuals to avoid the anxiety, 
stress and ultimately, health problems that 
may accompany unremitting fluidity 
(Houchin and MacLean, 2005; MacIntosh 
et al., 2007).

Turning to the managerial practices that 
produce edge of chaos behaviours, we may 
begin to see some explanation of this. The 
literature offers a range of advice to those 
seeking to position organizations on the edge 
of chaos. At one extreme we find Stacey 
(2003), who argues that organizations are 
unmanageable. He criticizes the work of 
Brown and Eisenhardt (1998), observing that 
‘they make a simplistic equation between the 
edge of chaos and success’ (Stacey, 2003: 
282). Yet, Pascale argues that the edge of 
chaos can be attained through a precise bal-
ance between amplifying and damping feed-
back, and (unique to mankind), the application 
of mindfulness and intention (1999: 91). The 
former practice has also been adopted in 
other work on complexity theory (see 
MacIntosh and MacLean, 1999), whilst the 
latter is directly opposed to Stacey’s observa-
tions about unmanageability (2003).

Pascale describes the experience of change 
at Shell as occurring at the edge of chaos 
(1999). He describes the managerial prac-
tices involved as decentralizing, encouraging 
the use of small teams and introducing stress 
through increased transparency and increased 
contact between senior managers and front-
line staff. In our study, Environ Plus and 
Engineer Co introduced such practices but 
failed to achieve edge of chaos behaviours 
over the medium term. The attempts at both 
Environ Plus and Engineer Co to produce 
flexibility and adaptive capacity through 
greater levels of autonomy and participation 
did not produce the self-organizing patterns 
of behaviour that were anticipated.

The two organizations from our study 
which did achieve edge of chaos behaviours 
(Pharma 1 and Electronix A) also adopted 
these practices. In both cases, stress levels 
within the organizations concerned were 
further heightened through the use of 
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other tactics. Explicit attempts to maintain 
instability focused on frequent restructuring 
exercises, job rotation to avoid individuals 
becoming comfortable in their roles and 
acquisitions to challenge cultures, practices, 
etc. These practices did produce a stressful 
environment but were within the bounds of 
acceptable managerial behaviour. We also 
found that in both Pharma 1 and Electronix A 
the most senior personnel regularly peddled 
mis-information, manipulated events and 
people to produce crises and circulated 
rumours about impending take-overs, loss of 
business, etc. These latter practices led us to 
describe these organizations as managing on 
the edge of something. Of course there is no 
evidence that the adoption of these practices 
improved the performance of the company in 
comparison with what would have happened 
if they had not been adopted. Only when 
companies fail can we say that whatever it 
was they were doing has not worked. Thus 
we are left with an ambiguity as to whether 
any changes could have saved the situation.

Conclusive judgements cannot be made 
on the basis of the cases presented here. 
We believe that a critical factor was that in 
both Pharma 1 and Electronix A these 
‘questionable’ behaviours were vested in a 
single, powerful individual at the top of the 
organization.

CONCLUSIONS

In this chapter, we have established that 
organizations can operate on the edge of 
chaos in a minority of cases and we have 
attempted to characterize the management 
practices that produce these behaviours. 
Though not exhaustive, the five-year study of 
the change processes in 18 public and private 
sector organizations presented here indicates 
two key contributions – first, that edge of 
chaos behaviours are attainable and, second, 
in terms of research process, there is much to 
be gained by embarking on pragmatic combi-
nation of action-research and more tradi-
tional inquiry methods. This combination has 

yielded three key findings emerge from the 
work presented here. First, whilst Edge of 
Chaos behaviours are attainable, they are not 
common. Second, contrary to those who 
argue that such behaviours cannot be man-
aged (Streatfield, 2001; Stacey, 2003), mana-
gerial action is central to the creation and 
maintenance of edge of chaos behaviours. 
Third, organizations operating on the edge of 
chaos feature high levels of stress and uncer-
tainty for those working in the organization 
and these high stress levels are produced by 
managerial practices which we have described 
as being ‘on the edge of something’ (for the 
interested reader, possible links between 
such practices and individual/organizational 
health have been reported in MacIntosh 
et al., 2007).
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15
From Skew Distributions to 

Power-law Science

P i e r p a o l o  A n d r i a n i  a n d  B i l l  M c K e l v e y

At the end of the nineteenth century Vilfredo 
Pareto (1897) observed that the distribu-
tion of income in Italy was highly skewed 
and long-tailed. Pareto’s observations and 
thinking would, over time, instigate a scien-
tific revolution. We briefly present the main 
differences between traditional science and 
the new science stemming from Pareto’s 
observations. Traditional (or linear) sciences 
are based on one of the following fundamental 
assumptions (West and Deering, 1995): (a) 
theories are and should be quantitative; (b) 
phenomena can by and large be represented 
by analytic functions; (c) systems have fun-
damental scales; and (d) most phenomena are 
additive – i.e., they satisfy the ‘Principle of 
Superposition’.1

These principles are wide-ranging but not 
neutral. They are based on a vision of the 
world that embraces gradualism, linearity, 
reductionism and equilibrium. At various 
times, from Galileo to the emergence of 
quantum mechanics, the success of natural 
sciences has been so spectacular that many 
contemporaries held the thought that there 
wasn’t anything major left to discover. The 
social sciences have been strongly influenced 
by the successes of natural sciences, especially 
neoclassical economics (Mirowski, 1989; 

Ormerod, 1994, 1998; Colander, 2006). 
Furthermore, Abbott (2001: 7) says the fol-
lowing about how the ‘general linear model’ 
from Newtonian mechanics came to ‘shape 
sociologists’ thinking:

‘The phrase “general linear reality” denotes a way 
of thinking about how society works. This mental-
ity arises through treating linear models as repre-
sentations of the actual social world. … The social 
world consists of fixed entities (the units of analysis) 
that have attributes (the variables). These attributes 
interact ... to create outcomes, themselves measur-
able as attributes of the fixed entities.’

Despite the successes of linear science, a 
large set of problems have proven to be 
intractable, such as phase transition in phys-
ics (Barabási, 2002), punctuated equilibria 
in biology (Kauffman, 1993), punctuations in 
history (Mokyr, 1998), increasing returns in 
economics (Arthur, 1994; Warsh, 2007), not 
to mention speculative bubbles and crashes 
in financial markets (Mandelbrot and Hudson, 
2004; Cooper, 2008; Baker, 2009). These are 
all problems stemming from heterogeneous 
agents, path dependency and time-dependent 
connectivity among agents.

Starting from the work of Prigogine 
(1961), Mandelbrot (1963, 1982), Haken 
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(1983), Holland (1988, 1995) and many 
others, complexity science has dealt with 
the problems above by introducing the 
concepts of spontaneous order creation in 
far-from-equilibrium situations, nonlinear 
dynamics, self-organization and emergent 
properties. Nonlinear science is based on 5 
basic principles (quoted from West and 
Deering, 1995):

1 Non-quantitative theory statements are as 
important, and sometimes more important, 
than quantitative ones.

2 Many phenomena are singular in character and 
cannot be represented by analytic functions.

3 The evolution of many systems, although deriv-
able from deterministic dynamical equations, 
are not necessarily predictable for arbitrarily 
long times.

4 Phenomena do not necessarily possess a funda-
mental scale and can be described by scaling 
relations.

5 Most phenomena violate the principle of super-
position (additivity).

To West and Deering’s principles we add 
one more:

6 N = 1 research about extreme outcomes is often 
of more consequence than statistically-significant 
studies of large databases.

A particular subset of nonlinear phenomena 
exhibits the unique property of (potentially) 
infinite variance: the range of the dynamic 
behaviour of the variables is potentially 
unbounded. Most social, economic and 
organizational variables that are based on 
interdependency among agents tend to show 
this property (Andriani and McKelvey, 
2009).

We argue that Power-law Science (PLS) 
constitutes the branch of complexity science 
that deals with phenomena characterized by 
high degree of heterogeneity and distributed 
interdependence leading to extreme variance. 
We claim that PLS represents a necessary, 
legitimate and more general paradigm than 
the ones that have so far dominated the social 
sciences. We show how the Paretian approach 
manages to make sense of entire classes of 

phenomena that are difficult or impossible to 
explain via Gaussian (or more generally, 
approaches based on finite variance), such as 
extreme events (West and Deering, 1995), 
proliferation of small niches (Anderson’s 
The Long Tail, 2006), limits to knowledge, 
and so on.

Despite the fact that PLS is nearly a 
century old, the applications of PLS to 
Organization Science are very few and sparse. 
A few publications discuss the limitations of 
traditional approaches (Meyer et al., 2005), 
for instance regarding the issue of extreme 
events, but we know of almost no papers that 
discusses the contribution of PLS to organi-
zation studies – other than our own (Andriani 
and McKelvey, 2007, 2009, 2010), and more 
applied articles blogs/articles by Powell 
(2003), Buchanan (2004), Hagel (2007) and 
Zanini (2008). In this chapter we start fram-
ing the content and boundary of a new field 
in Organization Science.

The outline of this chapter is as follows: 
first we briefly discuss what a power law 
(PL) is and why bringing PLS into organiza-
tion and management studies is essential. 
Then we introduce the main elements of PLS 
and its foundational theories. This is fol-
lowed by a description of two related fields, 
some tools, and the use of PLs as indicators 
of efficacious self-organization. We close by 
highlighting some research challenges of 
organizational scientists.

INTRODUCTION TO PARETO 
AND POWER-LAW DISTRIBUTIONS

Defining Pareto and 
power-law distributions

A Pareto rank/frequency distribution plotted 
in terms of double-log scales appears as a PL 
distribution – an inverse sloping straight line; 
shown in Figure 15.1. PLs often take the form 
of rank/size expressions such as F  ~  N–b, 
where F is frequency, N is rank (the variable) 
and β, the exponent, is constant. In exponential 
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functions, e.g. f(x) ~ e(ax), the exponent is the 
variable and e (Euler number) is constant.

Power Law phenomena constitute a subset 
of the larger set of nonlinear phenomena. As 
such, PLs share with nonlinear phenomena 
the typical aspects of non-additivity, open-
ness, presence of multiple solutions and 
emergent properties, etc. However, what sets 
PL phenomena apart from nonlinear phe-
nomena is the scalability property. Many 
complex systems – resulting from emergent 
dynamics – tend to be ‘self-similar’ across 
levels. That is, the same process drives order-
creation behaviours across multiple levels of 
an emergent system (Kaye, 1993; Casti, 
1994; West et al., 1997). These processes are 
called ‘scaling laws’ because they represent 
empirically discovered system attributes 
applying similarly across many orders of 
magnitude (Zipf, 1949). Scalability2 occurs 
when the relative change in a variable is 
independent of the scale used to measure it. 
Brock (2000: 30) observes that the study of 
complexity ‘… tries to understand the forces 
that underlie the patterns or scaling laws that 
develop’ as newly ordered systems emerge. 
Theories explaining PLs are also scale-free. 
This is to say, the same explanation (theory) 
applies at all levels of analysis.

Power Law phenomena exhibit Paretian 
rather than Gaussian distributions, as shown 
in Figure 15.1. The difference lies in assump-
tions about the correlations among events. 
In a Gaussian distribution the data points are 

assumed to be independent-additive. 
Independent events generate normal 
distributions, which sit at the heart of modern 
statistics. When causal elements are 
independent-multiplicative they produce a 
log-normal distribution which turns into a 
Pareto distribution as the causal complexity 
increases (West and Deering, 1995). When 
events are interdependent, normality in distri-
butions is not the norm. Instead Paretian dis-
tributions dominate because positive feedback 
processes leading to extreme events occur 
more frequently than ‘normal’, bell-shaped 
Gaussian-based statistics lead us to expect. 
Further, as tension imposed on the data points 
increases to the limit they can shift from inde-
pendent to interdependent. PLs are frequently 
‘… indicative of correlated, cooperative phe-
nomena between groups of interacting agents 
…’ (Cook et al., 2004).

Power laws are ubiquitous. They apply to 
word usage, papers published, book sales, 
and web hits (Newman, 2005) and business 
firms (Stanley et al., 1996; Axtell, 2001; Park 
et al., 2009). Cities follow a PL distribution 
when ranked by population (Auerbach, 1913; 
Krugman, 1996), as does the structure of the 
Internet (Albert et al., 1999). Andriani and 
McKelvey (2007, 2009) list ~140 kinds of 
PLs that range in application from atoms to 
galaxies, from DNA to species, and from 
networks to wars.

Brock (2000) says PLs are the fundamen-
tal feature of the Santa Fe Institute’s approach 

Figure 15.1 Gaussian vs Power-law distributions

Bell Curve

Power Law

Linear axes Log axes

Power LawBell
Curve



SKEW DISTRIBUTIONS TO POWER-LAW SCIENCE 257

to complexity science. We argue that PL 
theories apply to management and organiza-
tions. There is good reason to believe that PL 
effects are ubiquitous in organizations and 
have far greater consequence than current 
management theories presume. For further 
insight into the growing research on Pareto 
and PL distributions, see Zipf (1949), West 
and Deering (1995), Newman (2005), and 
Taleb (2007).

In sum, PLs usually indicate the presence of 
three underlying features: (1) fractal struc ture; 
(2) scale-free (SF) causes (and SF theories); 
and (3) Paretian distributions (including long 
tails and extreme events).

Why pay attention to 
power-law distributions?

A recent reviewer of one of our papers took 
the stance of trying to defend the ‘Gaussian’ 
perspective. He/she says:

‘Yes, firm sizes exhibit the PL. Why should we  •
care? What is the Gaussian doing wrong?’
‘The Gaussian treats all sizes of firms without  •
prejudice.’
‘Aren’t PLs  • i.i.d.,3 just with a different distribution 
than normal?’
‘Most of the things that happen to us happen  •
within 3 standard deviations of the mean.’

Some 16,000 earthquakes occur in 
California every year – most unfelt. But 
every 10–20 years a quake occurs that kills 
people in buildings; Californians await the 
‘Big One’ that could do incredible damage – 
like the recent quake in China that killed 
thousands of children. Should people not 
care or worry about this eventuality? The 
current liquidity-induced worldwide reces-
sion and other market crashes occur much 
more frequently. Many tenured professors 
recently signed a New York Times ad (25 
January 2009) saying that we should let 
crashes, like nature, run their course with no 
intervention. Yet millions of people world-
wide have lost their jobs, retirement benefits, 

or worse.… Should we not care and try to 
learn how to negate these calamities? Or, 
oppositely, the US has some 17 million 
Ma&Pa stores, only one of which scaled up 
into Walmart. Should we ignore the extremes 
and just settle for studying the average?

Many managers work in industries that 
are PL distributed. Given this, econometric 
research assuming i.i.d. data points and 
focusing on ways to improve the ‘average’ 
firm offers questionable advice to practition-
ers. Axtell (2008) says: ‘The typical firm 
does not exist’. Worse, many if not most 
firms and managers are connected to others 
in significant ways. Firms compete, pursue 
M&A activities, learn from other firms, and 
influence governments. Managers make deci-
sions about hiring, firing, promoting, work in 
competitive contexts, learn and communicate 
with other managers, assert control and dom-
inance or foster employee self-organization. 
Firms and managers are ‘connected’ in many 
ways; they are not independent entities – 
they do not behave like turnips, cornstalks or 
olive trees. Connected entities under tension 
of some sort often, if not typically, show evi-
dence of Pareto distributions and PLs.

We believe the time has come to accept 
that PL phenomena are much more wide-
spread and more problematic for firms and 
managers than Gaussian statisticians admit. 
Nobel Laureate Murray Gell-Mann (2002) 
goes so far as to say there are two equally 
important parallel ‘regularities’ scientists 
need to research:

Reductionist law-like regularities: •  The reduction-
ist causal processes of normal science, which 
are predictable and easily represented by equa-
tions – the data and information much preferred 
in classical physics and neoclassical economics 
(2002: 19). These are the point attractors of 
chaos theory – defined by forces, equilibrium, 
and energy conservation.
Multilevel SF regularities: •  Outcomes over time 
that result from an accumulation of random 
tiny initiating events that have lasting effects, 
are compounded by positive feedback effects 
over time, and become ‘frozen accidents’ (2002: 
20). These are the strange attractors of chaos 
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theory – never repeating, fostering indetermi-
nacy, offering a different kind of regularity.

Scientific methods are well established for 
reductionist regularities. We believe it is time 
to begin developing a PLS with theory and 
methods specifically suited for studying scale-
free regularities – a science especially relevant 
for researching PL distributed industries as 
well as PL distributions within firms.

If the ‘typical’ firm does not exist, as 
Axtell puts it, what is the point of continuing 
the search for statistically significant infor-
mation about firms at the mean? How does 
studying mice help improve the survival of 
elephants. How does studying Ma&Pa stores 
help Sears/Kmart compete against Walmart? 
How does studying either extreme offer 
much value for firms near the median?

ELEMENTS OF POWER-LAW 
SCIENCE (PLS)

We briefly define PLS as follows. A field of 
inquiry and methods dealing with phenom-
ena characterized by low to high heterogene-
ity, (potentially) infinite variance, scalability, 
and a level of connectivity that spans from 
low to high coupling. Such phenomena are 
predominantly scale-free, PL distributed 
(both in their spatial and temporal distribu-
tion) and obey fractal dynamics. The subjects 
included within the ovals of Figure 15.2 are 
key elements of PLS. The other fields are 
underlying concepts and theories comple-
mentary to PLS.

In the following we briefly discuss some 
of the key elements of PLS.4

Network science

The legendary Hungarian mathematician, 
Erdos, in introducing random network theory, 
assumed links are randomly distributed 
across nodes and form a bell-shaped distribu-
tion, wherein most nodes have a typical 

number of links with the frequency of 
remaining nodes rapidly decreasing on either 
side of the maximum. Watts and Strogatz 
(1998) show, instead, that networks of living 
agents follow the small world phenomenon 
whereby society is visualized as consisting of 
weakly connected clusters, each having 
highly interconnected members within. This 
structure allows cohesiveness (high cluster-
ing coefficient) and speed/spread of infor-
mation (low path length) across the whole 
network.

Studying the World Wide Web, however, 
Barabási (2002) and colleagues find that the 
structure of the Web shows a PL distribution, 
where most nodes have only a few links and 
a tiny minority – the hubs – are dispropor-
tionately very highly connected. The system 
is scale-free, no node can be taken to repre-
sent the scale of the system. Defined as a 
‘scale-free network’, the distribution shows 
(nearly) infinite variance and the absence of 
a stable mean. It turns out that most real life 
small world networks are SF (Ball, 2004) 
and fractal (Song et al., 2005). SF networks 
appear in fields as disparate as epidemiology, 
metabolism of cells, Internet, and networks 
of sexual contacts (Liljeros et al., 2001).

Contribution to PLS:

Networks point to a universal property of living 
systems, namely, that the structure of most systems 
subjected to change processes is SF (i.e., the same 
cause acts at multiple levels or wide-ranging sizes 
as measured) and is PL distributed.

Fractal geometry and calculus

Fractal geometry was developed by 
Mandelbrot (1982) to make sense of the 
rough, irregular shapes of most natural 
objects, from cauliflowers to coastlines, trees, 
and galaxies. As Mandelbrot (1982: 1) writes: 
‘Clouds are not spheres, mountains are not 
cones, coastlines are not circles, and bark is 
not smooth, nor does lightning travel in a 
straight line’. A whole cauliflower, and each 
of its increasingly smaller florets, sub-florets, 
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and so on, show the same design and shape 
and result from the same causal dynamics. A 
fractal (Mandelbrot and Hudson, 2004: 118) 
is: ‘a pattern or shape whose parts echo the 
whole’. Fractals are self-similar objects. Like 
the cauliflower, so the Eiffel Tower: the four 
largest sections are made up of large trusses, 
which are composed of smaller trusses, etc. 
(Mandelbrot, 1982: 131–132).

Fractals are not idle mathematical curiosi-
ties. Fractals and PLs are found from atomic 
nanostructures (~10–10 meters) to galactic 
megaparsecs (~1022 m) – across a range of 32 
orders of magnitude (Baryshev and Teerikorpi, 
2002). In biology, West and Brown (2004) 
demonstrate a PL relationship between the 
mass and metabolism of virtually any organ-
ism and its components – based on fractal 
geometry of distribution of resources – across 
27 orders of magnitude (of mass). Self-
similarity is key to a fundamental property of 
fractals and PLs: linear scalability. PL sys-
tems do not exhibit a characteristic scale and 
consequently enjoy some peculiar statistical 
properties. Systems that scale linearly are 
part of a family of distributions named after 
the French mathematician Cauchy:

As a result of this linear scaling, the distribution of 
the average of N identically distributed Cauchy 

variables is the same as the original distribution. 
Thus, averaging Cauchy variables does not improve 
the estimate.… This is in stark contrast to all prob-
ability distributions with a finite variance, s2, for 
which averaging over N variables reduces the 
uncertainties by a factor 1√N . This nonstandard 
behavior of the Cauchy distribution is a conse-
quence of its weakly decaying ‘tails’ that produce 
too many ‘outliers’ to lead to stable averages. 
(Schroeder, 1991: 159)

It is interesting to note that Leibnitz, the 
founder with Newton of modern calculus, 
also worked on fractal calculus, that is calcu-
lus for functions that do not have a first 
derivative (West et al., 2003). Over 300 hun-
dred years ago, it was clear to Leibnitz that 
linear calculus was applicable to a finite 
range of phenomena and that science needed 
two types of calculus. Linear calculus moved 
on to become the main instrument5 of scien-
tific analysis whereas fractal calculus was 
forgotten and survived as a mathematical 
curiosity without real applications in the 
scientific community.

Contribution to PLS:

Fractals introduced scaling laws – the idea 
that simple generative mechanisms generate 
complex patterns by operating at multiple nested 
levels.
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Scale-free theory and method

Various authors (Sornette, 2000; Kauffman, 
2003; Mandelbrot and Hudson, 2004) have 
noticed how the development of extreme 
events (but also more in general radical inno-
vations and the emergence of radical novelty 
in social systems; see Jacobs, 1969; Mokyr, 
1998) seems to follow an explosive scaling 
dynamic fuelled by positive feedback and 
autocatalytic effects. If one looks at exam-
ples such as financial bubbles or crashes, 
diffusion of innovations (the ipod is a para-
digmatic example), or Google’s takeover of 
the search market, one can see that, at least in 
the explosive phase, some ‘engines of growth’ 
cause a scale-independent development of 
the system.

In Table 15.1 we present a short descrip-
tion of seven SF theories. In our article in 
Organization Science (2009) we discuss their 
application to organizational phenomena in 
more detail.

Early scalability recognition
Scale-free theories call for the identification 
of so-called butterfly-levers before extreme 
events occur. The opportunity or threat posed 
by an extreme event first appears as a tiny 
initiating butterfly-event6 to which heteroge-
neous agents, initially endowed with zero-or-
der connectivity, respond by searching for 
and connecting to other agents (Kauffman, 
1993). Through such interactions, the agents’ 
sensing processes can reach beyond the indi-
vidual atomized Gaussian event to apprehend 
the interdependent dynamics of an extreme 
Paretian one. OR, they ignore the butterfly-
events and then a disaster occurs. Well-
documented post-mortem analyses of the 
events that led up to the First World War, the 
Challenger disaster, 9/11, Enron, and 
Hurricane Katrina provide us with examples 
where appropriate sensing-and-responding 
didn’t happen – largely because of the sup-
pressing effects of top-down control and 
organizational ‘silos’. Even though individual 

Table 15.1 Empirical basis of scale-free causes of power laws*

Theories Explanation

Spontaneous order creation Heterogeneous agents seeking out other agents to learn from so as to improve 
fitness generate networks; some networks become groups, some groups form 
larger groups and hierarchies.

Phase transitions Turbulent flows: Exogenous energy impositions cause autocatalytic interaction 
effects at a specific energy level – the first critical value – such that new 
interaction groupings form.

Preferential attachment Nodes: Given newly arriving agents into a system, larger nodes with an enhanced 
propensity to attract agents will become disproportionately even larger.

Least effort Language and change: Word frequency is a function of ease of usage by both 
speaker and listener; this law now found to apply to language, firms, and 
economies in transition.

Square/cube law Cauliflowers: In organisms, surfaces absorbing energy grow by the square but 
organism grows by the cube; results in an imbalance; fractals emerge to bring 
surface/volume back into balance.

Hierarchical modularity Growth unit connectivity: As cell fission occurs by the square, connectivity 
increases by n(n –1)/2, producing an imbalance between the gains from fission 
vs. the cost of maintaining connectivity; consequently organisms form modules or 
cells so as to reduce the cost of connectivity.

Self-organized criticality Sandpiles, species adaptation: Under constant tension of some kind (gravity, 
ecological balance), some systems reach a critical state where they maintain 
stasis by preservative behaviours – such as sand avalanches, forest fires, changing 
heartbeat rate – which vary in size of effect according to a power law.

* Paraphrased from Andriani and McKelvey (2009); they list a total of fifteen.
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agents possessed the relevant information, 
organizational constraints prevented them 
from networking, forming groups, performing 
additional analyses, taking collective action, 
influencing higher management, etc.

Horizontal scalability: 
from Ma&Pa to Walmart
All but a very few of the 17 million Ma&Pa 
stores stay that way. A few, however, like 
Walmart, various chain stores – and in other 
industries, Southwest Airlines, Microsoft – 
scale up from very small to very large. 
Walmart started with Sam Walton’s one store 
and then, without changing the formula (i.e. 
the way of doing business, their special ways 
of supply-chain management, and so on), 
scaled up to be the largest retail store in the 
world – the ‘formula’, the basic cause of 
Walmart’s success, didn’t change.

Contribution to PLS:

The growth of most systems follows a set of scal-
ing trends that link tiny initiating events with more 
significant or even extreme outcomes.

FOUNDATIONAL THEORIES

Chaos theory

Chaos theory is a largely mathematical body 
of knowledge started by Poincaré in the 
1880s with the discovery that groups of 
simple objects that obey Newtonian dynam-
ics exhibit random behaviour that makes 
long-term predictions impossible (Gleick, 
1987). Poincaré’s thinking opened a breach 
into positivism that almost one century later 
would lead to the formulation of chaos theory 
(Lorenz, 1963; Feigenbaum, 1978) and to the 
discovery that an ordered system at the 
aggregate level may hide chaotic dynamics at 
the micro level due to sensitivity to initial 
conditions. Chaos theory questioned the 
dominant linear approach in science and 
introduced a number of novel concepts that 
to some extent have been subsumed within 
complexity theory. In terms of PLS, chaos 

theory has contributed fundamental concepts 
and discoveries such as the notion of butter-
fly effect, the fact that deterministic systems 
can show chaotic (hence unpredictable) 
behaviour and the development of mathemat-
ical tools to deal with nonlinear behaviour. 
Complexity theory (briefly described below) 
started from the ideas of chaos and 
randomness and showed that ordered 
behaviour can emerge out of randomness and 
chaos.

Far-from-equilibrium dissipative 
structure theory at the edge of 
order 7

Prigogine (Nicolis and Prigogine, 1989) built 
on Bénard’s (1901) study of emergent struc-
tures in fluids. In a teapot, for example, the 
‘rolling boil’ familiar to chefs describes a 
shift from molecules dissipating heat via con-
duction (by vibrating faster in place) to mol-
ecules circulating around the pot, thereby 
speeding up heat transfer through convection. 
Because emergent structures serve to dissi-
pate energy imposing on a system from out-
side, they are called ‘dissipative structures’. 
This phase transition – which occurs at the 
so-called ‘1st critical value’ of imposed energy 
(what McKelvey, 2001, 2008a,b, calls ‘adap-
tive tension’) – defines ‘the edge of order’. 
This theory is predominantly from physics 
and is math intensive (Prigogine, 1961, 1997; 
Haken, 1983; Nicolis and Prigogine, 1989; 
Mainzer, 1994/2007; Allen, 1997).

Prigogine argues that the tension between 
higher and lower energy (and associated 
states of order) creates an energy differential 
that initiates agent self-organization and 
resultant order creation. Prigogine terms 
these ‘dissipative structures’ because they 
draw energy away from the surrounding, 
already existing, larger, ‘far-from-equilib-
rium’ order or energy conditions. They speed 
up entropy production by reducing the energy 
of the higher-ordered state and dissipating it 
into a lower-order state – the more entropic 
condition.
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Prigogine uses dissipative structures to 
explain both the cause and disappearance of 
order at all levels of analysis in three ways:

1 The energy of an existing higher energy/
order state is dissipated when negentropy8 is 
imported into the newly created dissipative 
structure from the existing higher energy state. 
This process speeds up entropy production.

2 Within them, new dissipative structures con-
duct energy translations under the First Law 
of Thermodynamics (about conservation of 
energy), and as a result, dissipate their own 
energy since entropy is created each time there 
is an energy translation.

3 Dissipative structures, once created, also exist 
‘far from equilibrium’ and, therefore, conditions 
exist for the appearance of even more dissipa-
tive (sub)structures. Hierarchies of additional 
dissipative structures may result.

Swenson (1989) observes that order crea-
tion in the form of dissipative structures 
occurs to maximize the speed entropy pro-
duction; this is his ‘Law of Maximum Entropy 
Production’.

Self-organization and emergence 
at the edge of chaos

This was initiated by Nobel Laureates Murray 
Gell-Mann (1988, 2002) and Philip Anderson 
(1972) along with Stuart Kauffman (1987, 
1993), Brian Arthur (1988, 1994), and John 
Holland (1988, 1995), at the Santa Fe Institute. 
It is oriented more towards biology and the 
social sciences. Their focus is on heterogene-
ous agents interacting at what was early on 
called ‘the edge of chaos’. This occurs at the 
‘2nd critical value’ of imposed energy. In 
between the ‘edges’ of order and chaos is the 
region of emergent complexity or what 
Kauffman (1993) terms the ‘melting’ zone of 
maximum adaptive capability. Bak (1996) 
argues that to survive, organisms need a capa-
bility of staying within the melting zone, 
maintaining themselves in a state of ‘self-or-
ganized criticality’ (defined in Table 15.1). 
The signature elements within the melting 

zone are self-organization, emergence and 
nonlinearity. Self-organization begins when 
three elements are present: (1) heterogeneous 
agents; (2) connections among them; and (3) 
motives to connect endogenous sources of 
adaptive tension – such as mating, improved 
fitness, performance, and learning. Remove 
any one element and nothing happens. Self-
organization results in emergence, that is, 
new order of some kind. It boils down to:

1 a shift from the ‘force-based’ science of classical 
physics (epitomized in its foundational axiom, F 
= ma) to the ‘rule-based’ theory and methods 
of complexity science – specifically agent-based 
computational modelling (see Prietula; Tracy; 
Vidgen and Bull this volume);

2 a shift from the positing of independent agent 
behaviours and Gaussian distributions to inter-
dependent, mutual causal behaviours and 
consequent Pareto distributions (PLs), unsta-
ble means, potentially infinite variances, and 
reflexivity;

3 a shift from normal science and ‘normal dis-
tribution’ methodology and robustness tests 
against leptokurtosis to full acceptance of PLs, 
fat tails, extreme events, and order creation.

Talking pigs, abduction, 
hermeneutics and coherence 
theory 9

In recent works, Boisot and McKelvey (2007, 
2010) position complexity research between 
the inductive reasoning favoured by 
Postmodernists and the deductive analyses 
of Modernists. The former revel in the rich-
ness of many degrees of freedom (one defini-
tion of complexity) and the latter reduce 
phenomena to the few degrees of freedom 
that make the math tractable and promulgate 
predictive studies. This is where Gell-Mann’s 
‘effective complexity’ enters the picture – 
like Goldilocks’ porridge, the goal is to get 
complexity ‘just right’ – neither too few nor 
too many degrees of freedom.

In organizational research Ketokivi and 
Mantere (2007) show that in conventional 
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organization science, progress over time rests 
on a cycling between inductive and deductive 
reasoning, usually with several researchers 
involved. One way of taking advantage of 
both deductive and inductive methods is via 
abductive reasoning. They show that deduc-
tive reasoning often involves inductive stages 
and inductive reasoning often involves deduc-
tive stages. Abduction starts from a collection 
of heterogeneous facts and infers the most 
plausible pattern that they make – inference 
to the best explanation (Peirce, 1935). 
Abduction depends on the coherence with 
which events can be related to each other.

Siggelkow (2007) makes the point that 
when a single case is so unique an extreme 
outcome – like a ‘talking pig’ – the attempt at 
explanation is so compelling that it stands as 
a telling piece of research even if it is only an 
N of 1. In Pareto distributions we often have 
a single extreme outcome like the Indian 
Ocean Tsunami, Hurricane Katrina, or the 
Challenger, Pioneer and Enron disasters, or 
positive outcomes: Microsoft, Walmart, or 
Google. These events are unique but worth 
understanding: they are talking pigs.

We suggest that in a Pareto world, single 
cases can be better analyzed via the methods 
of triangulation, hermeneutics and abductive 
reasoning. For instance, the Honda case is a 
classic example where single observers at 
different times offer different explanations of 
Honda’s success. The question is: Can a 
researcher choose several observers from dif-
ferent disciplines, have different training, 
different theoretical perspectives, biases, and 
so on, without bias?

Triangulation
Years ago, Campbell and Fiske (1959) 
argued that more than one method should be 
used to separate possible method-induced 
variance from variance in the sample – so-
called ‘multitrait-multimethod’ research 
(Jick, 1979). A triangulation approach used 
with multiple observers is stronger than a 
multitrait-multimethod approach by one 
observer; each would be better at a particular 
method.

Hermeneutics
Multiple observers is what hermeneutics 
calls for. And then the principle of charity 
must be applied; no observer has more influ-
ence than any other – at the start at least. 
Given this, the hermeneutics process begins 
working towards a coherence theory offering 
the best explanation.

Abductive reasoning
Multiple observers may apply abductive rea-
soning in both Hansonian (Hanson, 1958; 
Paavola, 2004) and Harmanian (Harman, 
1956) fashion. In Hansonian abduction they 
attempt to create the best inductively-induced 
explanation of a single case. If it is a one-of-
a-kind ‘talking-pig’ we can conclude that 
their hermeneutics approach is superior to 
any other single-case research method and 
that it is unlikely a better explanation would 
be forthcoming, though there is always the 
possibility that their principle of charity was 
not working and there was bias in the 
selection of the observers. Given this, a sub-
sequent hermeneutics application could 
produce a different explanation. This leads 
right into Harmanian abduction, in which the 
abductive/hermeneutic process continues 
over time with multiple groups.

APPLICATION OF 
POWER-LAW SCIENCE

PLS has already impacted on a number of 
areas and generated entirely new approaches 
to the study of economic and business phe-
nomena. We mention several.

Econophysics

The application of complexity-inspired math-
ematical tools derived from nonlinear phys-
ics to economics and especially finance has 
caused the emergence of a new discipline 
called Econophysics. Econophysics has 
moved from Pareto’s initial intuition about 
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PL-distributed wealth distribution in Italy 
and now generalizes Pareto’s finding to other 
economic and financial phenomena.

Econophysics (West and Deering, 1995; 
Mantegna and Stanley, 2000) focuses on 
the outcomes of self-organization and emer-
gence, that is, new order, and the causes of 
fractal structures. Econophysics also brings 
scalability (Brock, 2000), PLs (Casti, 1994), 
and SF theories (Zipf, 1949) into promi-
nence in economics and finance (Yalamova 
and McKelvey, forthcoming). According to 
Holland (2002) we recognize emergent phe-
nomena in multi-level hierarchies, in intra- 
and inter-level causal processes, and in 
nonlinearities. Nonlinearity incorporates two 
key outcomes: the butterfly-events and scal-
ability. Holland (2002: 29) says: ‘… Almost 
all cas [complex adaptive systems] exhibit 
lever-point phenomena, where “inexpensive” 
inputs cause major directed effects in the 
CAS dynamics’. These triggers, what we call 
butterfly-events, extend across multiple 
levels. A butterfly-effect sets off a nonlinear 
outcome when a single event out of myriad 
very small ones gets amplified so as to gener-
ate an extreme outcome.

The ‘other’ long tail of micro-niches

Ordinarily, one might think that we would 
find large populations well suited to Gaussian 
assumptions at the upper left of Fig. 15.1 – 
the 17 million Ma&Pa stores, 7-Elevens, etc. 
In the case of 7-Eleven outlets they are all the 
same by design. Pretty much the same for 
Walmart, Sears, McDonald’s, and TESCO in 
the UK. These kinds of stores aim to stock only 
‘hit’ products aimed at 20% of the market.

But in his book, The Long Tail, Anderson 
(2006) shows that as the Internet has lowered 
the cost of marketing, need for stores and shelf 
space, and made customer searches for idio-
syncratic products much easier, a new long tail 
is developing at the upper left of a Pareto dis-
tribution. In the case of books and various 
other products, Amazon, for example, now 
makes it possible for sellers to make profits 

selling idiosyncratic products to idiosyncratic 
customers. When distribution, marketing, and 
search become cheap and easily available, 
markets develop a long tail of proliferating 
idiosyncratic niches containing fewer and 
fewer customers. This alters the balance 
between hits and micro-niches, thereby caus-
ing the emergence of ‘unconstrained’ markets 
which show both tails of a Pareto distribution: 
the long tail of the ‘hit’ (i.e. very popular) 
product niches and the long tail of idiosyn-
cratic micro-niches.10 The application of the 
80/20 rule is therefore transformed.

In the traditional economy, a minority of 
products (the 20%) generates the majority of 
revenues (~80%) and virtually all of the prof-
its. In an economy of many micro-niches, 
every product generates some profit even if 
sold only once. Assuming that the new 
Internet-based markets with physical plus 
virtual distribution channels carry 10 times 
as many products as the physical distribution 
chain (i.e. the former’s 100% becomes 10% 
in the new markets), the hits (now down from 
20% to 2% of the products) still account for 
a significant proportion of revenues and prof-
its; but now the previously unprofitable 80% 
(the virtually-created micro-niche tail) gen-
erates about the same amount of profits. The 
result is the transformation of the 80/20 rule. 
The new interpretation is still based on the 
Pareto distribution, but each tail generates 
about the same amount of profits.

What can we conclude from this? First, the 
natural shape of unconstrained markets is 
Paretian with two long tails: (a) high-volume 
hits comprising one extreme; and (b) a long 
tail of heterogeneous micro-niches at the 
other extreme. Second, business models 
appropriate for opposite ends are very differ-
ent. The most successful cases of the past 10 
years – the Googles, eBays, and Amazons – 
are extreme events that have developed busi-
ness models appropriate for what was the 
‘80% tail’ of the Paretian distribution. Third, 
Anderson shows that the double-tailed 
distribution of micro-niches and ‘hits’ holds 
across sectors (music), genre (classical 
music), sub-genre (chamber music), and so on. 
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In other words, nested Pareto distributions 
give rise to self-similar markets, which are 
expressed by the statistical regularity of PL 
distributions.

Tools

… Then power laws emerge – nature’s unmistak-
able sign that chaos is departing in favor of order… 
The road from disorder to order is maintained by 
the powerful forces of self-organization and is 
paved by power laws. It told us that power laws are 
the patent signatures of self-organization in com-
plex systems (Barabási 2002: 19; our italics).

If Barabási is right, and we think that there 
is enough evidence to state that self-organiza-
tion and PLs are related, then we ask whether 
we can use PL distributions as a leading indi-
cator of self-organization in action. But what 
exactly does the finding of a PL indicate?

Essentially we have three problems when 
dealing with PLs as indicators:

First, the (high-rank) tail (usually on the X 
axis) of the distribution (which usually is its 
most important part, as it is where the extreme 
events occur) is characterized by low fre-
quency and high magnitude value. While these 
‘outliers’ are unique, they are also important. 
They can’t just be dismissed as random events 
or measurement errors. Consequently, the 
attribution of the tail to a distribution (PL, 
lognormal or other) becomes difficult.

Second, how to interpret a distribution that 
is not a straight line and shows different 
behaviours? In the econophysics literature 
(e.g. Goldstein et al., 2004; Newman, 2005; 
Clauset et al., 2007), the usual responses are 
either to argue that the distribution is not a 
PL at all but some other kind of distribution 
(such as lognormal, exponential, stretched 
exponential, etc.), or truncate the distribu-
tion, saying that part (usually one end) of it 
follows a PL, but the rest fits some other 
distribution (Clauset et al., 2007).

Third, Sornette (2000), Newman (2005) 
and Andriani and McKelvey (2009), show 
that there are multiple mechanisms that gen-
erate PLs. In this chapter we have discussed 
some PL generative mechanisms that we call 

SF theories. However, SF theories are based 
on a set of very diverse generative mecha-
nisms. Given this diversity, one could 
conclude that the finding of a PL doesn’t 
indicate much. In Table 15.1 we have briefly 
defined seven SF theories most easily 
applying to organizations. We notice, first, 
that all generative mechanisms are based on 
historical processes and consequently that 
PLs are rooted in path-dependent dynamics. 
Second, most SF mechanisms require some 
kind of interdependence among data points. 
Third, most SF mechanisms generate fractal 
structures. This is to be expected as PLs indi-
cate self-similarity. Also, as Mandelbrot 
(1982: 39) shows, the fractal-generation 
formulas – e.g. D = log N/log (1/r) – are log 
formulations, which of course mirror the log-
scales used to graph PLs. Fourth, though 
most SF theories point to the presence of 
bottom-up self-organization, others do not. 
To sum up: We think that the emergence of 
PLs sends a strong message about the fea-
tures of the system under analysis. If one 
excludes the random walk mechanism, then 
all the other theories show strong com-
monalities. Namely, these systems are char-
acterized by path-dependent evolutionary 
pro cesses that give rise to interconnected 
self-similar nested structures. The patterns of 
distributed connectivity within and across 
levels is at the origin of the extreme variabil-
ity and quasi-unbounded diversity that create 
the potential for tiny-initiating events to trig-
ger self-organizing patterns that may escalate 
into extreme events. Building on Barabási, 
we advance the proposition that PLs are 
useful indicators of emergent self-organiza-
tion properties in complex systems – but they 
indicate other kinds of PL order-creation 
dynamics as well.

Example tool: PLs as indicators 
of self-organizing economies 
and industries

One use of PLs as indicators is suggested 
by McKelvey (2011): PL-distributed cities 
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may signify self-organizing economies 
(Krugman, 1996).11 The Gini index illustrates 
this idea – shown in Figure 15.3(a).12 The 
larger the curved section, the more income 
inequality in a society. In Figure 15.3(b), the 
main diagonal is reversed so that it parallels 
an inverse sloping PL. Given this, the more 
that a city rank/frequency falls below the PL 
‘diagonal’, the less efficaciously adaptive a 
country’s economy appears to be.

In his Cities and Complexity, Batty shows 
that while US cities fit a PL, cities in the UK 
do not (2005: 464; based on 1990–1991 data). 
Based on more recent data (dated 2005)13 
Figure 15.4 compares the UK with hot econo-
mies in India, Ireland and Slovenia.14 As you 
can see, the UK shows the largest Gini index 
equivalent (total ‘Gini space’ – light gray – 
between city locations and the PL line) – it is 
the largest Gini index equivalent shown in the 
~50 cityscapes of which McKelvey has cre-
ated PL distributions.15 Figure 15.4 also shows 
the ‘Malta line’ (dotted) which is nearly verti-
cal – showing a pretty dead economy. Outside 
of London, the next 50+ UK cities line up 
pretty well along the ‘Malta line’.

Is the UK as economically ‘broken’ as 
the PL equivalent of the Gini coefficient 

suggests? Outside of London, the UK shows 
considerable evidence that self-organization 
towards a ‘good’ economy is lacking.16

London’s GDP growth rate at the time was 33%  •
higher than for the UK as a whole.
The Midlands (where most of the frozen cities  •
are) was traditionally the industrial base of the 
UK; it has lost some 1.1 million manufacturing 
jobs since 1995 (London News, Sept. 6, 2006).

In contrast, in 2005 Ireland shows six cities 
growing close to the same ‘hot’ rate as 
London (the dot–dash line is at the same ‘hot-
self-organizing-economy’ slope as between 
London and the next UK city). Slovenia, 
another hot economy in Europe, also shows a 
PL slope on the ‘hot’ side, as opposed to the 
‘Malta line’. Perhaps we are on the verge of 
being able to use PLs as indicators of the 
economic viability of disparate regions and 
cities within national economies.

RESEARCH AGENDA

We believe that PLS will establish itself as an 
important field within management and 

Figure 15.3 (a, b) Gini index on left; power-law ‘deviation’ indicator on right
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organizational research by pursuing the 
following research avenues: First, the ubiquity 
of Pareto distributions across all types of dis-
tributions within social sciences is striking. 
Mandelbrot and Hudson (2004: 170) wrote 
that:

The cotton story shows the strange liaison among 
different branches of the economy, and between 
economics and nature. That cotton prices should 
vary the way income does; that income variations 
should look like Swedish fire-insurance claims; that 
these, in turn, are in the same mathematical family 
as formulae describing the way we speak, or how 
earthquakes happen – this is, truly, the great 
mystery of all.

In the nearly 100 years since Auerbach’s 
finding, we do not have a theory that explains 
how organizations and social systems evolve 
towards a state characterized by PLs; given 
this, Krugman (1996) calls them ‘spooky’. We 
can speculate that SF theories, emergent prop-
erties, self-organization, fractal growth, but-
terfly dynamics, etc. have to be part of the 
story, but, the theory, specifically, of why PL 
distributions appear is still missing. Developing 
such a theory will be a major task if PLS is to 

become accepted by management scholars; 
they will have to formulate PL theory to com-
plement the resource-based view, transaction-
based view, etc. of organizations.

Second, although we claim that in most 
cases Gaussian statistics represents a reduc-
tionist attempt to oversimplify reality and 
provides only ‘an illusion of control’ 
(Makridakis et al., 2009), the alternative we 
have – Paretian statistics and Paretian ana-
lytical tools – is nowhere near the Gaussian 
option in terms of sophistication and ‘user-
acceptance’. In other words we lack a fully 
developed alternative. The mathematics of 
PLs and fractals is limited in its extension 
and maddeningly complex. We can learn a 
considerable amount from disciplines that 
have adopted a Paretian approach, such as 
seismology or econophysics, just to name a 
couple; but it will still be necessary for quan-
titative social scientists, on the one hand, to 
learn to apply the existing Paretian tools and 
develop new ones, and, on the other, to iden-
tify the kind of problems that are amenable to 
solution via Paretian analysis. Moreover, 
between the extremes of Gaussian and 
Paretian there is a large world of distributions 
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that covers the space between independent-
additive (Gaussian) and interdependent-
multiplicative (Paretian).

Third, we need to develop rules to under-
stand when a certain social problem is more 
likely to be approximated via a Gaussian vs. 
Paretian approach. On the epistemological 
front, we suggest scalable abduction as a 
valid Paretian approach, as Boisot and 
McKelvey (2010) advocate.

Fourth, a low hanging fruit for PL oriented 
management researchers is the topic of resil-
ience of organizations (Hollnagel et al., 
2006). According to traditional approaches, 
systems are stable if they have some inbuilt 
flexibility around the normal operation point. 
These approaches are ultimately rooted in 
the concepts of equilibrium and homeostatic 
control. Alternative approaches stress, 
instead, that resilience is closer to a dynamic 
capability than to a fixed-point control theory 
(where negative feedback stabilizes the 
system around equilibrium). Allometric con-
trol theory (West, 2006)17 is an example of 
this line of attack. It shows that resilience is 
essentially a consequence of the system’s 
multi-level diversity and connectivity. Shocks 
are contrasted and neutralized by redistribut-
ing their impact over multiply connected and 
nested levels, which absorb and respond on 
different temporal and spatial scales. These 
responses are integrated by the dynamics of 
competition and cooperation due to inter 
and intra level connectivity patterns. It is the 
mutualism between the locally nested 
dynamics that generates resilience. In this 
vision, resilience is an emergent property of 
the fractal structure of the system. Building 
from Ashby (1956), McKelvey et al. (2010) 
refer to this as ‘requisite fractality’; they draw 
empirical support from nineteen biological 
studies of predator/prey fractals, which 
appear as ‘M& A waves’ in the business 
world (Park et al., 2009) This implies that a 
simple way to assess the potential resilience 
of organizations is to calculate the fractal (or 
multifractal) dimension of the organization. 
This amounts to calculating the number of 
levels over which a shock can be distributed 

(or an innovation designed), their intercon-
nections and their diversity. A similar 
approach could be applied to larger units 
such as economies.

Fifth, PLs can be used as indicators of 
self-organizing dynamics. In general, the 
presumption is that healthy ecosystems are 
self-organizing and therefore exhibit PL 
effects, fractal structure, and SF dynamics. 
This suggests, in turn, that well-functioning 
self-organizing processes – increasing conne-
ctivity and SOC (Self-Organized Criticality, 
(Bak, 1996)) under adaptive tension – under-
pin economic self-organizing success, as 
Ishikawa (2006) and Podobnik et al. (2006) 
have found elsewhere. One can speculate 
that in a self-organizing economy, the pattern 
of distribution of resources (for instance 
as revealed by city-size distribution) a PL 
distribution may signify well-working econ-
omies. Could the foregoing self-organization 
theory of what underlies good economies 
be extended to industry ecosystems? More 
generally, can PLs be used as indicators of 
emergence in action?

Sixth, the occurrence of PLs is explained by 
SF theories; we have listed a few in Table 15.1 
– they come from physics, biology and social 
science. SF theories offer the promise of 
explaining extreme outcomes and reducing 
the fragmenting effect of social science disci-
plines on organizational research. Discipline-
centric researchers may dislike this 
consequence; discipline-neutral researchers 
will see research advantages and practitioner 
relevance.

Seventh, research on extreme events can 
profit from PLS. SF theories may provide the 
key to differentiate between scalable and 
non-scalable TIEs. Andriani and McKelvey 
(2010) highlight the phrase, ‘You can’t see 
what you aren’t looking for’. The potential 
contribution to strategy and entrepreneurship 
deriving from the identification of butterfly-
levers before extreme events occur is signifi-
cant. The opportunity or threat posed by an 
extreme event first appears as a small butter-
fly-event to which heterogeneous agents, 
initially endowed with zero-order connectivity, 



SKEW DISTRIBUTIONS TO POWER-LAW SCIENCE 269

respond by searching for and connecting 
with other agents (Kauffman, 1993), which 
may then spiral into multiplicative interde-
pendence and PLs.

CONCLUSION

The dramatic transformations in the field of 
business, economics and finance have con-
firmed what Schumpeter (1939: 102) antici-
pated long ago:

We must recognize that evolution is lopsided, dis-
continuous, disharmonious by nature – that the 
disharmony is inherent in the very modus operandi 
of the factors of progress.… The history of capital-
ism is studded with violent bursts and catastro-
phes… more like a series of explosions than a 
gentle, though incessant, transformation.

The quote above describes the world 
that Power-law Science aims to understand. 
The disharmony Schumpeter refers to repre-
sents the unbounded diversity and the agents’ 
heterogeneity that are at the same time 
revealed by both tails of PL distributions and 
causes of the same distributions. This dishar-
mony, then, becomes the engine via connec-
tivity of the ‘violent bursts and catastrophes’ 
(in modern parlance, extreme outcomes). 
These have always characterized the world 
managers live in but the dominance of linear 
thinking, Newtonian equilibrium, Darwinian 
gradualism and the statisticians’ i.i.d. assump-
tion in both natural and social sciences has 
metaphorically pushed the issue of extremes 
‘under the carpet’: ‘outliers’ causing skew 
distributions are demoted to random (mean-
ingless) events that can be disregarded. The 
financial-economic crisis, which started in 
the US in August 2007, has made all too clear 
that change is long due. Even a recent issue 
of The Economist (18 July 2009) shows on 
the cover page a melting book titled Modern 
Economic Theory. The accompanying edito-
rial is: ‘What went wrong with economics’. 
In this chapter we suggest that Power-law 
Science offers a new direction to tackle some 

of the issues that have plagued organization 
science and economics.

NOTES

1 The Principle of Superposition holds that: ‘The 
net response at a given place and time caused by two 
or more stimuli is the sum of the responses which 
would have been caused by each stimulus individu-
ally. … In mathematics, this property is more com-
monly referred to as additivity. It applies to all linear 
systems’. Quoted at http://en.wikipedia.org/wiki/
Superposition_principle

2 Peter Allen, one of the editors of this volume 
takes a somewhat different view (private communi-
cation) that in ‘any dynamical system with growth 
and decline, then there will quite obviously be an 
element of a power law emerging providing that the 
probability of decline is actually greater than that of 
growth. This means that such systems are ‘fed’ by 
newcomers. … The pure, simple, scale-free power 
law indicates simply that these probabilities of 
growth and decline are not really functions of size’. 
‘However, a system of probabilistic growth and 
decline can perfectly well indicate a peaked distribu-
tion around some average population size, if the 
probability of growth and decline are functions of 
population size – such as in a logistic equation, 
where small populations grow and populations 
above the “carrying capacity” decline.’

‘In considering the probability of extreme events 
– then the simple, UNJUSTIFIED assumption by 
economists of a Gaussian is clearly completely unjus-
tified. Extreme events will be better described by any 
dynamic probability model that discusses growth and 
decline. SO, particularly for extreme events, it is 
important to realize that the probability distribution 
is NOT GAUSSIAN but has a precise form dictated by 
the different terms representing mechanisms involved 
in growth and decline. In very simple models with 
scale-free parameters you will have a pure power law 
distribution. But in most cases this is only the first 
approximation to a more complex truth.’

3 i.i.d. stands for independent and identically 
distributed data points – like cornstalks, olive trees, 
heights of giraffes and human bodies etc.

4 Due to space limitations we omit discussion of 
Extreme Statistics Theory; Baum and McKelvey (2006) 
offer a management-relevant introduction to this 
topic.

5 Calculus and analytical functions became so rei-
fied that the French mathematician Hermite wrote: ‘I 
turn with terror and horror from this lamentable 
scourge of continuous functions with no deriva-
tives’ (from a letter to Thomas Stieltjes in 1893; 
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Wiki source: http://74.125.155.132/search?q=cache:
9G4 dsfcxgCYJ:en.wikipedia.org/wiki/Charles_Hermite 
+Hermite+%22I+turn+with+terror+and+horror%
22&cd=1&hl=en&ct=clnk&gl=us

 6 The ‘butterfly’ appellation stems from a paper 
by E.N. Lorenz (1972) titled ‘Predictability: Does the 
flap of a butterfly’s wings in Brazil set off a tornado 
in Texas?’

 7 For further discussion of basic complexity 
science concepts and theories, see various prior 
chapters in this volume.

 8 Schrödinger (1944) coined negentropy to refer 
to energy importation (Nicolis and Prigogine, 1989).

 9 For an expanded discussion of hermeneutics, 
abductive reasoning, and scalable abduction, see 
McKelvey and Benbya (2007).

10 Brynjolfsson et al. (2006) show that the micro-
niche long tail is explicitly due to Internet marketing.

11 Chou and Keane (2009) illustrate this idea 
further in showing how PLs of four Web-oriented 
industries suggest where M&A and management 
changes could take place.

12 The Gini coefficient is a measure of country-
level income inequality. A good definition is offered 
at: http://en.wikipedia.org/wiki/Gini_coefficient from 
which we take our reproduction (accessed 11 April, 
2008). The larger the Gini coefficient, i.e. the larger 
the area within the curve, the worse income 
inequality.

13 Cities are plotted by rank (biggest to smallest) 
and population size. The city-population data for 
2005 data come from http://population.mongabay.
com/ (accessed 31 March, 2007). Rather than use 
‘binning’ or ‘cumulative probability’ to make the line 
look straighter, we use the ‘Gini space’ as an indica-
tion of economic weakness.

14 Though not shown, cities in the US, Japan, 
and China show a strong PL fit with the 2005 data, 
as does India, which is shown in Figure 15.4.

15 The ‘50’ includes the EC 27, and other indus-
trialized or commodity-based economies leaning in 
the ‘hot’ direction.

16 For further discussion, see McKelvey 
(2011).

17 Allometric control theory ‘… has a built-in 
long-time memory reflected in its inverse power-law 
character… (p. 210). This memory implies that the 
allometric control does not only respond to what is 
happening now, but it also responds to what hap-
pened in the past’ (p. 264). This is important as it 
means that systems can adapt to their environment 
by incorporating in their control process external 
stimuli. In its simplest form an allometric control can 
be ‘… regarded as resulting from the balance 
between two antithetical sets of behaviour. … These 
are, repulsion behaviour, which results from the 
selection pressure for individuals to maximize their 
resources and hence to separate, and attraction 

behaviour, which results from the selection pressure 
to make the maximum use of available resources and 
hence to congregate wherever these resources are 
currently most abundant’ (this latter quote is taken 
from Taylor and Taylor, 1977: 185).
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INTRODUCTION

It is a commonplace of organization theory 
that organized systems must adapt to their 
environment in order to survive (Lawrence 
and Lorsch, 1967; Aldrich, 1979). The cyber-
netician, W. Ross Ashby (1956) is perhaps 
best known for his Law of Requisite Variety, 
which framed the internal order generated by 
a system as its response to impinging envi-
ronmental forces (Ashby, 1962). In this 
chapter, we recast Ashby’s law as the Law of 
Requisite Complexity (McKelvey and Boisot, 
2009). The latter holds that, to be effica-
ciously adaptive, the internal complexity of a 
system must match the external complexity it 
confronts.

Current thinking holds that organizations can 
invest in adaptation in two ways: (1) simplify 
the complexity of incoming stimuli so as to 
economize on the resources that need to be 
expended in responding; (2) invest more 

resources in the response than they judge to 
be strictly necessary so as to ensure some 
degree of adaptation. The risks asso ciated 
with the first approach are those of oversim-
plification – i.e. unfamiliar stimuli merely 
get assimilated to familiar ones and hence get 
mis-classified. The risks associated with the 
second are that resources get depleted by 
unnecessarily complex responses before 
adaptation occurs. To explore the trade-offs a 
system faces between stimulus simplification 
and response complexification, we draw on 
complexity theories to develop a conceptual 
framework, the Ashby Space, that can help 
researchers and practitioners to frame the 
challenges of adaptation in resource-efficient 
ways. We first briefly review key aspects of 
general systems theories, early organization 
theories, and complexity theories. We then 
draw on Ashby’s Law to create the Ashby 
Space and illustrate its use by applying it to 
the 2007 liquidity crisis.
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SYSTEMS, ORGANIZATIONS, 
AND COMPLEXITY: A REVIEW

General systems theory

Our point of departure is a living cybernetic 
system capable of responding to its environ-
ment in adaptive ways, defined as the class 
of systems behaviours that contribute to the 
maintenance of system identity in the face 
of external perturbations (Churchman and 
Ackoff, 1950). Cybernetics was defined by 
Wiener (1948) as the science of control and 
communication in the animal and the machine. 
All living and most mechanical systems are 
sustained by the presence of positive and 
negative feedback loops; the first amplify-
ing and the second dampening information- 
bearing signals of relevance to them. The 
study of negative feedback in general systems 
theory (GST) showed how systems acted to 
preserve themselves under changing external 
conditions. The distinction between the sys-
tem’s interior and its exterior is essential to 
the preservation of a system’s identity and 
continued survival under conditions of envi-
ronmental change. Through the mechanism 
of homeostasis (Ashby, 1956), a system is 
able to maintain an ‘internal’ equilibrium in 
the face of ‘external’ perturbations. Yet sys-
tems are also capable of generating change 
autonomously by amplifying feedback instead 
of merely adapting to external contingencies 
by dampening it – an idea that took root in 
GST with Maruyama’s (1963) classic paper 
on deviation-amplifying positive feedback 
processes.

Organizations in environments

The cybernetic systems discussed by Wiener 
and others (Buckley, 1968), exhibited minimal 
complexity. They were designed to respond 
to a limited range of external contingencies, 
and to do so primarily through negative feed-
back processes. Human organizations, by 
contrast, are capable of dealing with a mas-
sive range of external contingencies, far 

exceeding those that an individual human 
being, let alone a simple cybernetic machine, 
can handle. Yet for most of the twentieth 
century human organizations were conceived 
of as simple machines, tightly controllable 
by their creators or owners (Taylor, 1911; 
Fayol, 1916; Koontz and O’Donnell, 1964) 
and hence predictable in their behaviour. 
Etzioni (1961) analyses an organization’s 
capacity to secure compliance in carrying out 
complex tasks through the exercise of power 
expressed via hierarchical authority relations, 
suggesting that, in the human case, this capac-
ity is what distinguishes internal from external 
organization – a distinction that was later taken 
up by the markets and hierarchies framework 
(Coase, 1937; Williamson, 1975). With inter-
nal organization, the exercise of power allows 
multiple negative feedback loops to be brought 
under some central control in order to achieve 
stability and a unitary agency.

The passage from a mechanistic to a more 
organic conception of human organization 
(Burns and Stalker, 1961) had taken place by 
the early 1960s, partly in response to the 
discovery that human organization was nei-
ther as controllable nor as predictable as had 
been assumed (Trist and Bamforth, 1951; 
McGregor, 1960). The systemic processes 
that demarcated a lower-entropy1 internal 
organization from a higher-entropy external 
environment were not all under managerial 
control. Nevertheless, through evolution, and 
in contrast to a purely mechanical system, 
an organic system could learn to maintain 
a distinction between internal and external 
environment, preserving a boundary and 
exercising some measure of control over 
what crossed the boundary (Miller, 1978). 
Homeostasis could thus be maintained inside 
the boundary across a wider range of environ-
mental changes than in the case of a purely 
mechanical system. An intelligent organic 
system could then take this adaptive capacity 
one step further by generating representations 
of both its internal and external environment 
(March and Simon, 1958). These could be 
manipulated so as to allow it to anticipate 
and respond to the future states of both.
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The organic conception of organizations 
emerged alongside the new GST being for-
mulated in biology, itself aspiring to the 
status of ‘a general theory of organization’ 
(Bertalanffy, 1968: 34; Kast and Rosenzweig, 
1973). A cybernetic system could now be 
viewed as a special case of a general system, 
one that was equilibrium-seeking. A subset 
of these – autopoietic systems – exhibited the 
property of self-organization (Maturana and 
Varela, 1980), exploiting the dampening and 
stabilizing effects of negative feedback effects 
to achieve autopoietic closure. The interior 
of any autopoietic system will always be 
characterized by a lower level of entropy than 
that of its environment. Indeed, for many biolo-
gists, this entropy differential actually defines 
organization (Brooks and Wiley, 1988; Weber 
et al., 1988).

A number of scholars then began to study 
the way that the structures and behaviours of 
organized human systems adapt to changes in 
the environment (Woodward, 1958; Lawrence 
and Lorsch, 1967; Thompson, 1967). An 
environment experienced as complex pro-
vokes a matching process of differentiation 
and integration in such structures and behav-
iours; one experienced as simple, less so. In 
these contingent responses of an organized 
system to the characteristics of its environ-
ment, we have, in effect, a first social science 
application of Ashby’s Law of Requisite 
Variety (1956): an adaptive system survives to 
the extent that the variety it generates matches 
that of the environment it finds itself in. In 
what could then be seen as a further applica-
tion of Ashby’s law, Perrow (1972) framed 
the issue of organizational complexity in 
terms of the tasks that human organization 
has to perform, characterizing task complex-
ity by its resistance to both routinization and 
understanding. For Perrow, complexity had 
both an objective and a subjective side, that is, 
it can be inter-subjectively ascertained to be a 
property of the environment itself (objective 
complexity) or it can describe an individual’s 
experience irrespective of the objective prop-
erties of the environment (s)he encounters 
(subjective complexity).

Complex adaptive systems

The foregoing view assumes that organiza-
tions are objects in an environment that can 
be treated as a residual category – i.e. it com-
prises everything that the organization is not. 
Yet we, either as external observers or as 
members of organizations, are the ones who 
decide where to place boundaries around 
‘the’ organization and hence who define what 
we will treat as residual. We then see the envi-
ronment as having higher levels of entropy 
because we ignore the degree to which it is 
itself organized and capable of exerting force 
on organizations. The emergence of far-from-
equilibrium thermodynamics (Prigogine, 
1955; Prigogine and Stengers, 1984), and of 
the complex adaptive systems (CAS) perspec-
tive in the 1990s, however, challenged this 
stability-seeking, ‘object-oriented’ view of 
organization. 

The first phase in the development of the 
CAS perspective can be traced back to the 
physicist Erwin Schrödinger, who, in a small 
book called What is Life? (1944), had sug-
gested that life self-organizes by sucking in 
low entropy from its environment and spit-
ting out high entropy back into it. Prigogine 
and his co-workers in Europe, building on 
Bénard’s (1901) study of emergent structures 
in fluids, then further postulated that new 
order – and, by implication, organization – 
emerged from a speeding up of such entropy 
production (Swenson, 1989). Prigogine 
labelled the resulting organized entities ‘dis-
sipative structures’. In a teapot, for example, 
the ‘rolling boil’ familiar to chefs describes a 
shift from conduction – homogeneous mole-
cules dissipating heat by vibrating faster in 
place – to convection – molecules circulating 
around the pot. The shift speeds up heat 
transfer and in so doing more efficiently 
reduces an imposed energy differential. This 
phase transition, which occurs at the so-
called ‘1st critical value’ of imposed energy – 
McKelvey (2001) calls this an adaptive 
tension – defines an ‘edge of order’ (Haken, 
1977; Mainzer, 1994/2007). Living ‘dissipa-
tive’ systems become increasingly efficient 
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and exploitative of their environment, indeed, 
in some cases so much so that at the ‘edge of 
order’, many lose their capacity to adapt and 
die (Miller, 1990).

A second phase, more focused on living 
systems, was initiated by Anderson (1972), 
Gell-Mann (1988), Holland (1988, 1995) and 
Arthur (1994) at the Santa Fe Institute in 
New Mexico. These scholars explored the 
behaviour of heterogeneous agents interact-
ing at the so-called ‘edge of chaos’, a state 
that emerges at a ‘2nd critical value’ of adap-
tive tension. At this value, a second phase 
transition occurs from the order that appeared 
at the 1st critical value to chaos. Between 
the ‘edges’ of order and chaos lies a region 
of emergent complexity, or what Kauffman 
(1993) terms the ‘melting’ zone. It is a zone 
in which adaptive capability is at its maxi-
mum. Bak (1996) argued that to survive, 
entities need to maintain themselves near the 
edge of chaos, i.e. in the melting zone, in a 
state of ‘SELF-ORGANIZED CRITICALITY’,2 one in 
which the entity achieves and then maintains 
an efficaciously adaptive state under changing 
environmental (or even internal) conditions. 
A process of self-organization is initiated when 
heterogeneous agents in search of improved 
fitness interconnect under conditions of exog-
enously or endogenously imposed adaptive 
tension. New order is an emergent outcome 
of this process.

A third phase, driven by the new discipline 
of econophysics, is now underway, focusing 
on the outcomes of self-organization and 
emergent new order. According to Thietart 
and Forgues (this volume), Prietula (this 
volume) and Tracy (this volume), emergent 
phenomena appear in the nonlinear, intra- 
and inter-level causal processes of multi-
level hierarchies. Nonlinearities are a source 
of butterfly-effects3 and scalability, extend-
ing across multiple hierarchical levels within 
organisms and other organized entities. 
Butterfly effects, which are tiny initiating 
events (i.e. Holland’s ‘lever points’ (1995: 5)) 
that can produce extreme outcomes such as 
hurricanes, stock market crashes, giant firms, 
etc., can be expressed in power law form 

(Zipf, 1949; Newman, 2005). Scalability 
(Brock, 2000) and scale-free causes (West and 
Deering, 1995; Andriani and McKelvey, 2009) 
are best understood by considering a cauli-
flower. First cut off a ‘floret’ and then cut 
a smaller floret from the first; keep cutting 
successively smaller florets in this way. Each 
will be smaller than the former, but each will 
exhibit the same shape, structure, and gene-
sis. Scalability reproduces the same ‘fractal’ 
structure4 at different scales (Mandelbrot, 
1982); which is to say that scale-free causes 
generate the same dynamic, effect, or charac-
teristic at multiple levels of a system.

In what follows we take organizing to be 
an emergent far-from-equilibrium phenome-
non that neither entails nor precludes the 
existence of ‘organizations’ as stable objects. 
The latter occupy one end of a continuum 
along which a range of organizational phe-
nomena can be located. Order-creation via 
the amplification of positive feedback at one 
level of an organization becomes as impor-
tant as equilibrium-seeking via the damping 
effects of negative feedback at another. When 
working in tandem, both contribute to the 
‘organizing’ process; hence both can be 
adaptive. We now explore this point further 
by means of the Ashby Space.

ASHBY’S LAW AND THE 
ASHBY SPACE

Ross Ashby, one of the founders of GST, was 
interested in the range or variety of situations 
that an animal or a machine could respond 
and adapt to. His Law of Requisite Variety 
states that ‘only variety can destroy variety’ 
(Ashby, 1956: 207): a system survives to the 
extent that the range of responses it is able to 
marshal – as it attempts to adapt to imposing 
tensions – successfully matches the range 
of situations – threats and opportunities – 
confronting it. In the case of a living system, 
the response might be wholly behavioural 
and often outside a system’s cognitive con-
trol – as in the case of a hormonal response 
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or a reflex. Alternatively the response might 
be a blend of behaviour and cognition that is 
contingent on the system classifying a stimu-
lus as foreshadowing, say, the presence of a 
foe and requiring a fight-or-flight decision. It 
will then respond to representations of its 
environment that are constructed out of such 
classification activity rather than to its envi-
ronment directly (Plotkin, 1993). Gell-Mann 
(2002: 16–17; see also Maguire this volume) 
sees representations as effectively complex 
‘schemas’ – structured descriptions of an 
objective external world which incorporate 
neither too few nor too many degrees of free-
dom. What advantage do schemas confer?

If it is not to waste its energy responding 
to every will-o’-the-wisp, a system must 
build schemas in ways that distinguish 
meaningful information (stimuli conveying 
‘important’ real-world regularities) from 
noise (meaningless stimuli). In other words, 
it must distinguish between what Gell-Mann 
has labelled ‘effective’ and ‘crude’ complexity 
(Gell-Mann, 1994). Note that what consti-
tutes information or noise for a system is 
partly a function of the system’s own expec-
tations and judgments about what is impor-
tant (Gell-Mann, 2002) – as well as of its 
motivations – and hence, of its models of the 
world and its intents (Dennett, 1987). Valid and 

timely representations (schemas) economize 
on organism’s scarce energy resources (Ball, 
2004; Vermeij, 2004). This can even be seen 
in how we use language. Zipf (1949) showed 
how the frequency of word use inversely cor-
relates with word length. The resulting power 
law distribution established a PRINCIPLE OF 
LEAST EFFORT as defined in Table 16.1.

The Ashby Space

We illustrate the functioning of Ashby’s law 
with a simple diagram we call the Ashby 
Space (Figure 16.1). On the vertical axis we 
place the real-world stimuli that impinge on 
an organism. These range in variety from low 
to high. A low-variety stimulus might be an 
image of the moon; a high-variety stimulus 
might be the trajectory of an insect in a 
swarm.5 On the horizontal axis, we place the 
variety of a system’s responses to the stimuli. 
These also range from low to high. A low-
variety response to the moon-as-stimulus 
would simply be to stare at it, meditate, and 
otherwise do nothing. Here, it is the absence 
of a response that is adaptive. A high-variety 
response to the insect swarm, by contrast, 
might be to chase after each individual insect 
flying past. This could prove exhausting and 
time consuming. The first type of response 

High

Low

Low

The Requisite
Variety Diagonal

45%

High
Variety of Responses

Variety of
Stimuli

Figure 16.1 The Ashby Space
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saves on scarce resources of energy and time; 
the second wastes them. The diagonal in the 
diagram indicates the set of points at which 
variety can be considered ‘requisite’, that is, 
where the variety of a system’s response 
matches that of incoming stimuli in an adap-
tive way – it facilitates survival whether or not 
it does so with an efficient use of resources.

Ashby stressed the need to reduce the flow 
of some forms of variety from the external 
environment to certain essential processes in 
a living system. This was the role of regula-
tion, and, as Ashby pointed out, the amount 
of regulation that can be achieved is bounded 
by the amount of information that can be 
transmitted and processed by a system 
(Ashby, 1956). The variety that the system 
then has to respond to depends in part on its 
internal schema development and transmis-
sion capacities and in part on the operation of 
tuneable filters, controlled by the system’s 
cognitive apparatus, and used by the system 
to separate out regularities from noise (Clark, 
1997) – i.e. Gell-Mann’s effective complexity 
from its crude complexity. The more intelli-
gent a system, the higher will be the cognitive 
component in its response relative to the purely 
behavioural one. Birds mostly act according 
to genetically derived behavioural instincts; 
monkeys produce both behavioural and 

cognitive responses; humans exhibit higher-
level cognitive skills. There is, thus, a trade-
off between the behavioural and the cognitive 
resources that a living system has to marshal 
to be adaptive.

The matching of stimulus and response 
variety on the diagonal can only be considered 
functionally adaptive, however, if it occurs 
inside the region of the schematic diagram 
labelled OAB in Figure 16.2 which describes 
a response budget available to a living system 
defined in terms of energetic, temporal and 
spatial resources. The curve AB constitutes 
the system’s adaptive frontier, i.e. the region 
in which it reaches the limit of the budget it 
can draw on for the purposes of adaptation. 
To the right of this region, the mix of cogni-
tive and behavioural variety required to 
respond to incoming stimuli is too high for 
adaptive purposes, causing the system to 
spend too much of its resource budget and, 
thus, eventually leading to its physical disin-
tegration. Above this region, the resources 
consumed by the data processing required to 
register incoming stimuli, to interpret them, 
and to formulate adaptive responses also exceed 
the system’s resource budget, eventually 
leading to errors and to adaptive failure – in 
the language of decision theory, the sys-
tem’s rationality is ‘bounded’ (Simon, 1947). 

High

The Adaptive Frontier

Low

Low High
Variety of Responses

Variety of
Stimuli

A

BO

 

Figure 16.2 The adaptive frontier
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Cognitive and physical disintegration, how-
ever, are not mutually exclusive alternatives: 
the first will sooner or later lead to the second 
and vice versa. And even when it is operating 
within its resource budget, at any point above 
the diagonal of Figure 16.1, the system is 
still under-adapting – cognitively or behav-
iourally – relative to what is actually required. 
Likewise, at any point below the diagonal it 
is using up its budget wastefully or ineffec-
tively relative to what is required (Thaler, 
1992). The challenge for an adaptive system, 
then, is to locate itself at some point on the 
diagonal in Figure 16.1 while remaining within 
the budget area OAB in Figure 16.2.

The shape of the resource budget, sche-
matically represented by the curve OAB 
varies with the intelligence of the system. 
Figure 16.3 illustrates the point by compar-
ing the resource budget of a human being 
with that of a hummingbird. Given its larger 
brain size, a human being can readily apply 
its resource budget to the data processing and 
transmission tasks that convert high-variety 
stimuli into low-variety ones, or vice versa. 
It does this by interpreting the stimulus, 
distinguishing which part of the variety 
associated with it is information bearing 
and which part is noise. In doing so, it can 
use its resource budget to move either down 

or up the vertical dimension of the Ashby 
Space. Hummingbirds, by contrast are better 
off deploying their ‘flatter’ resource budgets 
towards the right in Figure 16.3, i.e. towards 
more energetic responses. But human beings 
go further. As indicated in Figure 16.4, their 
capacity for social collaboration and for cre-
ating technological artefacts extends their 
resource budget along both the vertical and 
the horizontal axis of the diagram, thus sig-
nificantly increasing the level of environ-
mental variety that they can adapt to. We no 
longer just walk, we can fly at several times 
the speed of sound. And the stimuli that we 
process and respond to no longer originate in 
our immediate environment; CNN collects 
them from around the globe. The human case 
thus calls for a more dynamic formulation of 
Ashby’s law: The rate at which a human 
system’s adaptation budget increases variety – 
i.e. at which the adaptive frontier expands – 
must at least match the rate at which 
environmental variety increases.

What are the different response strategies 
available to intelligent agents in the face of 
variety? Consider an agent located at point Q 
in Figure 16.5 corresponding to some prior 
background activity shown as level X along 
the horizontal axis. The agent now registers a 
high-variety stimulus at point Y along the 
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Figure 16.3 The adaptive frontier of hummingbirds and humans
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vertical axis. It could respond to the variety 
associated with point Y directly in a ‘mind-
less’ behaviourist fashion either by waiting to 
see what happens, or by generating responses 
that move it horizontally to the right by trial 
and error until it hits the diagonal at C – i.e. 
one of the responses proves to be adaptive. 
No cognitively-driven simplification of the 
stimulus is involved here; its response – a 
mixture of cognition and behaviour – is thus 
costly in terms of resources consumed. 

In adopting this headless chicken response, 
however, the agent might well move outside 
its budget area OAB in Figure 16.2 thus 
depleting its resource budget. When the 
sheer variety of the stimuli allows neither 
prediction nor anticipation – the first speci-
fies with precision some future event whereas 
the second can only orient to general classes 
of events – the agent would then do better to 
adopt the wait-and-see option and let nature 
show its hand. Alternatively, if the agent 
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Figure 16.4 The socio-technical expansion of the adaptive frontier
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believes that the variety of stimuli conceals 
some structure, it could attempt to respond in 
a purely cognitive fashion by moving verti-
cally down the diagram until it approaches 
the horizontal axis at point R. In this case, the 
agent treats all incoming stimuli either as 
familiar regularities or as noise and thus not 
in need of any new response. This is the strat-
egy of agents who have ‘seen it all before’ 
and – possibly overconfidently – feel no need 
to actually do anything different. Call this a 
routinizing response. But since any down-
ward movement calls for an interpretation and 
classification of incoming stimuli, whether 
this strategy is adaptive or not will depend 
on how well the resulting schema matches 
the real-world variety-reducing regularities 
 confronting the agent – i.e. how effectively 
complex they are.

Intelligent adaptive agents are best off 
locating on the diagonal in the Ashby Space, 
somewhere between O and a point before 
which the diagonal of Figure 16.1 would 
intersect the budget line AB of Figure 16.2. 
That is, an intelligent agent first needs to 
interpret the stimuli impinging upon it. This 
requires a cognitive move either up or down 
the diagram’s vertical scale that extracts 
information about relevant regularities from 
noisy incoming stimuli. The agent then 
needs to develop a relevant schema and 
respond with some action to regularities so 
extracted – a behavioural move horizontally 
across the diagram towards the right that is 
only adaptive if it stops when it meets the 
diagonal and does so before exhausting its 
budget. A cognitive move up the Ashby 
Space, effectively expands the range and 
variety of stimuli that an agent will need to 
process before responding – as a result, as 
Gell-Mann would put it, its schemas will 
become more complex. Such an upward 
move delivers exploratory learning (Holland, 
1975; March, 1991). A cognitive move down 
the Ashby Space, by contrast, draws on prior 
learning to reduce both the range and variety 
of stimuli and simplify the schemas required – 
it delivers exploitative learning (Holland, 
1975; March, 1991). Clearly, the further down 

towards O an intelligent agent can move 
before having to turn right and respond with 
a physical (behavioural) action, the more 
easily it can secure a quiet life for itself by 
achieving adaptation within its resource 
budget. Conversely, the further up the vertical 
scale towards A the rightward move occurs, 
the more turbulent life becomes for the agent 
and the more resources it has to expend in 
order to adapt.

The trajectory of any living system (i.e. 
agent) through the Ashby Space reflects its 
‘intelligence’ – its capacity to discern mean-
ingful regularities, develop adaptive schemas, 
and generate effectively complex responses. 
Given the limited number of stimuli that a 
hummingbird’s brain can ‘make sense’ of, 
for example, any trade-off that the bird is 
required to make between its energy and 
data-processing resources favours drawing 
predominantly on its energy resources. The 
variety of stimuli that a human being can 
respond to adaptively, by contrast, is much 
greater so that the trade-off favours draw-
ing predominantly on its data-processing 
resources. A living system’s trajectory through 
the space thus also tells us something about 
its physiology. Not only are there physiologi-
cal limits as to what may count as a stimulus, 
and hence as data, for a given type of system – 
a frog, for instance, can only detect and proc-
ess peripheral movement (Lettvin et al., 1959) 
and a bat’s movements are guided by sound, 
not sight – but there are also cognitive limits 
on the system’s capacity to process the data 
contained in the stimulus. It thus confronts 
a problem of bounded rationality (Simon, 
1986). Above the budget line the variety of 
stimuli may be such that a system cannot even 
register them. Yet, as indicated by Figure 16.4, 
for many living systems and especially for 
human beings, the budget area OAB is con-
stantly being expanded outward from the 
origin by means of artefacts (Clark, 1997), 
cultural transmission (Gregory, 1981; Boyd and 
Richerson, 1985) and organized collective 
action (Corning, 2003). These simultaneously 
increase the variety of interpretive schemas 
available to a system on the vertical axis and 
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that of the responses available to it on the 
horizontal one – its effective complexity – 
and thus its adaptive capacity.6

Complexity in the Ashby Space – 
three ontological regimes

Computational theory teaches us that prob-
lems whose size grows much faster than 
their inputs may require what effectively 
amounts to an infinite amount of data 
processing for their solution (Chaitin, 1974; 
Sipser, 1997). This will happen when the 
inputs – which here we take to be stimuli – 
cannot be made sense of. From the computa-
tional perspective, an intelligent agent 
grappling with such vast problems will then 
experience input stimuli as being unfathom-
ably complex. No regularities or structure 
can be extracted from them and no sense 
can, therefore, be made of them. Even prob-
lems whose size only grows moderately 
faster than their inputs will be experienced 
as very complex to an intelligent agent. Only 
problems whose size is in some linear rela-
tionship with their inputs will come across 
as ordered. If we now take variety to be the 
phenomenological manifestation of com-
plexity at work and further assume that 
problem-input size correlates with stimulus 

variety for an intelligent agent such as a 
human being (Grünwald et al., 2005), we can 
map the different input sizes of various threats 
and opportunities to which an agent has to 
adapt onto the vertical axis of Figure 16.1 to 
give us three distinct ontological regimes: 
the Chaotic, the Complex, and the Ordered. 
We show these in Figure 16.6.7

Mixing two regularities

Stimuli appearing in the chaotic regime8 at 
the top of the diagram are hard to extract 
useful information from and may be judged 
computationally intractable, not just because 
of the size problem but because they are 
also experienced as chaotic. Unless luck 
intervenes, an intelligent agent drawing on 
conventional representations and unaware 
of chaos dynamics can typically make no 
sense of such stimuli within an adaptive 
time frame – i.e. before depleting its energy 
budget. Here, phenomena cannot even be 
anticipated, let alone predicted. As sug-
gested earlier, an intelligent agent must then 
either wait for nature to show its hand in 
order to respond or it must proceed by trial 
and error. How it will experience the adaptive 
tension that it confronts under either option 
will be a function of the resources available 
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Figure 16.6 Ashby’s law in three regimes
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to it since a lack of resource can itself be a 
source of tension.

Stimuli appearing in the ordered regime at 
the bottom of the diagram, by contrast, are 
mostly linear in nature and are experienced 
as relatively unproblematic by an intelligent 
agent – the resulting linear regularities and 
noise are the stuff of everyday experience and 
in the human case, the products of ‘normal 
science’ (Kuhn, 1962).

In his discussion of the processes that under-
pin the three regimes, Gell-Mann (2002; 
Maguire, this volume) distinguishes between 
regularities produced by two fundamentally 
different generative processes (Bhaskar, 1975):

Type 1. Reductionist Regularities: The causal 
processes that are well captured through reduc-
tionist normal science, which are predictable and 
easily represented by equations; the focus of 
classical physics and neoclassical economics (Gell-
Mann, 2002: 19). These characterize the Ordered 
Regime. They may be confidently schematized to 
yield predictions that then become the basis of 
prescriptive solutions.

Type 2. Scale-free Regularities: Outcomes result-
ing from an accumulation of random tiny initiating 
events amplified by positive feedback effects that 
generate unpredictable, seldom repeated nonlinear 
– and possibly extreme – outcomes that have last-
ing effects; what Gell-Mann calls frozen accidents 
(2002: 20). Scale-free regularities are at best prob-
lematic and beyond the reach of the explanatory 
traditions of normal science.

Stimuli appearing in the complex regime 
of Figure 16.2 are experienced as a blend of 
Gell-Mann’s two types of regularities – a 
partly law-like and partly unpredictable mix of 
tiny initiating events (TIEs), frozen accidents, 
and power-law phenomena bathed in noise. 
Schema development in this regime is chal-
lenging to be sure, but computationally tracta-
ble once methods for separating out the two 
kinds of regularities from noise are available.

The more phenomena intelligent agents 
can classify unproblematically as ordered, 
the more they can economize on scarce 
data processing and energetic resources, 
holding these in reserve for more challenging 
phenomena – i.e. in responding, they will 

attempt to minimize the distance that they have 
to travel up and to the right in Figure 16.1. 
Human beings have a historically validated 
interest in steering phenomena downward in 
the figure towards the ordered regime if they 
possibly can, in order to economize on the 
resources needed to respond – this is the 
origin of their preference for simple mechan-
ical representations identified in the opening 
section and, of course, of Gell-Mann’s reduc-
tionist regularities. But they can overdo it. If 
too many of their ‘interpreted’ experiences 
end up in the ordered regime – i.e. if they all 
‘make sense’ and can be taken for granted – 
human beings lose their sense of the essen-
tially contingent nature of things and either 
maladapt or fossilize. When human organiza-
tions overdo it, they encounter Miller’s (1990) 
Icarus Paradox, and unwittingly end up 
placing themselves in situations that turn out 
to be beyond their capacity to adapt to – e.g. 
they become so good at being efficient they 
lose their capacity to change.

Clearly, the first step in schema develop-
ment with respect to some impinging real-
world phenomenon is to identify the ontology 
appropriate for dealing with it. We outline 
three possibilities in Figure 16.7. If, for 
example, an agent interprets a phenomenon as 
being ordered, it will pursue the cognitively-
routinizing response. This puts the agent 
on the least-cost trajectory of moving down 
the Q-to-R path in Figure 16.5 so as to stay 
within its budget area OAB – i.e. the data-
information-schema-development  process 
underlying the regularities is well understood. 
If, by contrast, the agent views the phenom-
enon as chaotic, it will either do nothing and 
wait or pursue the largely behavioural head-
less chicken response of moving from Q to C 
in Figure 16.5 – i.e. it could quite possibly 
move outside its budget area. On this trajec-
tory the agent, knowing nothing of scalabil-
ity, power laws, and scale-free theories, 
cannot make sense of anything. Latent regu-
larities completely escape it, leading it to 
respond mindlessly. It may then expend so 
much undirected energy that it ends up disin-
tegrating outside its budget area.
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If an agent takes the phenomenon to be 
complex – i.e. neither so ordered that it can 
mobilize a least-cost response, nor so chaotic 
that it can mobilize no meaningful schema at 
all – it is on a scalability trajectory, one 
defined both by butterfly-events, frozen acci-
dents, and nonlinearities as well as by many 
other attributes characterizing the Complex 
Regime. Here an adaptive response is feasi-
ble but more expensive than in the Ordered 
Regime since schema development combines 
both law-like and scalable TIEs. However, 
the agent can now more successfully move 
up the diagonal and still remain within its 
budget frontier.

Which ontology is adaptive for an agent 
may depend on how it experiences the level of 
adaptive tension that it confronts. Increasing 
tension often increases the level and strength 
of connectivity between hitherto unconnected 
phenomena, thus transforming what would 
ordinarily appear to be reductionist regu-
larities into scale-free ones. TIEs will then 
propagate more rapidly and easily through a 
system, getting amplified in the process to 
produce magnified, nonlinear, and possibly 
extreme, outcomes. To illustrate: imagine a 
fishing net lying loosely crumpled up in a 
pile. Cut the net between any two nodes and 
the rest of the net will remain undisturbed 
and the effects of the cut will remain strictly 

local. Now place the net under tension by 
stretching it taut. If the net is taut enough, 
then a single cut could initiate a tear that 
would instantaneously spread from one end 
of the net to the other. A similar dynamic 
underlies the power blackouts that occasion-
ally afflict the New England power grid when 
the utilities, by temporarily shutting down 
one overloaded station, trigger a cascade of 
further shutdowns throughout the North East 
US. Given tension plus connectivity, then, 
what starts off as a TIE can rapidly propagate 
throughout any network, growing in severity 
as it does so, with an extreme outcome the 
result. An adaptive strategy in the Complexity 
Regime of the Ashby Space thus needs a 
data-processing epistemology appropriate to 
the ontology underpinning the scale-free 
 regularities that it is called upon to deal with.

Anticipating scalability – the TIEs 
that bind

The focus on negative feedback and equilib-
rium that has characterized the ‘object’ view 
of organization and much economic think-
ing delivers predictability, control and the 
maintenance of organizational identity – i.e. 
survival – at a low cost. After all, equilibrium 
spells stability and stability, in turn, maintains 
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identity and facilitates prediction and con-
trol. Positive feedback, by contrast favours 
emergent self-organizing outcomes that 
might be anticipated but cannot be predicted. 
New order suddenly appears, often at the 
expense of the old order – a complexity inter-
pretation of Schumpeter’s (1934) creative 
destruction – but no one can tell where 
or when it will happen. The adaptive chal-
lenge is to anticipate it and to recognize and 
reinforce or negate it – i.e. to manage it – 
when it appears. This, however, turns out to 
be less a question of how to anticipate the 
downstream processes of emergent self- 
organization than of how to anticipate the 
upstream scalability dynamics that drive these. 
Recall that two key elements giving rise to 
self-organization are adaptive tension and con-
nectivity. Positive feedback between ele-
ments connected under tension is one source 
of scalability that may push some TIEs to scale 
up – possibly to deliver extreme outcomes – 
but there are others. In Table 16.1 we list six 
that Andriani and McKelvey (2009) suggest 
readily apply to organizations. For example:

Hierarchical modularity • : Drug and toy compa-
nies having products produced in the Chinese 
hinterland have discovered that too much 
local (modular) autonomy due to culture, lan-
guage, distance, time zones, cheating on prod-
uct standards, trying to cut production costs, 
coupled with the long-distance-based costs 
of exerting more hierarchical monitoring (i.e. 
increasing connection costs) led to poisonous 
products. They paid a high price for modularity 
bordering on anarchy. Walmart has abandoned 
some large merger attempts in foreign coun-
tries because the connection costs of trying 
to get firms in foreign culture to behave like 
US Walmart stores were too expensive, even 
unworkable. Hence Simon’s (1962) call for near 
decomposability, but not anarchy and Gell-
Mann’s (1994) effective complexity – just the 
right number of connections.
Combination theory • : It is like the ‘perfect storm’: 
A container ship is loaded top-heavy; a severe 
storm hits; the engine stalls for some unknown 
reason; the ship can’t be steered ‘into the storm’; 
consequently it capsizes. If any deviation occurs 

by itself, nothing happens. But all three together 
produce the extreme event.
Least effort • : For Zipf and his analyses of language, 
it was all about efficiency – I don’t want to use 
words you don’t know; you don’t want to learn 
words I am not going to use. Over the past dec-
ades even unabridged dictionaries have shrunk in 
number of words – go to your library and check it 
out! Dahui et al. (2005) show that Zipf’s Law of 
least effort applies only to changing language; 
Ishikawa (2006) and Podobnik et al. (2006) show 
that it only applies to industries and economies 
in transition as opposed to static ones. But 
further analysis of Zanini’s (2008) industries 
(Drayton, 2010) shows that the power-law line 
of market capitalization is straightest in the most 
mature industries, insurance and machinery; 
see Figure 16.8. This appears opposite to what 
Dahui et al., Ishikawa, and Podobnik et al., find. 
It suggests that in free-market-based economies, 
market capitalization (i.e. stock-market prices) 
trends towards maximum ‘least-effort’ efficiency 
as traders buy and sell on information based on 
‘fundamentals’ (i.e. valid information about the 
true value of the well understood mature firms); 
this, then, leads to the improved power-law 
signatures.
Preferential attachment • : With the ‘hub and spoke’ 
airport design, the more flights arriving at an 
 airport, the higher the incentive for other flights 
to depart from there; the more flights departing 
from there, the more incentive for more flights to 
land there – the air transport equivalent of ‘the 
rich get richer’.
Spontaneous order creation • : In Wikipedia, for 
example, one person writes a controversial entry. 
Others join in to expand, correct, add references, 
etc. Controversy, instability, and constant revising 
of what some other person writes emerge. The 
Wiki ‘hierarchy’, which has also emerged over 
the years, begins to exert a stronger ‘review’ role, 
hoping for abduction to the best explanation and 
stability as well.
Self-organized criticality • : Unlike the firms 
frozen in states of efficiency producing obsolete 
products—described in Danny Miller’s Icarus 
Paradox book—effective firms have to keep 
changing their product lines to keep up with 
changing technologies and customer tastes. 
Perhaps we see this most obviously in hamburger 
stands around the world; they are pretty good at 
adapting to changing local tastes and to what 
competing hamburger chains are offering.



APPLICATIONS292

Given the complex interactions involved, 
one cannot predict scalable outcomes. 
Nevertheless, an understanding of adaptive 
tension and connectivity allows one to ration-
ally anticipate and adapt to the dynamics of 
scalability. Spotting meaningful TIEs then 

becomes easier since one knows what to look 
for. The greater the familiarity of scholars and 
practitioners with scalability dynamics, the 
earlier they are likely to spot and respond 
adaptively to meaningful TIEs. This will 
allow them to competently engage with the 
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Figure 16.8 Zanini’s industry market capitalizations in power-law form
Left to right, plots are of software, chemicals, machinery biotech R&D, and insurance. 

Table 16.1 A sample of scale-free theories of nature*

1  Hierarchical modularity: As number of employees, n, in a firm increases, connectivity could increase by up to 
n(n–1)/2, producing an imbalance between the gains from more employees vs. the cost of maintaining connectivity; 
consequently organizations form modular designs so as to reduce the cost of connectivity; Simon argued that adaptive 
advantage goes to ‘nearly decomposable’ subsystems (Simon, 1962).

2  Combination theory: The interactive combination of multiple exponential or lognormal (or other skew) distributions or 
increased complexity of components (subtasks, processes) results in a power law distribution (West and Deering, 1995; 
Newman, 2005).

3  Least effort: Word frequency is a function of ease of usage by both speaker and listener; this gives rise to Zipf’s 
(power) Law; the efficiency of least effort is now found to apply to changing language as well as firms and economies 
in transition (Zipf, 1949; Dahui et al., 2005; Ishikawa, 2006; Podobnik et al., 2006).

4  Preferential attachment: Given newly arriving agents into a system, larger nodes with an enhanced propensity to 
attract agents will become disproportionately even larger (Barabási, 2002).

5  Spontaneous order creation: Heterogeneous agents seeking out other agents to copy/learn from so as to improve 
fitness generate networks; given positive feedback, some networks become groups, some groups become larger 
groups and hierarchies (Holland, 1995; Kauffman, 1993).

6  Self-organized criticality: Under constant tension of some kind (gravity, ecological balance), some systems reach 
a critical state where they maintain stasis by preservative behaviours – such as Bak’s small to large sandpile 
avalanches – which vary in size of effect according to a power law (Bak, 1996).

*We list six out of fifteen scale-free theories discussed by Andriani and McKelvey (2009).
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Complexity Regime in the Ashby Space 
instead of escaping prematurely either into 
the Chaotic or the Ordered Regime.

DISCUSSION

Wiener’s 1948 book on cybernetics was 
about control in animals and machines. 
Bertalanffy’s 1968 book on general systems 
theory also framed systems in terms of top-
down control processes: as in thermostats, 
negative feedback loops keep systems 
targeted on the objectives of their designers. 
Extending these authors’ insights to cover 
human organizations, Thompson (1967) saw 
top management bureaucracies as top-down 
control devices that created machine-like 
working conditions for lower-level employ-
ees. Yet in the same period some organiza-
tional theorists (Burns and Stalker, 1961) 
discovered a bottom-up process of autono-
mous, organic changes emerging from below 
in organizations that allows them to respond 
flexibly and adaptively to changing environ-
mental conditions (Lawrence and Lorsch, 
1967). In sum, in the 1960s we see organiza-
tion theory adopting the basic tenets of Ashby’s 
Law, holding that efficacious adaptation 
occurs only when internal variety/complexity 
matches external variety/complexity. The 
Ashby Space invites organizational practition-
ers and scholars to now go one step further 
and to incorporate the insights of complexity 
theory with those of Ashby. It offers them a set 
of regimes – the chaotic, the complex and the 
ordered – that can help them to adapt intelli-
gently and economically to the ever wider set 
of contingencies that confront them in a com-
plex and globalizing world, one in which TIEs 
can rapidly scale up to produce extreme out-
comes. But what are the limits of adaptation? 
Is there, for example, any limit to the expan-
sion by human beings of their data-processing 
and schema-building resources – i.e. to the 
vertical expansion of the budget area OAB of 
Figure 16.2? A brief look at the 2007 liquidity 
crisis illustrates the issues involved.

An example

By August 2007 some 8,000 US (smaller) 
banks (Guerrera, 2009) accepted minimalist 
risk/reward positions by staying away from 
subprime mortgages, teaser loans, and by 
insisting that mortgage borrowers show proof 
of income and good credit. Such caution kept 
them firmly ensconced in the Ordered Regime 
of the Ashby Space. Some 12 major banks and 
over 100 other smaller banks, however, had 
adopted a risk/reward profile that increased the 
level of adaptive tension confronting them 
and tipped them over into the Complexity 
Regime of the Space. Their financial engi-
neering models, derivatives, credit default 
swaps, securitized loan packages, etc., gave 
rise to risky loans amounting to some $50 
trillion worldwide (Cooper, 2008; Morris, 
2008; Foster and Magdoff, 2009). While these 
loans had appeared solid before the bursting 
of the US and other housing bubbles (e.g. in 
the UK and Spain, among others) – they 
became increasingly toxic over the course of 
the year. Yet, while many of these high-risk 
banks went bankrupt, the few that remained – 
Goldman Sachs, Morgan Stanley, Citigroup, 
Bank of America, and Wells Fargo – were 
able to exploit the Federal Reserve bailouts by 
engaging in merger and acquisition activity to 
emerge far stronger and larger than they had 
been. Here we see both positive and negative 
scalability dynamics at work, triggered by 
some early TIEs – the invention of derivatives 
in 1973 and of mortgage-backed securities 
c. 1985 (McKelvey and Yalamova, 2011; 
Yalamova and McKelvey, 2011b).

As indicated by Figure16.6, the Complexity 
Regime of the Ashby Space is sandwiched 
between order and chaos. The tipping point 
between the Ordered and Complex Regimes 
is often crossed by risk-induced tension – i.e. 
fear, greed, ambition, risk-taking, etc. – that 
leads to a phase transition. On the one hand, 
the 8,000 conservative small banks minimized 
their risks and remained in the Ordered 
Regime below the 1st critical value. They 
applied most of the conventional tools of 
risk management to achieve reductionist 
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regularities. Given low levels of adaptive tension, 
they could pursue replicable and reliable rou-
tines and achieve levels of predictability that 
kept their response budgets under control.

On the other hand, in response to strong 
demands for wealth-creation and for large 
bonuses by both owners and senior employ-
ees, large banks pursued high-risk strategies 
that significantly increased the levels of 
adaptive tension they were exposed to. For 
them, fear, greed, ambition, and risk-taking 
increased tension to the point that a phase 
transition occurred. They thus found them-
selves in the Complexity Regime but getting 
ever closer to the 2nd critical value at the 
edge of chaos – i.e. the Chaotic Regime – as 
a positive feedback cycle (i.e. greed → risk-
taking → more greed → more risk-taking → 
and so on, etc.) got amplified (Minsky, 1976, 
1982; McKelvey and Yalamova, 2011).

Recent evidence from econophysics shows 
that stock-market traders cross a tipping 
point – indicated by what is termed the Hurst 
exponent – between efficient-market behav-
iour (Fama, 1970) and the herding behav-
iour (Brunnermeier, 2001; Hirshleifer and 
Teoh, 2003) that causes the power-law distri-
bution of stock-market price volatilities 
(Alvarez-Ramirez et al., 2008; Yalamova and 
McKelvey, 2011a, 2011b). Herding behav-
iour results in the positive feedback and other 
scale-free dynamics, that, as Minsky (1982, 
1986) and Yalamova and McKelvey (2011a, 
2011b) argue, set off bubble build-ups. As 
greed and risk-taking push market tensions to 
the edge of chaos, they subsequently produce 
a market crash.

In the Complexity region of the Ashby 
Space we can expect to see increased levels 
of tension-induced connectivity and herding 
as traders and banks copy what appear to be 
the best trading rules/strategies at the time, 
given the absence of accurate information 
about fundamental values of firms. But even-
tually the variety of stimuli confronting traders 
and banks overpowers the seeming value of 
rule-based herding responses so that panicked 
reactions set in. We then see the collapse of 
herding-based, price-volatility-induced power 

laws as traders that are approaching the edge 
of chaos and the collapse of markets (Grech 
and Pamula, 2008) begin to jump ship. The 
headless chicken response now goes into full 
swing, and the adaptive resource budget gets 
squandered as the crash progresses. In the 
2007 liquidity crisis, the failure of mortgage-
backed loans quickly set up the conditions 
that gave rise to the ~$50 trillion’s worth of 
toxic loans worldwide (Marshall, 2009).

In the Complexity Regime of the Ashby 
Space, power-law thinking trumps the 
Gaussian thinking and normal distributions 
on which most risk management models 
depend. Power law distributions show how 
TIEs can get amplified to generate extreme 
events. In this region, all that can be hoped for 
is anticipation, not prediction. Why, then, 
given the dangers, would managers and entre-
preneurs ever want to operate in this space? 
Because, in this space, in contrast to the linear 
and hence calculable risk/returns associated 
with the Ordered Regime, TIEs can offer 
positive payoffs that may also be power law-
distributed – i.e. being nonlinear the payoffs 
can be very large indeed. It is the relentless 
quest for extreme positive payoffs, forced on 
managers by corporate owners and talented 
employees that keeps pushing them to the 
Edge of Chaos (McKelvey, 2001, 2008). 
Scholars and practitioners who have some 
appreciation of the scalability dynamics in the 
Complex Regime of the Ashby Space stand a 
better chance of securing the payoffs availa-
ble in this region while avoiding the dangers.

CONCLUSION

By integrating Ashby’s perspective on the 
nature of efficacious adaptation with our grow-
ing understanding of the complexity phe-
nomenon, the Ashby Space offers scholars 
and practitioners a conceptual framework for 
thinking through some of the more pressing 
problems that confront a globalizing world. 
What, for example, are the challenges of 
adapting to nonlinear changes in the climate? 
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Or of adapting to the emergence of asymmet-
ric threats? What are the scalable opportu-
nities that we can associate with the spread 
of the Internet or of mobile telephony? The 
above challenges will not be successfully 
addressed in the ordered regime of the Ashby 
Space. We must learn to wander out into the 
Complex Regime and explore what it has to 
offer us without necessarily falling into the 
Chaotic one. To succeed we need a more 
nuanced yet theoretically robust view of how 
organized systems partition their environ-
ment in their attempts to adapt to it within 
the resource envelope available to them. 
Current treatments of the human organiza-
tion/environment interface are often too 
descriptive and too under-theorized to yield 
the insights needed. Much of the necessary 
thinking is today coming out of theoretical 
biology where the use of the terms ‘organiza-
tion’ and ‘environment’ extends well beyond 
their application in management and the 
social sciences. The Ashby Space offers a 
conceptual bridge between these different 
disciplines. Future research – theoretical and 
empirical – should exploit the potential 
 synergies on offer.

NOTES

1 Entropy measures a system’s degree of disor-
ganization, taking it to be the amount of uncertainty 
still remaining in the system once its observable, 
uncertainty-reducing regularities are accounted for.

2 Terms shown in SMALL CAPITALS are further defined 
in Table 16.1, with examples later in the chapter.

3 The term, butterfly effects dates back to the 
title of E.N. Lorenz’s paper of (1972): ‘Predictability: 
Does the flap of a butterfly’s wings in Brazil set off a 
tornado in Texas?’ Paper presented at the 1972 meet-
ing of the American Association for the Advancement 
of Science. Washington, DC.

4 Fractals are defined as shapes that can be sub-
divided into parts, each of which is (at least approxi-
mately) a reduced-size copy of the whole (Mandelbrot, 
1982). The same mathematical equation – or adap-
tive causal dynamic in biology or for firms – creates 
similar causal dynamics at each level of a fractal 
structure. See Andriani and McKelvey (this volume) 
for further discussion of fractals and scalability.

5 In what follows we do not distinguish between 
the variety that exists within a given stimulus or 
response vs. that which occurs across stimuli and 
responses. The distinction is one that the organism 
itself must make through acts of interpretation. See 
below.

6 A phylogenetic application of this argument 
would allow us to map the vertical and horizontal 
dimensions of the Ashby Space respectively onto 
Salthe’s (1985) and Eldredge’s (1985) ecological and 
genealogical hierarchies, yielding an evolutionary per-
spective on adaptation. See Brooks and Wiley (1988).

7 Although the horizontal axis could also be so 
partitioned, for ease of exposition we refrain from 
doing so.

8 Here, we are using the term ‘chaotic’ in its eve-
ryday sense. This is broader than its mathematical 
sense à la chaos theory (Guastello, 1995) since it 
mixes deterministic and stochastic processes.
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17
The Complexity of Industrial 

Ecosystems: Classification and 
Computational Modelling

J a m e s  S .  B a l d w i n

INTRODUCTION

Evolution is an important problem not only 
in terms of sustaining industry and society 
through adaptation and change but also, as 
will be highlighted in this chapter, in terms 
of our actual ability to perceive and make 
sense of what is occurring. This is because 
complexity and evolution are about qualita-
tive, structural change and this poses serious 
problems for the classification that must under-
lie any attempt at modelling the situation. 
Although attempts have been made to incor-
porate evolution in the many definitions, 
models and case studies, typically only one 
side of the evolutionary story is told – that of 
optimization and improved performance. 
Evolution, however, is much more chaotic 
with change as the only constant. Qualitative 
change, as with structural and organizational 
transformations, directly results from the 
complexity of the systems involved and is, as 
a consequence, far harder to represent and 
model. However, classification and modelling 
techniques from the biological and physical 

sciences are increasingly used and evolution-
ary approaches in particular, that of cladistic 
analysis and representation, lead to classifi-
cations, models and simulations, that more 
accurately describe and mimic the activities 
in real systems. Insightful and telling appli-
cations can be made and models constructed 
that follow and explore the changing complex 
organizations and their consequent patterns of 
energy and materials. In addition, the human 
dimension representing, for example, the 
consequences of decisions and implemen-
tations such as policy changes, new innova-
tions and technologies may also be explored. 
Evolutionary classifications and models can 
therefore serve as decision support tools to 
lessen or manage the risk and uncertainty of 
future evolutionary trajectories.

INDUSTRIAL ECOLOGY

The purpose of this chapter is to highlight 
how complex systems thinking, and the 
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 evolutionary classification and modelling 
tools it brings, can provide a better under-
standing of how different industrial system 
configurations have evolved. For this purpose 
the subject area of industrial ecology (IE), an 
organizing concept with which to model the 
transitions necessary for industry to become 
sustainable (Erkman, 1997), will be used as 
the research context. Since the seminal arti-
cle of Frosch and Gallopoulos (1989) there 
has been much debate, many definitions and 
interpretations, numerous models ranging 
from the simple to the complex, various case 
studies of industrial ecosystems and symbi-
oses, and countless tools. However, as with 
all new disciplines, there are several areas of 
ambiguity and inconsistency and, as such, 
many areas of further research and refine-
ment. One specific area, analysed under the 
light of an evolutionary framework, is the 
notion of evolution in IE, particularly with 
definitions, classifications and models.

Definitions

There is no agreed standard definition that 
fully captures the ethos of IE and satisfies all 
researchers. However, there are many under-
lying themes common to most definitions. 
Frosch and Gallopoulos’ (1989: 94) definition 
of IE is as follows:

In such a system the consumption of energy and 
materials is optimized, waste generation is mini-
mized and the effluents of one process ... serve as 
the raw material for another process. The indus-
trial ecosystem would function as an analogue of 
biological ecosystems.

From this definition, Frosch and Gallopoulos 
hint that a systems perspective is required. 
They emphasize energy and materials as the 
focus and that both should be optimized. 
Frosch and Gallopoulos give an indication, 
without actually specifying, that a closed 
looping of materials is required, as waste is 
used as resources for another process. They 
also argue that the biological analogy is a 

useful way in which to understand industrial 
systems. Frosch and Uenohara (1994: 2) 
elaborated on their thinking five years later:

Industrial Ecology provides an integrated systems 
approach to managing the environmental effects 
of using energy, materials, and capital in indus-
trial ecosystems. To optimize resource use (and to 
minimize waste flows back to the environment), 
managers need a better understanding of the 
metabolism (use and transformation) of materials 
and energy in industrial ecosystems, better infor-
mation about potential waste sources and uses, and 
improved mechanisms (markets, incentives, and 
regulatory structures) that encourage systems 
optimization of materials and energy use.

Although sustainable development is not 
specified per se, reducing environmental 
impacts as well as the optimization of resource 
use are the main goals. They also introduce 
the idea of top-down pressure in the form of 
markets, incentives, and regulatory structures. 
Graedel (1996: 70), whose work has helped 
enormously to establish and extend the disci-
pline, offered a similar definition:

Industrial ecology is the study of the means by 
which humanity can deliberately and rationally 
approach and maintain a desirable carrying capacity, 
given continued economic, cultural, and techno-
logical evolution. The concept requires that an 
industrial system be viewed not in isolation from 
its surrounding systems, but in concert with them. 
It is a systems view in which one seeks to optimize 
the total materials cycle from virgin material, to 
finished material, to component, to product, to 
obsolete product, and to ultimate disposal.

This definition, like the others, emphasizes the 
integration of industrial and natural systems, 
optimization of resource use, and evolution-
ary processes. In some ways it confounds two 
different aspects that possibly should be seen 
as separate. First, there is a systemic view of 
the flows of energy and materials that a par-
ticular industrial system actually embodies. 
But second, there is the issue of making this 
‘sustainable’, reducing the overall flows and 
wastes, which is a goal that would only be 
enacted if there were a ‘global’ agent that 
actually controlled the whole system. In reality 
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however, this is a complex system and differ-
ent parts of the overall system, while being 
connected by flows of energy, materials and 
money, are usually controlled by different 
agents, who tend to act according to their own 
perceived interests. Part of the real opportuni-
ties and difficulties that affect the sustainabil-
ity of the system cannot therefore be addressed 
without consideration of the motives and 
strategies of the agents and their level of 
knowledge. In addition, the definition includes 
the use of tools associated with IE, the notion 
of carrying capacity and the cradle to grave 
perspective (i.e. ‘the total materials cycle’), 
which is the backbone of life cycle analysis. 
Allenby (1994: 47) argued that:

Industrial ecology may be defined as the means 
by which a state of sustainable development is 
approached and maintained. It consists of a sys-
tems view of human economic activity and its 
interrelationship with fundamental biological, 
chemical, and physical systems with the goal of 
establishing and maintaining the human species at 
levels that can be sustained indefinitely – given 
continued economic, cultural and technological 
evolution.

This definition, although similar, is more 
comprehensive and has an altogether differ-
ent emphasis. Like the last definition, Allenby 
(1994) argues that a systems perspective is 
required to fully understand industrial eco-
systems but perhaps does not realize that it is 
complex systems perspective that is required – 
one that would recognize the probably diver-
gent short and medium term criteria of the 
agents that actually make up the system. 
However, he also stresses that it is a means to 
an end, which is sustainable development. In 
addition, they argue that the view taken of the 
industrial system is both of an evolutionary 
nature and that an integration of industrial 
and natural activities is needed. Evolution is 
an integral aspect in the author’s thinking. 
Allenby’s (1994), definition is in the excep-
tion as he argues that if optimization was the 
only objective, the industrial structure would 
soon become rigid, uncompetitive and inevi-
tably non-sustainable.

Classifications, typologies 
and taxonomies

Building on these definitions, several indus-
trial classifications, typologies and taxono-
mies have been proposed not only as a 
means of identifying different organizational 
forms that exist but also, and perhaps more 
importantly, as a tool to both help explain 
and deal with change, and use as a guide 
for organizational re-engineering. Graedel 
(1996) provides the simplest and perhaps 
most often cited typology of Type I–III indus-
trial ecosystem activity. By assuming that 
‘evolution’ should proceed in a particular 
direction, Type I ecosystems typically are 
considered to represent very immature sys-
tems, at a time when space and resources are 
plentiful. Material flows are almost always 
linear – they enter the system, energy and 
nutrients are extracted, and the degraded 
materials leave as unutilized waste. However, 
it is assumed that as the system grows and 
as both space and resources become scarcer, 
a degree of material recycling occurs as 
decomposer populations begin to grow, limit-
ing the flow and impact of waste materials. 
This is a Type II ecosystem. Type III eco-
systems represent fully mature ecosystems 
where most of the available resources are 
actually contained in the ecosystem – virgin 
resources have been extracted and are virtu-
ally non-existent. This system is more or less 
completely cyclical. When this view is 
mapped onto industrial activities, Graedel 
(1996) argues that most industrial ecosys-
tems are at the Type I stage with a minority 
achieving some resemblance of Type II. 
No industrial ecosystem has yet achieved 
Type III.

A whole series of different classificat-
ion schemes have since been proposed for 
industrial ecologies. The main ones are: 
Chertow (2000), after a review of the indus-
rial symbiosis literature and an in-depth 
study of eighteen Eco-Industrial Park (EIP) 
candidates, developed a taxonomy distin-
guishing between five material exchanges; 
Lambert and Boons (2002: 471) proposed 
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three Types which can be further distinguished 
between greenfield and brownfield sustaina-
ble industrial development initiatives; 
Lowe et al. (1995) provided three separate 
typologies in their attempt to specify exactly 
what an Eco-Industrial Park (EIP) is and 
is not.

Industrial classifications are continually 
developed both to map change that has 
occurred and to help the agents involved to 
change their practices to keep competitive 
and sustainable. To date there have been 
many classification schemes developed 
mostly by academics, production engineers 
and industrial systems’ engineers who, 
although have an intimate knowledge of the 
systems under study, apply little from the 
science of classifications (McCarthy, 1995). 
As a consequence the classification schemes 
are typically subjective, have little consistency 
and have limited generalizability (McCarthy, 
1995).

THE PROBLEM OF EVOLUTION

Historically, problems have been encountered 
in not sufficiently capturing evolutionary 
processes in industrial ecology, particularly 
with an over-reliance on the reductionist para-
digm and the over-emphasis on pure optimi-
zation which can be seen in the various case 
studies that have emerged. For example, the 
most commonly cited example of an eco- 
industrial park, indeed the first industrial sym-
biosis to be officially recognized in academia, 
is the Kalundborg Industrial Symbiosis on the 
Danish island of Seeland (refer to the dia-
grammatic model shown in Figure 17.1). 
What is interesting about Kalundborg, like 
several other cited examples, is that it developed 
spontaneously without any external pressure 
(Lowe, 1997). The impetus to develop these 
recycling structures was purely economic – 
both to reduce the costs increasingly asso-
ciated with waste disposal and as an extra 
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income-producing service for other compa-
nies located nearby (Desrochers, 2002).

Frosch, Sagar and colleagues have also 
documented a similar industrial ecosystem 
relating to the metals-manufacturing industry 
in the American state of Massachusetts (e.g. 
Frosch and Gallopoulos, 1989; Frosch et al., 
1997; Sagar and Frosch, 1997). It also differs 
somewhat from the last case study as the 
focus, although geographical, was more 
restricted to copper/copper alloys and lead. 
This industry was studied as metals represent 
a substantial fraction of industrial consump-
tion, are unlikely to be substituted in the near 
future, and are involved in one of the oldest 
industrial systems. Tracking the materials 
flows from these firms led to the diagram-
matic model shown in Figure 17.2.

This systems-level analysis does, however, 
enable a number of insightful observations. 
Sagar and Frosch (1997) found that the flow 
of materials within the individual compa-
nies demonstrated an array of complexities 

dependent on the different types of opera-
tions within each company – the more 
processing operations, the more complex the 
flow of materials. The flow within the system 
as a whole was also complex with each firm 
connected in, often very unique, relationships 
making it difficult to develop generalizations. 
The key to the recycling process was largely 
down to certain sectors, particularly scrap 
dealers and the secondary processors such as 
smelters and refiners. Sagar and Frosch (1997) 
also found several companies that although 
occupied small niches (e.g. waste agglomera-
tors/brokers) were very significant in the 
facilitation of material flows around the 
whole system. Importantly, evolution played 
a significant role as the system is continually 
changing as some species become extinct 
and other species and their relationships and 
connections evolve. In reality though it is 
unclear that the ‘natural’ evolution of such a 
system must necessarily lead to improved 
overall performance and reduced waste. 
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Figure 17.2 Metals manufacturing system (adapted from Sagar and Frosch, 1997)
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Overall improvements would seem to require 
not only a systems view and some corre-
sponding system wide governance structure.

The confusion over optimization and evo-
lution in IE is even more evident when the 
typical models of IE are critically scrutinized. 
For example, in Graedel’s (1996) somewhat 
simplistic view, an ideological view of eco-
system development, evolution is depicted 
purely as an optimization process of materi-
als. There are also many more detailed models 
that hold different views and approaches as 
Boons and Baas (1997) highlight in their 
typology of the different forms of IE. These 
descriptive models, particularly the product 
and material focus, have recently been 
accompanied by an abundance of modelling 
methodologies. Most, however, are for the 
individual organization and as such, the tools 
and models are not meant to model evolut-
ion and are purely optimization techniques. 
However, when the boundary changes to the 
sectoral or geographical focus, the purpose 
of the modelling also changes. Typically, the 
models are utilized to gain insights into 
potential future scenarios. As such, the 
models not only have to consider optimiza-
tion, but also evolutionary processes. One 
computer modelling technique, termed ‘mass 
balancing’, is gaining particular popularity 
(Linstead and Ekins, 2001). Mass balancing 
builds on the input–output models from 
economics, accounts for materials (and 
energy) that enter and leave the system, 
keeping in mind storage and chemicaltrans-
formations. There are typically two 
approaches that are used. The first assumes a 
‘steady state’ or ‘equilibrium’ system. The 
second approach (Duchin, 1992) is more 
dynamic and models the system with the 
flows of materials changing over time. 
Nonetheless many of these perspectives and 
modelling techniques, true to the definitions 
of IE, again assume that evolution must lead 
to optimization.

There are exceptions though. These 
models, however, are of a more qualitative 
nature, highlighting the difficulty of repre-
senting evolution in modelling. For example, 

Korhonen (2001) extends the IE perspective 
by not only focusing on the optimization 
process of recycling (or to use Korhonen’s 
term ‘roundput’), but also diversity, locality 
and gradual change – the ‘four ecosystem 
principles for an industrial ecosystem’ (see 
also Baldwin et al., 2004). Korhonen (2001) 
argues that the survival of the ecosystem is 
critically dependent on diversity. This diver-
sity needs to be present at several levels of 
organization – in organisms, in populations 
of species, and at the level of the ecosystem. 
There also needs to be diversity in interde-
pendencies, in relationships (e.g. co-operative 
structures, symbioses and mutualisms), and 
in information flows. Diversity creates strong 
flexibility and adaptability, which is essential 
for coping with changes in the environment. 
In terms of industry, Korhonen (2001) sees 
the optimization principle of the old mecha-
nistic Fordist or Taylorist regimes, which 
leads to widespread homogeneity, as one of 
the main barriers to diversification and long-
term survival or sustainability.

Models are concerned with first under-
standing but then predicting and planning for 
the expected trajectory of a system (Allen, 
1984). Indeed, it is generally thought that the 
ability to predict the future state of a system 
is a pre-requisite of understanding. Through 
the classification and identification of system 
components, causal links and underlying 
mechanisms, fundamental laws of nature were 
thought to be understood (the Newtonian 
mechanical model) – the future behaviour 
of the system was therefore believed to be 
inevitable. However, new thinking and 
research on systems that can exchange 
energy and matter across their boundaries 
has shown this premise to be flawed. Although 
Newtonian models are correct for isolated 
systems that inevitably reach thermodynamic 
equilibrium, they are inappropriate when 
considering the activity of natural and social 
systems, the evolution of which pushes the 
system further from equilibrium. This is not 
to say that mechanical models are without use, 
they are just inappropriate for most living 
and meta-living systems (Allen et al., 2006a). 
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All models are a reduced description of what 
is actually there. The modeller attempts to 
take out the superfluous and leave only the 
essential elements. The typical result is a 
mechanical model. Most mathematical models, 
however, also represent change over time. 
This point is important, because the change 
that is usually contained in the model is of a 
purely quantitative nature. Qualitative change, 
such as structural change, adaptive responses 
and learning within, are therefore excluded. 
This is a huge problem when studying evolu-
tion, as qualitative change is an inherent char-
acteristic. When qualitative change takes place 
in a system, the model typically needs to be at 
least re-calibrated, and at worst re-designed 
(Allen, 1992) as new variables and processes 
emerge and have to be taken into account.

Another problem is that modellers are usu-
ally trying to find the most optimal state – 
according to their particular definition – that 
the system can take. If we can reduce reality 
to a machine, then we would be able to deter-
mine whether certain modifications result in 
the system being faster, using less energy and 
materials, requiring less labour and skill and, 
more often than not, saving money. As we 
shall see, models of both sustainability and 
IE are not so much predictive models but are 
overt attempts to optimize the system towards 
sustainability without any real thought of 
evolution. This is not to say that optimiza-
tion is altogether erroneous, but that it repre-
sents only one side of the evolutionary story 
(Allen, 1992).

Evolution is a subtle partnership of chance 
and determinism and the future not wholly 
inevitable (Allen, 1992). When a system is 
far from a bifurcation point, the system is 
deterministic, in as much as fluctuations from 
non-average behaviours do not perturb the 
average course. Average behaviours domi-
nate and this means that decision making 
agents involved in the system can make sense 
of it and pursue their particular path of opti-
mization. This is somewhat representative of 
the notion of incremental evolution and most 
descriptive and mechanistic models are often 
appropriate.

Chance plays a crucial role however, when 
the system, close to bifurcation, becomes 
unstable and may decide the next trajectory. 
Indeed, average behaviour (the substance of 
typical models) plays no role in choosing a 
branch; it is the non-average or eccentric 
behaviours, the variations around the aver-
age, that lead the ‘decision’ (Allen, 1984). 
This is more representative to the idea of 
punctuated equilibria (Gould and Eldridge, 
1977), certainly one of successive structural 
instabilities. Once change has occurred, how-
ever, the averages are redefined and agents 
can make sense of their situation and can 
recommence their optimization. This sheds 
light on the issue and difference of prediction 
and post-diction. With hindsight it is easy to 
see how, and to some extent why change 
occurred, but when looking to the future, it 
may be one of many eccentricities that 
shapes the direction taken. Another impor-
tant feature of evolutionary systems con-
cerns the solutions derived. Although the 
equations are quantitative, the solutions 
(the different branches that may be taken) are 
qualitatively different (Allen, 1992). The 
causation or explanation is paradoxically 
circular (Allen, 1984). The learning is from 
within the system and models that truly 
represent evolutionary processes need to 
incorporate this.

The new thinking from the science of 
complex systems highlights the problems 
with the Kalundborg system in particular as 
the individual organizations are connected, in 
the majority of cases, by physical, hard-pipe 
connections. New innovations, changing 
technologies, new external pressures, such as 
legislation and public pressure, new energy 
sources, new materials, and mergers and 
takeovers could have dramatic effects on the 
whole system, perhaps resulting in collapse. 
Although perhaps unlikely, these issues do 
raise questions about Kalundborg’s future 
prospects. There are two main points here 
both concerning modelling. The first is that 
the models developed in the case studies tell 
you something of the present whilst also 
giving you a glimpse of the past. The second 
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point is that the actual Kalundborg system 
was guided from the beginning by an implicit 
model that was reductionist in nature. The 
model prioritized optimization of materials 
and energy flow, as recommended by IE, 
through symbiotic relationships between the 
companies. However, as a consequence of 
optimization, variety, micro-diversity, redun-
dancy and ‘slack’ within the system was 
sacrificed. This has significantly diminished 
the capacity to change, to respond to external 
events, to experiment, and thus to evolve. 
This is why the system is now regarded to be 
highly rigid and vulnerable, and is ulti-
mately a consequence of mechanical models 
(Allen, 1994).

Sagar and Frosch (1997), when compar-
ing the Massachusetts system with the 
Kalundborg system (the rigidity of the hard-
pipe connections and long-term agreements), 
argue that there appears to be far more redun-
dancy, adaptive responsiveness, flexibility 
and dynamism which they argue will benefit 
the system in terms of adapting to changing 
external stimuli. This adaptive responsiveness, 
they argue, is the result of diffuseness over 
a large geographical area. However, when 
taking the example of the Massachusetts 
system, the problem is somewhat different. 
The first difference is that this system hap-
pened spontaneously without any model for 
guidance and was later ‘discovered’ then 
modelled. Without the guiding model, the 
system is arguably far more fluid, there is far 
more diversity and thus redundancy, giving 
the system far more flexibility and adaptive 
capability. The danger now is that there is a 
model available, albeit descriptive and dia-
grammatical, giving the modeller and IE 
practitioners far more incentive to begin opti-
mizing. When looking at the Massachusetts 
system, the model still suffers the same 
problems as the Kalundborg system in that 
although being a good description of the 
present with glimpses of the past, there is no 
indication of what may happen in the future. 
The models have no capacity to change 
qualitatively. Clearly, models are needed that 
take account of real-life qualitative change that 

may drive the system in many possible future 
directions, including collapse and decline. In 
terms of modelling, the capacity to change 
and evolve is directly related to the modellers’ 
assumptions when developing models.

To overcome the problem of evolution in 
both constructing classifications and model-
ling, recent work, which is a collaborative 
effort between the Universities of Sheffield 
and Cranfield in the UK, is beginning to 
show promise in providing some solutions to 
these problems. The project is a synthesis of 
disparate approaches, both of which share the 
common theme of evolution. One approach 
is manufacturing cladistics, an evolutionary 
classification scheme from the biological sci-
ences, an example of which is presented in 
the next section. Manufacturing cladistics has 
been utilized to date as a best practice bench-
marking classification system. The approach 
may also be employed as a tool for organiza-
tions to locate their position in evolution with 
respect to their competitors providing the 
opportunity to re-engineer their organiza-
tion (McCarthy et al., 1997; McCarthy and 
Ridgway, 2000). The other is evolutionary 
systems computational modelling, a quanti-
tative approach from the physical sciences, 
presented in a later section. Evolutionary 
systems’ modelling is an application of com-
plex systems theory and has successfully 
been applied to ecosystems, urban systems, 
industrial networks, economics and financial 
markets. When these two approaches are 
combined a framework is created enabling 
both the simulation of the evolution of manu-
facturing form and an exploration of poten-
tially new organizational structures.

APPLICATIONS PART A: 
EVOLUTIONARY CLASSIFICATIONS

As biologists study life in all its forms, tax-
onomy and classification have been useful 
tools right from the beginning of this dis-
cipline. Managing all the information on 
all living entities, their genetics, form and 
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behaviour, has been immensely helped 
through these techniques and as such the 
methodology has been refined to an extent 
that they are now integral aspects of biology. 
Evolution is central to the main classification 
methods. Indeed evolution and classification 
have helped shape understanding why an 
entity looks like it does and behaves in a 
certain way. One of the first questions asked 
by classification researchers is (e.g. Good, 
1965; McCarthy et al., 2000): why construct 
a classification in the first place? Good 
(1965) suggested four purposes: (a) for 
mental clarification and communication; 
(b) for discovering new fields of research; 
(c) for planning an organizational structure or 
machine; and (d) as a checklist. Similarly, 
Haas et al. (1966) argued that there were four 
advantages, i.e. that a realistic classification 
could: (a) refine hypotheses; (b) determine 
validity and utility based on logical and 
intuitive reasoning; (c) provide a basis for 
prediction; and (d) specify populations from 
which samples could be drawn.

In classification science there are two main 
biological principles – phenetics and phylo-
genetics. Phenetics investigates the similari-
ties between objects/entities and ignores or 
dismisses the potential evolutionary link, i.e. 
entities sharing a physical similarity are 
grouped and entities having physical differ-
ences sorted into separate groups (Ridley, 
1993). Any physicality may be used, for 
example, bones, limbs, colour, etc. 
Phylogenetics, on the other hand, is based 
on evolution and ancestral commonality – 
similarities in physical form is consequential 
(Ridley, 1993). The classification process 
produces a hierarchy of branches commonly 
known as the ‘evolutionary tree’. Fitch (1984) 
argues that cladistics is the identification of 
evolutionary links between taxa. The word 
‘cladistics’ is a derivative of the Greek term 
‘klados’ meaning branch and was developed 
by Hennig (1950) while working on phyloge-
netic classifications. Data is typically drawn 
from surviving taxa. This approach investi-
gates the evolutionary links between entities 
and studies common ancestors. Two species 

may be placed in the same group if they share 
a recent ancestor, whereas they may be placed 
in different groups (but still the same family) 
if the ancestor is more distant. The more evo-
lutionary distance between the entities then 
the further apart their respective positioning 
in the classification (see Figure 17.3).

Ridley (1993) after reviewing the different 
classification schools, i.e. phenetic, cladistics 
and general evolutionary classification disci-
plines, to assess their ability to construct 
natural and objective classifications (rather 
than artificial and subjective classifications), 
concluded that only cladistics could fully 
satisfy these criteria. Using evolution as an 
external reference point (evolutionary history 
cannot be changed) classifications will be 
unique and unambiguous.

Returning to the question: why construct a 
classification in the first place? One of the 
answers provided by Good (1965: 33) was 
‘for planning an organizational structure or 
machine’. This was one of the main drivers 
for developing manufacturing cladistics. 
When classifications are applied to manu-
facturing and industry, the pioneers of this 
approach, McCarthy et al. (2000: 78), argue 
that a classification ‘would facilitate the 
storage, alignment and development of struc-
tural models of manufacturing systems 
[that] . . . would provide researchers and con-
sultants with a generic library of structural 
solutions for enabling manufacturing sys-
tems to maximize their operating effective-
ness’. That is, if a cladogram were constructed 
comprehensively enough it would provide a 
blueprint with which industrialists could use 
as a guide to help to change their structure to 
gain competitive advantage.

During the last decade research in manu-
facturing cladistics has accumulated rapidly. 
The approach, which concentrates on the 
evolution of physical attributes, appears to be 
the most productive for classifying manu-
facturing types and for offering guidelines 
for change initiatives (e.g. McCarthy et al., 
1997, 2000; Leseure, 2000). The manufac-
turing cladistic approach is not an entirely 
new approach and has to date been applied to 
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a complexity of manufacturing organizations 
(McCarthy, 1995), to commercial aerospace 
supply chains (Rose-Anderssen et al., 2009a), 
the hand-tool industry (Leseure, 2000) and 
the automotive industry (McCarthy et al., 
1997, 2000). Similarly, when applying this 
approach to industrial ecosystems it is 
 possible to generate phylogenetic hypotheses 
and then begin to re-construct the evolution-
ary unfolding of the different industrial eco-
system configurations.

Evolving industrial ecosystems: 
a classification

In line with basic steps in constructing an 
industrial cladistic classification, the methodo-
logical approach adopted for the construction 
of a conceptual cladogram centred on the col-
lection of data from secondary sources. Two 
types of data sources were collected from the 
literature and world-wide-web. The first type 

concerned general evolutionary characteris-
tics of both natural and industrial ecosystems. 
The second type of data source provides the 
foundation for the phylogenetic hypotheses 
and was based on both (a) typo logies already 
proposed in the literature, and (b) theoretical 
discussions of what constitutes an industrial 
ecosystem, industrial symbiosis, eco-indus-
trial network, and eco-industrial park. 
Additional industrial ecosystem forms and 
their characteristics were identified through 
reviewing the case study literature concerning 
(a) industrial symbioses, (b) eco-industrial 
networks, and (c) eco-industrial parks. The 
aim of combining general evolutionary char-
acteristics with industrial ecosystem typolo-
gies and characteristics was to produce 
phylogenetic hypotheses from the industrial 
literature and position them diagrammatically 
in terms of evolutionary or successional mat-
uration (using Graedel’s (1996) Type I–III 
system for ease of reference). Forty-three 
distinct industrial ecosystems were identified 
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Figure 17.3 A taxonomic hierarchy presented dendrogrammatically (McCarthy, 1995)
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(Table 17.1) representing a spatial divergence 
of forms, namely parks, complex/clusters and 
networks.

It must be emphasized at this point that 
this list of different industrial ecosystems is 
far from exhaustive, but what was considered 
generic forms of industrial ecosystems. In 
addition, there are several forms that do not even 
exist but represent idealized forms of indus-
trial ecosystems. Sixty-five characteristics or 
character-states (CSs) were also identified in 
the literature. These are listed in Table 17.2.

CSs have a twofold purpose: to describe 
and to distinguish between organizational 
forms, i.e. they have evolutionary signifi-
cance. Again, this list is far from exhaustive. 
Figure 17.4 shows the full cladogram of the 
43 industrial ecosystems.

Figure 17.4 is the conceptual cladogram 
that was developed through the research and 
describes the evolutionary history of EIPs. 
All industrial ecosystems in the evolutionary 
history share the characteristic of product 
material trade (CS1). The first recognizable 
industrial ecosystem is referred to as the Local 
Craft Industry Supply System and consists of 
a material trade based on limited availability 
(CS2). During the industrial revolution as 
the product material trade system becomes 
more organized (CS3) the IR Local Supplier 
System emerges and prospers. From this 
simple industrial system, it is argued that three 
spatially distinct industrial organizational 

forms evolve: parks, clusters/complexes and 
networks.

At this stage, the cladogram would offer 
actors/observers, whether they are the indus-
trialists and manufacturers involved, the local 
community or government officials, a bench-
mark of past, current and best practice. 
Specific industrial ecosystems would be able 
to be identified in terms of their evolution-
ary position on the cladogram and use it 
to: (a) identify potential problems or pitfalls; 
(b) assess opportunities; and (c) for organiza-
tional re-engineering for sustainability. Policy-
makers and decision-makers could also utilize 
the cladogram in terms of, for example, 
attracting the right types of industries, making 
funding available tied in to certain types of 
complementary activity and/or setting the goals 
and scope of regional industrial activity. It 
would also provide assurance to society as the 
cladogram can be essentially used as a ‘road 
map’ to sustainable industrial development.

However, there are limitations. The clado-
gram is ordinarily a description of the past 
and is of no use to the leading or ‘world-class’ 
industrial ecologies that can only be com-
pared with earlier and even inferior industrial 
ecologies (although the inclusion of futuristic 
and idealized forms has been attempted for 
the first time in this research). It also says 
nothing about the ‘losers’ (those industrial 
ecologies that didn’t survive for one reason or 
another), which is perhaps an important 

Table 17.1 Forty-three distinct industrial ecosystems

Park Organizations Complex/Cluster Organizations Network Organizations

 1.  Local craft industry 
supply system

 2.  IR local supplier 
system 

 3. Mixed parks (SMEs) 
 4. Benign park 
 5. Green powered park 
 6. Water treatment park 
 7. IRRP 
 8. IRRP+EC 
 9. Supplier park 
10. Power plant parks 
11. Power plant symbiosis

12. Energy efficiency PPS 
13. Waste to energy park 
14. Renewable energy PPS
15. Multi-theme EIP Stage 1 
16. Multi-theme EIP Stage 2 
17. Multi-theme EIP Stage 3 
18. Petrochemical park 
19. Petrochemical symbiosis 
20. Green petrochemical EIP 
21. Intensive agro-industry 
22. Agro-EIP 
23. Integrated Agro-EIP 
24. Integrated Social Agro-EIP 

25.  Primitive cluster/
complexes 

26.  Heavy process industrial 
zone

27. S-BPX 
28. M-BPX 
29. M-BPX+EC 
30.  Themed technology 

cluster 
31. Green products cluster 
32.  Environmental technology 

cluster

33.  Primitive supplier 
network

34. Rudimentary EIN 
35. Generalized EIN 
36. Between firms GEIN 
37. Within firms GEIN 
38. RRN 
39. IRRN 
40. IRRN+EC 
41. Specialized EIN 
42. Green products network 
43.  Environmental technology 

network
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omission. Learning from past mistakes could 
prevent future disaster. Furthermore, the 
cladogram gives no insight, with the excep-
tion of post-hoc analyses, into many of the 
problems confronting management decision-
makers. Nonetheless, by combining manu-
facturing cladistics and evolutionary systems 
modelling, a quantitative approach from the 
physical sciences, cladograms may be con-
structed that include and explore not only past 
and present organizations but also credible 
industrial ecologies that could have evolved 
or that may evolve in the future.

APPLICATIONS PART B: 
EVOLUTIONARY SYSTEMS 
MODELLING

According to Allen (1992) a hierarchy of 
models can be elicited based on modelling 
assumptions taking the purpose of the model 

from prediction and certainty to explora-
tion and potentialities. All models can be 
thought of as having at least two underlying 
assumptions. The first is that there is a 
boundary between the system and its envi-
ronment and the second is that the compo-
nents of the system can be classified leading 
to a taxonomy. Additional assumptions are 
then made pertaining to components and 
their inter actions. Predictive models, such as 
system dynamic models, appear to have per-
fect knowledge and understanding, and 
assume that both components and their inter-
actions are normally distributed about the 
mean; in other words, average. With only the 
average represented, there is just one future 
path – the most probable. When the modeller 
begins to introduce non-average interactions 
between system components, as with most 
agent-based models, more scenarios and pos-
sible trajectories are explored and the predictive 
capability reduces. In other words, when diver-
sity is introduced, many types of interactions 

Table 17.2 Characteristics of industrial ecosystems

 1.  Product material trade 
 2.  Material trade based on 

limited availability
 3.  Organized product 

material trade system
 4.  Co-located organization 
 5.  Light Industrial activity 
 6.  Diverse cross-sector 

collection of SMEs
 7.  Limited relationships 

with neighbours
 8.  Environmentally 

friendly construction
 9.  Environmentally 

friendly infrastructure
10.  Renewable energy (solar, 

wind, biomass)
11.  Ecological treatment
12.  Wetland and lagoons
13.  Common investment
14.  Strong relationships 

between park members
15.  Collection, sorting and 

processing firms
16.  Re-use and recycling 

firms

17.  Re-manufacturing firms
18.  Disassembly firms
19.  Energy cascades 
20.  Co-located suppliers 
21.  Product complexity 
22.  Heavy Industrial activity 
23.  Power generation 
24.  Fossil fuel consumption
25.  By-product exchanges 
26.  Energy management 

firms 
27.  Energy technology firms
28.  Municipal waste 

incineration
29.  District heating
30.  Renewable energy
31.  Agro-connections – 

by-products and/or 
energy

32.  Community involvement 
33.  Recreational facilities
34.  Educational resources 
35.  Petrochemicals 
36.  Simple linear processing
37.  Multi-symbiotic 

relationships

38.  Green chemistry 
39.  Agricultural products 
40.  Industrialized 

agricultural practices
41.  Petrochemical inputs
42.  Crop exports 
43.  Ecological-based 

husbandry 
44.  Strengthened rural 

socio-economic 
status

45.  Preservation and 
restoration of land 
and water

46.  Full by-product 
utilization

47.  Spatially diffuse 
48.  Locally diffuse 

organization 
49.  Location due to zoning
50.  Good communication 

channels (waterway, 
train)

51.  Limited by-product 
exchange 

52.  Heat recovery

53.  Co-generation 
54.  Sector-specific cluster (e.g. 

electronics, textiles)
55.  Green product 

manufacturers (e.g. 
lighting, appliances)

56.  Environmental technology  
manufacturers (solar 
panels, wind machines)

57.  Environmental technology 
R&D

58.  Widely diffuse organization 
59.  Material supplies sourced 

regionally, nationally and 
globally

60.  Recycling of primary 
materials (e.g. metals)

61.  Cross-sector exchange of 
by-products

62.  Unaware of relationships 
63.  Vertical by-product 

integration 
64.  Internal closed-looping or 

greening
65.  Material specific recycling 

(e.g., metals)
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are accounted for and explored through self-
organizational processes, which leads to many 
potential future states. There are two limita-
tions associated with these models. One 
relates to the generation of the diversity 
of interactions which is typically represented 
by ‘noise’ produced by a stochastic mecha-
nism in the equations. The second relates to 
the components – although interactions are 

non-average, the system components are 
assumed to be all of an average type.

To better mimic true evolutionary processes, 
this assumption has to be removed so that the 
components are also treated as non-average. 
The introduction of this internal or micro-
diversity takes the modelling from just blind 
adaptation to co-evolution; from random 
interactions to experiential learning, which is 
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Figure 17.4 Cladogram of industrial ecosystems
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a more accurate representation of real evolu-
tionary change. The ‘means’ and the ‘end’ are 
transitory and in continual paradoxical dia-
logue through feedback (Allen et al., 2007). 
Control is devolved from the global to local 
situation – a manifestation of how all the 
diverse behaviours perform relative to one 
another. Evolution involves both chance and 
determinism impacting the transfer of infor-
mation which is imperfect and inevitably 
involves a degree of ‘error-making’ (Allen 
and McGlade, 1986).

This is a necessary requirement, however, 
and creates the forum for learning through 
the continual exploration of behaviour space. 
In summary then, assumptions are made of 
average interactions and components that 
increasingly reduce complex reality to sim-
plicity. By removing these assumptions the 
potential of the model changes from being 
(misleadingly) predictive to explorative – the 
more evolution is accurately modelled the 
less the model is capable of predicting with a 
single, simple trajectory. However, the under-
lying, evolutionary processes give modellers 
a deeper insight into the system under study. 
Instead of prediction, different possible future 
states may be explored which provide model-
lers with the ability to reduce uncertainty and 
risk and to glimpse possible future system 
states. In reality we have one ‘run’, with com-
puter simulations evolutionary runs are limit-
less. What may not have evolved this time for 
one reason (possibly chance) or another (e.g. 
decisions), may evolve next time.

In terms of its application to industrial 
ecosystems, the opinions of industrial ecolo-
gists of how the technologies, practices and 
policies identified in the manufacturing cla-
distics approach, used to define industrial 
ecosystem structure, interacted with one 
another. When the interactions between 
‘characteristics’ or ‘character-states’ are col-
lected, through, for example, questionnaires 
and interviews with experts, then limitless 
evolutionary ‘runs’ of industrial ecosystem 
evolution may be simulated. The characteris-
tics would represent those listed in Table 17.2 
(above) and include, for example, ‘energy 

cascades’, ‘renewable energy’, ‘green chem-
istry’, etc. The potential advantages of this 
approach are several. For example, a highly 
unique industrial ecosystem contemplating a 
major configurational transformation would 
be able to conduct a thorough exploration 
of the pros and cons of crucial, and perhaps 
not-so-crucial, decisions. Decisions may be 
explored time and again in, for example, 
different contexts or with the presence or 
absence of other important variables. Another 
advantage would be if a particular park devel-
oped a new characteristic of its own, e.g. a 
new system of material exchange, but were 
unsure of the consequences of adopting it, 
then the model could be applied to explore 
many possible outcomes of the adoption and 
in turn reduce uncertainty and to some extent 
the risk associated with change. For instance, 
problem practices/technologies/systems could 
be identified and investigated or different 
scenarios could be run. Furthermore, poten-
tial barriers to introducing new technologies, 
policies and practices could be identified 
beforehand and discussed and planned for in 
more detail.

Complexity and organizational 
evolution

In some recent work the idea of cladistics 
was used to understand and reflect on the 
evolution of manufacturing organizations. 
This used an evolutionary classification 
scheme pioneered by McCarthy et al. (1997), 
McCarthy and Ridgway (2000) and McCarthy 
(2005). There are now several good working 
examples including a cladistic classification 
of the automotive industry (McCarthy et al., 
1997) in which the following sixteen organi-
zational forms or species were identified: 
Ancient Craft System; Standardised Craft 
System; Modern Craft System; Neocraft 
System; Skilled, Large-Scale Producers; 
Large Scale Producers; Mass Producers 
(Fordism); Modern Mass Producers; Pseudo-
Lean Producers; European Mass Producers; 
Intensive Mass Producers; Just-in-Time 
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Systems; Flexible Manufacturing Systems; 
Toyota Production System; Lean Producers; 
and Agile Producers.

Cladistic theory calculates backwards the 
most probable evolutionary sequence of 
events. This can be seen as being the result of 
micro-explorations, and then a differential 
amplification of systems with emergent capa-
bilities. The evolution of the automobile 
production industry was studied by conduct-
ing a survey of manufacturers, and obtaining 
their estimates of the pair-wise interactions 
between each pair of practices identified by 
McCarthy et al (1997) and listed in Table 17.3. 
In this approach, the microscopic explora-
tions consist in the attempts to connect in 
new practices to an existing system, with the 
object of improving performance and creat-
ing positive emergent capabilities.

An evolutionary simulation model was 
then developed in which a manufacturing 
firm attempts to incorporate successive 
new practices at some characteristic rate. 

The ‘receptivity’ of the existing complex 
determines which new practice will in fact be 
amplified or suppressed if it tries to ‘invade’. 
In this way new ideas and practices are 
‘launched’ at random moments in the simula-
tion and only those that ‘fit’ the existing 
bundle of practices actually take-off. In this 
way the structure and identity and function-
ing of the organization is developed demon-
strating the way that complexity, classification 
and evolution are all inextricably connected.

Figure 17.5 shows us one possible history 
of a firm over the entire period of the devel-
opment of automobile production. The par-
ticular choices of practices introduced and 
their timing allows us to assess how their per-
formance evolved over time, and also assess 
whether they would have been eliminated by 
other firms. As a result of the different firms 
experimenting over time, there is an incredible 
range of possible structures that can emerge, 
depending simply on the order in which prac-
tices are tried. But, each time a new practice is 

Table 17.3 Fifty-three characteristics of automotive assembly plants.

 1.  Standardization of parts 
 2.  Assembly time standards 
 3.  Assembly line layout 
 4.  Reduction of craft skills 
 5.  Automation (machine 

paced shop) 
 6.  Pull production system
 7.  Reduction of lot size
 8.  Pull procurement 
 9.  Operator based machine  

maintenance 
10.  Quality circles 
11.  Employee innovation 

prizes 
12.  Job rotation
13.  Large volume production 
14.  Suppliers selected 

primarily on price
15.  Exchange of workers 

with suppliers
16.  Socialization training 

(master/apprentice 
learning) 

17.  Proactive training 
programmes

18.  Product range 
reduction

19.  Autonomation 
20.  Multiple sub-contracting 
21.  Quality systems (tools, 

procedures, ISO9000) 
22.  Quality philosophy 

(TQM, way of working, 
culture) 

23.  Open book policy 
with suppliers; sharing 
of cost 

24.  Flexible multi-functional 
workforce 

25.  Set-up time reduction
26.  Kaizen change 

management 
27.  TQM sourcing; suppliers 

selected on basis of 
quality

28.  100% inspection/
sampling

29.  U-shape layout
30.  Preventive maintenance

31.  Individual error 
correction; products 
are not re-routed  to a 
special fixing station

32.  Sequential dependency 
of workers

33.  Line balancing 
34.  Team policy (motivation,  

pay and autonomy for 
team) 

35.  Toyota verification of 
assembly line (TVAL) 

36.  Groups vs teams 
37.  Job enrichment 
38.  Manufacturing cells 
39.  Concurrent engineering 
40.  ABC costing 
41.  Excess capacity 
42.  Flexible automation for 

product versions
43.  Agile automation for 

different products
44.  Insourcing

45.  Immigrant workforce
46.  Dedicated automation
47.  Division of labour
48.  Employees are system 

tools and simply operate 
machines

49.  Employees are system  
developers; if motivated 
and  managed they can 
solve  problems and 
create value

50.  Product focus 
51.  Parallel processing
52.  Dependence on written 

rules; unwillingness 
to challenge rules as 
the economic order 
quantity 

53.  Further intensification 
of labour; employees 
are considered part of 
the machine and will be 
replaced by a machine 
if possible
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Evolving landscape of
Receptivity 

Time

Figure 17.5 Successive moments (t = 3,000, 10,000 and 15,000) in the evolution of a 
particular firm. The evolutionary tree of the organization emerges over time

adopted within an organization it changes the 
‘invadability’ or ‘receptivity’ of the organiza-
tion for any new innovations in the future. 
This illustrates the ‘path dependent evolution’ 
that characterizes organizational change, 
already visible in the luck-dependent strate-
gies of the preceding market strategy simula-
tions. Here successful evolution is about the 
‘discovery’ or ‘creation’ of highly synergetic 
structures of interacting practices and their 
subtle organizational requirements mean that 
their emergence is highly sensitive to early 
events in their development.

The model starts off from a craft structure. 
New practices are launched with an ‘experi-
mental’ value of 5. Sometimes the behaviour 
declines and disappears, and sometimes it 
grows and becomes part of the ‘formal’ struc-
ture that then changes which innovative 
behaviour can invade next. The model shows 
how the 16 different organizational forms 
have increasingly high synergy as they 
change in the direction of lean and agile 
Japanese practices. Overall performance is 
a function of the synergy of the practices 
that are tried successfully. The particular 

emergent attributes and capabilities of the 
organization are a function of the particular 
combination of practices that constitute it. 
Different simulations lead to different struc-
tures, and there are a very large number of 
possible ‘histories’. This demonstrates a 
key idea in complex systems thinking. The 
explorations/innovations that are tried out at 
a given time cannot be logically or rationally 
deduced because their overall effects cannot 
be known ahead of time. Therefore, the 
impossibility of prediction gives the system 
‘choice’.

The competition between different firms’ 
exploratory pathways through time means 
that those who for one reason or another fail 
to find synergetic combinations of practice, 
will be eliminated. This highlights the princi-
ple of Evolutionary Drive (Allen et al., 
2006b), where the micro-explorations involv-
ing the testing of new practices leads to 
microscopic diversity among firms, and in 
turn these are either amplified or suppressed 
by the economic competition.

In further work, these ideas have been 
extended to deal with the evolution of supply 
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chains in the aerospace sector. Complex 
 systems models have been developed dem-
onstrating the evolution and development 
of supply structures that form a kind of 
 ecology – linked to the production of a com-
plex product such as an aeroplane (Rose-
Anderssen et al., 2009a, b).

CLOSING REMARKS

In summary, instead of simply assuming that 
evolution must necessarily lead to waste 
reduction and increasing efficiency of indus-
trial ecosystems, in reality what happens will 
depend on the decisions made by the agents 
involved within it. A systemic view provides 
information on the overall performance of 
the industrial ecosystem and can guide agents 
and policy makers towards decisions that can 
improve its overall economic and environ-
mental performance. Evolutionary models 
can be used to explore the probable structural 
evolutionary paths of an industrial ecosystem 
and suggest ways in which individual agents 
can make successful decisions and in addi-
tion overall performance can be improved. 
But in considering industrial ecosystems in 
relation to complexity and management there 
is no simple proof that the disconnected evo-
lution of individual agents will automatically 
lead to overall systemic optimization. In 
addition it is also true that individual agents 
within an industrial ecology usually will not 
be able to learn how their own decisions 
affect overall performance of the system. A 
systems representation used as a means of 
communication between interacting agents 
would allow synergetic behaviour to be iden-
tified and chosen, and evolutionary model-
ling could explore not only the direct 
consequences of an innovation or change, but 
also the possible succession of responses and 
adaptations that may follow. In this way a 
much broader and deeper exploration of 
the possible overall improvements of an 
industrial ecology can be made of linked 
firms and agents and a shared interpretive 

framework and eventually an emergent col-
lective governance developed. Only then 
would the industrial ecosystem be able to 
evolve towards successful and sustainable 
performance.
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Complexity and the Dynamics 

of Organizational Change

G l e n d a  H .  E o y a n g

INTRODUCTION

Dramatic changes in organizational environ-
ments at the end of the twentieth century and 
continuing into the twenty-first have driven 
the need for new theories and tools to cope 
with organizational change. At the same time, 
developments in understanding of nonlinear 
dynamics, particularly from complexity 
 science, provide an array of new ways to 
conceptualize and influence change in 
organizations. These new approaches have 
introduced descriptive and explanatory meta-
phors to inform practice and, as a result, 
some long-standing dichotomies that shaped 
understanding of and actions toward organi-
zational change have been transformed into 
‘generative paradoxes’. In the next stages of 
research and practice related to organization 
change, what is required is the development of 
theories and tools that can influence options 
for action through prospective application, 
translate into practice with both ease and 
insight, and consistently capture both the 
stability and disruption that are central to the 
complex dynamics associated with organiza-
tional change. This chapter reviews complexity-
inspired perspectives on organizational change; 

and proposes a practical approach for moving 
forward that bridges between control-oriented 
and emergence-oriented approaches to organ-
izational dynamics.

APPROACH

This overview of the literature seeks to present 
a picture that is both wide and coherent, but 
undertaking it presented a variety of challenges 
and, inevitably, trade-offs. So it is important 
to be clear about the approach taken.

First, this chapter focuses primarily on 
research published in English that explicitly 
applies theories and language from com-
plexity science. But it must be acknowledged 
that there are practitioners implementing 
complexity-inspired innovations and insights 
who have chosen not to publish about them; 
there are scholars doing excellent work in 
languages other than English; and both 
researchers and practitioners often allude to 
patterns of complex adaptive organizational 
change dynamics without using complexity lan-
guage explicitly (March, 1981; Morgan, 1986; 
Larsen, 2002). Identity and its transformation 



APPLICATIONS318

(Bouchikhi and Kimberly, 2003), large scale 
change events (Eggers et al., 2002; Bunker 
and Alban, 2006), portfolio theory (Donald-
son, 2000), and turbulent environments 
(Head, 2005) are examples of ways in which 
‘common’ language of change is used to 
describe unpredictable and complex phenom-
ena without explicitly drawing from the con-
cepts and principles of complex adaptive 
systems. In fact, for decades, scholars and 
practitioners have described what is now rec-
ognized as nonlinear dynamics of organiza-
tional change. ‘Given the pace of events and 
the turbulent environment, organizations 
confront tremendous problems’ and ‘[e]ssen-
tially, this means that organizational systems 
must renew themselves continuously if they are 
to survive in this society’ (Bennis, 1969: 7). 
Similarly, Weick (1979) described a mas-
sively entangled and dynamic world in which 
individual agents engaged to change each 
other and to form emergent systemic patterns 
over time. Certainly, reconciling studies in 
which a complexity perspective is implicit 
with those that explicitly draw on concepts 
from studies of complex systems represents 
an important research frontier but is, however, 
beyond the scope of this chapter.

Second, both the fields of complexity sci-
ence and organizational change research are 
quite diverse, so a single, coherent view of 
either – to say nothing of both considered 
together – presents a daunting challenge. 
This chapter does not presume to create order 
out of what might be termed the chaos of the 
literatures – and the sheer variety of pheno-
mena, methods, models, and tools in both 
literatures suggests that convergence will not 
come soon, if at all – but, rather, begins to 
articulate some of the patterns that are form-
ing across the two fields.

Third, the literature is deeply, though not 
always explicitly, divided on the question of 
whether ‘complexity’ is an ontological or 
epistemological reality. Because excluding 
either of these perspectives constrains the 
usefulness of theory and tools for organiza-
tional change, this chapter adopts an appr o-
ach that is based on the work of Habermas 

(as discussed in Knorr-Cetina and Cicourel, 
1981) in which intersubjective truth can 
emerge from truth claims that rest on objec-
tive (external evidence), subjective (personal 
perspective), and/or normative (group agree-
ments) arguments and evidence. Essentially 
this is a pragmatic, practitioners’ stance, 
based on the assumption that the purpose of 
work on organizational change is to facilitate 
change in organizations. Such a stance 
requires doses of both ontological and episte-
mological reality. The organization, as an 
object of action, must be assumed to exist, as 
it responds in demonstrable and unpredicta-
ble ways to action of individuals and groups. 
On the other hand, the organization’s relevant 
characteristics at a particular point are deter-
mined by the perspectives, experiences, and 
world views of the engaged actors. This 
chapter explores this dichotomy and its rele-
vance to complex organizational change, but 
an acknowledgement of the pragmatic stance 
helps to establish the assumptions on which 
this chapter is based.

Fourth, the nature of complex adaptive 
systems sometimes precludes traditional 
research approaches to theory building and 
testing where rigor of research is judged 
according to its validity and reliability, so 
these criteria have not been applied to filter 
articles presented. Organizations as complex 
adaptive systems are assumed and observed 
to be sensitive to initial conditions, path 
dependent on their histories, (frequently) high 
dimension, and (usually) open to external 
influences. As a result, it is unreasonable to 
expect any two situations to be similar enough 
to support validity or to be predictable enough 
over time to allow for reliability. New defini-
tions of rigor and new methods of both posi-
tivistic and interpretive research are emerging 
to support innovative ways of seeing and 
documenting phenomena that are either local 
and particular or global and generalized 
(Vesterby, 2008). For this reason, no claims 
are made as to the boundaries of generaliza-
bility of the findings from the studies cited in 
this chapter, and the power of many of the 
findings will remain an empirical question.
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Fifth and finally, the substance of nonlinear 
dynamics as applied to human activity can be 
understood and incorporated in four differ-
ent ways: practice, descriptive metaphors, 
explanatory metaphors, and mathematics 
(Eoyang, 2004). Practice executes change in 
organizations; descriptive metaphors inform 
shared narratives and suggest reasonable 
options for action; explanatory metaphors 
invite qualitative analysis and support inter-
pretive theory building, testing, and adaptive 
action; while mathematics provides a level of 
‘objective’ rigor. This chapter includes exam-
ples of all of these approaches but does not 
presume to judge that any is superior or infe-
rior to the others. All approaches to applica-
tions of complexity science bring certain 
benefits and risks in understanding and influ-
encing organizational change. Responsible 
research and practice require that both pur-
veyors and users of research are aware of 
where they stand on the continuum between 
superficial description and deep, causal under-
standing (Palmer and Dunford, 1996).

Because approaches emphasizing practice 
and mathematics are well handled in other 
chapters in this Handbook, this chapter 
focuses more on descriptive and explanatory 
metaphors. Descriptive use of complexity 
metaphors consists primarily of retrospective 
analysis of organizational change using 
visual metaphors from complexity science 
(Wheatley, 1992; Hock, 2005). Used to 
describe either the preconditions or the out-
comes of change processes, descriptive meta-
phors label and categorize patterns, rather 
than describing how or why change happens. 
These organizational applications of the met-
aphors may be more or less sensitive to the 
nuances of the physical phenomena from 
which the metaphors were derived. Various 
critiques have been made of loose applica-
tions of complexity metaphors to organiza-
tional change (Fuller and Moran, 2000; 
Stacey et al., 2000; Smith, 2005; Paley, 
2007), but some argue that rigid application 
of the language is not necessary for support 
of organizational theory and practice (Van 
Uden, 2005).

Explanatory metaphors, on the other hand, 
seek to articulate how the mechanisms of 
organizational change mimic the mecha-
nisms of nonlinear change in physical or 
biological systems (Guastello, 1995; Lissack, 
1999; Poole et al., 2000; Eoyang, 2001; Alaa, 
2009). Explanations provide the ground for 
analysis and intentional action to influence 
change in complex adaptive systems. The 
mechanisms for complex change in biophys-
ical systems involve subtle relationships and 
difficult mathematical concepts, so applica-
tions of explanatory metaphors to organiza-
tional change require a higher level of rigor 
and more profound disciplinary background 
than merely descriptive metaphors.

Adopting this approach, this chapter sur-
veys the academic and practice literatures 
that explore and characterize ways in which 
organizational change theory and practice are 
being altered as a result of developments in 
complexity science.

FROM NEWTONIAN TO COMPLEXITY 
PERSPECTIVES

What has come to be called the traditional 
Newtonian view of change was grounded in 
features of the physical world. Time, mass, 
and distance were the fundamental units in 
which change of any kind could be described 
or explained. This worldview generated par-
ticular ways to characterize organizational 
change, built on particular understandings of 
key concepts. Inertia implied that the organi-
zation would not change unless acted upon 
by an outside force. Resistance implied that 
individuals and organizations would push 
back against efforts toward change. Progress 
implied that there was some pre-determined 
end toward which an organization could and 
should move. Momentum implied smooth and 
predictable paths of change. Power implied 
the ability to move an organization forward 
as if it were a passive object. Alignment 
implied a clear need for homogeneous com-
mitment to a single goal. All of these and 
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many other physically grounded expectations 
were sufficient to describe and influence 
organizational change when organizations 
could be conceived as working in Newtonian 
contexts – relatively closed boundaries, small 
and consistent numbers of relevant factors, 
and linear causality. Various approaches and 
descriptions of organizational change reflect 
and/or critique these fundamental assump-
tions (Kelly and Amburgey, 1991; Tulloch, 
1993; Tetenbaum, 1998; Knowles, 2001; 
Mason, 2004; Van Tonder, 2004).

Over the history of organization develop-
ment and organization change practice and 
theory, various attempts have been made to 
explain the dynamic nature of change. Action 
research explored an understanding of how 
consultants, change agents, and organiza-
tional patterns interacted over time in complex 
ways. Organizational change was character-
ized as a process of unfreezing, moving, and 
refreezing. Various scholars and practitioners 
examined multiple phases of planned change. 
Processes were defined for client engage-
ment over time. Others reframed the client 
engagement sequence to make it more 
dynamic and adaptive. Contingency theory 
strove to capture the cause and effect rela-
tionship between an organization’s external 
environment and its internal structures and 
processes. In each of these developments, 
scholars used biological and physical meta-
phors from their contemporary science to 
describe the phenomena they observed in the 
course of organizational change.

At the end of the twentieth century, authors 
from around the world and across the 
economic and political spectra extolled the 
changing nature of change in human sys-
tems (Cleveland, 2000; Dawson et al., 2000; 
O’Hara-Devereaux, 2004; Friedman, 2007, 
2008). Globalization opened traditional 
system boundaries. Emergent and unpredict-
able processes influenced many aspects of 
personal and organizational experience. 
Political unrest, religious fundamentalism, 
and antibiotic-resistant bacteria spread like 
wildfire. Technology increased the speed and 
reliability of communication. Economic and 

political conditions encouraged mobility and 
resulted in massive increases in ethnic and 
cultural diversity. Product development 
and obsolescence cycles accelerated. Social 
networking and other Internet 2.0 tools 
emerged. Information was ubiquitous. Eco-
nomic and lifestyle disparities expanded. The 
work force aged. Customers became more 
discerning and demanding. Everything that 
supported stability and continuity of organiza-
tions was compromised. Uncertainty increased. 
Organi zational change became so unpredict-
able and uncontrollable that even the appear-
ance of control became unsustainable. These 
conditions of radically open system bounda-
ries, high dimension interaction, and nonlin-
ear causality made the old metaphors of 
physical change insufficient to help people 
understand or influence change in this new 
organizational environment (Chaharbaghi and 
Nugent, 1994; Hodge and Coronado, 2007). 
Individuals and organizations needed new 
ways to think about, talk about, and interact 
to encourage organizational change.

The emerging nonlinear sciences of chaos 
and complexity have begun to provide these, 
offering new options for thinking and action 
toward organizational change (Lindberg et al., 
1998; Michaels, 2001). Nonlinear dynamics 
focuses on change that may or may not 
involve Newtonian assumptions of absolute 
time, scale-dependent space, or physical 
mass. Prigogine and Stengers (1988) describe 
the role of irreversible time. Bak (1996) and 
others focus on scale-free phenomena in 
which physical size and its suggestion of 
space are completely relative. Organizational 
change deals with conceptual, relational, and 
cultural entities whose ‘weight’ cannot be 
measured with scales. Concepts and tools drawn 
from chaos theory, complexity science, and 
complex adaptive systems and other closely 
related branches of nonlinear dynamics have 
been used to describe organizational dynam-
ics. As a result, traditional descriptors of 
organizational change are replaced with ones 
that better match the real-world phenomena 
of change in post-Newtonian organizations – 
butterfly effects, fractals, self-organized 
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criticality, emergent networks, attractor 
re gimes, and so on (Eoyang, 1997). On the 
other hand, some applications of nonlinear 
dynamics to describe change in human sys-
tems have been critiqued as insufficient to 
explore the multi-faceted dynamics of organ-
izational change (Dooley and Van de Ven, 
1999).

In spite of concerns about the possible 
misapplication of metaphors from complex-
ity science, the language has proven useful 
to respond to a variety of concerns. The 
necessity for a new organizational change 
paradigm (Falconer, 2002) has been met with 
responses that explicitly adopt a complexity 
perspective. Case studies have illustrated many 
of the dynamics of complexity in organiza-
tional change as well as some practical appli-
cations of complexity science metaphors and 
tools for understanding and influencing indi-
vidual, procedural, and organizational change 
(Rowe and Hogarth, 2005) as well as the 
emergence of new organizational communi-
ties (Chiles, et al., 2004). New books that 
apply concepts and tools from complexity to 
various aspects of human systems continue 
to enter the market (Hudson, 2010).

This chapter explores three facets of this 
transformation of thinking and action for 
systems change. First, the most common 
complexity concepts are examined, as well as 
the ways in which those concepts have been 
used to explore, explain, and encourage organ-
izational change through both practitioner and 
academic literature. Second, the changing 
worldview is examined by exploring how 
dichotomies of Newtonian change are con-
verted into generative paradoxes in the world 
of complex, nonlinear change. Finally, possi-
bilities for future exploration are suggested.

DESCRIPTIVE AND EXPLANATORY 
METAPHORS

Managing successful change requires an under-
standing of the current environment as well 
as a portfolio of descriptive and explanatory 

models to inform action. The sheer diversity 
and contextual sensitivity of complex organi-
zational systems requires that the practition-
ers have access to a wide range of theories 
and tools that might be applicable. Some 
research has compared and contrasted multi-
ple organizational change models (Kilduff 
and Dougherty, 2000; Fernandez and Rainey, 
2006). Others look broadly at applications of 
nonlinear dynamics to organizational change 
(Kiel, 1989; Goldstein, 1994; Dooley and 
Van de Ven, 1999; Zimmerman, 1999).

This section considers some of the most 
common metaphors inspired by complexity 
science and where and how they have been 
used in research and practice. As alluded to 
above, descriptive and explanatory metaphors 
draw language and models from complex 
adaptive systems and apply them to patterns 
in organizational change that seem to be 
similar in cause, outcome, or process. Some 
features of nonlinear dynamical systems (such 
as strange attractors) are more difficult than 
others (such as butterfly effects) to recognize, 
describe, and document through analogy or 
isomorphism to organizational change phe-
nomena. This is because the phenomenon in 
the natural world is more complicated and 
subtle than implied in the metaphorical 
description. When the complexity descriptor 
is incorrectly or incompletely understood, 
then the metaphorical application to the 
organizational context will be flawed. Opinions 
differ widely on the appropriate use of even 
the most well reasoned complexity metaphors 
in describing organization change, still the 
metaphors continue to appear in both research 
and practitioner journals. Five explanatory 
and descriptive metaphors from complexity 
science have most often been alluded to in 
organizational change literature: fractals, simple 
rules, self-organized criticality, emergence, 
and adaptation.

Fractals

A fractal is a geometrical object that is gen-
erated by iteratively solving a nonlinear 
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equation and plotting the stability of the 
 solution set for separate, individual initial 
starting points (Briggs and Peat, 1989). The 
resulting pattern is complex, coherent, and 
scale-free, which is to say that similar shapes 
appear regardless of how much the image is 
magnified. Fractals are used metaphorically 
in two ways when applied to organizational 
change.

First, the idea of the fractal has been used 
to represent a constant principle, rule, or idea 
that supports iterative applications and gen-
erates a complex but coherent system-wide 
image over time (Zimmerman and Hurst, 
1993). For example, the concept of identity 
can be considered to be a ‘seed’ around 
which fractal patterns form (Bouchikhi and 
Kimberly, 2003). If all members of the group 
carry the same understanding of their own 
identity, then as they interact over time (inter-
nally and externally to the group), shared and 
coherent cultural and social patterns emerge. 
Spiritual traditions may function in a similar 
way, as they support complex interdepend-
encies and influence system-wide coherent 
organizational change in complex systems. 
Examples of the fractal dynamics of spirit-
ual traditions have included Confucianism 
(Tuan and Ryan, 2000) and mindfulness 
practice (Langer and Moldoveanu, 2000). In 
these situations, core principles are held 
by all practitioners and systemic patterns 
emerge at levels of family, group, institution, 
and community.

The other way that fractals are used meta-
phorically is to focus on the scale-free nature 
of the fractal pattern. This explicit metaphor 
of fractals can be applied to explore relation-
ships within and across hierarchies, as well 
as the influence of individuals as they engage 
in organization change. For example, Levick 
and Kuhn (2007) explore how fractal patterns 
influence organizational management both 
during times of stability and of change. The 
metaphor of fractal patterns can also be used 
to diagnose and assess readiness for change 
when patterns of behavior are detected in 
all levels and all parts of an organization. 
Eoyang (1997) describes an approach for 

using fractal images to support discussions 
that prepare individuals and organizations 
for change.

Simple rules

Simple rules, sometimes called minimum 
specifications, derive from applications of 
agent-based computer simulation models. In 
the computer applications, entities are pro-
grammed to respond to stimuli according to 
a short list of simple rules. As a result, they 
can self-structure into coherent, system-wide 
patterns (Wolfram, 2002). This metaphor 
has been applied to suggest ways to gain 
alignment during organizational change 
without over-constraining individual agents 
(Zimmerman et al., 2001; Kennedy, 2002; 
Eoyang, 2007). Holladay (2005) reports the 
use of simple rules to inform school reform, 
student learning, and reduced racial tensions 
in an urban school district. Despite these 
advances, it is important to note that simple 
rules have also been critiqued as inappropri-
ate in describing self-organizing phenomena 
in human systems (Stacey, 2001; Paley, 2007; 
Snowden and Boone, 2007). Two arguments 
stand against use of simple rules in dealing 
with organizational change. The first involves 
free will: Rules do not constrain the actions of 
people. The second involves specificity: Rules 
that are general enough to apply to all are 
devoid of local or individual significance.

Self-organized criticality

Self-organized criticality refers to the way in 
which internal dynamics can result in unpre-
dictable system-wide transformations. Bak 
(1996) used sand piles to simulate how accu-
mulating tension at one level of scale can 
burst forth to reshape another level. The most 
familiar physical example is the avalanche, 
where the side of a mountain can appear to 
be stable and suddenly come crashing down. 
Gladwell (2002) popularized the notion as the 
‘tipping point’, though his focus was simply 
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on a single point of transition, as opposed 
to the dynamical process leading up to and 
following after the critical point. Power law 
dynamics relate to the relative sizes and fre-
quencies of system collapses under condi-
tions of self-organized criticality. Some times 
referred to as ‘punctuated equilibrium’, dis-
continuous change related to self-organized 
criticality has been studied both with com-
puter simulation models (Gersick, 1991; 
Sastry, 1997) and contemporary case studies 
(Romanelli and Tushman, 1994; Lichtenstein, 
2000; Siggelkow, 2002) to explain the ten-
dency of a complex system to absorb infor-
mation and energy over time without apparent 
change, then to break through into a new 
structure with surprising speed and clarity.

When the self-organized criticality meta-
phor is applied to organizational change, it is 
usually used to characterize the relation-
ship between continuous and discontinuous 
change. The question of continuous or epi-
sodic change has been a perpetual question 
in organization change theory (Anonymous, 
1998). Inter-level influence and interdepend-
ency are central to the change through self-
organized criticality. Organizational change 
theorists have explored the forces and phenom-
ena of self-organized criticality (Dansereau 
et al., 1999; Burns and Nielsen, 2006). They 
have found that both the qualitative patterns 
of the process of self-organized criticality and 
the quantitative patterns of power law dynam-
ics are relevant to retrospectively describe 
unpredictable, discontinuous, and cross-scale 
change in organizations.

Emergence

Emergence is widely regarded as the process 
by which a complex combination of agents 
generates system-level phenomena that are 
qualitatively different from the sum of the 
system’s parts. This metaphor has been used 
widely and in a variety of contexts. Some case 
study research projects indicate that organiza-
tional patterns of behavior cannot be explained 
from the analysis of parts. Rather, they 

emerge as systemic patterns from across a 
wide range of situations and stimuli (Bella, 
1997; Hafsi, 2001). Other case studies have 
indicated that organizations adjust most 
effectively to change when situations are 
not over simplified and when individuals and 
teams are allowed to adjust to changes over 
time as patterns emerge and individuals and 
groups respond to the emergent patterns 
(Carroll and Hatakenaka, 2001).

Turbulent environments generate unpla n-
ned or ‘emergent’ behaviors, so they require 
more nimble, radical, fast, and disruptive 
responses. Often a capacity to respond to 
emergent events is acknowledged to  support 
organic (rather than mechanical) and 
bottom-up (rather than top-down) change 
processes. While organic, emergent and 
mechanical, planned change can be contrasted, 
the two can also be seen as complementary. 
Often both are required to meet the needs of 
stability and innovation in situations of organ-
izational change. A combination of both top-
down (hierarchically imposed) and bottom-up 
(participatory) forces is most effective to lev-
erage the power of complex organizational 
relationships as new patterns emerge over 
time (Huy and Mintzberg, 2003). Historical 
views of emergence in complex social struc-
tures at many levels can provide insights into 
the ways in which resource ownership and 
procurement influence emergence of organi-
zation and other social structures (Read, 
2002). Emergence can also be used as a way 
to understand, explain, and intervene in the 
creative engagement associated with design 
processes. Standing between autonomous 
creativity implied by radical, self-organizing 
responses and highly constrained processes 
of ‘designing for others’, a mix of individual 
creativity and environmental sensitivity 
replaces the top-down/bottom-up challenge 
of design with and inside out/outside in 
models for organizational change (Rowland, 
2004). Swarm intelligence is another emer-
gence-inspired metaphor that is drawn 
from the biological world to describe self-
organizing behaviors of human systems 
(Garnier et al., 2007).
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Most applications of emergence in organi-
zational change literature are descriptive in 
nature, but some have created explanatory 
metaphors by defining factors or conditions 
that influence self-organizing or emergent 
processes. Alaa (2009) articulated four fac-
tors that supported emergence in a software 
development project, including social con-
structions, adaptive factors, enabling infra-
structure, and control factors. Eoyang (2001) 
describes three features that influence the 
speed, path, and coherence of emergent proc-
esses. Those three are related to each other in 
complex, nonlinear ways, and include the 
container, which holds the agents together; 
differences, which articulate the pattern and 
establish motivation for change; and exchanges, 
which support transfer of material and infor-
mation among agents. Both of these explana-
tory models can be used retrospectively to 
analyze historical cases, or they can be used 
prospectively to inform action that encourages 
and influences organizational change.

Adaptation

Adaptation has arisen as one of the most 
frequently addressed aspects of complexity 
science in organizational change because it 
appeals to both common sense and technical 
understandings. Drawn from ecological and 
evolutionary theories of change, adaptation 
refers to the ways in which living organisms 
change their internal structures to enhance fit 
with the environment and improve possibi-
lities of success. Along with its closely asso-
ciated biological metaphor of evolution, 
adaptation is used as a way to consider many 
facets of organization change (Fulmer, 2000).

Evolution and evolutionary dynamics rep-
resent some of the earliest ways in which com-
plex change in organizations was described 
(Hannan and Freeman, 1989; Finne, 1991; 
Baum and Singh, 1994; Knyazeva and 
Kurdyumov, 2001). Evolutionary adaptation 
toward fit with internal and external patterns is 
discussed in case studies (Siggelkow, 2002). 
One benefit derived from thinking about 

organizational change as adaptation through 
evolutionary emergence is that a single causal 
structure can be relevant across levels of 
change – individual, organizational, cultural, 
and biological levels (Commons, 2008). The 
pace and direction of organizational change 
can be seen as driven by both internal and 
external factors, e.g. internal relationships 
can generate apparent resistance at the same 
time that evolutionary and revolutionary 
external changes occur. In practice, there-
fore, these two domains of change are part of 
the same evolutionary process (Miller and 
Friesen, 1980).

The concept of co-evolution, in which two 
entities adapt to each other over time, has 
also been applied to look at organization 
change in hypercompetitive environments 
(Rindova and Kotha, 2001). Specifically, it 
has been argued that engagement between 
and among team members, between teams in 
the same organization, and active competition 
among firms all increase the creative capac-
ity in product development. More generally, 
when agents in a complex system adjust 
their internal characteristics to better fit with 
external agents to improve survival, their 
change processes can be characterized as 
‘co-evolution’.

Adaptation is a familiar concept for schol-
ars of organizational change, though it is 
not always used with the full range of nonlin-
ear dynamical implications. A wide range 
of specific tools are used to address adaptive 
issues in organizational change. Various 
technical and management strategies have 
emerged to articulate the ways to resolve 
lack of fit between the demands of the 
marketplace and organizational policies, 
 procedures, processes, and practices (e.g. 
Donaldson, 2000). Economic analysis theo-
ries distinguish among the abilities of various 
organizational types to respond to levels of 
uncertainty (e.g. Sorgaard, 1989). Employee 
turnover, for example, has been explored as 
one mechanism that drives disruption and 
adaptation in organizational change (Baron 
et al., 2001). Each of these approaches to 
adaptation and organizational change unveils 



COMPLEXITY OF ORGANIZATIONAL CHANGE 325

a different facet of the complex process of 
change in organizations. A qualitative con-
cept of ‘adaptation’ is familiar outside of the 
complexity literature, but complexity science 
can provide a more precise definition that 
supports both practical application and rigor-
ous research of this unpredictable process of 
organizational change.

In addition to considering the organization-
wide implications of adaptation, some research 
has focused on how individuals adapt to 
influence organizational change. In these 
contexts, difference becomes a driving force 
for change. Individual and group identity and 
the need to adapt in order to resolve differ-
ences between the one with the other has been 
shown to be a critical factor in organizational 
change (Seo and Creed, 2002; Snowden, 
2002; Kuhn and Corman, 2003; McCarthy 
et al., 2005; Beech et al., 2008). Dialectical 
engagement can be considered a mechanism 
by which entities resolve differences to adapt 
or co-evolve. Differences between self and 
other, individual and organization can be seen 
as forces that motivate and actuate organiza-
tional change (Myeong-Gu and Creed, 2002). 
Dissonance between context and organiza-
tional action (Greenwood and Hinings, 1996), 
self and other (Durand and Calori, 2006), 
production processes and communication 
structures (Sandaker, 2009), cultures in 
mergers (Baskin et al., 2000; Zimmerman 
and Dooley, 2001; Mitleton-Kelly, 2006), and 
logics of action (Bacharach et al., 1996) are 
used to explain the mechanisms and motiva-
tions for organizational change and adapta-
tion over time. Complexity science provides 
metaphors and tools to explore creative ten-
sions, high dimension differences, dynamic 
response to demands for fit, and multi-level 
relationships, so it can support a more rigor-
ous and nuanced approach to understand 
difference and its impact on organizational 
change.

Stacey (2001) focuses on the interactions 
among individuals in a complex environment 
as the cause for radical innovation and emer-
gent adaptation. Challenging the power of 
systems and systemic thinking, he posits that 

complex responsive processes are at the core 
of individual and collective action that drives 
organizational change.

The need to adapt in times of turbulent 
change is pretty obvious, but the capacity to 
adapt to the right things at the right speed 
while maintaining organizational stability is 
not so clear. The tension between sustaining 
identity and adapting to improve fit among 
individuals or with organizations is an issue 
in many cases where adaptation might be 
considered a winning strategy (Cilliers, 2006; 
Glor, 2007). This problem of competing 
demands for stability and change also influ-
ences approaches to innovation. As a special 
case of adaptation, innovation also demands 
continuity coupled with radical change 
(Hage, 1999; Jarratt, 1999; Rycroft and Kash, 
1999; Suchman, 2001; Kash and Rycroft, 
2003). Complexity science provides theory 
and tools to formalize research and practice 
in these situations of unpredictable and 
uncontrollable organizational change.

Each of these five metaphors drawn from 
complexity science can be evocative for per-
sons who study or influence organizational 
change. However, they are defined and 
applied in rather idiosyncratic ways so that a 
coherent, broadly accepted collection of key 
metaphors has not yet emerged in the field. 
Continued conversation among scholars and 
practitioners will be necessary before a 
coherent, shared understanding of complex 
organizational change will emerge.

FROM DICHOTOMIES TO PARADOXES

The current literature on organizational change 
as complex adaptation is rich in its diversity, 
but limited in its coherence. One possible 
resolution of the current cacophony is that a 
single view of complexity and its meaning 
for organizational change could emerge as a 
dominant set of theories and tools. Though 
efficient, this outcome would limit the flexi-
bility and applicability of these theories and 
tools in the world of organizational change, 
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which is itself quite diverse. Another resolu-
tion would be to continue the anarchy of the 
past, while each practitioner and researcher 
follows an idiosyncratic argument from theory 
and practice of the past into theory and 
practice of the future. In the interest of coher-
ence, however, a complex adaptive alterna-
tive might be considered – one in which the 
key dichotomies of the past are recast as 
establishing creative tension, to provide some 
level of bounded instability in which new 
theory and practice can continue to emerge. 
Eight creative tensions emerged across the 
articles reviewed for this chapter. With a 
Newtonian perspective on organizational 
change, these appeared as dichotomies that 
demanded a choice between the one and the 
other. From the complexity perspective intro-
duced here, each pair can be seen as forming 
a generative relationship that will provide a 
map of the territory for complex organiza-
tional change theory and practice. Each of the 
complementary pairs is described below, and 
options for action in research and practice are 
suggested.

Explicit and implicit use 
of complexity concepts

One on-going question in applications of 
complexity to organizational change involves 
the language that is used to introduce the 
concepts and actions. As described above, 
the literature includes references to complex 
dynamics without explicitly invoking the 
language of complexity science. Sometimes, 
the concepts are made explicit intentionally 
(Webb et al., 2006), other times the nonlinear 
dynamics are not discussed at all, or they are 
renamed in language that is more familiar or 
comfortable. Implicit reference to the com-
plex dynamics builds a bridge to traditional 
theory and to clients’ practice worlds. Explicit 
complexity language provides opportuni-
ties to build and test a mature formalism of 
language and method. As applications of com-
plexity to organizational change evolve, neither 
of these extremes will serve the field well. 

Rather, complexity-inspired vocabularies 
should be used consciously, and scholars as 
well as practitioners should assume a critical 
stance regarding the use of both qualitative 
and quantitative complexity metaphors.

Change and stability

In complex systems characterized by emer-
gence, a tension arises between the stability 
necessary to sustain identity and the change 
required for adaptation. Cross-level relation-
ships can be used to understand and intervene 
to maintain this tension in a productive bal-
ance (Leana and Barry, 2000). While Stacey 
(2001) explains the mechanisms of transfor-
mation strictly through complex responsive 
processes, fractal patterns and the structural 
meta-stability of self-organized criticality 
speak to the simultaneous need for order and 
emergence. Scholars, practitioners, scholar-
practitioners, and practitioner-scholars need to 
acknowledge that sustainable organizational 
change requires both stability and flexibility, 
both continuity and disruption, both ties to the 
old and stretches to the new. If complexity-
inspired research and practice lose either of 
these dynamical forces, they will risk falling 
into Newtonian stasis or flying off into theo-
retical and practical anarchy.

Positivistic and interpretive 
research

Traditionally, a researcher had to choose one 
or the other: (typically but not necessarily 
quantitative) positivism or (typically but not 
necessarily qualitative) interpretation. The 
underlying ontologies and epistemologies 
are sometimes so radically different that no 
theory or tool could embrace both. Fortunately 
(or unfortunately, depending on your stance), 
this either/or approach to research is not 
useful in the context of complex systems. 
Depending on the circumstances, some facets 
of a situation can and should be bounded and 
measured while other facets will enfold such 
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high dimension, unique, and unpredictable 
phenomena that measurable indicators are 
meaningless. Neither approach is better or 
worse in any absolute way, but both can be 
badly abused if they are not fit to the environ-
ment and the research questions to be 
explored. The use of mixed methods and the 
choice to stay in generative engagement with 
diverse colleagues will allow the field to 
transcend this dichotomy.

Individual and organizational 
change

Traditional theories of change often forced 
change agents and researchers to focus on 
only one level of the change process: indi-
vidual or organization. Complexity science 
opens a new path in which system-wide 
 patterns of the whole emerge from semi- 
autonomous activities of the parts at all 
levels. Many outstanding questions remain 
about this connection between individual and 
collective change, but the metaphors and 
tools of complexity provide opportunities to 
articulate and address those questions in 
ways that were not possible before. This dis-
tinction is particularly clear in explorations 
of adaptation, where individual learning and 
change inform and are informed by evolution 
of organizational policy, procedures, practice, 
and identity.

Episodic and continuous change

Many researchers and practitioners used to 
ask whether organizational change was epi-
sodic or continuous. From a Newtonian point 
of view, this is a critical question, but from a 
complexity point of view it is not. Given the 
dynamics of scale-free patterns and self- 
organized criticality, it becomes obvious that 
organizational change is both. Continuous, 
incremental change can persist in some parts 
or at some organizational levels while epi-
sodic, catastrophic change occurs in others. 
Our theories and practices for organizational 

change must account for both to happen 
simultaneously. Even more, they must 
account for the interdependencies between 
the two.

Retrospective and prospective 
analyses of change

For many years, complexity scholars were 
focused on retrospective analysis. Nonlinear 
dynamics were only observed in the rear 
view mirror, so research focused on case 
studies and deconstructing previous theory 
and practice. As a developmental stage, that 
was not a bad thing, but if complexity 
approaches are to be more than interesting 
fads, they must add value to decision making 
and action through prospective analysis as 
well. Research and practice should inno-
vate and test methods for understanding and 
influencing current complex patterns to gen-
erate patterns of the future. This approach 
will involve explicit testing of theories that 
are used to anticipate outcomes and evalu-
ate performance against them over time. 
Otherwise, applications of complexity science 
to organizational change will become merely 
historical reflections of nonlinear dynamics in 
human systems, not contributions to adaptive 
capacity for individuals and organizations.

Complexity as an epistemological 
and ontological phenomenon

Philosophers and physical and social scien-
tists have been preoccupied with this dichot-
omy for decades if not centuries. Two factors 
entice us to move beyond this distinction and 
into a new way of thinking of ourselves as 
investigators in the world. First, complex 
adaptive systems worldview assumes a back-
drop of reality that can be continually trans-
forming. The pace and complexity of the 
ever-changing context precludes the oppor-
tunity to separate what is happening from my 
ability to know what is happening. According 
to some threads of quantum physics, humans 



APPLICATIONS328

may even create physical reality with our 
thinking. Second, neither scholars nor practi-
tioners have time to divorce themselves 
from innovative and meaningful action. At 
the point of action and receiving feedback to 
our action, the boundary between ontology 
and epistemology becomes a thin veil. When 
practitioners (or their clients) are in adaptive 
engagement with a complex environment, 
thinking and real-world causality merge. 
Certainly, one lesson that has been learned 
by viewing organizations as complex adap-
tive systems is that active engagement in the 
moment is the means to emergence and adap-
tation for survival.

Knowledge for theory 
and for practice

The journal Emergence: Complexity and 
Organization has wisely brought together 
scholars and practitioners to share their find-
ings about complexity and human systems. 
As a result every reader is invited into a 
world of praxis, where theory is practice- 
informed and practice is theory-informed. 
The radical uncertainty, contextuality, and 
immaturity of this work mean that neither 
practice nor theory can stand alone in any 
coherent or meaningful way. As inquirers in 
this field, each of us must concern ourselves 
with both sides of this traditional dichotomy.

LOOKING FORWARD

As students of complex change work within 
the creative tensions of these traditional 
dichotomies, they will continue to frame 
and pursue questions about the dynamics 
of organizational change. Sometimes those 
questions will emerge in the midst of action 
for leaders or consultants, and sometimes 
those questions will emerge in the midst of 
theory building or testing. As the field moves 
forward to establish a stronger foundation of 
theory and practice, scholars will address a 
variety of questions, including the following.

What practical theories and tools can help 
individuals and organizations to be most 
productive in times of rapid change in com-
plex environments? Complex change will 
require a different kind of change-supporting 
tool than simple, linear change. A single 
developmental cycle, a list of goals, a set of 
best practices will have limited usefulness 
because of the complex diversity of nonlinear 
change. On the other hand, the possibility 
lies open for tools that assess current patterns 
and look toward future possibilities, that 
encourage reflective praxis, and that embed 
well-grounded complexity science metaphors 
in productive action.

Some of the field’s more practical research-
ers are engineering new tools and methods 
and making them available (Olson and 
Eoyang, 2001; Zimmerman et al., 2001), but 
the cycle time for development and dissemi-
nation is long. More people in more places 
need to be sharing their innovative products 
with others through peer reviewed journals, 
conferences, and web communications.

What vocabulary is appropriate for schol-
ars and practitioners to see, describe, and 
influence the dynamics of organizational 
change, and how can it be developed? Such a 
common language will support both theory 
and practice as researchers, practitioners, and 
consumers share their perspectives, discover-
ies, and frustrations. It will help individuals 
and groups to be conscious when choosing 
implicit or explicit references to complex 
change. Falconer (2002) begins that process by 
encouraging a systemic view of complex adap-
tive change. Eoyang’s (2001) Container, 
Difference, Exchange (CDE) Model and Ng’s 
(2003) Strength-Power-Diversity (S-P-D) 
Model provide options that enfold the multiple 
dimensions of complex dynamics into simple, 
elegant, actionable, explanatory metaphors.

CONCLUSION

This chapter explored applications of com-
plexity science to organizational change. 
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There was a time not too many years ago 
when chaos, complexity, and complex adap-
tive systems were foreign to both researchers 
and practitioners. Today, not only are these 
terms getting wide-spread acceptance, but the 
dynamical nature of organizational change is 
widely acknowledged. The challenge now is 
to use emerging insights about complexity 
science to accelerate theory development and 
to inspire practical innovation.
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Complex Thought, Simple Talk: 

An Ecological Approach to 
Language-Based Change in 

Organizations1

J o h n  S h o t t e r  a n d  H a r i d i m o s  T s o u k a s

INTRODUCTION: THE NEED FOR 
AN ECOLOGICAL APPROACH TO 
LANGUAGE-BASED CHANGE

Modern science developed by privileging the 
general and the abstract over the particular and 
the concrete (Toulmin, 1990; Tsoukas, 2009a). 
It has taken its objects of study to be com-
posed of discrete things rather than evolving, 
situated relationships. The singular and the 
particular have turned out to be too intractable 
for traditional scientific thinking and needed 
to be either avoided or subsumed under 
generic categories (Tsoukas, 2005a: 213–215). 
Scientific triumphalism in conquering the 
singular was expressed by Medawar (cited 
in Feyerabend, 1987: 122) as follows: ‘In all 
sciences we are progressively relieved of 
the burden of singular instances, the tyranny 
of the particular’. In organization science, 
Thompson (1956: 103) expressed best the sci-
entific embarrassment before singularities: 
‘If every administrative action, and every 

 outcome of such action, is entirely unique, 
then there can be no transferable knowledge 
or understanding of administration.’

However, such an epistemological orienta-
tion contradicts common experience; situa-
tional novelty is what practitioners face all 
the time (Vickers, 1983; Buchanan, 1999). 
Follett (1924), a perceptive student and keen 
practitioner of management, captured, a long 
time ago, the relational world, a world of 
singularities, practitioners live in:

As we perform a certain action our thought 
towards it changes and that changes our activity. 
[…] You say, ‘When I talk with Mr. X he always 
stimulates me’. Now it may not be true that Mr. X 
stimulates everyone; it may be that something in 
you has called forth something in him. […] I never 
react to you but to you-plus-me; or to be more 
accurate, it is I-plus-you reacting to you-plus-me. 
(Follett, cited in Weick, 1995: 339).

Relationality, and the emergent uniqueness it 
brings about, has traditionally been too dif-
ficult a concept to work with in mainstream 
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organization studies. Even when it has been 
considered, the prevailing imagery has been 
that of discrete entities, externally – causally, 
mechanically – related. Change in a system 
is, thus, thought to be brought about by one 
entity impacting on another (cf. Weick and 
Quinn, 1999; Tsoukas and Chia, 2002). 

In this chapter, we will argue that an alter-
native – ecological – imagery, inspired by 
complexity science (Tsoukas, 2005a: Chs. 
9–12), which is attentive to relationships and 
the emergent behaviors they lead to, does 
more justice to common experience of change 
in organizations than mainstream perspec-
tives do, especially if it takes language seri-
ously. When I-plus-you and you-plus-me 
engage in conversational interaction, some-
thing unique may potentially happen, which 
is unlikely to be captured by mechanistic 
forms of inquiry. By contrast, the relational 
imagery complexity science brings forward 
enables us to better understand and work with 
relational uniqueness and emergent change. 

A look at the relevant management litera-
ture shows that while behavioral and cogni-
tive change have received a great deal of 
attention in the past, focusing on the role of 
language in bringing about change in organi-
zations has not earned wider recognition 
until relatively recently (Tsoukas, 2005b). 
Yet, for practitioners, the role of language 
can hardly be overestimated: after all, rational 
authority is primarily exercised through the 
word (Watson, 1994; Hirschhorn, 1997). For 
organization theorists at large, exploring how 
language is used in organizational contexts 
and how language-in-use is inherently organ-
izing, are increasingly becoming important 
foci of research (Cooren, 2001; Westwood 
and Linstead, 2001; Holman and Thorpe, 
2003; Grant et al., 2004; Fairhurst, 2007). A 
useful way to understand research on lan-
guage-based change in organizations is to see 
it as falling along a continuum, depending on 
how language is viewed: at the one end lan-
guage is seen as a medium through which 
cognitive change is effected, while at the 
other end language is variously seen as con-
stitutive of change.

Argyris was one of the first researchers to 
recognize that what people in organizations 
think, is related to what they think with – the 
reasoning they employ. For him change in 
organizations is a primarily cognitive task: 
effective learning (hence, change) ‘is a reflec-
tion of how [organizational members] think 
– that is, the cognitive rules or reasoning they 
use to design and implement their actions’ 
(Argyris, 1991: 100). These rules are a ‘kind 
of “master program” stored in the brain, gov-
erning all behavior’ (op. cit.). Pushing the 
cognitive perspective to its limits, Argyris 
draws the analogy between defensive reason-
ing blocking learning to a hidden bug block-
ing the execution of a computer program. 
The key, for him, is for managers and employ-
ees alike to learn to reason productively – 
only then deep learning is unblocked and 
effective change is brought about. Language 
features in Argyris’ account insofar as it is 
the mere medium through which deep-seated 
cognitive rules of reasoning, grounded in 
basic governing values, are instantiated 
(Argyris, 1990, 2000). 

For other researchers, influenced mainly 
by discursive psychology, discourse analysis 
and communication theory, language is of 
primary importance in bringing about change 
in organizations, since the latter are seen as 
networks of conversations (Taylor and Every, 
2000). If individuals start talking differently 
about the world they experience, they will 
make a difference – they will produce change. 
Change in language amounts to change in 
how problems are viewed, experienced and 
managed. Notice, however, that for this per-
spective, there is no such a thing as the 
change – rather there are thematic narratives 
of change in which first-order realities (events, 
facts) and second-order realities (interpreta-
tions) are collapsed. Generating and manag-
ing change is a matter of shifting conversations, 
since when this happens, people shift to what 
they talk about and pay attention to. Here are 
a few indicative examples of this type of 
research.

Ford and Ford (1995) have argued that 
change is constituted by different types of 
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conversation (i.e. initiative, understanding, 
performance and closure conversations), each 
of which draws on particular speech acts. 
Language now is not viewed as a mere 
medium but as co-extensive with change: 
change is change in language, rather than 
change through language. In a similar vein, 
other researchers have drawn on narrative 
therapy to point to the importance of story-
telling (Barry, 1997; see also Gabriel, 2004). 
In so far as people in organizations tell sto-
ries about themselves, change comes about 
by telling different stories, while the work of 
the change agent is to facilitate the process 
of story re-telling. Drawing on Bakhtin, 
Anderson (2005) has skillfully shown how 
the discursive practice of represented voice 
allows organizational members to both stabi-
lize the organization through treating organi-
zational routines as genres of speech (‘what 
usually happens’ via ‘what is usually said’) 
and change those routines by considering 
how new practices might sound in the future 
by articulating the proposed change in the 
voice of an organizational member (particu-
lar individual or category member). By envis-
aging and enacting likely conversations in 
the future, the merits of proposed changes 
are judged from multiple perspectives. By 
viewing routines as genres of speech, organi-
zational members are able to envisage differ-
ent kinds of future conversations, thus 
generating different kinds of change. 

The preceding perspectives on the use of 
language for effecting change in organiza-
tions have been useful, each in its own way. 
Despite their important differences on how 
they view language, their common emphasis 
has tended, in varying degrees, to be analyti-
cal, namely to provide a set of conceptual 
tools for dissecting a process, rather than 
suggest ways of delving into the process – 
noticing not only the words used, but, also, 
their place in a sequence of utterances, the 
intonation, the extraverbal conditions within 
which utterances unfold, as well as what dif-
ferent utterances accomplish in the temporal 
unfolding of a conversation. It is viewing 
language from within as active participants 

rather than from outside as observers and 
facilitators that is missing, in varying degrees, 
in the preceding accounts. 

Argyris, for example, highlights the impor-
tance of cognitive re-programming through 
the use of scenario-based case studies focus-
ing on experienced problems, written by 
participants who want to become productive 
reasoners. This is not very different from the 
drawing of figures and the writing of letters 
by the change agent, based on participants’ 
stories, on which participants then reflect and 
further discuss, as advocated by narrative 
therapy proponents (Barry, 1997). In both 
cases, the idea is to effect change through 
intervening into or facilitating a process of 
either cognitive or discursive change by 
making it possible for people to reflect on 
their own and others’ represented actions, 
hypothetical or real, under the guidance of a 
change agent. However, the actual process of 
how the unfolding of particular, situated, 
real-time conversations may lead to change 
remains elusive. Similarly, for all the useful-
ness of becoming aware of the different types 
of conversations in bringing about change, 
the conversational flow is more than the use 
of different speech acts in each type of con-
versation. It is also about ‘the particular way 
in which we voice our utterances, shape and 
intone them in responsive accord with our 
circumstances that give our utterances their 
unique, once-occurrent meanings’ (Shotter 
and Cunliffe, 2003: 17). In real life, verbal 
discourse is indissolubly associated with the 
extraverbal situation within which it emerges 
(Volosinov, 1987: 98). There is more in the 
use of language than uttering words. 

We need, therefore, to move beyond an 
analytical approach to an ‘ecological’ 
approach (Toulmin, 1990: 175–209) that is 
sensitive to the particular, the local, and the 
timely; alerts us to the incessant creation of 
novelty by sentient, embodied, situated, 
reflexive, and responsive beings; and empha-
sizes both the open-endedness of processes 
and human praxis to shape them. In the 
switch from an analytical to an ecological 
approach we switch from a mode of inquiry 
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based on what goes on inside people to an 
inquiry focused on what people go on 
inside of. For, as we shall see below, in 
an ecological approach, our surroundings 
must be accounted as ‘determining surround-
ings’ (Volosinov, 1987: 86; Shotter, 2009), 
in the sense that they exert ‘calls’ upon us 
to act responsively in relation to them in 
‘fitting’ ways.

To shift from an analytical to an ecologi-
cal approach, requires that we ‘complicate’ 
ourselves (Weick, 1979: 261), namely that 
we learn not some special, new and complex 
theories, even theories that pay serious 
attention to language, but change our orien-
tation – change the way(s) of relating our-
selves both to ourselves and to the others 
and othernesses around us. Our task then is 
to notice – attend to – possible relations that 
we can sense as existing within and between 
events that we have not previously noticed 
(Weick, 2007). Furthermore, we must inter-
twine the noticing of new possibilities in 
with forms of indicative talk that are sug-
gestive of novel ‘next steps’ that we might 
take in our (inter)actions. Thus, instead of 
trying to formulate any new complex organ-
izational theories or theories of complexity 
in organizations, we shall instead, following 
Wittgenstein (1953), take a much more 
practical approach. Our aim in this chapter 
will, thus, be to show how, by working from 
within an ecological approach and the com-
plex styles of praxis to which it can give rise 
(Tsoukas and Hatch, 2001), quite simple 
talk, using ordinary, everyday words, with a 
minimum of technical terms, can be used to 
effect and to sustain innovative changes in 
organizational practices. That is, if such 
utterances are voiced at appropriate moments 
in a precise relation to shared events in 
shared situations, something novel may 
occur. Small, seemingly insignificant events 
can be the harbingers of big changes.

The chapter is organized as follows. Below 
we explain why a shift from an analytical to 
an ecological account of change – that is, 
viewing change from within – is important 
and what questions an ecological account 

would need to address. In the subsequent sec-
tion we describe the importance of moments 
of common reference created between inter-
locutors. Such moments join individuals as 
co-participants in a situation and give their 
inter-actions a common orientation. This is 
followed by the central part of our argument, 
namely that at each dialogical moment there 
is always unfinished openness available, 
which may be characterized in terms of an 
already specified further specifiability. Put 
simply, co-participants in a dialogue form 
both transitory understandings of where the 
discussion has got to so far and certain action-
guiding anticipations as to where it might go 
next. Individuals’ utterances work to specify a 
shared situation into a set of distinctions 
while constrained by the interactive frame 
hitherto established – their utterances unfold 
in terms of their making a sequence of similar 
distinctions. A dialogically-structured event 
is open to further specification in an already 
specified manner. The change that may be 
brought about through re-orientation by 
simple, ordinary language is illustrated with a 
dialogue between a researcher and an IT man-
ager. The chapter concludes with a discussion 
in which a brief juxtaposition is made between 
the ‘social poetics’ inspired by the ecological 
approach and the narrative analysis often 
encountered in perspectives that take lan-
guage seriously, and some thoughts are 
offered on the need for, and significance of, a 
science of singularities. 

HOW CAN WE THINK ECOLOGICALLY 
ABOUT LANGUAGE-BASED CHANGE? 

There are at least two ways in which one 
might respond to Toulmin’s (1990) call for 
‘the ecological style’ of thinking, namely 
the call for paying attention to the particu-
lar, the local, and the timely. One way is to 
try to produce better explanatory theory 
from a position outside the phenomena in 
question, by drawing on complexity sci-
ence: by modeling organizations as, for 
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example, complex adaptive systems one 
aims at showing the mechanisms underlying 
the emergence of particular organizational 
phenomena (Holland, 1995; Miller and 
Page, 2007). A second, less well traveled 
way, aims at working from within a relevant 
phenomenon to understand more our 
‘way about’ within it (Wittgenstein, 1953, 
no. 123). If the first way is ideal for the study 
of complex natural systems, the latter is more 
suited to the study of social interaction.

Let us explore the difference between 
these two ways. The so-called butterfly 
effect – the idea that a butterfly’s flapping 
wings can, by causing small changes in the 
initial conditions of a system, initiate a 
sequence of events leading to large-scale 
changes in the system – is now well-known 
(Gleik, 1987). In support of what we have 
suggested above, namely that simple every-
day talk when used at appropriate moments 
in relation to shared events in shared circum-
stances can initial great changes, we could 
appeal to ‘the butterfly effect’ to justify our 
claim that simple talk is all that is needed to 
navigate complex events, and to provide a 
vocabulary of technical terms to explain how 
such events are possible. However, such jus-
tificatory and explanatory talk is after the 
fact and beside the point. 

It is ‘after the fact’ because, as is already 
apparent, the appeal rests on people’s ability 
to see an event A as having similarities to 
another event B, namely seeing the claim that 
‘small changes in words used have big effects 
in organizational practices’ as similar to the 
butterfly effect. Such a perception, however, 
is only possible with already completed 
events, so that one may say that an already 
well-known way of cognizing event A might 
be useful in cognizing event B. But with 
unfinished, incomplete events, who can say 
whether the similarity will hold or not? Such 
a way of proceeding with our inquiries is also 
‘beside the point’, in that no matter how well 
we might justify and explain our appeal to 
the butterfly effect for our claim (that simple 
changes in talk can lead to large changes in 
an organization), such a claim will only 

enable us to represent (or picture) the cir-
cumstance, and as we are all too well aware, 
representations do not provide us with action-
able knowledge; they still need interpreting 
(Taylor, 1985). Thus, rather than trying to 
produce yet more explanatory theories (only 
now theories of an ecological cast that embrace 
complexity), the sui generis character of the 
human world (Castoriadis, 2007), namely 
that it is constituted by language-based eval-
uative distinctions, established, reproduced 
and changed in the context of social practices 
(Tsoukas, 2009b), requires an emic approach, 
that is working from within the actual prac-
tices in question, to take better notice of 
crucial events and distinctions that often pass 
us by unnoticed.

Note the following two remarks made by 
Wittgenstein. First: ‘The origin and primi-
tive form of the language game is a reaction; 
only from this can more complicated forms 
develop. Language – I want to say – is a 
refinement, ‘in the beginning was the deed 
[Goethe]’ (Wittgenstein, 1980: 31). And the 
second: ‘But what is the word “primitive” 
meant to say here? Presumably that this sort 
of behavior is pre-linguistic: that a language-
game is based on it, that it is the prototype of 
a way of thinking and not the result of 
thought’ (Wittgenstein, 1981: no. 541). In 
the first remark, Wittgenstein is emphasizing 
the importance for us of events that ‘strike’ 
us, that ‘touch’ us, that capture our attention 
in some way – ‘in the beginning was the 
deed’. For, given how much passes us by 
unnoticed, such events must be of some pos-
sible importance to us. Indeed, it is impor-
tant to note the foundational importance of 
events that are in some sense unanticipated, 
unexpected, or surprising to us, for it is such 
events that can be the flapping butterfly 
wings of change in organizations and human 
practices at large. Indeed, this is the point in 
his second remark: new thinking does not 
come from old thinking; it begins with events 
that ‘touch’ us in some way. But in what 
way? What does this mean for what we, as 
insiders, should do on finding such events 
happening to us?
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The point of Wittgenstein’s remarks is that 
they can work to direct our attention toward 
important, but mostly unnoticed, aspects of 
our everyday interactions with each other 
and with events in our surroundings. Indeed, 
in claiming that the voicing of quite simple 
words (such as ‘Stop!’ ‘Look!’ ‘Listen!’, 
etc.) can have crucial effects in changing 
people’s ways of relating themselves both to 
their surroundings and to each other, we are 
not focusing on their content, on what we 
might call their referential-representational 
meaning – words that can convey a ‘picture’ 
to us of a situation not actually present to us, 
words that influence how we think about a 
situation. Instead, we are concerned with 
what we might call, following Bakhtin 
(1986), the relationally-responsive use of 
utterances, namely with how people sponta-
neously orient or relate themselves to events 
occurring around them.

Volosinov (1987) gives a suggestive exam-
ple of the depth of what can be heard in the 
utterance of even a single word, and the char-
acter of what, relationally, it can achieve.2 
In the situation he describes, there are two 
people sitting in a room. Both are silent. Then 
one of them says, ‘Well!’ in a strongly into-
nated voice. The other does not respond. As 
Volosinov notes, for us, as outsiders, this 
entire ‘conversation’ is utterly opaque. Taken 
in isolation, the utterance ‘Well!’ is empty and 
unintelligible. Yet, for the two people involved, 
this single expressively intoned word makes 
perfect sense; it is a fully meaningful and 
complete utterance. How can this be?

The utterance cannot be understood apart 
from the extraverbal situation in which it 
occurs. The verbal discourse merges indis-
solubly with the extraverbal situation. The 
latter consists of three elements: (a) the 
common spatial setting of the interlocutors, 
(b) the common understanding of the situa-
tion by them, and (c) their common evalua-
tion of the situation. For example, in this 
case, at the time the utterance took place, the 
two Russians involved, looked up at the 
window and saw that it had begun to snow 
(common spatial setting); both knew that it 

was already May and that it was high time 
for spring to come (common knowledge of 
the situation); finally, both were sick and 
tired of the protracted winter – they both 
were looking forward to the spring and both 
were bitterly disappointed by the late snow-
fall (common evaluation of the situation). As 
Volosinov (1987: 99) notes: 

On the ‘jointly seen’ (snowflakes outside the 
window), ‘jointly known’ (time of year – May) and 
‘unanimously evaluated’ (winter wearied of, spring 
looked forward to) – on all this the utterance 
directly depends, all this is seized in its actual living 
import – is its very sustenance. And yet all this 
remains without verbal specification or articula-
tion. The snowflakes remain outside the window; 
the date, on the page of the calendar; the evalua-
tion, in the psyche of the speaker; and neverthe-
less, all this is assumed in the word well. (italics in 
the original)

But what is the point of ‘Well!’, what is 
achieved in its voicing? It is obvious that it 
does not at all reflect, accurately describe, or 
represent the extraverbal situation confront-
ing the two Russians. Nevertheless, it 
achieves something of great importance. As 
Volosinov (1987: 100) so rightly remarks, the 
utterance here ‘resolves the situation, bring-
ing it to an evaluative conclusion, as it were’ 
and, in so doing, it ‘joins the participants in 
the situation together as co-participants who 
know, understand, and evaluate the situation 
in like manner’ (op. cit., italics in the origi-
nal). In other words, rather than achieving 
something representational (i.e. describing 
an external state of affairs) in each of the 
individuals separately, the utterance achieves 
something bodily and relational in both 
together; it works to create a shared orienta-
tion toward their shared situation – a moment 
of common reference. Both now know that 
they feel the same in relation to the situation; 
they share it, and to this extent, they can 
share various expectations of each other 
regarding each other’s actions in their shared 
situation. 

Thus, far from the extraverbal situation 
being merely the external cause of the utter-
ance – by, say, exerting an impact on the 
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speaker – it ‘enters into the utterance’, says 
Volosinov (1987: 100), ‘as an essential con-
stitutive part of the structure of its import’. It 
enters it, in influencing the intonational con-
tour in the voicing of the word ‘Well!’. 
Indeed, the speaker could almost equally as 
well have uttered not a word at all, but simply 
an ‘Ughh!’ In other words, what is notewor-
thy here is that the influence of the utterance 
is an influence exerted not in the form of 
a pattern of spoken words but in the unfold-
ing temporal contours of words in their 
speaking – the particular activity of commu-
nicating. Understanding the meaning of a 
particular utterance is not recognizing its 
self-identity but its ‘specific variability’ 
(Volosinov, 1986: 69) – its adaptability to a 
particular situation; a variability manifested 
in the unique contours of an utterance as it 
responsively unfolds in time. As Volosinov 
(1986: 68) remarks, ‘the task of understand-
ing does not basically amount to recognizing 
the form used, but rather to understanding it 
in a particular, concrete context, to under-
standing its meaning in a particular utter-
ance, i.e. it amounts to understanding its 
novelty and not recognizing its identity’. 

To sum up, by the intoned utterance of 
one little word by one of the two people in 
a shared situation, the two people involved 
in the moment of common reference so cre-
ated, became meaningfully inter-related as 
co-participants in a situation that they both 
know, understand and evaluate in the same 
way. As a result, both came to entertain 
similar expectations of each other, and, to 
an extent, to gain a readiness to respond to 
each other’s further actions in that situation. 
This was not done by one representing the 
situation to the other – for the word ‘Well!’ 
pictured nothing. It was done by what was 
expressed in the utterance’s situated unique-
ness, i.e. in what was expressed in the 
unfolding, specific context of its utterance. 
In other words, small and very subtle varia-
tions in an otherwise well-defined word 
were responsible for the quite specific and 
complex outcome resulting from this simple 
exchange. 

LIVING EXPRESSION AND THE 
ALWAYS UNFINISHED OPENNESS 
OF DIALOGICAL INTERACTION

If the representational view of language fails 
to account for the expressive responsiveness 
of simple utterances, where else can we turn 
for guidance? This is where bodily events 
occurring between and within insiders to an 
interaction become crucial. Let us begin to 
approach this issue by first turning to the 
special nature of the spontaneous, living 
expressive-responsiveness of our living 
bodies. 

There is something very special about 
living expression, something that makes it 
very different from the mere locomotive 
movement of things and objects in space, 
from their merely taking up different posi-
tions in space in different instants in time 
(Whitehead, 1925). An important difference 
is that while we can study already completed, 
dead forms (even linguistic forms) at a dis-
tance, seeking to understand the pattern of 
past events that caused them to come into 
existence, we can enter into a relationship 
with a living (especially human) form and, in 
making ourselves open to its movements, 
find ourselves spontaneously responding to 
it. It is only from within our involvements 
with other living forms that this kind of 
meaningful, responsive understanding 
becomes available to us. Moreover, there is a 
distinctive ‘inner dynamic’ to living wholes 
not manifested in dead, mechanical assem-
blages, such that the earlier phases of an 
unfolding activity of a living whole are 
indicative of at least the style of what is to 
come later – we can thus respond to activities 
in an anticipatory fashion. 

Bakhtin (1986: 69) expresses this with 
respect to language as follows: 

All real and integral understanding is actively 
responsive. [...] And the speaker himself is oriented 
precisely toward such an actively responsive under-
standing. He does not expect passive understand-
ing that, so to speak, only duplicates his or her 
own idea in someone else’s mind. […] Rather, the 
speaker talks with an expectation of a response, 
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agreement, sympathy, objection, execution, and 
so forth […]. (our italics)

Thus, among the other features of such 
responsive talk, is not only its orientation 
toward the future, but its capacity to arouse 
in listeners (and in speakers themselves) spe-
cific expectations as to a next step: 

The word in living conversation is directly, blatantly, 
oriented toward a future answer-word; it provokes 
an answer, anticipates it and structures itself in the 
answer’s direction. Forming itself in an atmosphere 
of the already spoken, the word is at the same time 
determined by that which has not yet been said but 
which is needed and in fact anticipated by the 
answering word. Such is the situation of any living 
dialogue. (Bakhtin, 1981: 280, our italics)

A good example of this process is the dia-
logue between the Chairman of the US 
House of Representatives Committee on 
Oversight and Government Reform Henry 
Waxman and the former Chairman of the 
Federal Reserve Bank Alan Greenspan, 
following the summoning of the latter to the 
Committee on 23 October 2008, in the immedi-
ate aftermath of the extraordinary world-wide 
financial crisis. Chairman Waxman started 
asking, somewhat hesitantly as if formulat-
ing his thoughts while speaking: ‘Did you 
find a flaw in the reality … ’.  Anticipating 
the direction of the question, Greenspan 
stepped in, before Waxman completed his 
question: ‘… flaw in the model that I per-
ceived as the critical functioning structure 
that defines how the world works, so to 
speak?’, Greenspan said, half descriptively, 
half questioningly. In his immediate turn, 
Waxman sensing the style of the possible 
answer Greenspan would give, summed it 
himself up as follows: ‘In other words, you 
found that your view of the world, your ide-
ology, was not right; it was not working’. 
‘Precisely’, replied Greenspan. In an inter-
esting sequence of anticipations, we have 
here the answerer voicing the question and 
the questioner articulating the answer.

The arousal of such expectations and 
anticipations by our utterances is important. 
For Bakhtin (1986), the utterance is the real 

unit of speech communication, of language-
in-use. It has a clear beginning and end, with 
boundaries being delimited by the change of 
speakers (Bakhtin, 1986: 71–72). In dialogi-
cal interaction, speakers, seeking to express 
what matters to them, speak such in a way 
that, as they utter each phrase, they arouse 
within themselves (and their listeners) an 
anticipatory sense of what is next needed to 
contribute toward the completion of their 
utterance.3 They thus continue to speak, with 
each new phase of their utterance sensibly 
connected with previous phases, until that 
sense of completion is achieved – this is the 
silent dixit (‘I have said’) that listeners then 
take as their cue to speak. And listeners wait 
until they have that sense of having under-
stood what it is that a speaker is trying to 
express. They then speak, but they do so now 
from a different point of view, and as a con-
sequence, they can say what is unavailable to 
previous speakers from their point of view, 
and so on, often to the surprise of previous 
speakers, who feel that they have said all that 
there is to say on a particular topic. 

Dialogical interaction involves three logi-
cal steps: interlocutor X, having made utter-
ance x, has access to interlocutor Y through 
her receiving utterance y; Y knows how y fits 
with x by X uttering a new statement x´ 
(Markova, 1987: 294–295; Tsoukas, 2009b). 
What this implies is that while people may 
know what they mean to say or what they 
meant, what they do not know is their listen-
ers’ ‘take’ on their utterance. In other words, 
an individual cannot know the meaning of his 
utterance until another individual has 
responded; the meaning of an utterance 
is dependent on the flow of the subse-
quent conversation. An utterance has the 
potential to mean, but contains no meaning 
in itself; its potential is realized through 
another’s response (Gergen et al., 2004: 12). 
As Bakhtin (1986: 170) realized, there is 
open-endedness in dialogue that can never be 
closed: 

There is neither a first nor a last word and there 
are no limits to the dialogic context (it extends 
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into the boundless past and the boundless future). 
Even past meanings [...] can never be stable (final-
ized, ended once and for all) […]. At any moment 
in the development of the dialogue there are 
immense, boundless masses of forgotten contex-
tual meanings. […].

Thus, within a dialogic approach, there are 
countless ways in which we might relate our 
language to our world. There is always some-
thing more that can be said in relation to any 
particular topic under discussion. There is 
always an emergent aspect to all our living, 
utterance-laden interactions. Nothing is ever 
simply repeated, nothing is ever wholly fin-
ished, there is always something uniquely 
novel in all of our activities. No purely picto-
rial or spatialized account of our interactions 
can capture the nature of these emergent enti-
ties. It is the characterization of this always 
unfinished openness that presents us – as 
theorists! – with such great difficulties.4 We 
are continually tempted to complete or to 
close the openness in some specific fashion, 
and as a consequence to eliminate the very 
aspect of it that, as we shall see, can arouse 
in us action-guiding anticipations. How 
might we characterize it then, without losing 
its essentially always unfinished nature?

From an ecological viewpoint an utterance 
can be viewed as making a sequence of dif-
ferences, or drawing distinctions, as it unfolds 
in time, within the larger contextual situation 
shared by all co-participants in a dialogical-
ly-structured exchange. If the situation is a 
practical one, then each aspect of the utter-
ance has its import in what it ‘points’ to in 
that shared situation – its use will be to direct 
people’s attention outwards, towards features 
in their surroundings of importance to them 
all. Thus, in any one moment, we can think 
of individuals’ utterances as having worked 
to specify a shared situation into a set of dis-
tinctions, i.e. topics of concern (Weick, 1979). 
When viewed retrospectively such distinc-
tions appear as outcomes of this process. 
However, when viewed prospectively, such 
topics of concern will clearly still be open 
to further specification, namely to making 
further distinctions. 

But, and this is really important, if the 
dialogue is ever to reach a final point of 
agreement, then all further differences or 
distinctions within a topic of concern must be 
made in terms similar to those already made, 
unless co-participants agree ‘to look at the 
issue in question in another way’. For exam-
ple, in the relevant dialogical context of the 
Congressional hearing, for the dialogue to 
move on, Greenspan should not respond to 
Waxman, not at least without further com-
ment, with a treatise on the epistemological 
basis of human perception and cognitive 
modeling. When viewed prospectively, it is 
not just that such topics of concern are fur-
ther specifiable; it is that they are further 
specifiable only in an already specified 
manner (Shotter, 1984: 184). The utterance 
unfolds in terms of its making a sequence of 
similar differences. Interlocutors in a dia-
logue gradually establish an interactive 
frame, which constrains further contributions 
– subsequent utterances must fit into the 
frame that has already been created and, at 
the same time, develop it further (Sawyer, 
1999: 455–456).

In other words, the always unfinished 
openness available to co-participants at each 
dialogical moment in their living exchanges 
with each other, is not just any old openness; 
it is an openness of a very particular kind with 
its own specific ‘requirements’ and ‘callings’; 
it cannot just be acted into in just any way 
co-participants please. As Gendlin (1991) 
has argued, it is Wittgenstein’s (1953) achieve-
ment to have shown that, because the word 
used for a concept is not used in the same 
way in all the different contexts of its use, 
there is something else beyond our concepts 
that guides us in their appropriate applica-
tion. That felt bodily sense that guides us in 
our appropriate use of words, although still 
open to further specification, is, as Gendlin 
(1991) shows, very precise. He calls it ‘the 
intricacy’, and in his work he brings its 
nature into rational visibility by exploring its 
functioning in a range of different situations. 

As speakers utter each word in an utter-
ance, they not only specify an aspect of what 
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is referred to in their utterance; they also 
arouse within themselves (and their listeners) 
an anticipatory sense of what is next needed 
to contribute toward the completion of their 
utterance. In other words, an utterance at any 
one moment manifests both its meaning so 
far and the means for its own continuation. In 
this sense, the production of an utterance is 
not especially different in character from the 
growth of a plant. Think here, say, of a plant 
growing from a seed: as a seedling, it works 
as a structured means mediating the further 
growth of the plant. And just as it cannot be 
predicted how many leaves and blossoms a 
plant might have, because that is a matter of 
changeable local contingencies as the plant 
grows into the kind of plant it is, so the devel-
opment of a living utterance cannot be pre-
dicted, though its style is such that only 
certain progressions can fit and be appropri-
ate to it.

In other words, as our everyday experience 
confirms (think of the Greenspan–Waxman 
dialogue), we do not have to wait for speak-
ers to complete their utterances before we 
can understand their speech sufficiently to 
respond to it in practice. Indeed, often with a 
slow speaker we cannot resist completing 
their utterances for them. For present to us, in 
our spontaneous bodily responsiveness to 
their voicing of their utterances as they 
unfold, are action-guiding anticipations of 
what they might possibly say next. Indeed, as 
Bakhtin (1986) notes: 

The utterance is related not only to preceding, but 
also to subsequent links in the chain of speech 
communication ... [F]rom the very beginning, the 
utterance is constructed while taking into account 
possible responsive reactions, for whose sake, in 
essence, it is actually created ... From the very 
beginning, the speaker expects a response from 
them, an active responsive understanding. The 
entire utterance is constructed, as it were, in 
anticipation of encountering this response. (p. 94)

And all these relationally-responsive, 
‘transitory understandings’ along with the 
action guiding anticipations associated with 

them, happen spontaneously within us, as 
a result no doubt of the countless hours 
of training we have had in our prior invol-
vements in our culture.5 We do not have 
to ‘work them out’, self-consciously and 
deliberately. 

To sum up, we have seen that the earlier 
stages of the living activities of a single 
human being are such that, if we can be in 
living contact with them, they can arouse in 
us feelings of anticipation as to what next is 
likely to occur. And further, as a human utter-
ance unfolds in terms of it making a sequence 
of similar distinctions, we can arrive at a 
sense of it having achieved its ‘point’ insofar 
as it has worked to draw attention to the 
aspect of the shared situation under discus-
sion intended by a speaker. When this occurs, 
listeners cease to anticipate the speaker con-
tinuing their utterance any further. But, from 
their point of view, they can see something 
else that the speaker does not see. There is 
always something more to say. And so the 
discussion continues, with co-participants 
working with a transitory understanding of 
where the discussion has got to so far, and 
also with certain action-guiding anticipa-
tions as to where it might go next. Indeed, 
there is always a special kind of always 
unfinished openness available at each dia-
logical moment in all dialogues, an openness 
that we can characterize in terms of an 
already specified further specifiability – an 
openness that, as Bakhtin (1986) indicates, 
can never be finalized. 

SIMPLE TALK, COMPLEX THOUGHT: 
AN EXAMPLE

To illustrate how simple talk can generate 
substantial change in an organizational set-
ting, consider the example below (modified 
from an actual transcript).

Tony is a new IT executive reflecting 
rather despondently on his first 15 days in 
COMP, a large, global company. A researcher 
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asks Tony questions and makes one sugges-
tion. Here is the transcript of their dialogue: 

Tony: We’re not professional here in the way we do 
stuff, so there is a real opportunity to make a differ-
ence.
Researcher: What has been striking you that 
epitomizes where the issues and the opportunities 
are?
Tony: What’s really struck me is that I tell people in 
COMP how other companies use good ways of 
doing things, and they will listen and debate and 
argue the pros and cons, but they have no capacity 
for execution.
Researcher: What do they come up against that you 
have touched yourself?
Tony: We’ve got barriers up between us – you know 
– you worry about your performance contract and I’ll 
worry about mine. We won, and that business unit 
lost. But together we’re all actually losing. Pockets of 
this going on everywhere. We’ve no way of operat-
ing across our activities.
Researcher: Can you give me a specific instance?
Tony: This very day, on day 15, I encountered it. We 
are trying to deliver cost savings to the CEO and VP-IT. 
We said: ‘We are going to reduce the amount of 
money we spend on IT’. And they said: ‘Over our dead 
body! You can’t do that to us. We need this technol-
ogy to meet our business plans so we’re going to 
spend what we said we are going to spend and you 
guys can’t tell us anything different’.
Researcher: So how do you move things on? 
Could you, perhaps, say: ‘What we are looking for 
is an honest, frank account of what this is actually 
going to take. This (!) is how we are going to 
find this difficult. This (!) is what it looks like when it 
starts to move. As it begins to move this (!) is what 
we will feel like, but this (!) is what we will begin to 
reap?’ Not generalisations but real stories, real 
vignettes, when people in the room go ... (?) ... 
(her intonation offers an invitation to Tony to finish 
her utterance).
Tony: … I GET IT!

Notice that in her very first question, the 
researcher – in a way reminiscent of the 
importance of Bateson’s (1973: 285) remark 
about ‘a difference that makes a difference’6 
– asks Tony to bring to attention something 
of importance that had ‘struck’ or ‘touched’ 
him, something of relevance to his task in 
COMP, something that he had not expected 
or anticipated, that had surprised him. 
Tony responds, and the researcher’s second 
question – What do they come up against that 

you have touched yourself? – is (1) both in 
response to how Tony’s utterance has 
‘touched’ her, and (2) offering Tony an ‘invi-
tation’ to go further into his own lived experi-
ence. He does, but instead of talking with 
it to express something concrete and 
particular, he talks about it in abstract, 
general, and metaphorical terms – terms 
which, if a listener is to act, require interpre-
tation. The researcher then asks a further 
question to orient Tony toward giving a 
specific instance. He does. But now, instead 
of his previous ‘state of mind’ – i.e., thinking 
‘in his head’ of the ‘problem’ he faces – he 
is back, to an extent, re-living a typical 
circumstance in which he encounters 
the ‘barriers’ that he had spoken of abstractly 
before. He thus moves from the realm of 
ideas, the realm of abstract things that one 
tries to think about changing by making 
‘interventions’ of some kind or other,7 into 
the realm of people responding to each oth-
er’s utterances. Or, to put it another way, he 
shifts from describing relevant experiences in 
terms of their finished outcomes to describ-
ing an actual, particular experience in terms 
of its step-by-step unfolding (Weick, 1979: 
195–204).

This gets him ready, i.e. orients him, both 
toward responding to the researcher’s third 
question, and toward seeing the point of her 
suggestions regarding utterances he might 
make. So, when she says: ‘Not generaliza-
tions but real stories, real vignettes, when 
people in the room go...,’ while leaving the 
ending of her utterance dangling so that he 
can finish it, he ‘gets it’. He now sees a pos-
sibility in the situation that he had not seen 
before. He ‘gets’ the point that she has been 
trying to make with him: that a certain kind 
of talk, simple non-technical talk involving 
the telling of stories, of short vignettes, can 
make the kind of difference in the situation 
that matters to him – the breaking down of 
barriers between the business units – and that 
it is the orientation toward a detailing of the 
actual, living expressions used by those 
involved in the unfolding of a difficult 
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 situation that helps Tony to create within 
himself a felt sense of its unfolding move-
ment. It is this – occurrences of a felt kind – 
that is crucial to the happening of institutional 
and organizational change.

This example shows how talk of a simple 
kind can work not by giving people some 
new information that required some new 
action from them, but by giving them a spe-
cific orientation toward something they 
already know, a new way of relating them-
selves to it, of seeing it in a certain light.8 
Thus, as a result of the researcher’s question-
ing, Tony first orients himself toward the 
unexpected practicalities of the new situation 
he confronted in COMP; and then he realizes 
that the way to ‘go on’ within those practi-
calities is not to think of manipulations and 
interventions, but to think in terms of telling 
stories, providing vignettes, that may have 
the effect of ‘touching’ or ‘moving’ people to 
see things differently. Indeed, after a few 
simple exchanges, Tony ‘gets it’ – that is, he 
realizes that his task is not one of persuasion 
by argument, or to inspire by exhortation, but 
to do what he himself has just experienced: 
create the ‘determining surroundings’ of a 
meeting with business unit leaders in such a 
way that they also ‘get it’.

DISCUSSION: POETIC METHODS 
AND A SCIENCE OF SINGULARITIES

Organizations may be replete with regulari-
ties, largely brought about by routines, but, 
as Feldman and Pentland (2003) have per-
ceptively shown, organizational routines are 
filled with situational uniqueness and change 
every time they are put into action. The situ-
ational and the unique always emerge in 
human inter-action. Complexity-science, 
especially ecological, imagery makes us sen-
sitive to the emergent features of human 
activities, arising from relationality, contex-
tual specificity, and reflexivity. Once we adopt 
an ecological attitude towards human inter-
action in organizations, everything changes: 

nothing exists as the thing it is for us, except 
in terms of its relations to surroundings. 
Central to our ecological account has been a 
focus on the expressive-responsiveness of 
living forms, both to each other and to the 
othernesses in their surroundings, and on 
their own particular and unique ways of 
coming-into-Being. An ecological approach 
goes beyond social constructionist approaches 
to language-based change, and the discur-
sive-cum-narrative methods of inquiry they 
have inspired, insofar as it focuses on utter-
ances as they unfold in the context of living 
conversations between human beings and the 
spontaneous, responsive understandings they 
entail. An ecological approach leads to a 
practice of ‘social poetics’ (Katz and Shotter, 
1996), whereby a relational attitude to a 
human being’s use of words is encouraged, 
seeking to ‘move’ people toward a new way 
of relating to their practice and re-visioning 
their circumstances. It is not a discursive or 
narrative analysis of a pattern of spoken 
words that is sought after their utterance, but 
the creation of a felt, spontaneous, embodied 
responsiveness to words in their speaking. 

Whereas narrative and discursive analysis 
takes as its object of investigation stories and 
conversations, which it seeks to analyze ret-
rospectively as completed entities (Riessman, 
1993; Pentland, 1999; Boje, 2001; Fairhurst 
and Cooren, 2004), hence its focus is on ana-
lyzing patterns of already spoken words, 
social poetics focuses instead on how embod-
ied, responsive human beings talk from 
within a particular, ongoing dialogical inter-
action. Stories are told (and as we indicated 
in our illustration, must be told) in such 
living dialogical interactions. However, sto-
ries now are no mere objects of retrospective 
analysis, but openings to interlocutors’ 
worlds that point – gesture – towards differ-
ent relational possibilities in real time (Katz 
and Shotter, 1996: 925; Shotter, 2009). An 
ecological approach such as the one sug-
gested here draws on narrative and discursive 
analysis to make people aware of the epis-
temic importance of their stories and recog-
nizes the importance of narrative reasoning 
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for appreciating context, motives, voices, and 
temporality (Tsoukas and Hatch, 2001). But 
an ecological approach goes further in being 
particularly sensitive to ‘articulating a prac-
tice from within’ (Shotter and Katz, 1996) by 
creating a living relationship in which people 
as embodied agents are continuously, respon-
sively reacting to each other. Viewed ‘poeti-
cally’ (as opposed to merely discursively), 
language does things, gestures, ‘brings to life 
new ways of “pointing beyond” our immedi-
ate circumstances, to make new connections 
and relations with our surroundings’ (Katz 
and Shotter, 1996: 926).

We have argued in this chapter that inno-
vative change in organizations is achieved 
not so much through theoretically driven or 
strategically planned interventions, by inspir-
ing exhortations, or convincing persuasion, 
as through the instructive use of simple, ordi-
nary language. To put it in a nutshell, whereas 
the analytical-representational (intellectual-
ist) account views new thinking to come out 
of old thinking through persuasion, cognitive 
or, discursive re-programming, or strategic 
interventions, from the relational-responsive 
perspective adopted here, new thinking 
emerges from certain events that unsettle old 
ways of thinking and move individuals to 
start noticing new possibilities.

More specifically, change occurs as the 
result of ‘poetic’ events that ‘touch’, ‘move’, 
or ‘strike’ those in a group of people, events 
that people respond to spontaneously, in a 
bodily manner, events that make people feel 
something (even if at first ‘they know not 
what’). Some events do have a ‘big bang’ 
character (such as the anti-communist revo-
lutions of 1989, the 9/11 terrorist attack, and 
the near meltdown of the global financial 
system in 2008), but they need not. Small-
scale events can also be very powerful for the 
way individuals view their common situa-
tion. Something unexpected, unanticipated, 
such as, for example, a colleague, a boss or a 
consultant using simple language orients us 
in different way to our surroundings and new, 
previously unnoticed possibilities are shown 
up. Such events function as moments of 

common reference, even if the people com-
prising the group are not all in face-to-face 
contact with each other, or experience the 
‘touching’ events at different times. (As chil-
dren, we were ‘touched’ in this way by our 
parents, in the games they played with us, in 
the stories they told us). These moments turn 
out to be rather complicated: it is possible to 
find the repetition of what already exists with 
them, but it is also possible to find novel 
aspects produced in our spontaneous, living 
responsiveness to the particularities of the 
current situation that we are actually in. 
Noticing these aspects, however, is not easy. 
Even when the relevant novel aspects have 
been made explicit, these must be accounted 
only as ‘new beginnings’, as ‘new possibili-
ties’; there is still further work to do in 
exploring their implications in practice; they 
need ‘agreed formulations’. But at least, 
these new beginnings are genuine; they do 
not mysteriously lead us back into the old 
ideas that went into our more deliberately 
formulated plans and strategies. Common 
reference points orient people toward their 
common situation in a like manner, namely 
they are joined together as co-participants in 
a situation, which they know, understand, 
and evaluate in the same way. In moments of 
common reference all involved have noticed 
the occurrence of a certain event, have been 
touched or moved by an occurrence out in the 
world they all share.

A pivotal distinction on which this account 
rests is the distinction between two kinds of 
difficulty: difficulties of the intellect and dif-
ficulties of the will (i.e. of orientation or of 
ways of relating) (Wittgenstein, 1980: 17). 
We can formulate difficulties of the intellect 
as problems which, with the aid of clever 
theories, we can solve by the use of reason-
ing. Difficulties of the will, however, are 
quite different. For they are to do with how 
we orient ourselves bodily towards events 
occurring around us, how we relate ourselves 
to them, the ways in which we see them, hear 
them, experience them, value them – for it is 
these ways that determine, that ‘give shape 
to’, the lines of action we further resolve on 
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carrying out. Changes in our ways of relat-
ing, in our orientation towards the others and 
othernesses in our surroundings, clearly, are 
‘deep’ changes in that they are changes in 
our ‘way’ of being who and what we ‘are’ in 
the world. Hence these kinds of changes 
cannot be produced by following intellectu-
ally devised plans, procedures, or protocols; 
they cannot be done, intentionally, by people 
taking deliberate actions. This is because the 
coordinated execution of planned actions 
depends upon all concerned already sharing 
the set of existing concepts relevant to the 
formulation of the plan.

Central to our account here, then, is a 
switch away from mechanical, one-way 
cause and effect processes, toward a focus on 
the two-way spontaneous responsivity of 
living forms. As we have seen, this switch in 
focus entails a move away from a concern 
with the causal influences exerted on us by 
the past, toward a concern with the open-
endedness of the interactions we are involved 
in and with how our anticipations of the 
future shape our perceptions and actions in 
our present circumstances. More importantly, 
such a switch entails a move away from a 
concern with the universal problem of our 
relation to our world, to a concern with 
understanding our local situation within it – 
hence the seemingly paradoxical idea of a 
science of singularities. The latter is a disci-
pline, or perhaps more accurately an orienta-
tion, concerned with bringing to publicly 
sharable attention the fleeting, unique, 
‘once-occurrent event[s] of being’ (Bakhtin, 
1993: 2) that present novel possibilities 
available to us for change in our own human 
situations. 

Our focus on singularities arises out of the 
recognition that such events can occur only in 
those special, two-way moments, each sensi-
tive to its own local conditions, that we have 
called ‘dialogical moments’, for it is just in 
these moments that we can achieve jointly 
what we cannot achieve apart. As we have 
seen in this chapter, dialogical moments 
seem very different from the one-way, input–
output, cause–effect moments we are used to 

in our more classically structured investiga-
tions. And in this sense they are special. But 
in another sense, they are not at all different. 
For, as we now realize, to the extent that, in 
an ecological approach, our surroundings, as 
‘determining surroundings’, exert ‘calls’ 
upon us to act responsively in relation to 
them in ‘fitting’ ways, all our actions are, in 
effect inter-actions. 

Nonetheless, we shall still insist that dia-
logical moments are special in that, given our 
naturalistic impulse to search for laws, prin-
ciples, rules, and other forms of regularity in 
our inquiries into human affairs, they have 
the character of singularities – they are to do 
with unique, once-off novelties, moments in 
which something new is created out of some-
thing given, to paraphrase Bakhtin. The trou-
ble is, given our everyday tendencies to talk 
in terms of generalities and to focus on prod-
ucts rather than processes, we continually try 
to assimilate such particularities to one or 
another kind of category, and, in so doing, 
we lose their creativity and their uniqueness. 
It is their special nature in this respect that is 
ignored, eradicated, even. We simply don’t 
know how to account for them, for they have 
their existence only within the ongoing, 
unfolding dynamics of our interactions; they 
lack any independent existence in them-
selves. We hope this chapter has made a 
modest contribution in showing how we can 
overcome this problem.

NOTES

1 An earlier draft of this chapter was presented at 
the Fourth Organization Studies Summer Workshop 
on ‘Embracing Complexity: Advancing Ecological 
Understanding in Organization Studies’, 5th–7th 
June, 2008, Pissouri, Cyprus. We would like to thank 
Steve Maguire for his very helpful comments on an 
earlier draft.

2 Here, we are following Volosinov’s text quite 
closely.

3 Mead (1934) describes this phenomenon well: 
‘That process ... of responding to one’s self as another 
responds to it, taking part in one’s own conversation 
with others, being aware of what one is saying and 
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using that awareness of what one is saying to deter-
mine what one is going to say thereafter – that is a 
process with which we are all familiar’ (p.140).

4 As Wittgenstein (1953) remarked: ‘What is 
most difficult here is to put this indefiniteness, cor-
rectly and unfalsified, into words’ (p. 227), if you 
complete it you falsify it.

5 ‘Human learning presupposes a specific social 
nature and a process by which children grow into the 
intellectual life of those around them’ (Vygotsky, 
1978: 88).

6 We would like to make an addition to Bateson’s 
phrase about a difference that makes a difference, 
and to talk of a difference that makes a difference 
that matters.

7 Interventions which, in fact, if they are to be 
intelligible to those to whom they are applied, must 
be formulated in terms of concepts already familiar 
to them. They thus, inevitably, result in people doing 
simply a variation of what is already well known to 
them – uniquely new changes are impossible.

8 ‘The problems are solved, not by giving new 
information, but by arranging what we have always 
known’ (Wittgenstein, 1953: no. 109).

REFERENCES

Anderson, D.L. (2005). ‘What you´ll say is…’: represented 
voice in organizational change literature. Journal of 
Organizational Change Management, 18: 63–77.

Argyris, C. (1990). Overcoming Organizational 
Defenses. Boston: Allyn and Bacon.

Argyris, C. (1991). Teaching smart people how to learn. 
Harvard Business Review, 69 (May–June) pp. 99–109.

Bakhtin, M.M. (1981). The Dialogical Imagination 
(edited by M. Holquist, trans. by C. Emerson and 
M. Holquist). Austin, Tx: University of Texas Press.

Bakhtin, M.M. (1986). Speech Genres and Other Late 
Essays (translated by V.W. McGee, edited by 
C. Emerson and M. Holquist). Austin: University of 
Texas Press.

Bakhtin, M.M. (1993). Towards a Philosophy of the 
Act (translation and notes by V. Liapunov, edited by 
V. Liapunov and M. Holquist). Austin: University of 
Texas Press. 

Barry, D. (1997). Telling changes: from narrative family 
therapy to organizational change and development. 
Journal of Organizational Change Management, 10: 
30–46.

Bateson, G. (1973). Steps to an Ecology of Mind. 
London: Paladin.

Boje, D.M. (2001). Narrative Methods for Organizational 
and Communicational Research. London: Sage.

Buchanan, D. (1999). The logic of political action: An 
experiment with the epistemology of the particular. 
British Journal of Management, 10: S73–S88.

Castoriadis, C. (2007). False and true chaos. In 
C. Castoriadis, Figures of the Thinkable (translated 
by H. Arnold). Stanford, CA: Stanford University 
Press, pp. 236–243.

Cooren, F. (2001). The Organizing Property of 
Communication. Amsterdam/Philadelphia, PA: John 
Benjamins.

Fairhurst, G.T. (2007). Discursive Leadership. Thousand 
Oaks, CA: Sage.

Fairhurst, G.T. and Cooren, F. (2004). Organizational 
language in use: Interaction analysis, conversation 
analysis and speech act semantics. In: Grant, D., 
Hardy, C., Oswick, C. and Putnam, L. (eds) The Sage 
Handbook of Organizational Discourse, London: 
Sage, pp. 131–152.

Feldman, M. and Pentland, B. (2003). Reconceptualizing 
organizational routines as a source of flexibility and 
change. Administrative Science Quarterly, 48: 94–118.

Feyerabend, P.K. (1987). Farewell to Reason. London: 
Verso.

Follett, M.P. (1924). Creative Experience. New York: 
Longmans.

Ford, J.D. (1999). Organizational change as shifting 
conversations. Journal of Organizational Change 
Management, 12/6: 480–500.

Ford, J.D. and Ford, L.W. (1995). The role of conversa-
tions in producing intentional change in organizations. 
Academy of Management Review. 19: 756–785.

Gabriel, Y. (2004). Narratives, stories and texts. In: 
Grant, D., Hardy, C., Oswick, C. and Putnam, L. (eds) 
The Sage Handbook of Organizational Discourse. 
London: Sage, pp. 61–78.

Gendlin, E. (1991). Thinking beyond patterns: body, 
language, and situations. In: B. den Ouden and 
M. Moen (eds) The Presence of Feeling in Thought. 
New York: Peter Lang, pp. 22–152.

Gergen, M.M., Gergen, K.J. and Barrett, F. (2004). 
Appreciative inquiry as dialogue: Generative and trans-
formative. Advances in Appreciative Inquiry, 1: 3–27.

Gleik, J. (1987). Chaos: the Making of a New Science. 
New York: Viking Penguin Books Inc.

Grant, D., Hardy, C., Oswick, C., and Putnam, L. (eds) 
(2004). The Sage Handbook of Organizational 
Discourse. London: Sage.

Hirschhorn, L. (1997). Reworking Authority. Cambridge, 
Mass.: The MIT Press.

Holland, J.H. (1995). Hidden Order. Reading, Mass.: 
Addison-Wesley.

Holman, D. and Thorpe, R. (eds) (2003). Management 
and Language. London: Sage.



APPLICATIONS348

Katz, A.M. and Shotter, J. (1996). Hearing the patient’s 
‘voice’: Toward a social poetics in diagnostic inter-
views. Social Science and Medicine, 43: 919–931.

Markova, I. (1987). On the interaction of opposites in 
psychological processes. Journal for the Theory of 
Social Behaviour, 17: 279–299.

Mead, G.H. (1934). Mind, Self and Society. Chicago: 
University of Chicago Press.

Miller, J.H and Page S.E. (2007). Complex Adaptive 
Systems. An Introduction to Computational Models 
of Social Life. Princeton: Princeton University Press.

Pentland, B. (1999). Building process theory with nar-
rative: From description to explanation. Academy of 
Management Review, 24: 711–724.

Riessman, C.K. (1993). Narrative Analysis. Newbury 
Park, CA: Sage.

Sawyer, R.K. (1999). The emergence of creativity. 
Philosophical Psychology, 12: 447–469.

Shotter, J. (1984). Social Accountability and Selfhood. 
Oxford: Blackwell.

Shotter, J. (2009). Moments of common reference in 
dialogic communication: A basis for unconfused col-
laboration in unique contexts. International Journal 
of Collaborative Practices, 1: 31–39.

Shotter, J. and Cunliffe, A.L. (2003). Managers as prac-
tical authors: everyday conversations for action. In: 
D. Holman and R. Thorpe (eds). Management and 
Language. London: Sage, pp. 15–37.

Shotter, J. and Katz, A.M. (1996). Articulating a prac-
tice from within the practice itself: Establishing 
formative dialogues by the use of a ‘social poetics’. 
Concepts and Transformation, 1(2/3): 213–237.

Taylor, C. (1985). Human Agency and Language, vol.1. 
Cambridge, UK: Cambridge University Press.

Taylor, J.R. and Van Every, E.J. (2000). The Emergent 
Organization. Mahwah, New Jersey: Lawrence 
Erlbaum. 

Thompson, J.D. (1956). On building an administrative sci-
ence. Administrative Science Quarterly, 1: 102–111.

Toulmin, S. (1990). Cosmopolis: The Hidden Agenda of 
Modernity. Chicago: University of Chicago Press.

Tsoukas, H. (2005a). Complex Knowledge. Oxford: 
Oxford University Press.

Tsoukas, H. (2005b). Afterword: Why language 
matters in the analysis of organizational change 
Journal of Organizational Change Management, 
18: 96–104.

Tsoukas, H. (2009a). Craving for generality and small-N 
studies: A Wittgensteinian approach towards the 

epistemology of the particular in organization and 
management studies. In: D.A. Buchanan and 
A. Bryman (eds). The SAGE Handbook of Organ-
izational Research Methods: 285–301. London: Sage.

Tsoukas, H. (2009b). A dialogical approach to the crea-
tion of new knowledge in organizations. Organization 
Science (published Articles in Advance, INFORMS, 
June 15 2009, pp. 1–17).

Tsoukas, H. and Chia, R. (2002). On organizational 
becoming: Rethinking organizational change. 
Organization Science, 13: 567–582.

Tsoukas, H. and Hatch, M.J. (2001). Complex thinking, 
complex practice: A narrative approach to organiza-
tional complexity. Human Relations, 54: 979–1013.

Vickers, G. (1983). The Art of Judgment. London: 
Harper & Row.

Volosinov, V.N. (1986). Marxism and the Philosophy of 
Language (trans. by L. Matejka and I.R. Titunik). 
Cambridge, MA: Harvard University Press.

Volosinov, V.N. (1987). Freudianism: a Critical Sketch. 
Bloomington and Indianapolis: Indiana University 
Press.

Vygotsky, L.S. (1978). Mind in Society: the Develop-
ment of Higher Psychological Processes. (M. Cole, 
V. John-Steiner, S. Scribner, and E. Souberman (eds). 
Cambridge, MA: Harvard University Press.

Watson, T. (1994). In Search of Management. London: 
Management.

Weick, K.E. (1979). The Social Psychology of Organizing, 
2nd edn. Reading, MA: Addison-Wesley.

Weick, K.E. (1995). Sensemaking in Organizations. 
Thousand Oaks, CA: Sage.

Weick, K.E. (2007). The generative properties of rich-
ness. Academy of Management Journal, 50: 14–19.

Weick, K.E. and Quinn, R.E. (1999). Organizational 
change and development. Annual Review of 
Psychology, 50: 361–386.

Westwood, R. and Linstead, S. (2001). The Language 
of Organization. London: Sage.

Whitehead, A. (1925). Science and the Modern World. 
New York: Free Press.

Wittgenstein, L. (1953). Philosophical Investigations. 
Oxford: Blackwell (PI).

Wittgenstein, L. (1980). Culture and Value (Introduction 
by G. Von Wright, and translated by P. Winch). 
Oxford: Blackwell (CV).

Wittgenstein, L. (1981). Zettel (2nd edn). In: G.E.M. 
Anscombe and G.H.V. Wright (eds). Oxford: 
Blackwell.



20
Organisational Learning and 

Complexity Science: 
Exploring the Joint Potential 

E v e  M i t l e t o n - K e l l y  a n d  B e n  R a m a l i n g a m

OVERVIEW

Since Cyert and March first referred to the 
term ‘organisational learning’ in 1963, the term 
and its application has drawn on many differ-
ent theories and concepts, from transaction 
costs, behavioural theories, group psychology, 
organisational development, systems thinking, 
and most recently, complexity science. The 
literature on organisational learning, by the 
very nature of the topic, is not a pure academic 
pursuit. Some views do privilege an explana-
tory and descriptive focus, written from an 
academic perspective, while much is prescrip-
tive and normative, written from the consult-
ant-practitioner perspective. 

While the academic approaches may suffer 
from a lack of realistic theoretical models 
against which to test and probe real-world 
examples of organisational learning, the 
practitioner-consultant oriented work is often 
inspirational, using emotive and symbolic 
language which often masks the problems 
and difficulties associated with learning. To 
make things more challenging, new ideas are 
introduced that sit alongside earlier concepts 
which may often be incompatible. 

The chapter will attempt to clarify what is 
meant by organisational learning through an 
exploration of how organisational learning 
concepts have evolved over time, drawing 
attention to key issues and debates faced in 
translating these concepts into practice. At 
the heart of this exploration will be four con-
trasting theories of learning which recur 
throughout the OL literature and practice. 
These theories are behavioural theories, cog-
nitive theories, social constructionist and 
gestalt learning approaches. Behavioural 
models date back to the work of Cyert and 
March (1963), the cognitive approaches have 
been articulated by Argyris and Schön (1978), 
social constructionist approaches have been 
developed by March and Olsen (1975) and 
more recent writers on learning communities 
(Wenger, 1998), while gestalt theories of 
learning have informed the work of Peter 
Senge in the Learning Organisation (1990) 
and Nonaka and Takeuchi in the Knowledge 
Creating Organisation (1995). 

We will attempt to show how a complexity 
perspective can help get inside the black box 
of learning by providing a conceptual under-
pinning for the process, scope and conditions 
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for learning, in particular showing how com-
plexity can help re-think issues such as adap-
tation, alignment and equilibrium, the 
contrast between single and double loop 
learning, social connectedness and situated 
learning theories, as well as other elements 
of the OL literature. In conclusion, the chap-
ter will attempt to lay out a future research 
agenda for organisational learning from a 
complexity theory perspective. 

INTRODUCTION 

Organisational learning: 
a brief history 

The study of organisational learning (OL) 
can no longer be said to be in its infancy, 
with underlying principles that can be traced 
back to early classical management perspec-
tives (Easterby and Lyles, 2005; Garratt, 
1999) and over 40 years of scholarship since 
Cyert and March first made reference to the 
term (Shipton, 2006). 

Organisational learning is now established 
in the management and organisational reper-
toire (Miner and Mezias, 1996; Shipton, 
2006). However, in common with other areas 
of management practice such as perform-
ance, strategy, and leadership, a clear and 
comprehensive understanding of OL is hard 
to establish (Miller, 1996). Despite a growing 
volume of studies, it still remains unclear 
‘just what learning is, how it takes place, and 
when, where and why it occurs’ (Miller, 
1996: 485, emphasis added). 

The lack of clear answers does not reflect 
a lack of research, generating perspectives 
and viewpoints on learning. Rather, it relates 
to the fact that there are diverging opinions 
about the coherence of this body of research. 
Some writers have suggested that most OL 
scholars share at least some common ground. 
Garvin (1993) notes that most view organisa-
tional learning as an unfolding process linked 
to acquiring knowledge to improve perform-
ance. Dixon (1994) suggests that there is 

broad agreement that organisational learning 
relates to intentional or unintentional learn-
ing processes, which play out at individual, 
group, organisational and sectoral levels, in 
ways which transform an organisation, its 
work, and the direction it is taking (Dixon, 
1994), for better or for worse. 

There are those who suggest many of the 
definitions of OL are complementary rather 
than fundamentally original or conceptually 
different (Matlay, 1997) and that OL research 
converges much more than might be expected 
and that is obvious at first glance (Miner and 
Mezias, 1996). 

In contrast, there are others who point to a 
distinct lack of effort among OL researchers 
to build cumulatively on earlier concepts and 
thereby developing a clear empirical focus. 
Instead the literature is marked by key texts, 
classic works, and watersheds (Rashman et al., 
2008). This has led to a fragmented field, with 
conceptual overlap and confusion (Shrivastava, 
1983; Arthur and Aimant-Smith, 2001; Snell, 
2001; Ramalingam, 2005; Ramalingam, 2006; 
Shipton, 2006). 

Others go further, and suggest that the con-
cepts of OL are ‘excessively broad, encom-
passing ... all organisational change ...’ (Cohen 
and Sproul, 1991: 1) and suffer from ‘various 
other maladies that arise from insufficient 
agreement among those working in the area 
on its key concepts and problems’ (ibid.). 

Some authors appear to strike a middle 
ground between the two extremes, suggest-
ing that conceptual diversity can be helpful 
and potentially complementary (Easterby-
Smith et al., 1998). Rashman and Hartley 
(2002), through a review of reviews, suggest 
there is a considerable degree of consensus 
on the underlying unanswered questions: 
‘Reviews of the literature, despite differences 
in approach ... find four identifiable strands:

1. the problematic nature of defining and measur-
ing OL

2. the barriers to and enablers of such learning ...; 
3. the multi-level nature of OL; and 
4. the nature of knowledge creation’ (Rashman and 

Hartley, 2002: 529)
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From this perspective, while there may not 
be shared understanding as to what OL is, 
there is at least agreement as to the questions 
that need to be posed to develop such under-
standing (Ramalingam, 2005).

Part of the reason for this divergence, as 
will be seen in a later section, is that the 
theories which hypothesise how organisa-
tional learning processes work are diverse in 
terms of their disciplinary foundations, 
and the opinion on the literature will vary 
depending on the attention one pays to the 
underlying theories (Wang and Ahmed, 
2002). As a concept and field of study, 
organisational learning represents an amal-
gam of influences, including individual cog-
nitive learning, education and heuristics, 
adult learning, action learning, organisational 
development, systems theory, and human 
resources management. As a result of this 
theoretical diversity, OL literature contains 
a number of different, and sometimes contra-
dictory, assumptions about the learning 
process, the role of individual and collective 
actors, the nature of organisational systems, 
and the way in which such systems change 
and adapt through learning (Ramalingam, 
2005). 

Also important, however, are the positions 
and stances of different authors on OL. 
This is most evident when looking at the 
transformations that are expected to result 
from learning processes. In general terms, 
OL consultants and practitioners have 
presented these transformations in pre-
scriptive terms, focusing on improvements 
to organisational behaviours, when organisa-
tions attempt to become an ideal ‘learning 
organisation’. This literature suggests a 
strong correlation between OL and perform-
ance (Simon, 1991). Some authors suggest 
that such studies dominate OL ‘… histori-
cally, learning articles and books have 
focused on general schematic models of OL, 
field-based qualitative insights, and simula-
tions’ (Miner and Mezias, 1996: 95).

By comparison, academics have tended to 
take a more explanatory, descriptive approach, 
which is interested in how learning happens, 

and how to identify the inhibiting factors 
(Shipton, 2006). This work is equally inter-
ested in empirical research into flawed 
processes of learning, which may take organ-
isations down blind alleys, and into dysfunc-
tion or dissent. (Easterby-Smith and Lyle, 
2005; Shipton, 2006)

Organisational learning is further confused 
by the emergence of a closely related field, 
that of knowledge management (KM), which 
is subject to its own conceptual vagaries, 
problems and tensions. Confusingly, many 
authors use the terms interchangeably, and 
with a wide variety of different meanings 
(Rashman et al., 2008). Increasingly, the two 
practices are seen as intertwined. 

Outline and aims of the chapter 

In the following section of this chapter, we 
seek to shed light on the diverse theoretical 
underpinnings of organisational learning 
concepts and practices. We do so by present-
ing different theories of learning (following 
Easterby-Smith et al., 1998 and Wang and 
Ahmed, 2002) and showing how these have, 
implicitly or explicitly, informed much of the 
organisational learning literature, from Cyert 
and March writing in 1963 through to Senge’s 
Fifth Discipline and more recent works. In 
doing so, we take our lead from Miller, who 
argues that: 

Part of the problem is that learning, as portrayed 
in the literature, is a haphazard and eclectic 
notion. Researchers lump together processes that 
are strikingly different in their causes, effects, and 
domains … we can only begin to understand 
learning after we have made some essential dis-
tinctions among its many varieties …. (Miller, 
1996: 485, emphasis added)

The first aim and first section of this chap-
ter is to make such a set of essential distinc-
tions with which to understand the OL 
literature. In doing so, we hope to clarify the 
key ideas of OL. 

The second and primary aim is to review and 
critique these key ideas using the theoretical 
lens of complexity science. Previous work by 
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the authors has identified a number of generic 
concepts and principles of complexity, 
moving towards a theory of complex social 
systems (Mitleton-Kelly 2003, 2004, 2006, 
2007; Mitleton-Kelly and Land, 2005; 
Ramalingam et al., 2008). 

These generic principles will be drawn 
upon to reflect upon a number of assump-
tions and concepts in the organisational 
learning literature. Our aim is to show how 
complexity principles can be used to:

question the validity of certain OL constructs; •
reinforce existing OL concepts;  •
augment OL with a more nuanced understand- •
ing; and 
suggest alternative or different ways to under- •
stand OL.

FROM LEARNING TO 
ORGANISATIONAL LEARNING: 
A THEORETICAL OVERVIEW 

Four theories of learning 

Easterby-Smith et al. (1999: 17) note that the 
‘… magic juxtaposition of the terms “organi-
sation” and “learning” stresses, rather than 
hides, the need for clear and elaborate con-
ceptualisations of what is meant by both 
“organisations” and “learning”’. In this chap-
ter we provide an elaboration of different 
learning theories, outlining a four part typol-
ogy, to be used in the subsequent exploration 
of OL literature. 

The literature on learning has wide and 
deep roots, in areas as diverse as educational 
research, cognitive behavioural sciences, 
psychological studies, innovation, and corpo-
rate management. Each of these areas offers 
a particular perspective on learning, which 
describes and provides a means of under-
standing, how individuals and groups learn. 
The key contribution of learning theories has 
been in terms of terminology and frame-
works for explaining learning processes. It 
has been suggested that there are a number of 
broad categories into which different learning 

theories fall (Wang and Ahmed, 2002) and 
we look at several below. 

Behaviour-based theories assume that 
learning is manifested by a change in behav-
iours shaped by the environment. In this 
broad set of theories, learning is the acquisi-
tion of new behaviour through a conditioning 
process involving proximal, repeated factors, 
which are central to such learning. Conditioning 
may be a learned reflex response, as with 
Pavlov’s dogs, or through a system of incen-
tives and sanctions which promote and inhibit 
different kinds of behaviours (Pavlov, 1927; 
Wolpe, 1958; Hilgard and Bower, 1966; 
Skinner, 1971; Nelson-Jones, 1996; Schein, 
1999). 

Cognitive approaches emerged as an alter-
native to behavioural approaches, and argue 
that memory and thought processes are at the 
heart of learning, and learning is a predomi-
nantly cerebral function, which focuses on 
the physiological processes of sorting and 
encoding information and events. As such, 
learning is controlled by individual learners, 
and not by the environment as argued by the 
behaviour-based theories (Bandura, 1986; 
Luthans, 1998).

Social constructivist approaches view learn-
ing as a process in which the learner actively 
constructs or builds new ideas or concepts 
based upon current and past knowledge or 
experience. Constructivist learning, therefore, 
is a very personal endeavour, whereby inter-
nalised concepts, rules, and general principles 
may consequently be applied in a practical 
real-world context. A key element of such 
approaches is that learning happens as indi-
viduals engage in talk and social activity on 
shared problems or tasks. Learning is seen as 
the process by which individuals are intro-
duced to a culture by more skilled members 
(Cook and Brown, 1999). 

Finally, gestalt approaches present a holis-
tic approach, rejecting the mechanistic per-
spectives of the stimulus–response models. A 
‘gestalt’ is an integrated whole system with 
enmeshed parts, with the whole being greater 
than the sum of the parts. At the heart of 
gestalt theories is the idea that ‘human nature 
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is organised into patterns or wholes, that it is 
experienced by the individual in these terms, 
and that it can only be understood as a func-
tion of the patterns of wholes of which it is 
made’ (Perls, 1973: 5).

From a gestalt perspective, learning is not 
just a mechanistic response to a stimulus. It 
is the understanding of a structural whole, 
through the dynamic interaction between a 
focus of interest, and its context (Wang and 
Ahmed, 2002).

Ikehara (1999) suggests that gestalt learn-
ing happens on the ‘whole’ person level, is 
an interaction between mind and body and 
between individuals and their environment, 
and takes place at cognitive, physical, emo-
tional and spiritual levels.

Contribution of theories of learning 
to organisational learning

One of the earliest literature reviews of OL 
suggests ‘there are really no rigorous theories 
of organisational learning [but] there are sev-
eral interesting conceptualisations of the 
phenomenon’ (Shrivastava, 1983: 9). If this 
is indeed the case, it might be expected that 
theories of learning will play a prominent 
role in such conceptualisations. 

This is supported by the literature itself, 
and by summary reviews during the past 
decade. Indeed, a mapping undertaken by 
Easterby-Smith et al. (1998) suggests differ-
ent approaches to organisational learning, 
which correspond closely to the learning 
theories outlined above (the technical infor-
mation processing model, the cognitive 
model and the social process model, are 
presented as key categories).

In this section, the literature on OL will be 
reviewed with reference to these four learn-
ing theories. Prominent examples of OL 
work which falls into each category will be 
presented, as well as any contrasts and 
debates evident in the literature. 

Behavioural approaches to OL
A number of the principles underlying OL pre-
date the formal use of the term in the 1960s. 

Learning was implicit in the scientific man-
agement approaches, as popularised by 
Frederick Taylor and his contemporaries. 
The focus of scientific management was on 
improving the execution of tasks or routines, 
in which learning was the result of analysis 
by a chief executive, who was then able to 
specify how tasks or routines should be under-
taken, and then create incentives for workers 
to follow. 

Studies often focused on a single dimen-
sion such as productivity and were criticised 
for their narrow focus. Single-focus models 
of learning were significantly broadened by 
the behavioural school of organisational 
learning. Cyert and March (1963) are widely 
accepted to be the first to use the term 
‘organisational learning’. They described 
firms as adaptive learning systems in which 
behaviour unfolds through standard operat-
ing procedures (Miner and Mezia, 1996). 
When performance does not meet the goals, 
problem-driven searches take place, which 
focus on retaining useful routines while dis-
carding others. The focus here is on an incre-
mental process of learning, which involves 
adjustment of goals, rules, procedures and 
routines in response to environmental chal-
lenges, thereby achieving greater ‘alignment’ 
with the environment, shown in Figure 20.1.

The central role of information processing 
in this model has been illustrated by a number 
of authors (Huber, 1991; Easterby-Smith 
et al., 1999). 

Learning involves ‘encoding inferences 
from history into routines’ that are independ-
ent of individuals, guide behaviour and 
change in response to experimentation and 
search (Levitt and March, 1988: 517). Work 
by Moorman (1995) uses survey data to dis-
tinguish between organisational information 
processing patterns. Specifically, behavioural 
theories suggest that standard operating pro-
cedures drive organisational action, and these 
institutionalised forms of actions are what 
produce results. This process is presented as 
a form of trial-and-error learning (Miner and 
Mezias, 1996). Such approaches remain 
prominent today, especially in government 
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and public sector learning; for example, Leeuw 
et al. (1994) define OL as the process of 
detecting and correcting error. More recently, 
Greve (2003) used a behavioural model of 
learning to argue for a rigorous set of quanti-
tative measures for OL. 

Cognitive approaches to OL
This approach to learning as a technical 
information-based incremental process has 
been challenged by cognitive approaches to 
OL. An early challenge specifically targeting 
the behavioural approaches of Cyert and 
March (Cangelosi and Dill, 1965) argued 
that the behavioural learning model can only 
be applied to stable, mature firms operating 
in stable environments. 

As a result, behavioural approaches were 
not seen to be relevant to organisations work-
ing in dynamic contexts. The relationship 
between individual and organisational learn-
ing, inherent in the rational utility maximis-
ing approach of Cyert and March, was seen 
as overly simplistic. In reality, these levels of 
learning are characterised by tensions and 
problems and Cangelosi and Dill (1965) con-
cluded that rational utility maximisation was 
not the fundamental underlying motivation 
for learning. 

Cognitive approaches seek to explain learn-
ing with reference to ‘mental processes from 
which are derived thought, belief, perception 
and interpretation’ (DeFillippi and Ornstein, 
2005: 22). Writers and practitioners in this 

school are concerned with knowledge struc-
tures, belief systems, and operational strategies 
(Argyris and Schon, 1978; Duncan and Weiss, 
1979), and how these factors shape individ-
ual thinking and behaviour. Specifically, cog-
nitive learning processes are those which 
result in changes to mental models held in 
long-term memory by creating new connec-
tions or altering existing associations between 
knowledge structures. 

Argyris and Schon (1978), perhaps the 
most influential scholars working within the 
cognitive approach, categorise and distin-
guish three forms of learning, as illustrated in 
Figure 20.2.

They suggest that single loop learning is 
learning within the context of existing stand-
ard operating procedures. Such incremental 
learning is presented as the main focus of the 
behavioural theories to OL. While these may 
be accurate models of such learning, they do 
not explain the most important learning that 
happens in organisations. Specifically, behav-
ioural approaches disregard both double-loop 
learning (i.e. the questioning of and change in 
assumptions, practices and policies which 
guide work), and triple-loop learning, which 
questions and adjusts the organisational para-
digms, values and purposes that motivate and 
inspire work. 

Argyris and Schon place great emphasis on 
the importance of double-loop learning and 
the empowerment of employees to challenge 
existing policies and actions in organisations. 

Organizational goals and
standard operating

procedures

Environmental outcomes

Feedback and processing
of information

Organizational Actions

Figure 20.1 Behavioural learning model
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In subsequent work, Argyris pays particular 
attention to the cognitive and social barriers 
impeding such double loop learning. He 
emphasises that rational utility maximisation 
is a rather crude way to characterise the moti-
vations of learners in organisations. Instead, 
he suggests, there are a number of individ-
ual and organisational ‘defensive routines’, 
entrenched in the minds of learners, which 
set clear limits on both individual and social 
action. 

Specifically, double loop learning ques-
tions the basis of and justifications for poli-
cies implemented in organisations, which 
often poses both potential threats and risks 
embarrassing managers and employers. This 
triggers what Argyris describes as a universal 
self-protective physiological mechanism 
which inhibits second-order learning, refer-
ring to studies done with more than 6,000 
individuals from different backgrounds, races, 
cultures, class, age and gender. By bringing 
attention to the ways in which deeply 
entrenched reactive defensive mechanisms 
shape and severely constrain what a firm can 
learn, the cognitive approaches present a 
sustained critique of the rational learning 
models of Cyert and March.

Levitt and March (1988), also in the cogni-
tive school, are more sceptical about the 
capacity of organisations to learn from past 
experience and to manage knowledge effec-
tively. In a widely cited 1988 article they 
highlight the considerable factors that weigh 
against organisational learning in practice. 

As a result of the importance of mental 
processes, the role of individual learners is 
central to the cognitive school. There is, how-
ever, some difference of opinion as to exactly 
how collective learning results from individ-
ual learning. For some authors in the cogni-
tive approach, organisational learning is 
individual learning writ large, while others 
see organisational learning as resulting from 
the organisational forms, which are created 
by individual learners, which then facilitate 
further learning and organisational transfor-
mation. This contrast can be characterised 
as the difference between a ‘macro-cognitive’ 
approach to OL and an ‘enabling environ-
ment’ (Mitleton-Kelly and Land, 2005: 44) 
approach. 

Kolb, another scholar in the cognitive school, 
uses a learning cycle to model how individu-
als learn from experience, and then extends 
this to the entire organisation. Building on 

Organisational
rationale and
contexts

Triple loop
learning change
overall organisational
rationale and context

Double loop
learning change
practices, policies
and norms

Single loop learning
change actions to correct
mismatches and errors based
on practices, policies and norms

Practices,
norms and
policies

Actions Results

Figure 20.2 Single, double and triple loop learning. Source: Ramalingam et al. (2009).
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earlier work by social and educational psy-
chologists, Kolb (1983) developed the notion 
of experiential learning as a four-stage cycle 
shown in Figure 20.3.

The Kolb model sees the process of learn-
ing as one where learners move from actor to 
observer, from specific involvement to gen-
eral analytic detachment. Learners, if they 
are to be effective, need four different abili-
ties – concrete experience, reflective obser-
vation, abstract conceptualisation and active 
experimentation (Kolb, 1996).

Honey and Mumford (1982) adapted this 
model for use by middle/senior managers in 
business. They hypothesised that different 
individuals have natural preferences for dif-
ferent ways of learning, and these relate to 
the different stages of the learning cycle. 
They described the four dominant types and 
their learning preferences as: activists, reflec-
tors, theorists and pragmatists. From this 
perspective, organisational learning requires 
that these individual orientations are 
acknowledged and capitalised upon by bring-
ing together teams which include learners 
with diverse preferences. 

Social construction approaches to OL
The third school of organisational learning is 
the social construction school. This perspec-
tive, in contrast to the two models presented 
so far, which place individual learning at the 
heart of OL, explores OL as the product of 
social interactions. 

Individuals are seen as social actors who 
collectively construct an understanding of 

what surrounds them and learn from the 
social interaction within organisational sys-
tems (Gherardi, 2000). This notion that learn-
ing takes place among and through people 
has been framed in a variety of ways in the 
OL literature (Elkjaer, 2004), including 
action learning processes and action learning 
sets (Revans, 1971, 1980), ‘situated learning’ 
(Brown and Duguid, 1991; Lave and Wenger, 
1991; Richter, 1998); social learning (Elkjaer, 
1999), practice-based learning (Gherardhi, 
2000) and communities of practice (Brown 
and Duguid, 1991; Lave and Wenger, 1991). 

According to the social construction per-
spective, learning can only be achieved 
through active participation, and as participa-
tion is constantly changing, this perspective 
focuses on change, rather than on order and 
regulations (Elkjaer, 1999). 

One of the best known examples is Revans 
(1980) work on ‘action learning sets’ empha-
sising the need to integrate cognition and 
action, with theory and behaviour, while work-
ing in the context of small groups, or ‘sets’. 
Through such learning sets, colleagues learn 
from each other tackling real problems at 
work, by paying particular attention to 
questioning. 

This model has been extended by Dixon 
(1994) who uses an organisational learning 
cycle through which information is generated 
based on the direct experience of employees, 
which is then shared and interpreted by the 
group leading to responsible collective action. 

Rather than attempting to understand what 
type of cognitive processes or conceptual 

Concrete
experience

Observations
and reflections

Formation of abstract
concepts and
generalisations

Testing implications
of new concepts in
new situations

Figure 20.3 Kolb’s experiential learning model. Source: Kolb (1983)
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structures are involved in OL, the social con-
struction perspective sets out to explain what 
type of social context is most suitable for OL, 
focusing on the group and the community, 
rather than on the mind of the individual. 
Therefore, as Elkjaer (2004: 50) argues, 
learning is perceived as a continuous activity 
that cannot be controlled; only the context 
can be controlled, thus facilitating OL to a 
greater or lesser extent. In accordance with 
the social perspective, OL is conceptualised 
as the process of social construction of 
shared beliefs and meanings in which the 
social context plays an essential role (Berger 
and Luckmann, 1967).

Combined and gestalt approaches to OL
Some of the most successful approaches to 
organisational learning have not used one 
specific approach, but instead have synthe-
sised elements considered to be complemen-
tary from different schools. For example, the 
behavioural and cognitive schools are brought 
together by Yeo in a single model of organi-
sational learning which encompasses indi-
vidual, group and organisational levels. The 
learning loops model of Argyris and Schon 
also brings these two schools together, in a 
single framework, although it does include a 
critique of approaches which focus solely on 
single-loop, behavioural learning. March 
and Olsen (1975) attempt to explore the link-
ages between individual and organisational 
learning. They do so by suggesting that indi-
vidual beliefs lead to individual actions (cog-
nitive school), which in turn may lead to 
organisational action and a response from the 
environment which may induce improved 
individual beliefs (behavioural school) and 
the cycle then repeats itself (Levitt and 
March, 1988). 

Another example is the work of Daniel H. 
Kim (1993), who suggests that organis-
ational learning takes place when implicit 
individual mental models (cognitive school) 
become explicit and are distributed more 
widely across a community (social construc-
tion) giving rise to shared mental models 
which provide a basis for collective action 

and collective meaning within the firm. Garvin 
(1993) points to five distinguishing features 
of learning organisations ‘systematic problem 
solving, experimentation and testing of new 
knowledge, learning from experience, learning 
from others, and shared knowledge and knowl-
edge-spreading mechanisms’ (1993: 110).

Other attempts to synthesise the different 
approaches have explicitly drawn on gestalt 
approaches to learning to justify such inte-
gration. Perhaps the most influential gestalt 
approach has been the work of Peter Senge 
(1990), which popularised the notion of 
organisational learning and sparked a signifi-
cant increase in the literature. The five disci-
plines are personal mastery, mental models, 
team-based learning, shared vision, and 
systems thinking. 

Each of the first four disciplines can be 
seen as building on a particular intellectual 
tradition. Personal mastery and mental 
models draw from cognitive approaches, 
while team-based learning and shared vision 
draw on the social constructionist schools. 
These disciplines are brought together by 
systems thinking, the eponymous ‘fifth dis-
cipline’. Senge (1990) argues that organisa-
tional learning is only successful when it is 
based on an understanding of how the whole 
organisational system is connected, rather 
than focusing on individual parts. Such 
understanding is facilitated by systems think-
ing approaches, which enable organisations 
to react better to archetypal patterns, which 
are manifest in the wider world. The under-
lying principle is how an organisation 
behaves differently, based on its sensing of 
the environment; this can be seen as an 
example of the behavioural school. Senge 
was able to bring together elements of the 
main learning theories into a coherent pack-
age – a clearly communicated and compelling 
set of ideas, presented in a way which appealed 
to managers, practitioners and researchers 
alike. The Fifth Discipline is widely acknowl-
edged as a watershed for organisational learn-
ing, both practically and theoretically. From 
a gestalt perspective, however, it is sug-
gested that the Fifth Discipline popularised 
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some appealing but overly simplistic holistic 
concepts (Jackson, 2005).

More recently, the five disciplines learning 
organisation model, has been adapted and 
extended into a model of the ‘practically wise 
organisation’ (Rowley and Gibbs, 2008), with 
the addition of two extra ‘disciplines’. Jamali 
et al. (2006) use the five disciplines to explore 
a new management paradigm for the public 
sector, of the post-bureaucratic organisation. 
Whereas in the old public management para-
digm the guiding values were hierarchical 
line management, inward focus, cutting costs, 
complying with rules, and dividing labour 
into simple and narrowly defined tasks; post-
bureaucratic management is guided instead 
by ‘consensus decision-making, implicit con-
trol, trust, egalitarianism, and a holistic con-
cern for people’ (ibid., 2006: 339).

Another key text that also makes use of 
gestalt concepts is the work of Nonaka and 
Takeuchi (1995). An important part of The 
Knowledge Creating Company is devoted to 
the contrast between Western and Eastern 
ways of thinking. They argue that the Eastern 
view of the world is systemic (holistic, in 
gestalt terms) compared to the Western sys-
tematic, or reductionist, way of approaching 
situations. The book suggests that the latter 
should be abandoned in favour of a holistic 
view.

Nonaka and Takeuchi define knowledge 
creation as the result of the spiralling process 
of interaction between tacit knowledge (or 
know-how, which is hard to express, but can 
be demonstrated) and explicit knowledge 
(which can be articulated in words). They 
suggest that there are four key processes 
through which knowledge is created, namely, 
Socialisation, Externalisation, Combination 
and Internalisation (SECI). 

Together, these processes make up the 
SECI principles, which provide a set of point-
ers that can be used by managers to ensure 
that they are facilitating effective knowledge 
and learning in their ongoing projects and 
programmes. This model is a combination of 
cognitive and social constructionist schools 
of learning. Nonaka and Takeuchi emphasise 

the importance of ba, a Japanese word with 
no literal English translation, but which is in 
line with the ideas of holism from gestalt 
theories. 

THE IMPLICATIONS OF COMPLEXITY 
SCIENCES FOR OL

Complexity science is increasingly being 
seen by academics as a means of understand-
ing organisations (Chiva, 2003) with poten-
tial relevance for OL. Mathews et al. (1999) 
argue that Complexity Science has the poten-
tial to extend and enhance our knowledge of 
organisational change and transformation 
processes, while Cohen and Sproul (1996) 
suggest that the literature on OL shows a 
certain affinity with the literature on complex 
adaptive systems. However, relatively few 
attempts have been made to bring these ideas, 
systematically and thoroughly, to bear on the 
OL literature (Chiva, 2003). 

We will make an initial attempt to do so 
here, by reviewing the ideas in each of the 
schools of OL from a complexity perspective. 
In particular, we will explore the strengths 
and weaknesses in the OL approaches out-
lined above, and assess what complexity 
 science can contribute, to deepen our under-
standing of OL.

Behavioural OL and 
complexity sciences 

The behaviourist models popularised by 
Cyert and March focus on adaptation to an 
external reality which is the result of a 
rational, utility-maximising information proc-
ess. This leads to changes in standard operat-
ing procedures and goals, to reach a better 
alignment with the environment. Each of 
these highlighted ideas is critiqued below.

Key points from complexity sciences are: 

The idea of adaptation is central to complex  •
adaptive systems (CAS) theory (Anderson, 1999; 
Axelrod and Cohen, 1999). CAS are made up of 
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interconnected agents that seek to enhance their 
fitness through adaptations. Adaptability is seen 
as a particular system’s capacity to adjust to 
changes in the environment without endanger-
ing its essential organisation, and is therefore 
also related to notions of resilience and diversity 
(Hollings, 2001). 
Stuart Kauffman’s influential work (1993, 1995)  •
has presented the idea of an ‘adaptive walk’ on 
a fitness landscape, in which adaptive agents 
are moving to places of optimal fitness. From 
this perspective, any organisation can be seen 
as composed of agents that seek to maximise 
fitness by making adjustments in how they view 
and interact with other agents and the environ-
ment (Dooley et al., 2003).
The driver of such behaviour, however, is not  •
the rational utility-maximising search for some 
optimal solution, as might be inferred from the 
notion of ‘alignment’ posited by the behavioural 
approach to OL. First, ‘any strategy can only be 
optimum under certain conditions, and when 
those conditions change, the strategy may no 
longer be optimal’ (Mitleton-Kelly, 2003: 36). This 
means that the organisation needs to explore its 
space of possibilities, or alternative strategies, to 
generate a variety of responses under different 
environmental conditions and to work simulta-
neously on several distributed micro-strategies 
(Mitleton-Kelly, 2003: 36). Second, rather than 
gathering perfect information that would be 
necessary for utility maximising choices, in reality 
each agent observes and acts on local informa-
tion only, derived from those other agents to 
which it is connected (Anderson, 1999). 
This means that organisations have a mutually  •
adaptive or co-evolutionary relationship with 
their environment, such that they are not simply 
trying to align with a known, stable environment, 
but rather the organisation is learning to adapt 
to an environment that is itself influenced and 
changed by the decisions and actions of other 
organisations and by wider societal, technological 
and political changes (Anderson, 1999; Axelrod 
and Cohen, 1999; Boisot and Child, 1999). Stacey 
(1996: 36) argues that: ‘As human agents and 
the systems they make up move around the 
behavioural loop of discovery, choice and action, 
they are clearly engaging in a co-evolutionary 
feedback process in which what one does affects 
the others and then returns to affect the first’.
In biology, as entities and organisms interact and  •
adapt within an ecosystem they alter ‘both the 

fitness and the fitness landscape of the other 
organisms’ (Kauffman 1995: 242). The way each 
element influences and is in turn influenced by 
all other related elements in an ecosystem is part 
of the process of co-evolution. The rate of co-
evolution (McKelvey and Yuan, 2004) is another 
key dimension to consider (Antonacopolou and 
Chiva, 2007). 

Cognitive approaches and 
complexity science

The cognitive approach suggests that indi-
vidual mental processes are at the heart of 
organisational learning. Learning processes 
are seen as either writ large to the group and 
organisational levels, or are enhanced and 
supported by effective organisational struc-
tures and processes. 

Key points from complexity sciences are: 

Complexity science hypothesises that social sys- •
tems have underlying schemata that enable the 
coordination of multiple agents. Social systems 
reflect such schemata in their routines and 
practices (Axelrod and Cohen, 1999). However, 
in complexity, such schemata are not standard 
operating procedures, as posited by the behav-
ioural OL school. Nor are they merely mental 
processes, as posited by the cognitive school. 
Rather, they are defined as ‘a set of rules that 
reflects regularity in experiences and enables 
a system to determine the nature of further 
experience and make sense of it’ (Stacey, 1996: 
289). Such schemata are created by actors in an 
interactive relationship and provide a framework 
enabling agents to anticipate the results of their 
actions (Holland, 1995; Stacey, 1996; Anderson, 
1999). In organisational systems, agents might 
be individuals, groups, or a coalition of groups. 
After scanning their environment, agents develop 
schemata as rules for action and interpretation. 
Routines and practices are schemata, that is, 
operating procedures which co-evolve along 
with the general principles governing the system. 
Learning occurs when there is a change in the 
schema; agents learn becoming more robust, 
more reliable while widening their adaptive fea-
tures (Antonacopolou and Chiva, 2007).
The notion of single loop learning as working  •
within existing mental models and double loop 
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learning as challenging them, simplifies the 
reality of constantly interacting schemata, com-
peting and evolving in a complex social system. 
Changes in agents’ schemata, interconnection 
among agents, or the fitness function that agents 
employ produce different learning outcomes. 
Such learning is not amenable to management 
control or authority, but is in important ways, 
self-organised and emergent. As Chiva (2003) 
notes, this may be just as true for single loop 
learning as double loop learning. 
The relationship between individual and organi- •
sational learning is under-theorised in cognitive 
OL approaches; it is not just a case of OL being 
the sum of individual learning. According to 
complexity OL is not the sum of all the learning 
of individuals; it is the outcome of interactions 
between the learners (Ramalingam et al., 2008). 
OL is an emergent property, which is systemic 
and is therefore more than the sum of the parts. 
If we were to understand the process of emer-
gence, we would go a long way to understanding 
OL. Once the emergent has been created in a 
micro to macro process, it also affects the inter-
acting entities. In other words, once OL happens 
at the macro level, it affects individual learning 
and learners at the micro level. It does so in two 
ways: (a) it opens up new possibilities; while at 
the same time it (b) constrains the behaviour of 
the interacting individuals and their future learn-
ing (Juarrero, 2002; Kaminska-Labbe et al., 2006; 
Mitleton-Kelly, 2007). 

Social constructionist OL 
and complexity

The social constructionist school, with its 
focus on learning as emerging from social 
interactions, has much in common with key 
complexity concepts. Complexity, however, 
adds a deeper understanding of the process, 
by providing an explanatory framework. 

Key points from complexity sciences are: 

In particular, the notions of interconnectedness  •
as a way to describe different kinds of interac-
tivity has been used by numerous authors to 
suggest the different kinds of learning that might 
occur in an organisation or group. Complexity 
hypothesises not just that interactions matter 
for learning, but goes further to suggest that, 

the manner in which groups are interconnected, 
has a profound effect on the kinds of learning 
that can take place (Ramalingam et al., 2008). It 
suggests both going beyond a knowledge-based 
view of interaction and also developing a more 
detailed understanding of the extent to which 
that interaction is essential for understanding 
how learning takes place. 
Complexity also provides an explanation of how  •
environments can either inhibit or enable indi-
vidual learning and the contribution of individu-
als to the learning process. In complex systems, 
there are networks of relationships with different 
degrees of connectivity. Degree of connectivity 
means strength of coupling (Marion, 1999) and 
the dependencies known as epistatic interactions 
(Kauffman, 1993; Mitleton-Kelly 2003); i.e. the 
extent to which the fitness contribution made by 
one individual depends on related individuals. 
This is a contextual measure of dependency, of 
direct or indirect influence that each entity has 
on those it is coupled with. 
In a social context, each individual belongs to  •
many groups and different contexts and his/her 
contribution in each context depends partly on 
the other individuals within that group and the 
way they relate to the individual in question. An 
example would be a new member joining a team. 
The contribution to learning, that individual will 
be allowed to make to that team may depend on 
the other members of the team and on the space 
they provide for such a contribution, as much as 
to the skills, knowledge, expertise, etc. brought 
by the new member (Mitleton-Kelly, 2003).
This interdependence also helps clarify why each  •
agent carries out a function within a particular 
context, which itself is defined by the agents’ 
relationships with other agents (Holland, 1995). 
It is diversity of the agents that allows a social 
system to remain viable. Inherent heterogeneity 
provides the basis for renewing the system and 
the social conditions that allow it to function. In 
this model, learning emerges as a result of the 
conjunction of networks of varied and often con-
flicting individuals, groups, functions, policies, 
and processes (Uhl-Bien et al., 2007).
The self-organising nature of social emergence  •
suggests that leaders cannot directly control 
complex network dynamics, but rather can 
direct those dynamics towards learning by cre-
ating the appropriate conditions and fostering 
learning-oriented behaviours and activities of 
members (Marion and Uhl-Bien, 2001), that is, 
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by creating an enabling environment (Mitleton-
Kelly, 2003). 
Perhaps the most comprehensive review of social  •
learning and complexity is by McKelvey and 
Yuan (2004). Through the use of agent-based 
models, the authors seek to test a number of 
hypotheses related to a more dynamic form 
of the theory of situated learning, and to the 
kinds of linkages that can enable learning. The 
hypotheses, paraphrased, relate to how the rate 
and amount of group learning varies with group 
size and the number of interactions within a 
group. In particular, the notion of a ‘complexity 
catastrophe’ is shown to occur when excesses in 
both size and interconnections lead to excessive 
learning failures, as well as ‘suboptimal learning 
adaptations’. Large groups jeopardise learning 
opportunities for individuals, whereas groups 
which are too small are unable to adequately 
explore the fitness landscape, therefore missing 
on adaptive opportunities. 

The gestalt school and complexity 

As with the social construction school, com-
plexity adds to and augments the gestalt 
approaches, which share much common 
ground with complexity. 

Key points from complexity science are:

The focus on systems thinking in the gestalt  •
school is especially interesting because of the 
close relationship this has with complexity sci-
ence. From Senge’s perspective (1990), systems’ 
thinking focuses on seeing interrelationships 
rather than linear cause-effect chains, and seeing 
processes of change rather than snapshots. This 
leads to a search for certain types of systems 
structures that recur again and again: the deeper 
patterns lying behind events and details, to 
which an organisation can then know how to 
best react.
Systems theory covers the concepts of connectiv- •
ity, interdependence, feedback and emergence, 
but is limited to those concepts. Complexity 
theory builds and extends those concepts and 
adds new ones such as co-evolution, exploration 
of the space of possibilities, self-organisation, 
far from equilibrium, historicity and others, to 
provide a coherent description, of organisations 
as complex social systems (Mitleton-Kelly, 2003). 

An important difference is that, systems thinking 
posits the possibility that an organisation can 
achieve equilibrium, with the implication that OL 
helps an organisation achieve such a ‘balanced 
state’. By contrast, complexity suggests that an 
organisation may never reach a stable equilib-
rium, but may move around the space of pos-
sibilities, constantly co-evolving with a changing 
broader environment; the implication being that 
OL helps to navigate the inherent uncertainty of 
a constantly changing environment (Ramalingam 
et al., 2008). 
Jamali et al. argue that in the change from a  •
bureaucratic or a post-bureaucratic organisation, 
Senge’s five disciplines become emergent proper-
ties arising from the interaction, combination and 
co-evolution of post-bureaucratic properties leading 
to the creation of a complex learning organisation. 
Emergent properties and nonlinear relationships 
from complexity theory are brought in to augment 
the five disciplines (Jamali et al., 2006).
Stacey’s (2003) complex responsive processes  •
provide a radical re-visioning of organisations 
as essentially being dynamic processes of com-
munication: ‘Learning is emerging shifts in the 
thematic patterning of human action … Learning 
occurs as shifts in meaning and it is simulta-
neously individual and social. Learning is the 
activity of interdependent people and can only be 
understood in terms of self-organising communi-
cative interaction and power relating in which 
identities are potentially transformed. Individuals 
cannot learn in isolation and organisations can 
never learn’ (Stacey, 2003: 8–9). 

TOWARDS A FUTURE 
RESEARCH AGENDA 

The value of complexity, as we hope to have 
illustrated, is not only in helping to integrate 
different theoretical approaches to OL 
thereby providing a bridge between the 
behavioural, cognitive, social and gestalt 
approaches. Complexity science also pro-
vides an explanatory framework to help us 
understand OL and how to enable it. 

Complexity can deepen certain concepts, 
challenge others, and add nuance. Moreover, 
it can help us develop a ‘continuous’ theoreti-
cal thread, which helps to move intellectually 
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from the individual to the group and the 
organisational and inter-organisational levels, 
and presents concepts and hypotheses around 
how organisational learning actually happens 
in practice. Because the principles of com-
plexity are scale-invariant, the emergent proc-
esses are similar from individual to group, 
group to organisational, and organisational to 
sectoral, it provides a mechanism for devel-
oping hypotheses that are integrated across 
the different levels. 

A future research agenda would include 
the following:

Identification, description and explanation of:  •
the inhibitors and enablers of OL within the  −
context of an enabling environment;
how the process of learning transitions from  −
micro to macro levels or from individual to 
group, organisational and inter-organisational 
levels.

An explication of Miller’s (1996) challenge to  •
consider ‘just what learning is, how it takes 
place, and when, where and why it occurs’ draw-
ing on the key principles of complexity science.
Questioning the limitations of existing  •
approaches.
Challenging the validity of under-theorised OL  •
constructs, and augmenting these with a more 
nuanced and evidence-based understanding.
Exploring alternative ways to understand OL to  •
inform practice, based on empirical research.

However, there is a challenge for both the 
OL and the complexity communities in taking 
such an agenda forward. Specifically, the 
question is how to move future work beyond 
‘interesting conceptualisations’, of which there 
are many in the OL literature, towards sys-
tematic theories. At present, there are rela-
tively few applications of complexity to OL, 
and of these few are empirically based. The 
challenge, then, is how to take forward this 
research agenda in an evidence-based and 
systematic manner. The OL community is a 
fragmented one, and lacks a common explor-
atory framework to draw itself together to 
address longstanding issues. We believe 
complexity science has the potential to pro-
vide this framework, by offering a common 

ground. OL approaches do have a natural 
affinity with complexity and the potential 
benefit to both the OL and the complexity 
communities of taking this shared agenda 
forward would be considerable. 
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INTRODUCTION

This chapter is an attempt to explore the 
implications of the emerging science of com-
plexity for the management of organizations. 
It is not intended as an introduction to com-
plexity thinking, but rather an attempt to 
consider the ‘So what?’ question – the one of 
real importance to managers trying to do 
their jobs. The general message is that there 
is no single ‘optimal’ way to manage an 
organization and that management is – and 
always will be – as much an art as it is a 
science. In a sense complexity thinking is 
about limits and, specifically, about limits to 
what we can know about our organizations 
and the environment in which they operate. 
Because of these limits to knowledge there 
are, then, limits to what we can achieve in a 
pre-determined, planned way. This therefore 
implies a switch from traditional management 
methods to the acceptance of a ‘learning’ 
approach in which actions and decisions are 
part of an ongoing learning process through 
which our understanding and knowledge 
evolve as we attempt to fit experience into 

our changing interpretive framework of the 
situations we face.

The first section explores the difference 
between the view that organizations are com-
plicated and the view that organizations are 
complex. This distinction leads to very dif-
ferent conclusions about what we can mean 
by the term ‘management theory’. This first 
section is a little philosophical so I hope it 
doesn’t scare anyone off! Linear (compli-
cated) thinking is often rather superficial and 
simplistic, whereas nonlinear (complex) is 
more sophisticated and often requires more 
time to do properly. Complexity thinking 
actually requires us to spend a little more 
time thinking and a little less time working.

The next section presents and discusses an 
important concept in complexity thinking: 
incompressibility. It is this very notion that 
denies the possibility of a nice and neat 
theory of organization that managers might 
learn and execute. I’m sorry – being a good 
manager is always going to be a challenging 
job; there’s no easy way out!

The penultimate section considers three 
schools of thinking within the complexity 
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community followed by a brief discussion of 
how each school might inform management 
activity. Some concluding remarks will be 
offered to close the article, but first let’s con-
sider what we might mean by labeling an 
organization ‘complex’.

ORGANIZATIONS: COMPLEX 
OR COMPLICATED?

What if human organizations were compli-
cated rather than complex? The simple 
answer to this question is that the possibility 
of an all-embracing Theory of Management 
would almost certainly exist. This would 
make management very easy indeed as there 
would be a book of theory (The Management 
Bible – it would probably challenge the cur-
rent all-time bestseller in sales!) that would 
tell the practicing manager what to do in any 
given context. The means of achieving effec-
tive and efficient organizational management 
would no longer be a mystery. But what is it 
about the concept of ‘complicated’ that 
makes this scenario plausible? Why has the 
possibility of a final management theory not 
been realized yet, given the millions of man-
hours and published pages devoted to the 
search? Why does approaching organizations 
as ‘complex’ rather than ‘complicated’ deny 
us of this possibility? 

A very common (but inadequate) descrip-
tion of a complex system is that such systems 
are made up of a large number of parts that 
interact nonlinearly.1 But, by this definition 
the modern computer for example, would be 
a complex system. A modern computer is 
crammed full of transistors which all respond 
nonlinearly to their input(s). Despite this 
‘complexity’ (sic) the average PC does not 
show signs of emergence or self-organization 
and neither gets bored nor happy; it simply 
processes (in a linear fashion) the instruction 
list (i.e. a program) given to it by its pro-
grammer. Even the language in which it is 
programmed is rather uninteresting. Although 

there are many programming languages, they 
can all be translated into each other with 
relative ease. Technically this is to say that 
computer languages are commensurable with 
each other. A line of code in C# can be trans-
lated into Visual Basic very easily – the one 
line of C# code may require more lines of 
VB code to achieve the same functionality 
but it can be done in the vast majority of 
cases. The universal language into which all 
such languages can be translated without loss 
is called ‘logic’ (more accurately, Boolean, 
or even binary, logic). More often though, if 
a programmer wants to use a language very 
close to the universal language of computing, 
assembly is used as this at least contains con-
cepts that are more easily read by mere 
mortal programmers (although the domain 
knowledge – microelectronics – needed to 
program in assembly is a major require-
ment). This is then translated (without loss) 
into machine code (which is based on Boolean 
logic) – writing sophisticated programs 
directly in the language of the 0s and 1s of 
Boolean logic is nigh on impossible. The 
computer cannot choose the way it interprets 
the program, it cannot rewrite the program 
(unless it is programmed to in a prescribed 
manner), and it cannot get fed up with run-
ning programs and pop to the pub for a swift 
pint! So, what is it about the modern compu-
ter that prevents it from being labeled a com-
plex system, but rather a complicated system?

The critical element is feedback – reflect-
ing the strong interconnections. It is the 
existence of nonlinear feedback in complex 
systems that allows for emergence, self-
organization, adaptation, learning and many 
other key concepts that have become synony-
mous with complexity thinking – and all the 
things that make management such a chal-
lenge. It is not just the existence of feedback 
loops that leads to complex behavior, but the 
interaction between them that is important. 
Once we have three or more interacting feed-
back loops (which may be made up from the 
interactions of many parts) accurately pre-
dicting the resulting behavior via standard 
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analytical methods becomes problematic 
(at best) for most intents and purposes. 

In a relatively simple complex system 
containing as few as, say, fifteen parts/
components, there can be hundreds of inter-
acting feedback loops. In such instances the 
only way to get a feel for the resulting dynam-
ics is through simulation, which is why the 
computer (despite its rather uninteresting 
dynamics) has become so important in the 
development of complexity thinking. We say 
that the prediction of overall system behavior 
from knowledge of its parts is intractable. 
Basically, absolute knowledge about the parts 
that make up a system and their interactions 
provides us with very little understanding 
indeed regarding how that system will behave 
overall. Neither do we understand how the 
overall behavior may feedback on that of the 
individual elements in a multi-level dynamic. 
Often the only recourse we have is to sit back 
and watch. In a sense the term complex system 
refers to systems which, although we may 
have a deep appreciation of how they are put 
together (at the microscopic level), we may 
be completely ignorant of how the resulting 
macroscopic behavior comes about – i.e. 
complexity is about limits to knowledge, or 
our inevitable ignorance. 

Without this understanding of causality, 
planning for particular outcomes is very dif-
ficult indeed. In the computer (which we will 
now class as a complicated system) causality 
is simple, i.e. low dimensional – few (inter-
acting) feedback loops (although there are 
many millions of connections). In complex 
systems, causality is networked making it 
very difficult indeed, if not impossible, to 
untangle the contribution each causal path 
makes. It is hard enough to grasp the possi-
bilities that flow from a small group of 
people let alone the mind-boggling possibili-
ties that might be generated from a large 
multi-department organization. Maybe this is 
why a major part of management tends to be 
suppressing all these possibilities so that one 
individual might begin to comprehend what 
remains – departmentalization is an obvious 
example of a complexity reduction strategy.

Another unexpected property of complex 
systems is that there exist stable abstractions, 
not expressible in terms of the constituent 
parts, that themselves bring about properties 
different from those displayed by the parts. 
This sentence is a bit of a mouthful, but I 
have here succinctly described the process of 
emergence although in a rather awkward 
way. This is deliberate. More often than not 
emergence is portrayed as a process from 
which macroscopic properties ‘emerge’ from 
microscopic properties, i.e. the properties of 
the whole emerge from the properties of its 
parts. But this is an overly simplistic view of 
emergence. When recognizing the products 
of emergence, e.g. novel wholes, what is 
really happening is that we are abstracting 
(which essentially means information filter-
ing, i.e. ignoring some information in favor 
of paying attention to some other information 
that comprises some kind of pattern) away 
from the description in terms of parts and 
interactions, and proposing a new description 
in terms of entities or concepts quite different 
from the constituent parts we started with – 
regarding an organization as a collection of 
interacting departments rather than a collec-
tion of individual people is the same process. 
What are emergent are new capabilities and 
functionalities of which the constituent 
microscopic entities are quite incapable 
which calls into question all theories and 
models cast in terms of typical, average or 
representative agents. The new, higher level 
entities have novel properties in relation to 
the properties the constituent parts have, i.e. 
whole departments do not act just like indi-
vidual people, and ‘team-ness’ is not the 
same as ‘person-ness’. What is even more 
interesting is that these supposed abstrac-
tions can interact with the parts from which 
they emerged – a process known as down-
ward causation. I won’t go into the problem-
atic nature of the concept of emergence any 
further here – please refer to Richardson 
(2004) – suffice to say that the view that the 
process of emergence is captured by the 
expression ‘the whole is greater than the sum 
of its parts’ is far too simplistic. 
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In specially idealized complex systems 
such as in cellular automata (see the Wiki link 
below) the parts are very simple indeed, and 
yet they still display a great deal of emergent 
phenomena and dynamical diversity. Complex 
systems which contain more intricate parts 
are often referred to as complex adaptive sys-
tems or CASs, in which the parts themselves 
are described as complex systems. The parts 
of CASs contain local memories and have a 
series of detailed responses to the same, as 
well as different, contexts/scenarios. They 
often have the ability to learn from their mis-
takes and generate new responses (by com-
bining with other parts for example) to 
familiar and novel contexts. Because of this 
localized decision-making/learning ability 
such parts are often referred to as (autono-
mous) agents. There is a profound relation-
ship between simple complex systems (SCSs), 
i.e. complex systems comprised of simple 
parts, and CASs, i.e. complex systems com-
prised of intricate agents. The Game-of-Life, 
a particularly well-known SCS, shows how a 
CAS can be abstracted, or emerges, from a 
SCS! Intuition might tell us that a CAS is an 
intricate SCS with something ‘extra’ added, 
something different that drives adaptive evo-
lution. The Game-of-Life demonstrates that 
our intuition is, as is often the case in com-
plexity thinking, too simplistic. If you are 
unfamiliar with the Game-of-Life, ‘invented’ 
by John Conway, then I recommend starting 
with the Wiki at http://en.wikipedia.org/wiki/
Conway’s_Game_of_Life. The Game-of-Life, 
and other cellular automata-like systems, 
offer an entertaining way to learn a great deal 
about complex systems dynamics, and to 
begin to develop a deep appreciation for the 
systems view of the world.

COMPLEXITY AND 
INCOMPRESSIBILITY

Cilliers (2005) introduces the idea of incom-
pressibility:

We have seen that there is no accurate (or rather, 
perfect) representation of the system which is 
 simpler than the system itself. In building 
representations of open systems, we are forced to 
leave things out, and since the effects of these 
omissions are nonlinear, we cannot predict their 
magnitude. (p. 13)2

It is this concept of incompressibility that 
leads us away from a managerial monism – a 
definitive theory of management – to a mana-
gerial pluralism (assuming organizations are 
complex rather than merely complicated) – 
in which many theories co-exist each with 
their own unique strengths and weaknesses. 
Restating Cilliers, the best representation of 
a complex system is the system itself, and 
any alternative representation of the system 
will be incomplete and, therefore, can lead to 
incomplete (or even just plain wrong) under-
standing. One must be careful in interpreting 
the importance of incompressibility. Just 
because a complex system is incompressible 
does not mean that there are not (incomplete) 
representations of the system that may be 
useful – incompressibility is not an excuse 
for not bothering. Indeed, dealing with com-
plex systems may be precisely about finding 
descriptions and interpretive frameworks that 
are sufficiently simple to think about, but 
which are shown to be useful pragmatically. 
This is rather fortunate otherwise the only 
option available, once we accept the impos-
sibility of an ultimate theory, is to have no 
theory at all – not a very satisfactory out-
come (and contrary to what experience would 
tell us); I think I’d rather know something 
that is wrong rather than nothing at all. 
Knowing something and knowing how it is 
wrong is even better! Equally useful is know-
ing something that is wrong, and knowing 
why it is wrong. 

Building on the work of Bilke and 
Sjunnesson (2002), Richardson (2005a) 
recently showed how Boolean networks 
(which are a type of SCS) could be reduced/
compressed in such a way as to not change 
the qualitative character of the uncompressed 
system’s phase space, i.e. the compressed 
system had the same functionality as the 
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uncompressed system. If nothing was lost in 
the compression process, then Cilliers’s claim 
of incompressibility would be incorrect. 
However, what was lost was a great deal of 
detail of how the different attractor basins 
(regions that describe qualitatively different 
system’s behavior) are reached. Furthermore, 
the reduced systems are not as tolerant to 
external perturbations as their unreduced 
parents. This evidence would suggest that 
stable and accurate – although imperfect – 
representations of complex systems do indeed 
exist. However, in reducing/compressing/
abstracting a complex system certain poten-
tially significant details are lost. Different 
representations capture different aspects of 
the original system’s behavior. We might say 
that, in the absence of a complete representa-
tion, the overall behavior of a system is 
at least the sum of the behaviors of all our 
simplified models of that system, although 
if there are ‘contradictions’ in the suggested 
behaviors, these should be treated with greater 
caution. Richardson (2005a) concludes that:

Complex systems may well be incompressible in an 
absolute sense, but many of them are at least 
quasi-reducible in a variety of ways. This fact indi-
cates that the many commentators suggesting 
that reductionist methods are in some way anti-
complexity – some even go so far as to suggest 
that traditional scientific methods have no role in 
facilitating the understanding complexity – are 
overstating their position. Often linear methods 
are assessed in much the same way. The more 
modest middle ground is that though complex 
systems may indeed be incompressible, most, if 
not all, methods are capable of shedding some 
light on certain aspects of their behavior. It is not 
that the incompressibility of complex systems pre-
vents understanding, and that all methods that do 
not capture complexity to a complete extent are 
useless, but that we need to develop an awareness 
of how our methods limit our potential under-
standing of such systems. (p. 380)

In short, all this is saying is that we can 
indeed have knowledge of complex organiza-
tions, but that this knowledge is approximate 
and provisional, meaning that it is less and 
less reliable the further we look into the future. 

This may seem like common sense, but it is 
surprising how much organizational knowl-
edge is acted upon as if it were  perfectly 
correct. Instead one should always consider 
that although this is what we think will prob-
ably happen, we should monitor everything 
carefully because it might not! 

Of course, if simplified representations of 
a complex system can be useful then we have 
to admit that there could be many of them. 
The suggestion that there are multiple valid 
(meaning useful) representations of the same 
complex system is not new. The complemen-
tary law (e.g. Weinberg, 1975) from general 
systems theory suggests that any two differ-
ent perspectives (or models) about a system 
will reveal truths regarding that system that 
are neither entirely independent nor entirely 
compatible. More recently, this has been 
stated as: a complex system is a system that 
has two or more non-overlapping descrip-
tions (Cohen, 2002). I would go as far as to 
include ‘potentially contradictory’ suggest-
ing that for complex systems (by which I 
really mean any part of reality I care to 
examine) there exists an infinitude of useful, 
non-overlapping, potentially contradictory 
descriptions. Maxwell (2000) in his analysis 
of a new conception of science asserts that:

Any scientific theory, however well it has been 
verified empirically, will always have infinitely 
many rival theories that fit the available evidence 
just as well but that make different predictions, in 
an arbitrary way, for yet unobserved phenomena. 
(p. 18)

The result of these observations is that to 
have any chance of even beginning to under-
stand complex systems we must be willing to 
approach them from many directions – we 
must take a pluralistic stance. This pluralist 
position provides a theoretical foundation for 
the many techniques that have been devel-
oped for group decision making, bottom-up 
problem solving, distributed management; 
any method that stresses the need for synthe-
sizing a wide variety of perspectives in an 
effort to better understand the problem at 
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hand, and how we might collectively act to 
solve it.

COMPLEXITY AND PLURALISM

The non-dogmatic attitude that complexity 
thinking imposes upon us undermines the 
whole notion of a unified theory of com-
plexity, i.e. theoretical monism. A simplistic 
view of unification would be similar to the 
example above about computer languages. 
Unification of this sort would suggest that if 
we work very hard indeed, eventually we 
will not only have at hand all the relevant 
laws of complexity, but that these different 
laws could be derived from one underlying 
principle. This is very much the basis of 
Theories of Everything (TOEs) in the physi-
cal sciences. Although there will exist a plu-
rality of theories, they will all be coherent in 
that they can be expressed in terms of a more 
fundamental/general language (likely to be a 
form of mathematics) without any loss of 
detail. We might refer to this as commensur-
able pluralism. However, if we assume that a 
complex systems perspective provides a more 
appropriate basis from which to understand 
our surroundings, then we must address the 
issue of incompressibility. Incompressibility 
leads to a different sort of pluralism alto-
gether; a pluralism in which the different 
theories/representations are not all reducible 
to a fundamental language without loss of 
detail – even if we agree that a theory of 
individual psychology is more fundamental 
(i.e. lower-level) than a theory of team 
dynamics, all team dynamics will never be 
described in terms of individual psychology 
only. In such a pluralism the different repre-
sentations are generally incommensurable 
with each other (i.e. not expressible in terms 
of each other), and rather than leading to a 
coherent TOE, a patchwork of overlapping 
theories results. Within such incommensurable 
pluralism there will be opportunities for limited 
translations, reductions and simplifications, but 

a TOE will never result. In this situation the 
critical importance of context also becomes 
apparent. Each approach in the patchwork 
will be valid only for a certain range of con-
texts, and so matching theory to context 
becomes ever so important. However, a 
feature of complex systems is that context 
recognition is not a trivial exercise, as to 
define a context we must ignore some aspects 
of the situation of interest (as in the process 
of abstraction described above). Contexts 
which appear similar may actually be quite 
different, and so the process of matching 
theory to context is problematic at best, 
which again highlights the importance of 
approaching real world problems from many 
different directions. Furthermore, complex 
systems evolve (in a qualitative sense) and so 
fundamentally novel contexts emerge requir-
ing new theoretical syntheses. If we assume 
that human organizations are best described 
as complex systems then this has quite pro-
found implications for management science; 
implications that are at odds with traditional-
ist views. It introduces a view of pragmatic 
learning, whereby different theories are for-
mulated and used, and those that are most 
helpful are retained. This is an evolutionary 
view of the representation of complex evolv-
ing systems and takes us away from the idea 
of a hard, true real description of reality and 
towards one of multiple, changing under-
standings of what is going on. This is an 
evolutionary pluralism. 

The main criticism traditionalists have of 
the ‘others’ is that by refusing to focus man-
agement studies on a single perspective/
theory, the potential political and influential 
clout of management academics has been 
vastly reduced. According to Pfeffer (1993):

Without a recommitment to a set of fundamental 
questions and without working through a set of 
rules to resolve theoretical disputes, the field of 
organization studies will remain ripe for a hostile 
takeover. (emphasis added, p. 558)

Donaldson (1995) built an entire book 
around this idea: American Anti-Management 
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Theories of Organization: A Critique of 
Paradigm Proliferation. Donaldson’s book is 
an indictment of existing management sci-
ence which, he claims, has fragmented into 
competing paradigms. Donaldson argues that 
this profusion of perspectives is driven not by 
a genuine need to further the body of knowl-
edge, but by a ‘push for novelty fuelled by 
individual career interests’ typical of the aca-
demic environment.3 He asserts that the 
resulting fragmentation of the field into 
mutually incompatible ideas has significantly 
weakened management science as an intel-
lectual enterprise worthy of attention and 
support – I think this is confusing the market-
ing of theory with the process of theory 
development (the last thing we want to do is 
compromise the standards by which theory is 
developed for the sake of marketing). 

Donaldson’s book calls for building a uni-
fied theory of organizations. Clearly this is at 
odds with what has been discussed above. In 
my view, paradigm proliferation is healthy for 
management science – not a disease that 
needs to be eradicated – status quos are never 
maintained and are rarely healthy in the long 
term. Fragmentation is inevitable, but what 
we must learn to do better is work with this 
fragmentation rather than force a ‘commen-
surable unification’ upon it. Efforts to this end 
are readily apparent with the current trend 
for cross-disciplinary and multi-disciplinary 
research (which are themselves essential 
through the lens of complexity thinking). 
Such research will always be difficult by its 
very nature, and will not be overcome by 
pushing for a unifying framework, which will 
do no more than paper over the cracks (and in 
so doing severely limit our opportunities to 
develop richer understanding).

COMPLEXITY THINKING 
IN MANAGEMENT

In this section I will briefly outline three 
approaches for how complexity thinking 
might support organizational management. 

These different approaches are derived from 
three different schools of thinking within the 
complexity movement. These three schools 
are not isolated from each other, but them-
selves form a complex system of interrelation-
ships. Despite their interdependence I still find 
it useful to divide the complexity movement 
into these divisions. The three schools/themes/
divisions that I identify and discuss are: the 
neo-reductionists, the ‘metaphorticians’, and 
the critical pluralists.

THE NEO-REDUCTIONIST SCHOOL

The first theme is strongly associated with 
the quest for TOE in physics mentioned 
above, i.e. an acontextual explanation for the 
existence of everything. This community 
seeks to uncover the general principles of 
complex systems, likened to the fundamen-
tal field equations of physics.4 The search 
for such over-arching laws and principles 
was/is one of the central aims of the general 
systems movement. Any such Theory of 
Complexity, however, will be of limited 
value. In Richardson (2005b) I suggest that 
even if such a theory existed it would not 
provide an explanation of every ‘thing’ in 
terms that we would find useful. If indeed 
such fundamental principles do exist they 
will likely be so abstract as to render them 
practically useless in the everyday world of 
human experience – a decision-maker would 
need several PhDs in pure mathematics just 
to make the simplest of decisions. I do not 
want to sound too critical here (I am an 
active contributor within this school of com-
plexity) as we just need to consider how 
much valuable science has come out of the 
quest for a TOE. It clearly has been a highly 
motivating and productive idea. We just need 
to have realistic expectations for this way of 
doing science. It is quite likely that we 
would start to see diminishing returns if 
society (more specifically, funding councils) 
got too pre-occupied with this particular 
(reductionist) approach.
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This complexity community makes con-
siderable use of computer simulation in the 
form of bottom-up agent based modeling. 
The ‘laws’ such nonlinear studies yield pro-
vide a basis for a knowledge paradigm that is 
considerably broader than just bottom-up 
simulation, or any formal mathematical/
computer-based approach for that matter.

The neo-reductionist school of complexity 
science is based on a seductive syllogism 
(Horgan, 1995 – perhaps meant semi-
ironically):

Premise 1: There are simple sets of mathematical 
rules that when followed by a computer give rise 
to extremely complicated patterns.
Premise 2: The world also contains many extremely 
complicated patterns.
Conclusion: Simple rules underlie many extremely 
complicated phenomena in the world, and with 
the help of powerful computers, scientists can root 
those rules out.

Though this syllogism was definitively 
refuted in a paper by Oreskes, et al. (1994), 
in which the authors warned that ‘verifica-
tion and validation of numerical models of 
natural systems is impossible’, this position 
still dominates the neo-reductionist school of 
complexity in the (computational) social 
sciences. The recursive application of simple 
rules is certainly not the only source of com-
plex behavior, and should not be seen as the 
only legitimate way to study complexity in 
human organizations (or anywhere else for 
that matter).

Despite all the rhetoric about reshaping our 
worldview, taking us out of the age of mecha-
nistic (linear) science into a brave new (com-
plex) world, many complexity theorists of this 
variety have actually inherited many of the 
assumptions of their more traditional scien-
tific predecessors (they were very successful 
after all) by simply changing the focus from 
one sort of model to another, in very much 
the same way as some managers jump from 
one fad to another in the hope that the next one 
will be the ONE. There is no denying the power 
and interest surrounding the new models (e.g. 
agent-based simulation, genetic algorithms) 

proposed by the neo-reductionists, but it is 
still a focus on the model itself. Rather than 
using the linear models often associated 
with classical reductionism, a different sort of 
model – nonlinear models – have become the 
focus. Supposedly, ‘bad’ models have been 
replaced with ‘good’ models. This is a strat-
egy we see in a wide variety of fields, not just 
the sciences. Although I myself do not have a 
great appreciation of the history of art, it does 
seem to me that new artistic ways of expres-
sion are more often thought of as ‘different’ 
rather than ‘better’ or ‘worse’. I think this is a 
healthier attitude towards different methods.

THE METAPHORICAL SCHOOL

Within the organizational science commu-
nity, complexity has not only been seen as a 
route to a possible theory of organization, 
but also as a powerful metaphorical tool 
(see, for example, Lissack, 1997, 1999; 
Richardson, et al., 2005). According to this 
school, the complexity perspective, with its 
associated language, provides a powerful 
lens through which to ‘see’ organizations. 
Concepts such as connectivity, edge-of-
chaos, far-from-equilibrium, dissipative 
structures, emergence, epistatic coupling, 
co-evolving landscapes, etc., facilitate 
organizational academics and practitioners 
in ‘seeing’ the complexity inherent in socio-
technical organizations. The underlying 
belief is that the social world is intrinsically 
different from the natural world. As such, 
the theories of complexity, which have been 
developed primarily through the examina-
tion of natural systems, are not directly 
applicable to social systems (at least not to 
the practical administration of such systems), 
though its language may trigger some rele-
vant insights to the behavior of the social 
world which would facilitate some limited 
degree of control over the social world.

Using such a ‘soft’ approach to complex-
ity to legitimate this metaphorical approach, 
other theories have been imported via the 
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‘mechanism’ metaphor into organization 
studies; a popular example being quantum 
mechanics (see McKelvey, 2001 for an 
example). While new lenses through which 
to view organizations can be very useful 
(see Morgan, 1986 for an excellent example 
of this), the complexity lens, and the ‘any-
thing goes’ attitude that sometimes accom-
panies this perspective, has been abused 
somewhat. My concern is not with the use 
of metaphor per se, as I certainly accept that 
the role of metaphor in understanding is 
ubiquitous and essential. Indeed, in 
Richardson (2005b) it is argued that in an 
absolute sense all understanding can be 
nothing more (or less) than metaphorical in 
nature.5 The concern is with its use in the 
absence of criticism – metaphors are being 
imported all over with very little attention 
being paid as to the legitimacy of such 
importation – the organization as an organ-
ism being a popular current example. This 
may be regarded as a playful activity in cer-
tain academic circles, but if such playful-
ness is to be usefully applied in serious 
business then some rather more concrete 
grounding is necessary. As van Ghyczy 
(2003) warns, ‘Instead of being seduced by 
the similarities between business and another 
field, you need to look for places where the 
metaphor breaks down ... [M]etaphors are 
often improperly used’ (pp. 87–88).

I refer to this school of complexity, which 
often uncritically imports ideas and perspec-
tives via the mechanism of metaphor from a 
diverse range of disciplines, as the meta-
phorical school, and its adherents, meta-
phorticians. It is the school that perhaps 
represents the greatest source of creativity 
of the three schools classified here. But as 
we all know, creativity on its own is not 
sufficient for the design and implementa-
tion of successful managerial interventions. 
Recently, Evan Davis, reporting for the BBC 
(UK), blamed the current financial melt-
down of the world’s markets on creativity 
and innovation. He concluded that we should 
not ban innovation, but at least be wary of it 
(Davis, 2009).

THE CRITICAL PLURALIST SCHOOL

Neo-reductionism with its modernist tenden-
cies can be seen as one extreme of the com-
plexity spectrum, whereas metaphorism with 
its atheoretical, acritical, relativistic tenden-
cies can be seen as the opposing extreme. In 
my view the complexity perspective (when 
employed to underpin a philosophical out-
look) both supports and undermines these two 
extremes. What is needed is a middle path.

The two previous schools of complexity 
promise either a neat package of coherent 
knowledge that can apparently be easily trans-
ferred into any context, or an incoherent mish 
mash of unrelated ideas and philosophies – 
both of which have an important role to play 
in understanding and manipulating complex 
systems. In my opinion, not only do these 
extremes represent overly simplistic interpre-
tations of the implications of complexity, they 
also contradict some of the basic observations 
already made within the neo-reductionist 
mold, i.e. there are seeds within the neo-re-
ductionist view of complexity that if allowed 
to grow lead naturally to a broader view that 
encapsulates both the extremes already dis-
cussed as well as everything in between.

One of the first consequences that arise 
from the complexity assumption is that as we 
ourselves are less complex than the Universe 
(The Complex System), as well as many of 
the systems we’d like to control/affect, there 
is no way for us to possibly experience ‘real-
ity’ in any complete sense (Cilliers, 1998: 4; 
see also the comments above regarding 
incompressibility). We are forced (by our 
very nature) to view ‘reality’ through (evolv-
ing) categorical frameworks that allow us 
to tentatively tiptoe our way through life 
with some vague direction in mind. The 
critical pluralist school of complexity focuses 
more on what we cannot explain, rather than 
what can be explained – it is a concern with 
limits, and how we take those limits into 
account when trying to understand the world 
around us. As such, it leads to a particular 
attitude towards models, rather than the privi-
leging of one sort of model over all others. 
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And, rather than using complexity to justify 
an ‘anything goes’ relativism, it highlights 
the importance of critical reflection in ground-
ing our models/representations/perspectives 
in an evolving reality. The keywords of this 
school might be pluralism, criticism, open-
mindedness and humility. Any perspective 
whatsoever has the potential to shed light on 
complexity (even if it turns out to be wrong, 
otherwise how would one know that it was 
wrong?), but at the same time, not every per-
spective is equally useful/applicable in any 
given context (try fixing your car with prayer 
rather than with a good mechanic). Complexity 
‘thinking’ is the art of maintaining the ten-
sion between pretending we know something, 
and knowing we know nothing for sure; it 
is a state of mind rather than a particular 
 perspective.

THE THREE SCHOOLS AND 
MANAGEMENT

Now that we have identified and discussed 
the three schools of complexity, how does 
each one contribute to the management of 
human organizations?

The first one, neo-reductionism, is the 
easiest as it simply adds a new collection of 
analytical tools to the decision-makers tool 
set. These tools will probably impact the 
fields of management science and operations 
research the most, providing some very pow-
erful tools to facilitate the decision-making 
process surrounding larger strategic ques-
tions. Indeed such models are ideal for 
exploring that class of question where indi-
vidual behavior matters only as a contribu-
tion to group behavior. They will probably 
not contribute to rather more mundane day-
to-day management activities – it is unlikely 
that the development of an agent-based model 
will help much in deciding if to promote 
someone or not, or whether to change the 
supplier for the hallway coffee machine 
(techniques such as causal mapping and multi-
criteria decision analysis are ‘complexity’ 

tools better matched to such ‘micro’ questions). 
There are certain types of problems that can 
benefit from nonlinear analytical models and 
some problems that will not. This school of 
complexity seems to be the most visible at 
present, and is probably the easiest of the 
three to (attempt to) apply. Given the immense 
computational resources needed to utilize the 
neo-reductionist’s tools, there is also a cer-
tain level of glamour and excitement associ-
ated with this sort of complexity application; 
this seems to have captured the imagination 
of the management world, even though the 
problems it can usefully be brought to bear 
on are limited.

The metaphorical school of complexity 
can certainly play a part in the day-to-day 
activities of management. Given that our 
personal worldviews determine to a large 
extent what we ‘see’ and how we ‘manage’ 
what we ‘see’, replacing/enhancing that world-
view with a perspective that is rather more 
sensitive to the complexities that are inherent 
in daily experience, can have a profound 
effect. Richardson et al. (2005), for example, 
considers project management through the 
lens of complexity-inspired metaphors. It is 
difficult to fully appreciate the influence the 
widespread usage of complexity-inspired 
metaphors will have, but I would like to think 
that many of the shortcomings of the domi-
nant command and control metaphor (which, 
unfortunately, has become rather more than a 
metaphor) will be mitigated. Of course, 
replacing one worldview with another may 
create as many new problems as it solves. 
It’ll be interesting to see what these new 
problems will be. (Although, seeing manage-
ment as a problem solving process is itself a 
feature of the command and control attitude.)

The metaphorical school does not only 
legitimate the use of complexity-inspired 
metaphors though; it is often used to justify a 
fully blown pluralism in which anything goes. 
We have to be careful that our wish to explore 
all possibilities does not lead to chaos (and I 
don’t mean this in the mathematical sense). 
Quoting van Ghyczy (2003) again, ‘It’s 
tempting to draw business lessons from other 
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disciplines – warfare, biology, music. But 
most managers do it badly’ (p. 87). I would 
also add that many academics also do this 
badly, but this is perhaps due to the human 
weakness for seeking lessons from wherever 
that happens to support our current strand of 
thought. 

The critical pluralist school of complexity 
also has implications for all aspects of man-
agement, although it is possibly one of the 
hardest to ‘teach’. It encourages not only 
management, but all participant members of 
an organization, to approach everything they 
do in a critical way and to maintain some 
(ontological) distance from their ideas, i.e. to 
not take our ideas of organization too seri-
ously – use our ideas to guide, or initiate, our 
thinking about organizations, not to deter-
mine our thinking. Complexity ‘thinking’ is 
a particular attitude towards our ideas of the 
world and the world itself, not a particular 
tool/method, or even a particular language. 
The last school is rather more philosophical 
than the first two and is also the hardest to 
describe in any complete sense but we need 
to try. 

COMPLEXITY AND PHILOSOPHY

Managers seem reluctant to study philosophy. 
They’re not alone. This is not particularly 
surprising given that many books on the sub-
ject are often devoid of any practical recom-
mendations. However, when I talk about a 
philosophical attitude I’m not saying that we 
all need to go out and invest considerable 
time in penetrating obscure texts. Philosophy 
is a study of what underlies choice, and in 
both management and research, choices 
abound. Researchers have to choose which 
methodology they are to employ in under-
standing a particular aspect (which of course 
also has to be chosen) of management; the 
boundaries of the research study need to be 
chosen (which is strongly dependent upon 
research methodology), etc. Managers have 
to continually decide which information is 

required to make a particular decision; how 
to interpret that information for the purposes 
at hand, and even choose what the actual 
purpose might be, as well as what the issue is 
that needs to be decided upon (although, 
often this is done very much unconsciously 
without much attention to the actual frame-
work within which they have been ‘taught’ to 
operate).

From the perspective of the researcher 
Hughes (1990) suggests that philosophy under-
pins the whole selection process because:

... every research tool or procedure is inextricably 
embedded in commitments to particular versions 
of the world and to knowing the world. To use an 
attitude scale, to take the role of a participant 
observer, to select a random sample, to measure 
rate of population growth, and so on, is to be 
involved in conceptions of the world which allow 
these instruments to be used for the purposes 
conceived. No technique or method of investiga-
tion (and this is true of the natural sciences as it is 
of the social) is self-validating: its effectiveness, 
that is its very status as a research instrument 
making the world tractable to investigation is, from 
a philosophical point of view, ultimately depend-
ent on epistemological justifications. Whether they 
may be treated as such or not, research instru-
ments and methods cannot be divorced from 
theory; as research tools they operate only within 
a given set of assumptions about the nature 
of society, the nature of human beings, the rela-
tionship between the two and how they may be 
known. (p. 11)

When managers choose to adopt a particu-
lar perspective, or set of procedures, or what 
issue to focus upon, these choices are philo-
sophically equivalent to the researcher’s 
selection of a particular methodology. Both 
sets of choices are underpinned by particular 
views of how the world we observe is con-
structed, and how it should respond to our 
actions upon it. More often than not we are 
unaware of the commitments that our choices 
imply. It is not a question most of us have 
been taught to ask. It is not a question we 
have evolved to be too concerned with either. 
Of course, science claims that it does, but 
often established theories and dominant 
schools of thought and journals mean that 
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even researchers do not think enough about 
this. Managers, as well as most of us at large, 
are very rarely concerned with the underly-
ing assumptions upon which our choices 
are made. If we were, we would be rather 
 surprised as to the absurdity of some of our 
most cherished beliefs.

Philosophers often refer to the dominant 
worldview (or philosophy) of the average lay-
person as naïve realism. The ‘naïve’ part is 
possibly a poorly chosen label as it would 
seem to indicate that all of us who are not 
philosophers are a little daft, in that we have 
been so poorly misguided into ever believing 
that realism could possibly be a sensible way 
to view our surroundings. I think, given that 
much of our sensory and decision making 
equipment has evolved in a way that naturally 
leads to a kind of realism, perhaps we can be 
forgiven for not knowing any better. Maybe 
common sense realism is a more positive way 
of distinguishing a layperson’s realism from a 
philosopher’s realism. Evolution only requires 
that something be ‘good enough’ and not that 
it be perfect, and so a layperson’s views reflect 
the wonderful openness of pragmatism. 

Realism is based on a what-you-see-is-
what-you-get (or WYSIWYG for those 
fluent in computer jargon) worldview, i.e. 
that our senses tell us accurately what the 
world is comprised of and how those parts 
interact – what-you-sense-is-what-there-is 
(WYSIWTI), if you like. The first implication 
of realism is that the way in which we ‘see’ 
the world is quite independent of what our 
senses, and our beliefs, guide us to ‘see’. This 
is quite contrary to the quote given above 
which suggests that our senses and beliefs 
profoundly affect what we ‘see’. If our senses 
are truly unbiased (as naïve realism suggests) 
then understanding the world around us 
simply becomes a process of map making. 
For this reason realism is often also referred 
to as representationalism.

A second implication of realism is to 
regard causality as a first order process, i.e. 
if a change in object A results in a change 
in object B we have a tendency to assume 
that such a correlation points to a causal 

mechanism – ‘A caused B to ...’. So not only 
do the objects A and B exist as such, they 
also affect each other directly. The ‘existence’ 
of A and B would seem to be a trivial matter 
especially when considering objects such as 
cars and computers, but what about concepts 
like ‘consumer confidence’ or ‘social capi-
tal’? Furthermore, given WYSIWTI, the pos-
sibility that it is an unseen object C that 
affected A and B (or mediated the affect), or 
that two unrelated objects C and D affected A 
and B directly, or that the change in B result-
ing from a change in A was no more than a 
coincidence (and therefore not causal even if 
there was some correlation) are all scenarios 
that are omitted from a simplistically realist 
perspective. The natural sciences have devel-
oped tools to allow us to ‘see’ objects that 
remain ‘unseen’ with the naked eye, but even 
here any explanations offered must necessar-
ily be based on what has been detected.

Quite often realism is associated with 
‘linearity’, but this would be a mistake. The 
advent of the computer has allowed us to 
‘model’ scenarios in which complicated loops 
of interaction can be represented and explored, 
a trick which the human mind seems woefully 
inept at doing. The main consequence of real-
ism that concerns me here is that it leads to an 
overconfidence in what we have represented 
and analyzed as being exactly how the real 
world works. Quite clearly this is not a view 
devoid of merit. If it was then our capacity to 
successfully achieve anything would be very 
much lower than it actually is. Clearly, to a 
useful degree, realism produces some rather 
good results.

Given the successes of modern science, it 
is not surprising that realist viewpoints dom-
inate Western thought – it is a natural way to 
view things, and such impressive machines as 
computers have been built that surely prove 
the power of realist thinking. Relating this 
back to philosophy, the success of modern 
science is arguably the reason that philoso-
phy has fallen by the wayside. If science 
leads to correct knowledge all the time, then 
what is the point of questioning its underly-
ing assumptions; surely the way in which 
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modern science and the realists view the 
world is how the world is? Each new man-
agement fad promises to provide the ultimate 
answers to the hard questions troubling 
 practicing managers, which again encourages 
philosophical ignorance. Why bother think-
ing too hard if there is a framework ‘out 
there’ claiming to do the thinking for us?

Two of the big questions for philosophers 
are what objects exist and how can we know 
about those objects. Jargon-wise, the study of 
what exists is referred to as ontology and the 
study of how we come to know these objects 
of existence (the study of knowledge) is 
referred to as epistemology. These two areas 
of interest have been enthusiastically investi-
gated for at least 2,500 years, until very 
recently that is. The Newtonian view of the 
Universe leads to an ‘exquisitely intricate 
timepiece’ model, i.e. the Universe is a really 
big machine. As a big machine it can be 
taken apart, its parts can be studied in isola-
tion, and knowledge of the whole can be 
accurately gleaned by summing together the 
knowledge of its component parts. In popu-
larized views of modern science, there is 
something referred to as the scientific method 
which guides us in the study of these parts. 
So ontologically the Universe is a big 
machine, and epistemologically we have the 
scientific method to give us knowledge of the 
Universe’s parts and eventually the Universe 
as a whole.

What is often missed from popular views 
of modern science is that science does not 
always work very well, and that there is no 
such well-defined process called the scien-
tific method. This may come as a surprise to 
the many opponents and critics of modern 
science, but most decent scientists are well 
aware of their chosen occupation’s shortcom-
ings. Questions of ontology and epistemol-
ogy really haven’t been answered to complete 
satisfaction, thus there is still very much a 
role for philosophy.

The famous physicist Louis de Broglie 
once said ‘May it not be universally true that 
the concepts produced by the human mind, 

when formulated in a slightly vague form, 
are roughly valid for reality, but that, when 
extreme precision is aimed at, they become 
ideal forms whose real content tends to 
vanish away?’ (quoted in Cory, 1942: 268). 
This suggests that we should use scientific 
understanding (not knowledge) to guide our 
decisions, not determine them as such under-
standing is only correct in a ‘vague’ sense. 
This is true of all understanding once we 
accept the limitations of the realist world-
view. Rather than regarding our knowledge 
as faithful maps of reality we must see it as a 
potentially useful, but not necessarily so, 
caricature of reality, or as a metaphor. This 
follows from the fluid and complex nature of 
systemic boundaries as seen from the com-
plexity perspective. Causality is complex, 
intricate, multi-ordered, and intractable (in 
an absolute sense). All this suggests a 
renewed concern with ontology and episte-
mology and therefore with philosophy. What 
is ironic is that, though it has taken a revolu-
tion in science (spurred by a technological 
revolution which resulted from the dogmatic 
application of realist thinking for the past 
400+ years) to bring complexity to the fore, 
philosophers have been concerned with com-
plexity for hundreds if not thousands of 
years. So if you do find the time, and are 
willing to put in the hard work often neces-
sary to understand many philosophical writ-
ings, you may well be surprised with the 
nuggets of wisdom you will uncover in even 
the oldest texts. Fortunately we are blessed 
with ‘Dummies Guides’ to get us started!

SOME CONCLUSIONS

The aim of this article was to consider the 
various ways in which complexity might 
inform managerial action in a general sense. 
There are various tools derived from com-
plexity science that might be used in the 
analysis of certain managerial problems. 
However, it is the implications of complexity 
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thinking for the ‘managerial attitude’ that I 
have focused on here as I believe the shift 
from a linear simplistic attitude to a nonlin-
ear complex attitude is significantly more 
challenging than a simple switch from one 
framework/tool to another as is more common 
in our faddish modern world.

The concept of incompressibility dis-
cussed above would suggest that attempting 
to capture the complex systems-derived 
implications for organizational management 
in some short snappy conclusions would at 
best be a limiting exercise, and at worst 
rather irresponsible (even unethical!). 
However, in the hope that you have read the 
preceding pages and not just jumped to the 
conclusions, I will attempt to do just that 
with the knowledge that you will appreciate 
that this is a problematic exercise to say the 
least. The laws of complex organizational 
management, therefore, might be listed as 
follows:

1 Just because it looks like a nail doesn’t 
mean you need a hammer : A complex sys-
tems view acknowledges that context recogni-
tion is problematic, and as such deciding what to 
do is not a simple exercise of repeating what you 
did the last time you were in the same situation. 
The chances are the situation is quite different.

2 Decisions made by the many are often better 
than those made by a few : A precursor to any 
decision has to be a thorough consideration (cri-
tique) from multiple perspectives (pluralism). This 
might be the application of a variety of different 
models, or simply just asking more than one 
person for their opinion. Such an approach quite 
naturally leads to creative thinking, and enables 
the development of a richer understanding con-
cerning a context of interest before a decision is 
made. Beware, however, as ‘too many cooks may 
spoil the broth’, and in situations where time is 
not readily available, the leadership of an indi-
vidual may prove more effective than attempts 
at group decision making.

3 Expect to be wrong (or at least not completely 
right): There are limits to how pluralistic and 
critical our decision making processes can be. 
But even with all the time and resources in the 
world (and a commitment to do the ‘right’ thing), 

decisions can only be made based on our best 
current understanding, and that understand-
ing will always be incomplete. Everything is 
connected to everything else. We can’t con-
sider everything so we infer somewhat artificial 
boundaries to help us make a decision – without 
those boundaries we are helpless, with them our 
responses are limited (but at least we have some 
responses!).

4 Flip-flopping is OK: Contrary to the beliefs 
of certain US politicians, being prepared and 
 confident enough to change one’s mind when it 
becomes clear that one’s model is proving inef-
fective (and even counterproductive) is actually 
a virtue, not a sin. The complex organization 
evolves in unforeseeable ways, and as such we 
must be prepared to ‘move with the times’. The 
simple act of making a decision (based on past 
experience) can change how the future unfolds. 
Don’t make the mistake of escalating one’s 
commitment in the face of mounting contrary 
evidence. Dogmatism is rarely an effective long 
term strategy.

These bullets may be common sense to the 
experienced manager (endowed with an 
innate understanding of human networks). 
I certainly hope so! What is particularly inter-
esting about complexity science is that it 
provides a scientific way of making these 
points. Good science has a tendency to change 
what common sense is over time, and I am 
excited at the prospect of an emerging sys-
temic common sense. The complex systems 
view really is a profoundly different way of 
understanding the world from what we in the 
West (primarily) have become accustomed to. 
It is significant that these ideas of pluralism 
and of complexity science being an art find 
strong echoes in many of the chapters of this 
Handbook. 
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NOTES

1 ‘Nonlinearly’ simply means that the parts are 
constructed in a way such that the output from one 
particular part is not necessarily proportionate to its 
input. The weather system is an oft cited example in 
which small additions of energy don’t necessarily 
lead to small changes in the system’s behavior.

2 This statement risks conflating the concept of 
incompressibility with the problem of identifying a 
bounded description of a complex system. These two 
concerns are not equivalent; just because a particular 
system cannot be bounded easily is not what incom-
pressibility is all about. Incompressibility derives from 
the interacting nonlinear feedback loops that exist 
even in well bounded complex systems, i.e. a 
bounded complex system is still incompressible.

3 Donaldson’s argument may account for why 
certain perspectives are more dominant than others, 
it does not explain why there is a ‘profusion of per-
spectives’ in the first place. I would tend to think that 
if there was even a whiff of an ultimate theory of 
management then I doubt that the ‘individual career 
interests’ of academics could prevent its develop-
ment. Maybe the fact that after all the effort that has 
gone into trying to find this elusive organizational 
theory of everything (OTOE) we still only have a ‘pro-
fusion’ suggests that a ‘profusion’ is the optimal situ-
ation, and that an OTOE does not in fact exist (or that 
it is at least way beyond the grasp of mere mortals).

4 It is likely that these two research thrusts, if suc-
cessful, will eventually converge if it is assumed that 
some kind of complex systems representation of the 
Universe as a whole is valid.

5 Metaphor is the description of certain aspects 
of one thing in terms of certain aspects of another. 
If we consider the Universe to be one ‘thing’ then 
human knowledge is the partial representation of 
the Universe in terms of the ‘things’ that constitute 
human language. Language itself determines to a 
great extent what aspects of reality are promoted to 
the ‘foreground’ – i.e. what we pay attention to – 
and what aspects are demoted to the ‘background’ 
– i.e. what we ignore – in the same way that the fox 
metaphor – ‘He is as cunning as a fox’ – highlights 
a particular trait of an individual and compares it to 
the cunningness of the fox. At the same time traits 
like the fox’s shyness, for example, are ignored. By 
describing knowledge as a metaphor, its biased and 
limited nature are highlighted.
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INTRODUCTION

A number of leadership scholars and popular 
writers have recently focused attention on 
organizational issues that cannot be effectively 
solved with traditional top-down (centralized) 
leadership approaches (Marion and Uhl-Bien, 
2001; Schneider and Somers, 2006; Hazy 
et al., 2007; Plowman and Duchon, 2008). 
Heifetz (1994) and Uhl-Bien, Marion, and 
McKelvey (2007) have called these sort of 
problems, adaptive challenges; Snowden and 
Boone (2007), with minor liberties, would 
define these issues as ‘Cynefin, pronounced 
ku-nev-in, … a Welsh word that signifies the 
multiple factors in our environment and our 
experience that influences us in ways we can 
never understand’ (p. 70). They are problems 
that are characterized by changing, interac-
tive complexities of a degree that defy direct 
or existing solutions. Scholars seeking to 
understand adaptive behaviour and how 
leadership can best integrate with it are 
increasingly turning to complexity theory, or 
the science of complexly interacting and 

changing events, to better understand leader-
ship and adaptive challenges in organizations 
(Stacey, 2001; Plowman et al., 2007a; Hazy 
and Silberstang, 2009; Hunt et al., 2009; 
Lichtenstein and Plowman, 2009; Uhl-Bien 
and Marion, 2009). 

Adaptive issues can be categorized as 
environmental problems that are too complex 
to be easily resolved or that require social 
engagement and support (Heifetz, 1994; Uhl-
Bien et al., 2007). The infamous travelling 
salesman problem exemplifies the first: A 
travelling salesman wants to visit all the 
cities in his or her territory without going 
through the same city twice. The problem is 
virtually impossible for an individual to think 
through, but several simulations based on 
complexity logic have produced reasonably 
good answers (Michalewicz, 1999). More prac-
tical examples involve the generation of inno-
vation within R&D operations (Osborn and 
Marion, 2009), stock market decline (Martin 
and Eisenhardt, 2004), and supply chain effi-
ciency and effectiveness (Bonabeau and Meyer, 
2001). Examples of the latter  categorization 
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include public debate over social issues such 
as pollution by production firms (Heifetz, 
1994).

Solutions that are being proposed for 
dealing with adaptive problems are broadly 
covered by Ross Ashby’s (1960) famous 
dictum: It takes complexity to defeat com-
plexity. Complex problems are best tackled 
by complex responses. Complexity theories 
of leadership explore strategies leaders can 
use for advancing and enabling such com-
plex response.

This chapter describes emerging complex-
ity perspectives of leadership and explores 
the differences among these perspectives. 
These different perspectives all ask, ‘What is 
the role of leadership in complex organiza-
tional systems?’ They investigate the nature 
and outcomes of adaptive systems, leader-
ship as a collective dynamic, and how lead-
ers generate and foster complexity dynamics 
in the organization. But they answer these 
questions in different ways. We describe 
these perspectives and then identify trends in 
the field. We also address questions yet to be 
explored. Finally, we develop challenges 
that the field of complexity leadership will 
need to overcome as it moves forward. 

DEFINITIONS, QUESTIONS AND 
ASSUMPTIONS 

Complexity theory is defined by Coveney 
(2003) as the ‘study of the behaviour of large 
collections of … simple, interacting units, 
endowed with the potential to evolve with 
time’(p. 1058). Prigogine (1997) extends 
Coveney’s insight by defining complexity as 
interactions among many dynamic degrees of 
freedom, the outcome of which cannot be 
predicted. Colandar (2000) adds that complex-
ity is the study of how many interacting units 
can produce relatively simple behavioural 
patterns. Applied to organizations, organiza-
tional complexity is a science of survival and 
productivity in very complex, turbulent envi-
ronments and complexity leadership is the 

application of complexity science to the study 
of leadership in organizations and their 
environments.

Complexity leadership theorists have noted 
the potential for complex dynamics to 
enhance the responsiveness of organizations 
to complex environments (often referring to 
the globalized, highly diversified and com-
petitive knowledge economy; Uhl-Bien et al., 
2007), and are consequently exploring that 
potential for the workplace and its implica-
tions for leadership. Complexity perspectives 
of leadership ask, what is leadership in com-
plex systems? This is more than a definitional 
solicitation; this question, ‘what is leader-
ship’, is a challenge to re-conceptualize the 
very nature of leadership by breaking away 
from traditional premises and assumptions 
and seeking leadership characteristics that 
have been overlooked in the past. For 
example, leadership is almost universally 
associated with hierarchical influence and 
top-down control (Jermier, 1998). Complexity 
leadership theory asks if there are alternative 
ways to understand how change and influ-
ence, hence leadership, occur. 

There are a number of defining character-
istics of complexity leadership and several of 
these will be described in this chapter, but 
one that is particularly pertinent is the 
notion that change (e.g. creativity, adapta-
tion, learning) emerges from a collectivist 
dynamic. Collectivism, as opposed to meth-
odological individualism, has been hotly 
debated behind the scenes of leadership 
scholarship and has even found its way 
into the literature (Friedrich et al., 2009). 
But whereas Friedrich et al. (2009) define 
collective leader ship as multiple intelli-
gences acting individually (methodological 
individualism), complexity theory would 
define it as a collective behaviour that accrues 
when (1) ideas emerge from interactions 
among individuals and groups (Lichtenstein 
et al., 2006), and (2) multiple ideas interact 
in multiple venues, combining, elaborating, 
and diverging in ways that obscure their 
original manifestations and can only be 
described as collective ideas.
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THEORIES OF COMPLEXITY 
LEADERSHIP

In general, there is relatively uniform 
agreement among theorists studying com-
plex leadership on the basics of complexity 
theory, such as interactive network dynamics, 
emergence, unpredictability, uncertainty, and 
pressure. Some perspectives of complexity 
leadership do differ somewhat because of 
the underlying science with which they 
associate (complexity evolved largely from 
observations in biology and physics). They 
differ in the aspects of complexity theory the 
authors choose to emphasize (Lichtenstein 
and Plowman, 2009, for example, emphasize 
emergence while Hunt and colleagues empha-
size the role of administrators in setting up 
organizational structures and systems). 
Another significant difference lies in the 
assumptions of the various approaches about 
the management role in complex dynamics, 
particularly as it relates to control of complex 
dynamics. This section is structured around 
these three themes: the underlying science 
behind complexity leadership, the basic 
emphases of the different perspectives, and 
the role of management and control in com-
plexity leadership.

Underlying science

Complexity theory generally evolved out of 
biology and physics (with a nod to econom-
ics), and both have shaped the way we per-
ceive complexity theory and complexity 
leadership. Researchers in complexity tend 
to blend the two traditions in their writing, 
yet physics and biology say different things 
about change in complex dynamics. 

Physicists, inspired by Ilya Prigogine 
(1997), describe complexity as the build-up 
of pressures – attributable largely to external 
pressures – until the system reaches a far-
from-equilibrium state in which the system 
precipitously releases the pressure and new 
order emerges (i.e. phase transition). This 
starkly contrasts with traditional theories, 

which largely describe organizations as equi-
librium-seeking systems (Negandhi and 
Reimann, 1972). The physics-based perspec-
tive is extensively used in the organization 
theory complexity literature to describe dra-
matic change events (cf. McKelvey, 2003). 
Indeed, it probably is the dominant explana-
tion of dramatic change in that literature. 
However, few of the leadership complexity 
perspectives described in this chapter can be 
said to fall exclusively within this school, 
although Goldstein et al. (2010) described 
this phenomenon in some detail in Chapter 4 
of their book, and Plowman and Duchon 
(2008) describe far-from-equilibrium as one 
premise of their research. 

Biologists envision a complex, networked 
evolutionary dance among numerous species 
in which patterns of interaction, called niche, 
emerge. Kauffman (1995) argues that this 
process is motivated by pressures from the 
patterns of interaction in the network, refer-
ring particularly to conflicting constraints 
(Kauffman, 1995). But while pressure helps 
the system elaborate and change, it need not 
build up to create change, as advocated by 
physicists. Brian Arthur (1989), for example, 
described the emergence of new technologies 
with language that focused on the role of 
interactive dynamic itself, without referenc-
ing the accumulation of pressures; Kauffman 
described change as a fitness search by 
interactive species; and Marion (1999) 
described the emergence of microcomputers 
using Kauffman’s arguments about NK sys-
tems (For more details on Kauffman’s NK 
and NKCS models, see Vidgen and Bull, this 
volume). 

The complexity leadership perspectives 
that most reflect the heritage of biology are 
those that focus on the creative potential of 
interactive dynamics themselves. Uhl-Bien 
et al. (2007), for example, define their concept 
of adaptive leadership relative to networked 
interactions under conditions of such things 
as interdependency, interaction, heterogene-
ity, and task related conflicts. These dynam-
ics foster creative ideas that, in turn, interact 
within the complex network, combining, 
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diverging, elaborating, and forming even 
higher-level ideas. Both Schreiber and Carley 
(2006), and Osborn, et al. (2002) likewise 
focus on the convergent and divergent out-
comes of interaction. Schneider and Somers 
(2006) add the biology-based notion of lead-
ership as tags, or functions that catalyze cer-
tain complex behaviours in a system. In the 
biological perspective, change is constantly 
occurring and will occasionally be dramatic 
(i.e. species extinction and re-speciation); 
pressure certainly plays a role in elaboration 
but does not necessarily play a role in the 
intensity of change (i.e. major change can 
result from small perturbations, etc.).

Much of the literature discusses the nature 
of interactions among individuals, groups, 
and artefacts, and to this extent they are 
drawing on the heritage of biology. However, 
that literature also tends to talk about dra-
matic change relative to far-from-equilibrium 
and the release of pressures, thus drawing on 
the physics heritage. The theoretical lenses 
by which complex organization and leader-
ship is understood is institutionalized in the 
process in favour of the physics perspective, 
and, we could loose track of the significant 
understanding (ie. the change perspective of 
biolgists) in scholarship and research as a 
consequence. 

Major orientations

The literature on complexity leadership 
exhibits different orientations that underscore 
something of the scope of this body of work 
and also reveals differences in authors’ 
treatments about the function of complexity 
leadership. Guastello’s (2007) research 
agenda, for example, is focused on under-
standing how catastrophe theory – a relative 
of complexity theory – explains social behav-
iour and the emergence of informal leaders. 
Catastrophe theorists such as Guastello 
propose that complex systems ‘wander’ 
around in social space until they reach and 
move across a cusp, thus leading to new 
structures; it is another way to understand 

emergent phenomena in complexity studies. 
Lichtenstein and Plowman (2009) focus on 
leadership and emergence; this theme is also 
evident in the 2010 book that Lichtenstein 
wrote with Goldstein et al. Schreiber 
and Carley’s research is defined by their 
methodology, dynamic network analysis, 
which explores the nature and outcomes of 
interactions in a networked environment and 
how informal leadership emerges from, and 
enables effectiveness within, this context. 
Solow and his colleagues have demonstrated 
how the introduction or removal of actors 
from a small complex group can alter the 
system in sometimes surprising ways (Solow 
et al., 2002), as when a person is removed 
who is seemingly unproductive but actually 
catalyses productive actions in others. Writing 
with Szmerekovsky (2006), he similarly 
examined the effects of managerial control 
on small group dynamics.

Surie and Hazy (2006) identify an empha-
sis they call generative leadership; this 
emphasis is further elaborated in Goldstein 
et al. (2010). In Surie and Hazy (2006), gen-
erative leadership is conceptualized as a 
managerial role, an individual who acts 
deliberately to shape the complex dynamic. 
Goldstein et al. (2010) appear to broaden the 
definition of generative leadership to a more 
bottom up, interactive process.

Uhl-Bien et al. (2007) describe complexity 
leadership relative to three functions: adap-
tive, administrative, and enabling leadership. 
Adaptive leadership refers to informal, inter-
active actions that influence local behaviours, 
and which interact with complexity dynam-
ics to generate adaptive and innovative out-
comes (e.g. the emergence of creativity, 
learning, and adaptability) for the firm. 
Administrative leadership refers to manage-
rial leadership that occurs in the formal sys-
tems and structures of the organization and 
are designed to generate business results 
through efficiency and control. Enabling 
leadership operates in the interface between 
the other two. It helps fosters conditions nec-
essary for adaptive leadership to emerge and 
helps loosen up administrative structures to 
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allow adaptive outcomes to be incorporated 
into administrative systems to generate pro-
ductive business results. 

Osborn et al. (2002) explore the contexts 
within which leadership occurs and are quite 
interested in what they see as the inevitable 
role of authority in organizations. They 
describe four leadership contexts – stability, 
crisis, dynamic equilibrium, and edge of 
chaos – only the last of which is appropriate 
for complexity leadership. More recently, 
Snowden and Boone (2007) echoed this 
emphasis. (Interestingly, both the Osborn et 
al. paper and the Snowden and Boone article 
won best paper of the year awards in their 
respective journals.) 

Ralph Stacey (2001) offers a perspective 
called complex responsive systems, which 
refers to complex inter-adjusting interactions 
among individuals from which patterns of 
communication behaviour and consciousness 
emerge (Griffin, 2001; Stacey, 2001). The role 
of leadership is to sustain the identity and 
purpose of the dynamic system. Leaders 
understand the implications of individual 
actions better than others and are consequently 
respected and followed because of that capa-
bility (Griffin, 2001). This perspective of 
leadership diverges from the others in that it 
focuses on explaining, rather than influencing, 
how patterns of behaviour emerge in organiza-
tions and society.

The role of management

Finally, complexity leadership theorists differ 
in their orientation to control, or manage-
ment. Surie and Hazy (2006) propose that 
complexity leaders are agents who manipu-
late organization designs and deliberately 
tune the system. Similarly Goldstein et al. 
(2010) criticize ‘an unfortunate belief that 
emergence was somehow a spontaneous 
process that was somehow self-generated, 
outside the reach of managers and execu-
tives.’ While Goldstein et al. are not always 
clear as to whether generative leadership 
is a complex group dynamic or a role of 

managers, they seem to lean toward the latter 
in proposing that generative leadership pro-
duces a ‘clear-minded assessment about the 
actual flow of energy and resources’ (p. 179), 
‘actively engenders a culture of engagement 
and respect’ (p. 180) and, stabilizes ‘emer-
gence by developing new and effective rou-
tines, and … [creates] partnerships and 
coalitions that increase the legitimacy of the 
emergent entity’ (p. 186). 

In contrast, Uhl-Bien et al. (2007) argue 
throughout their body of work that complex 
dynamics are too complex to be managed or 
designed. They propose that leaders enable, 
rather than design, complex contexts in which 
creativity, adaptability, and learning is maxi-
mized. Enabling leaders are controlling only 
to the degree that they build structures for 
inhibiting or redirecting ideas that are incon-
sistent with organizational missions or dam-
aging to organizational functions. Uhl-Bien 
and her colleagues relegate the control func-
tion more to administrative leadership, argu-
ing that it is entangled with enabling and 
adaptive leadership in ways that maximize 
creative outcomes. 

Uhl-Bien et al. do argue, along with 
Griffin (2001), Plowman and Duchon (2008), 
Schreiber and Carley (2008), and Goldstein 
et al. (2010) that complexity involves dynamic 
networks of influence. While some individu-
als and groups have more influence than 
others, their interactions are inter-adjusting; 
that is, individuals and groups tend to shape 
themselves around the preferences of others. 
Control is different, however; it occurs when 
the preferences of one person or group pre-
empt those of another. At the core of com-
plexity leadership approaches is the belief 
that influence is effective in the production of 
creativity and is preferred over control.

ISSUES IN COMPLEXITY LEADERSHIP

There are several basic questions that are 
typically asked in complexity leadership 
studies; we will focus on four such questions 
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as we further develop complexity premises. 
The first is, why is it important to understand 
leadership and organizations as complex 
dynamics? Second, how do leaders foster 
complex dynamics, assuming such dynamics 
are beneficial? Third, the antithesis of com-
plexity is bureaucracy, with its hierarchical 
structuring, functional differentiation, and 
careful control procedures; so how do com-
plexity and bureaucracy coexist? Finally, 
does complexity point to alternative ways to 
perceive leadership? We will answer each of 
these questions in turn, and will then exam-
ine trends in complexity leadership theory – 
questions that are now being explored or that 
need to be explored. 

The first question, why understand leader-
ship and organizations as complex dynamics, 
is quite reasonable and important. Most stud-
ies of leadership still assume that ‘A certain 
amount of predictability and order exists in 
the world’ (Snowden and Boone, 2007: 70). 
They still tend to ascribe to the notion that 
leadership brings human dynamics into align-
ment with organizational goals (Barnard, 
1938), to assume independence among cases, 
and to be person-centred and top down. Why, 
then, should we change? 

We can answer this in several ways. First, 
just as physicists and neoclassical econo-
mists have long finessed ‘troublesome’ non-
linearity, or chaos, in their observations and 
equations, only to find recently how crucial 
nonlinearity is to understanding physical 
and economic phenomena (Gleick, 1987; 
Ormerod, 1998, 2000), organizational theo-
rists have similarly ignored or attempted to 
finesse complexity in their observations (e.g. 
by attempting to control informal group 
dynamics). Complexity can be a resource 
that helps organizations respond to turbulent 
environments and which is conducive to 
creativity, learning, and adaptability (Stacey, 
2001; Tsoukas and Chia, 2002); thus complex-
ity theorists are attempting to understand how 
to work with this dynamic. Second, social 
scientists are beginning to understand that it 
takes complexity to defeat complexity, para-
phrasing Ashby’s (1960) famous observation. 

Or to re-phrase in the terminology of Heifetz 
(1994): It takes adaptive leadership to address 
adaptive problems. Terrorism will not be 
defeated by a predictable response (Marion 
and Uhl-Bien, 2003); bacterial infections 
will not be abolished from this planet by 
stable antibiotics; and hyper-turbulent organ-
izational environments will not be defeated 
by a stable commodity economy. 

This leads to a third, closely related argu-
ment for complexity leadership: The modern 
economic environment is highly complex. It 
is beset by globalism, rapidly changing tech-
nologies, and a focus on knowledge rather 
than stable commodities (Boisot, 1998; 
Drucker et al., 1998; Hitt, 1998; Hamel, 
2009). To respond to this economy, organiza-
tions must be characterized by emergent crea-
tivity, they must be able to learn quickly, and 
they must be able to adapt rapidly to changing 
conditions; that is, they must be complex.

The second common question in the com-
plexity leadership literature is, how do lead-
ers foster complex dynamics? It is important 
to note that the word, foster, was carefully 
chosen. Many theorists suggest that leaders 
do not create complexity for it is too complex 
to be created (Kauffman, 1993, 1995); rather, 
they enable the conditions in which complex-
ity can emerge (see discussion alternatives 
arguments above). 

Uhl-Bien et al. (2007) and Uhl-Bien and 
Marion (2009) identify several such enabling 
conditions. They argue that people and ideas 
should be enabled to interact, and they point 
to the interactive environment at IDEO 
Product Development to illustrate (Thomke 
and Nimgade, 2007). Agents and ideas should 
be interdependent in order to foster conflict-
ing constraints (Kauffman, 1995). Enabling 
leaders should promote heterogeneous skills, 
worldviews, preferences, and ethnicities in 
order to inject multiple information sets into 
problem-solving dynamics. Enabling leaders 
should create adaptive tension (tension that is 
not focused on specific goals), thus fostering 
creativity and supplementing the tension of 
conflicting constraints (McKelvey, 2008). 
Lichtenstein and Plowman (2009) add that 
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enabling leaders foster complexity with 
actions that include the following: 

Disrupt existing patterns through embracing 
uncertainty and creating controversy, encourage 
novelty by allowing experiments and supporting 
collective action, provide sensemaking and sense-
giving through the artful use of language and 
symbols, and stabilize the system by integrating 
local constraints (p. 617; see also Plowman et al., 
2007b).

Third, how does complexity coexist with 
bureaucracy? Bureaucracy is inevitable and 
pervasive; the prediction by some post-
bureaucratic theorists of bureaucracy’s 
demise (Heckscher and Donnellon, 1994; 
Grey and Garsten, 2001; Maravelias, 2003) is 
unlikely for most contemporary organizations 
(for exceptions see Brafman and Beckstrom, 
2006). Bureaucracy and complexity coexist 
effectively when those in positions of authority 
acknowledge the existence and importance 
of complexity dynamics, and supplement 
their roles with enabling behaviours. At 
IDEO Product Development, managers enable 
interaction by providing appropriate spaces 
for people who work together (Thomke and 
Nimgade, 2007). To enable discussions at 
Sun MicroSystems’ iWork, the managers 
have designed workspaces for its hardware 
design group that resembles a country club 
lounge (Cross, 2007). In each case, bureau-
cratic personnel have understood the impor-
tance of complex dynamics, and have taken 
steps to enable their processes.

Interestingly, although this needs further 
research, it appears that complex dynamics 
may actually be enabled and enhanced by the 
interaction of bureaucracy and standard 
organizational behaviour (the regular behav-
iour of groups as they perform their respon-
sibilities). Physicists identify a dynamic 
called dampening, and illustrate by position-
ing a beaker of water such that a ball oscillat-
ing regularly on a spring dips into the water 
at the end of each cycle – for organization 
purposes, translate ball as informal work 
dynamics and water as bureaucracy. The inter-
action between the pendulum-like motion of 

the ball and the restricting force of the damp-
ening agent (the water) can cause the ball to 
move chaotically (Baker and Gollub, 1990). 
We propose similarly, but from a complexity 
and organizational perspective, that when 
regular work behaviour interacts with a 
restricting force such as bureaucracy, the 
social dynamic may move towards a more 
complex state than existed before. Evidence 
of this process in social behaviour is scant at 
present, but intriguing. Hazy (2003, 2008) 
observed this apparent phenomenon in a 
computer simulation in which generative 
leadership (Surie and Hazy, 2006) conflicted 
with leadership of convergence; the result 
was tension that fostered the uncertain behav-
iours of complexity. Marion, Uhl-Bien, and 
their colleagues have observed similar phe-
nomena in several as yet unpublished 
grounded research studies in large organiza-
tions (e.g. Marion et al., 2009). Interestingly, 
McKinley and Scherer (2000) likewise antic-
ipated this phenomenon in a paper on organ-
izational restructuring. Further work must be 
done to understand more clearly the proc-
esses that underlie these observations. 

Finally, complexity leadership researchers 
are asking whether complexity points to 
alternative ways to perceive leadership? 
There are certain informal influence and 
change dynamics occurring in complex sys-
tems (Plowman et al., 2007b; Schreiber and 
Carley, 2008), that do not bear the imprima-
tur of hierarchy, are not restricted to those in 
positions of authority, and are not necessarily 
imbued in the most articulate or friendly or 
respected people (the typical informal lead-
ership attributions; e.g. Guastello, 2007). 
Uhl-Bien et al. (2007) have labelled this, 
adaptive leadership, while others refer to it 
simply as complexity; it refers to the crea-
tive, adaptive, and learning acts of individu-
als and groups in informal settings. However, 
individual and group acts are products of 
complex interactions and their influence is 
only set in motion within complex networks 
where individual acts interact interdepend-
ently with numerous other such acts. That is, 
adaptive leadership involves agentic and 
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 collectivist behaviours plus complex contexts 
(defined as network dynamics), and the three 
factors are inextricably entwined (Uhl-Bien 
and Marion, 2009). It is collective leader-
ship – a collective influence forged by the 
combining, diverging, and elaboration of 
many ideas, preferences, people and groups. 
We further argue that this is a highly potent 
organizational dynamic in that it fosters 
emergence and change; further, it generates 
change that cannot be planned, thus it is a 
useful source of creativity within an organi-
zation (cf. Tsoukas and Chia, 2002).

EMERGING TRENDS AND 
DIRECTIONS

There are various emerging trends in the field 
of complexity leadership. Chiles et al. (2004), 
Uhl-Bien and Marion (2009), Uhl-Bien et al. 
(2007), and Hazy et al. (2007), for example, 
have all identified what Hedström and 
Swedberg (1998a) have labelled, social 
mechanisms, as core dynamics that complex-
ity leadership engenders or by which it acts. 
Social mechanisms, or perhaps more prop-
erly, interactive dynamics, are patterns of 
activity; they are dynamic social processes 
rather than static variables (although they 
may include interactions among variables). 
The study of complexity, then, is a study of 
complex social mechanisms and the interac-
tions among these mechanisms as well as 
their effects on system outcomes. In com-
plexity, social mechanisms can include inter-
action processes, interdependency processes, 
network clustering processes, catalyzing 
processes, information flow processes, infor-
mation processing processes, enabling proc-
esses, adaptive processes, organizational 
learning, and creativity processes (Uhl-Bien 
et al., 2007; Uhl-Bien and Marion, 2009). 

A second trend is the emergence of com-
plexity as a strategic leadership approach. 
Marion and Uhl-Bien (2007) have argued 
that informal dynamics are a major force 
in an organization’s strategic response to 

environmental exigencies. Ralph Stacey 
(1995) makes a similar argument: He argues 
that traditional planning approaches in strate-
gic leadership may reduce anxiety but are 
unable to anticipate the future and are, there-
fore, largely futile. He suggests that, rather 
than seeking equilibrium with the environment, 
strategic leaders seek far-from-equilibrium 
states in order to foster creativity and adapt-
ability. Philip Anderson (1999) adds that a 
complex organization can respond rapidly to 
strategic environmental changes; this occurs 
because complex organizations are suffi-
ciently organic to map and respond to 
nuanced environmental change. Karl Weick 
(1976) makes a similar responsiveness argu-
ment in his discussion of loose versus tight 
coupling. Cusumano (2001) illustrated how 
small groups of programmers can perceive 
and respond quickly to environmental demands. 
While these studies have established a broad 
framework for understanding strategic lead-
ership from a complexity perspective, more 
needs to be done to hammer out details about 
how this is done in practice. 

A third trend relates to works of House 
et al. (1995) and Rousseau and House (1994) 
and, more recently, the interest of Jerry Hunt 
(Hunt and Dodge, 2000), an important cham-
pion of complexity leadership prior to his 
death in 2008. Hunt and his colleagues Dick 
Osborn and Kim Boal, have encouraged this 
science to consider the implications of com-
plexity science as a meso theory of leader-
ship. Meso theory is defined by House et al. 
(1995) as ‘…a simultaneous study of at least 
two levels of analysis wherein (a) one or 
more levels concerns individual or group 
behavioural processes or variables, (b) one or 
more levels concern organizational processes 
or variables, and (c) the processes by which 
the levels of analysis are related are articu-
lated in the form of bridging or linking, 
propositions’ (p. 73). 

A special issue of The Leadership 
Quarterly on meso theory was published in 
2009 (volume 20, no. 9), and three of the 
articles in that edition examined complexity 
and meso theory. The first, by Hunt et al. 
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(2009) applies complexity ‘order for free’ 
notions to organizations and discusses how 
upper middle managers can foster and chan-
nel bottom-up emergence. The second, by 
Lichtenstein and Plowman (2009), proposes 
a link between individual level behaviour and 
organizational context and argues that this 
link exhibits a nonlinear threshold relation-
ship; i.e. increases in contextual conditions 
beyond a certain level triggers cycles of 
emergence. The third, by Uhl-Bien and 
Marion (2009), argues that informal, adap-
tive activities (complex interactions among 
individuals) exist at all hierarchal levels of 
organization, within all embedded groups 
within those hierarchies, and even cut across 
hierarchies and groups. Thus the actions of 
individuals inevitably influence macro-level 
behaviours, and macro-level behaviours inev-
itably influence the actions of individuals. 

Finally, yet another trend involves leader-
ship of extreme events, such as disasters and 
other highly volatile events. The work here is 
relatively tentative, and more is being done 
by OT specialists than by leadership theo-
rists. There have been discussions of this 
topic at a 2007 symposium at West Point and 
again at the 2008 Winter Conference of 
Organization Science. 

CHALLENGES FOR FUTURE 
DEVELOPMENT

The field of complexity is developing rapidly, 
and each new question addressed by com-
plexity leadership theorists spawns yet more 
questions, many of which have yet to be 
addressed. Such questions include: What is 
context in complexity study? Is it, for exam-
ple, a physical state as was argued by contin-
gency theorists (e.g. raw materials) or is it 
better defined as a network dynamic as pro-
posed by Osborn et al. (2002) and by  Uhl-Bien 
and Marion (2009)? How does one dismantle 
complexity dynamics such as  terrorist net-
works (Marion and Uhl-Bien, 2003)? How do 
leaders deal with dysfunctional complexity? 

Can organizational conflict be explained rela-
tive to complex dynamics and if so, what is 
the role of complexity leadership in this proc-
ess? Power and control may be anathema to 
complexity dynamics, yet power pervades 
modern organizations. How are we to deal 
with this problem?

A number of as yet unexplored or only 
tentatively explored questions revolve around 
the issue of complexity leadership. However, 
there are two issues of particular importance 
that must be addressed as this field moves 
forward.

First we need an ethical framework for the 
study and practice of complexity leadership. 
There are at least two dimensions to this 
issue. First, there is a need to understand the 
practical ethical implications of complexity 
leadership. Complexity is about networks 
and network dynamics, which, in terms of 
ethics, is good news and bad news. The good 
news is that complexity does not advocate 
significant power relationships, a major stim-
ulus for unethical behaviour in organizations 
(Jermier, 1998), and indeed, as just noted 
above, one of complexity theorists’ major 
struggles in the future will be to understand 
and harness the role of power and dominance 
in complex systems. The bad news is that it 
will be easy to overlook ethical problems that 
may arise because complexity theorists are 
focused on the structures of networks more 
than hierarchical control. 

There may be, for example, unanticipated 
enabling actions or adaptive mechanisms that 
inhibit the well-being or fulfilment of organi-
zational actors or which are systematically 
prejudicial to certain cultures. Complexity 
dynamics may make it easier for power fief-
doms to arise in informal groups. The ration-
ale underlying complexity dynamics might 
enable unscrupulous managers to do harm to 
the environment, the community, or the 
people within an organization in ways we 
don’t currently understand. 

A second dimension to this issue is that the 
ethical rules governing traditional research 
may fail us when we do complexity research. 
Complexity research can reveal things about 
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an organization that are not observed or 
knowable with traditional methodologies. 
For example, in a network analysis, adminis-
trator’s network roles are revealed and those 
roles may at times be inconsistent with the 
administrator’s personal perceptions or 
authority (e.g. an administrator might not be 
as important to the informal network as he or 
she believes); revealing such information 
could be harmful to the leader and could spill 
over onto innocent subordinates in the organ-
ization. In an OD analysis, revelations about 
the various roles that people play within the 
network could, inadvertently, harm relation-
ships within that organization. (It may do the 
opposite as well: In a recent analysis per-
formed by one of this paper’s authors, an 
individual on the verge of being dismissed 
was found to play crucial roles in the infor-
mal dynamics of the system.) Complexity 
analyses cannot predict future outcomes, 
they can only anticipate future social mecha-
nisms and classes of outcomes (e.g. innova-
tion; Prigogine, 1997; Colandar, 2000). If 
organizational leaders use results assuming a 
misplaced certainty, they could do damage to 
the organization. Unfortunately, until we 
have more experience, we won’t even know 
many of the ethical questions we need to 
address. 

The second thing that we must tackle is 
increasing the number of research studies in 
CLT, refining research methodology for com-
plexity dynamics, and making methodology 
accessible to scholars. There have been 
numerous theory papers written on complex-
ity leadership theory in recent years, but 
there have been relatively few research papers. 
Some important exceptions include Chiles’ 
et al. (2004) paper on the emergence of 
Branson, Missouri; the works by Plowman 
et al. (2007a) and Plowman et al. (2007b) on 
leadership and the emergence of new order in 
a deteriorating downtown church; Schreiber 
and Carley’s (2008) simulation study of lead-
ership in an armed forces unit; and Hazy’s 
(2008) system’s dynamics simulation of 
Intel’s shift to microprocessors. While the 
number of research papers on complexity 

leadership are limited, the questions that can 
be asked are potentially powerful.

At present there are three dominant 
approaches to doing complexity research: 
qualitative, simulations, and power law analysis. 
Qualitative procedures have been relatively 
well-developed and disseminated, so little 
may need to be done towards making them 
accessible. Simulation procedures may not 
have yet reached their full potential, but 
nonetheless there are some very good pro-
grams available. However, simulation tech-
niques are not widely taught in the curricula 
at universities and for most are only available 
through special workshops. McKelvey and 
Andriani have a chapter elsewhere in this 
handbook on power law analysis (fractals, 
scalability, power law curves), and we refer the 
reader to that chapter for further discussion.

The role of statistics in complexity research 
has yet to be established. Kathleen Carley at 
Carnegie Mellon, author of a complexity 
simulation program called Organizational 
Risk Analysis, advocates using statistical 
procedures to test the results of simulations. 
Some have tried using the artefacts of com-
plex dynamics as variables in statistical anal-
yses. Osborn and Marion (2009), for example, 
identified complex dynamics in international 
R&D alliances and analyzed an anticipated 
outcome – innovation – as a variable using 
hierarchical regression techniques. However, 
more study is needed to establish the role of 
statistics in complexity studies. More work is 
also needed to make scholars aware of the 
analytical procedures available to them in 
this field and to prepare them for conducting 
those procedures.

DISCUSSION 

Possibly the greatest challenge for scholars 
and practitioners trying to understand and 
practice complexity theory and complexity 
leadership is in relaxing their attachment 
to traditional perspectives of leadership and 
grasping the way complexity perceives 
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 organizational behaviour. The issue is cap-
tured nicely in Snowden and Boone’s (2007) 
statement that traditional leadership perspec-
tives assume ‘A certain amount of predictabil-
ity and order exists in the world’ (p. 70). That 
is, traditional perspectives are built around 
ordered perceptions of social activities, of 
regular, consistent relationships among vari-
ables (an effect that is true today will be true 
tomorrow), of control, and of future predict-
ability. The bulk of leadership theories assume 
that the leader is at the centre of change, 
manoeuvring and motivating players and 
directing organizational response as issues 
arise. Complexity theory goes beyond all of 
that. Social behaviour is disordered (Stacey, 
2001); its local unit of analysis is the dynamic 
mechanism more than the variable (Uhl-Bien 
and Marion, 2009); control is at best just one 
of many influence acts and at worst, delu-
sional (Streatfield, 2001); anything but the 
immediate future is likely unpredictable 
(Colandar, 2000); and organizational knowl-
edge, problems, and successes are the product 
of collectivist dynamics more than of any one 
person (Lichtenstein et al., 2006). 

Complexity is a non-positivistic perspec-
tive of causal logic and methodology. 
Outcomes are more the products of complex 
interactive dynamics than variable relation-
ships. Complexity does not entirely reject 
positivistic thinking (also called, methodo-
logical individualism; see Hedström and 
Swedberg, 1998a, b) and admits that com-
plex systems can, in some contexts, exhibit 
patterned behaviour that might be analyzed 
statistically. Even so, there is far too much 
connectionism, interdependency, and holistic 
behaviour in social dynamics to fully embrace 
methodological individualism. Complexity 
demands that we accept unexplained social 
phenomenon (phase transitions, creative 
leaps, etc.) – a notion that is counter-intuitive 
to Newtonian rationality.

Scholars and practitioners, for whom the 
positivistic paradigm dominates their world-
view, may likewise be bemused by the func-
tion of leadership in complexity dynamics. 
Consistent with its non-positivistic bias, 

complexity perceives leadership as influence 
in the context of interactive networks rather 
than as agents who direct and control change. 

Moreover, like population ecology (Hannan 
and Freeman, 1977), there seems, at first 
blush, little room for agency in the complex-
ity paradigm, so the issue of leadership looms 
large. Population ecology is about environ-
mentally-induced movements in which lead-
ership is merely another source of variation; 
complexity is about interaction-induced order 
in which leaders would seem to be merely 
another source of influence in a vast network 
of influence. However, unlike population 
ecologists, who cite researchers such as 
Salancik and Pfeffer (1977) or Weiner and 
Mahoney (1981) to question whether leader-
ship plays any significant role, complexity 
theory is far from fatalistic on this issue. 
Leadership and leaders influence complex 
dynamics, but their role can only be under-
stood with knowledge of the complexity 
context in which it occurs. 

The studies of Salancik and Pfeffer (1977) 
and Weiner and Mahoney (1981) concluded 
that, after controlling for factors such as 
organizational size and prior productivity, 
there is little variation in organizational out-
comes that is explained by leadership qual-
ities. These studies were positivistic and 
variable-based. Neither leadership nor 
organizational behaviour, however, can be 
fully understood when a dynamic is reduced 
to a point of central tendency (i.e. the aver-
age leader), or when researchers ignore the 
processual and interdependent nature of 
leadership. Complexity examines interac-
tions among leaders and organizational 
dynamics and seeks to understand the proc-
esses that evolve out of this interaction. 
Understood in this way, we can identify new 
perspectives of leadership and can better 
understand how leadership interacts with 
social dynamics to produce desired out-
comes. Research to date on this has been 
promising (Chiles et al., 2004; Schreiber and 
Carley, 2006, 2008; Plowman et al., 2007b; 
Hazy, 2008) but of course more needs to be 
done.
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CONCLUSION

We began this chapter by asking why do we 
need complex organization and how does 
leadership functions in complex organiza-
tions. Our answer to these questions, and to 
the issues raised in the last few paragraphs, 
can be summarized as follows.

Complexity itself is a hyper-interactive, 
adaptive, constantly morphing, networked 
process that is productive of surprising crea-
tivity and adaptability. Organizational com-
plexity is useful for functioning in complex, 
or adaptive, environments (Heifetz, 1994). It 
is being used by armed forces to fight terror-
ism (network-centric warfare; see Cebrowski 
and Garstka, 1998), by Microsoft to program 
their exceedingly complex software programs 
(Cusumano, 2001) and at Sun Microsystems 
to enable complex problem solving in a com-
petitive, globalized environment (Cross, 2007). 

What is complexity leadership and how 
does it function in this context? Uhl-Bien 
et al. (2007) have conceptualized three forms 
of leadership that operate in complex organi-
zations: adaptive leadership, enabling leader-
ship and administrative leadership. These 
three forms generally represent much of what 
is happening in the field (albeit from differ-
ent perspectives and with different emphases). 
Enabling leadership fosters the conditions in 
which complex dynamics can emerge, and 
is usually associated with managerial posi-
tions. We chose the word, enabling, purpose-
fully. Complex dynamics cannot be created 
from a blueprint; rather, they must be allowed 
to emerge. Thus the role of enabling leader-
ship is to foster rather than specify, to frame 
rather than build, and to guide rather than 
manage. Enabling leaders create conditions 
for complexity; they also champion promis-
ing emergent ideas, help redirect ideas that 
are inconsistent with organizational mission, 
and protect emergent ideas and complex 
dynamics. 

Adaptive leadership represents a unique 
perspective that is derived from complexity 
theory assumptions. This is a form of lead-
ership that is collective (i.e. a complex 

interactive dynamic) and acts outside of 
position or authority. Its influence is not 
unidirectional (i.e. a person with superior 
abilities or influence conveying coordinat-
ing wisdom to those less superior), but is 
rather embedded within an interactive con-
text. That is, any given individual’s act of 
influence bounces around in a network of 
influential acts, influencing others and self, 
and combining, converging, and adapting 
with other influential ideas in the system. It 
is a product of agency and of network 
dynamics, and the cumulative potential for 
change is significant.

Our proposals in this chapter have not 
diverged from the root of nearly all defini-
tions of leadership – i.e. influence and change 
(Bryman, 1996). What is different about 
complexity is its perception of the context in 
which leadership is embedded and, conse-
quently, of the manner in which leadership is 
conducted. It claims that leadership is not 
just about individuals, it is an interactive 
dynamic. Moreover, leadership is a function 
of interdependence and mechanisms rather 
than independent individual behaviours and 
variables. Perhaps most importantly, leader-
ship that fosters change and the adaptive 
function in the organization happens in the 
informal dynamics of a system as much, or 
more, than in the boardrooms.
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INTRODUCTION

Over the past three decades, research on the 
contribution of human resources (HR), i.e. 
people, and human resource management 
(HRM), i.e. policies and practices, to organi-
zational effectiveness has moved from opera-
tional to strategic: from examinations of 
discrete HR policies and practices to consid-
eration of how the HR strategy supports, or 
even drives, the strategy of the organization or 
sub-unit (Lengnick-Hall et al., 2009). At the 
core of HRM studies are questions relating 
HR practices to workforce attributes and 
behaviours, and subsequently to organiza-
tional performance outcomes, with the basic 
assumption that HRM matters – that the struc-
ture, design and execution of HRM practices 
materially affect the knowledge, capabilities 
and behaviour of people associated with the 
organization, and that better HRM translates 
to greater organizational effectiveness.

Strategic human resource management 
(SHRM) is a sub-field of HRM that emerged 
in the 1980s (Tichy et al., 1982) and has 
grown in lag-step with developments in the 

field of strategic management (Wright et al., 
2001a). SHRM researchers draw explicit con-
nections between firm strategy (at the corpo-
rate or business unit level) and HR strategy, 
and seek to explain the effects of HRM on 
strategy implementation as well as, more 
recently, strategy formulation, i.e. ‘strategy 
making’ (Snell et al., 2001). The dominant 
strategic management frame for articulating 
the contributions of SHRM is the resource-
based view (RBV) (Barney, 1996; Boxall and 
Purcell, 2000), which posits firm resources 
(human, social, organizational) as central to 
the development of competitive advantage, 
and so positions human resource management 
in a critically important role. Despite critiques 
of the RBV as vague and tautological (Priem 
and Butler, 2001), and difficult to operational-
ize empirically (Delery, 1998), it has been 
broadly employed in strategic management 
research (e.g. Barney, 1991; Makadok, 2001; 
Sirmon et al., 2008; Lockett et al., 2009), and 
fully embraced by SHRM researchers as the 
most fruitful frame within which to express 
the value of HRM (Boxall, 1998; Wright 
et al., 2001a; Boxall et al., 2007).

A Complexity Perspective 
on Strategic Human Resource 

Management
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Colbert (2004) sought to overcome 
critiques of the RBV by identifying the reso-
nance between critical-but-difficult aspects 
of the RBV and core concepts of ‘complexity 
thinking’; then exploring the implications of 
integrating ‘complexity principles’ – gener-
ally common features guiding the develop-
ment of complex systems – into the HR 
system. There is a paradox at the core of the 
RBV: those features of resources which 
create and protect the essence of a sustained 
resource-based advantage (i.e. characterized 
by causal ambiguity, based upon socially 
embedded, complex knowledge and capabili-
ties), also make them inscrutable and unpre-
dictable, and therefore difficult if not 
impossible to engineer and manage. The 
clear parallels between the RBV and com-
plexity thinking point to the latter’s potential 
to inform the former and, from this, to derive 
implications for Strategic HRM.

In this chapter, we consider the implica-
tions for SHRM of a particular thread of 
complexity thinking, namely a complex 
responsive processes (CRP) perspective as 
articulated by Stacey and colleagues (Stacey 
et al., 2000; Griffin, 2001; Streatfield, 2001; 
Fonseca, 2002; Stacey 2003). The key ques-
tions for scholars of SHRM and the RBV are 
process questions concerning how a resource-
based advantage comes into being, and how 
a firm builds ‘competitive potential’, i.e. the 
latent capacity for innovation that resides in 
the human resources of the organization. 
However, in neither field have researchers 
been very successful at penetrating the proc-
esses at the centre of ‘emergent innovation’ 
– the means through which competitive 
potential is realized as real innovation in the 
generation and delivery of products or serv-
ices. The CRP perspective is focused on 
process, and aims to explain how novelty 
emerges. It differs fundamentally – on onto-
logical, epistemological and methodological 
grounds – from alternate, more developed 
system-oriented interpretations of complex-
ity thinking applied to organizations, so 
offers much potential for developing novel 
insights for SHRM.

This chapter proceeds as follows: first we 
highlight the key questions in HRM, and situ-
ate SHRM as a sub-field of the larger disci-
pline. HRM is a mature, wide-ranging field of 
study, so a comprehensive review is beyond 
our scope; rather we delineate central con-
cerns and draw upon excellent reviews of the 
field to focus on the most contemporary chal-
lenges, in particular the role of HRM in build-
ing competitive potential and in driving 
organizational strategy and innovation (Snell 
et al., 2001). We then briefly recapitulate the 
points of affinity between the resource-based 
view in strategy and concepts from complex-
ity thinking (Colbert, 2004), in order to focus 
on the strategic aspects of HRM, and to moti-
vate the discussion to follow on the potential 
offered by a complex responsive processes 
view of organizational strategy and change. 
We then provide an overview of CRP concepts 
to delineate the distinctive contribution of a 
CRP view as compared to traditional organi-
zation theory. We conclude with a discussion 
of a CRP view’s implications for SHRM.

STRATEGIC HUMAN RESOURCE 
MANAGEMENT: KEY QUESTIONS

Strategic human resource management is 
focused on the overarching HR strategies of 
an organization or sub-unit, and their impact 
on performance (Boxall et al., 2007). Some 
basic questions pertinent to the practice of 
SHRM are: What are the effects of HR prac-
tices on the development of a firm’s human 
resources? What are critical strategic human 
resources? Which HR practices lead to greater 
organizational performance? To what degree 
is that contingent upon firm strategy? How 
does a firm ensure that its HR practices fit 
with its strategy, and that there is enough flex-
ibility in the HR system to be able to adapt, 
should the business strategy change? How 
can we ensure that individual HR practices fit 
with one another, and do not work at cross 
purposes? Must the attributes of a firm’s base 
of human resources always align to a prior 
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determined strategy, or can its stock of skills, 
knowledge and interactions drive strategic 
direction? The key constructs and central 
debates in SHRM have grown from these 
questions: best-practices vs. fit (Becker and 
Gerhart, 1996): horizontal fit and vertical fit 
(Schuler and Jackson, 1987; Delery, 1998); fit 
and flexibility (Wright and Snell, 1998); strat-
egy contingent HR systems (Lengnick-Hall 
and Lengnick-Hall, 1988; Boxall and Purcell, 
2000): and control-exerting vs. creativity-
enhancing aspects of HR systems (Snell et al., 
1996; Heraty, 2004; Hayton, 2005).

A recent review of the evolution of the field 
of SHRM (Lengnick-Hall et al., 2009) sur-
faced seven themes across time in the SHRM 
literature: (1) explaining contingency per-
spectives and fit (e.g. Baird and Meshoulam, 
1988; Wright et al., 1995), (2) shifting from a 
focus on managing people to creating strate-
gic contributions (e.g. Wright and Snell, 
1991; Huselid, 1995; Hatch and Dyer, 2004), 
(3) elaborating HR system components and 
structure (e.g. Lepak and Snell, 2002; Arthur 
and Boyles, 2007), (4) expanding the scope of 
SHRM beyond organizational boundaries 
(e.g. Schuler and MacMillan, 1984; Gardner, 
2005), (5) achieving HR implementation and 
execution (e.g. Becker and Huselid, 1999; 
Boswell, 2006), (6) measuring outcomes of 
SHRM (e.g. Rogers and Wright, 1998; 
Colakoglu et al., 2006), and (7) evaluating 
methodological issues (Gerhart et al., 2000; 
Wright, et al., 2001b). That these themes 
range comprehensively from examining spe-
cific discrete HR practices, to more strategi-
cally oriented considerations, to structural 
aspects of the HR system, to implementation 
and measurement issues, illustrates the rela-
tive maturity of the HRM discipline.

Three eras of strategic HRM

Other reviewers of the field outlined three 
‘eras’ of HR strategy characterized by the 
central focus of research in each chronological 
era (Snell et al., 2001), and concluded 
that the challenges in SHRM are shifting 

fundamentally, founded on new bases for 
competitive advantage in the knowledge/
information era.

Up to the 1970s, a focus on person–job fit 
was the dominant organizing frame for HRM 
scholarship and practice. From roots in the 
industrial revolution and especially in heavy 
manufacturing in automobiles, steel, and rail, 
corporate strategies focused on expansion 
and vertical integration to keep pace with the 
growing demands of a burgeoning and pros-
perous post-war population. The keys to 
competitiveness were stability, efficiency, 
and productivity, achieved through a division 
of labour, specialization, and work standardi-
zation. Workers were recruited and mini-
mally trained to fit the well-defined job tasks, 
and were easily replaceable. Analytic HR 
methods were paramount and job analysis 
was the foundation for all HR activities, pro-
viding a breakdown of tasks, duties, respon-
sibilities and the requisite skills, knowledge, 
abilities to perform them.

The 1980s saw a shift to new organiza-
tional challenges of global competition, auto-
mation, and total quality management, and 
the primary focus of HR research and prac-
tice moved from the ‘micro’ HR concerns 
of person–job fit, to more ‘macro’ considera-
tion of HR systemic fit – ensuring that HR 
policies and practices were complementary 
and mutually reinforcing towards common 
organizational objectives. Competition for 
high quality job candidates meant that, for 
example, development, compensation, and 
appraisal systems must align – what was 
termed ‘internal (or horizontal) fit’ of HR 
systems. Questions of ‘external (or vertical) 
fit’ examined whether HR practices fit with 
the stage of development of the firm (grow-
ing with it) and aligned with the strategy. In 
both the person–job fit era and the systemic 
fit era, HR strategy followed business strat-
egy, and was primarily concerned with issues 
of successful strategy implementation. 
Although these are presented as chronologi-
cal eras, they are not mutually distinct, 
and represent only a shift in emphasis: ideas 
and practices centred on person–job fit and 
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systemic fit HR are still being practiced, but 
their importance as a strategic differentiator 
for the typical firm has diminished.

The expansion in the past two decades 
of globalized systems of manufacture and 
trade, driven by exponential advances in 
information technology and management, 
means that the bases for competition are 
shifting significantly towards intangible 
organizational resources such as knowledge, 
innovation, learning, leadership, and culture 
(Kaplan and Norton, 2004). All of these 
intangible resources are embodied in people 
or are embedded in social networks within the 
organization, and this is a highly significant 
shift: these assets are often characterized as 
the ‘human capital’ of the organization, reso-
nating with notions of financial capital, i.e. 
the traditional accounting view of capital as 
land and equipment. However, human capital 
resides in people and in relationships and 
routines linking them – which means that a 
key strategic resource is not actually ‘owned’ 
by the firm. The old tools of HRM, job analy-
sis and task breakdown, are not strategically 
central in this era; rather the emphasis is now 
on processes for building and deploying 
human capital. This is the era of competitive 
potential – the task of HR is to build a pool of 
latent potential to not only implement strat-
egy, but to initiate and formulate strategy as 
well. In other words, the HR function is no 
longer just a ‘strategy-taker’, but has become 
a key ‘strategy-maker’ – a key driver of cor-
porate direction. In the era of competitive 
potential, HR strategy is more important than 
ever – HR strategy and business strategy have 
converged (Snell et al., 2001).

Competitive potential, SHRM and 
the resource based view of strategy

Competitive potential has moved to the 
foreground in importance in SHRM, but is 
not a new concept within strategy research 
or the resource-based view of competitive 
advantage. Economist Edith Penrose, whose 
work 50 years ago is widely regarded as the 

genesis of the RBV, was interested in the 
process of firm growth and its relation to 
sustained advantage. She proposed that:

… the availability of unused productive services 
within it create the productive opportunity of a 
given firm. Unused productive services are, for the 
enterprising firm, at the same time a challenge to 
innovate, an incentive to expand, and a source of 
competitive advantage. (Penrose, 1959: 85)

In its original conception, the RBV held 
that a firm’s resource base contains not only 
adaptive potential, but also creative potential 
– both of which are captured in the more 
recent idea of competitive potential. The 
‘unused productive services’, which in 
SHRM terms means the knowledge, skills, 
and behavioral dynamics of individuals and 
groups, are forces for creativity, innovation, 
growth, and relative industry advantage. To 
be of strategic value, Human Resource 
Management practices should be focused on 
building and leveraging both creative and 
adaptive sources of competitive advantage: 
the latent creative potential in the organiza-
tion’s human resource pool, and the idiosyn-
cratic capabilities which serve to realize that 
potential, and help the organization adapt to 
and thrive within its operating environment.

The RBV has been critiqued as a static 
concept, unable to adequately capture the 
nature of a dynamic business environment 
(Eisenhardt and Martin, 2000; Priem and 
Butler, 2001), and therefore more recent 
work in the RBV stream emphasizes ‘dynamic 
capabilities’ (Helfat, 1997; Teece et al., 1997; 
Eisenhardt and Martin, 2000; Makadok, 2001; 
Zahra and George, 2002), which are the org-
anizational and strategic processes through 
which managers convert resources into new 
productive assets in the context of changing 
markets (Galunic and Eisenhart, 2001). 
There have been several efforts to identify 
and prescribe dynamic capabilities in both 
theoretical terms (Teece et al., 1997; Luo, 
2000; Zott, 2003), and through empirical 
studies (e.g. Helfat, 1997, 2000; Griffith and 
Harvey, 2001; Rindova and Kotha, 2001). 
In an extensive review of the dynamic 
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capabilities literature, Wang and Ahmed 
(2007) defined dynamic capabilities as:

… a firm’s behavioural orientation constantly to 
integrate, reconfigure, renew and recreate its 
resources and capabilities and, most importantly, 
upgrade and reconstruct its core capabilities in 
response to the changing environment to attain 
and sustain competitive advantage. By this defini-
tion, we first argue that dynamic capabilities are 
not simply processes [i.e. codified management 
processes], but embedded in processes. (p. 35)

They also derive three main components 
of dynamic capabilities: adaptive capacity 
(ability to identify and capitalize on emerg-
ing market opportunities), absorptive capac-
ity (ability to recognize and assimilate new 
commercially useful information) and inno-
vative capacity (ability to develop new prod-
ucts and markets through aligning strategic 
orientation with innovative behaviours and 
processes). The idea of adaptive capacity 
mirrors Penrose’s (1959) concept of adaptive 
potential, and innovative capacity reflects her 
idea of creative potential. However the organ-
izational dynamics driving the development 
of these factors remains unclear, although 
they are understood to be path-dependent and 
complex in nature (Wang and Ahmed, 2007). 
From Penrose in the 1950s to recent work in 
dynamic capabilities, the adaptive and crea-
tive components of the RBV are clearly 
established as strategically important, if not 
well defined, but they have only more recently 
moved to the centre of SHRM in the era of 
competitive potential. The actual process of 
how competitive potential becomes ‘emer-
gent novelty’ remains opaque. Throughout 
the large body of scholarly writing in the 
RBV, in strategy and with specific respect to 
SHRM, there have been a few key aspects of 
resources widely acknowledged to be both 
critically important, and exceedingly difficult 
to adequately represent. This is primarily due 
to the apparently paradoxical internal logic 
of the RBV, at least as it has been framed to 
date: the strategic value of firm resources lies 
in their inherent complexity, and attempts to 

causally unravel that complexity are counter-
productive, if not futile. Wright et al. (2001: 
709) conclude that taking RBV deeper into 
SHRM research ‘requires recognizing that 
the inimitability of [organizational] compe-
tencies may stem from unobservability (e.g. 
causal ambiguity), complexity (e.g. social 
complexity), and/or time compression disec-
onomies (e.g. path dependence)’.

We argue that such issues with the RBV 
arise when one thinks in systemic terms, 
rather than in process terms, and that insights 
from a process-focused view of complexity 
can help to reframe the difficult aspects of 
the RBV. We begin our argument by connect-
ing four critical-but-difficult aspects of the 
RBV to features of complex systems (see 
Colbert, 2004 for a full explication of these 
aspects in the RBV literature): a focus on the 
creative as well as the adaptive aspects of the 
RBV; the centrality of complexity and causal 
ambiguity to its logic; the importance of dis-
equilibrium, dynamism, and path depend-
ence; and the idea of system-level resources. 
All of these are deemed essential to a sus-
tained resource-based advantage, but are also 
critiqued as difficult, obtuse and impenetra-
ble to organizational researchers and manag-
ers. Yet each can also be related to foundational 
concepts in the study of complexity. This 
congruence (see Table 23.1) suggests that 
transferring ideas from complexity science to 
the RBV and SHRM offers the potential for 
novel insight, particularly given that SHRM 
researchers have explicitly called for a focus 
on these organizational phenomena to 
advance the development of the field.

In one of the few works comprehensively 
linking complexity and HRM, Colbert (2004) 
draws on this congruence and on the work of 
Kelly (1994) to outline a framework for 
injecting complexity principles into the design 
architecture of the HR system. Here we con-
sider a different complexity science-inspired 
conception of organizations, not as complex 
systems but, rather, as complex responsive 
processes (Stacey, 2001), in order to address 
directly the process questions in SHRM.
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Table 23.1 Parallels between the resource-based view of the firm and complex adaptive 
systems*

Key features Resource-based view of the firm Complex adaptive systems

Creativity/adaptability Competitive advantage grows from latent 
creative potential embedded in firm 
resources

Complex adaptive systems learn and 
create new responses to their contextual 
environment

Complexity and ambiguity Inimitability arises from social complexity 
and causal ambiguity

Complex adaptive systems are comprised 
of agents linked through complex 
interrelationships that are nonlinear, 
non-deterministic, and unpredictable

Disequilibrium, dynamism, 
path dependence

Complex relationships build over time, are 
historically dependent; disequilibrium is the 
creative state; dynamism, process issues are 
paramount.

Complex adaptive systems move towards 
and thrive at far-from-equilibrium states; 
equilibrium leads to stagnation, decline, 
and death; history matters; paths unfold 
irreversibly through time

System-level phenomena Some key strategic resources are intangible, 
and exist only at the system-level, emerging 
from and existing in relationships between 
lower-level resources

Some features and properties of complex 
adaptive systems emerge, and only 
exist, at the system-level, in the dynamic 
relationships between things.

* Adapted from Colbert (2004).

Key role for HRM: building 
competitive potential 
and innovative capacity

Building competitive potential in human 
systems necessarily ‘places a premium on 
knowledge-based assets and the processes 
that underlie learning and innovation’ (Snell 
et al., 2001: 634). Innovation can be seen as 
simply the emergence of useful novelty – 
new products, services, knowledge, routines, 
or capabilities, all rooted in new ways of 
thinking and talking about the organization 
and its activities. Similarly, organizational 
strategy can be seen as, essentially, innova-
tion in value creation: the development of 
new forms of value for stakeholders and of 
means to deliver that value. If HRM is to be 
a ‘maker’, and not just a ‘taker’ of organiza-
tional strategy, then the core task of HRM is 
to foster the potential for creative innovation 
inside the firm.

Innovation in organizations is often char-
acterized as a process through which ideas 
are converted into products or services; or 
are realized as new organizational routines 
or structures (Cooper et al., 1999; Adams 
et al., 2006). What is less understood is how 
novel ideas emerge in the first instance. 

Fonseca (2002) traced the roots of main-
stream management conceptions of innova-
tion to two streams of economic theory. 
Classical and neoclassical economics focused 
on the functioning of markets as resource 
allocation mechanisms, and innovation is an 
exogenous variable in the production func-
tion, an independent factor of organizational 
or technological change, most often displac-
ing labour with capital and disrupting market 
forces temporarily until a new equilibrium is 
established. The second stream, evolutionary 
economics (based on Schumpter, 1934), dealt 
with the processes of economic growth, and 
depended on a heroic, intuitive entrepreneur 
to challenge existing ways of thinking and to 
forge a vision, and to pursue it through 
political processes. In both of these streams 
the innovation appears fully formed, and 
then is put into play. As a result, the phases 
identified in ‘innovation management’ 
processes begin after the innovation has 
already emerged. Some innovation theory 
makes reference to an ‘innovation culture’ in 
general terms (Cooper and Kleinschmidt, 
1995; Burgelman et al., 2004), but examina-
tions of innovation processes are generally 
about managing the innovation once it has 
emerged, or at best, running formalized 
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brainstorm idea generation processes at the 
front end.

Thus, SHRM researchers have pointed to 
the need to focus on the root processes 
underlying innovation, i.e. those that gener-
ate novel ideas, and in particular on how the 
quality of participation of organizational 
members affects these:

… we need less research on the control attributes 
of SHRM and more research on how participative 
systems can increase the potential value of and 
impact of employees on firm performance. If 
human capital is valuable, we have to learn how to 
unleash that value. (Snell et al., 1996: 65)

The core strategic question for SHRM 
therefore becomes: how is competitive poten-
tial, or the innovative capacity of the organi-
zation, encouraged to thrive and be realized 
as emergent novelty? Complexity thinking, 
particularly theorizing of complex responsive 
processes, deals with this question directly.

COMPLEX RESPONSIVE PROCESSES

The many facets of complexity science and 
complexity thinking as applied to manage-
ment are highlighted elsewhere (e.g. Maguire 
et al., 2006) as well as throughout this 
volume, so we limit ourselves here to identi-
fying a few basic ideas in order to introduce 
and situate the concept of complex respon-
sive processes, before discussing its important 
implications for HRM.

Complexity science generally denotes a 
wide-ranging body of work built on such fields 
as chaos theory (Lorenz, 1963; Gleick, 1987), 
cybernetics (Weiner, 1948; Ashby, 1956; 
Hayles, 2000), and dynamic systems theory 
(Jantsch, 1980; Prigogine and Stengers, 1984; 
Kauffman, 1992). It includes the study of 
complex adaptive systems (CAS), which is a 
system comprised of ‘a large number of 
agents, each of which behaves according to 
its own principles of local interaction’ 
such that ‘[n]o individual agent, or group of 
agents, determines the patterns of behavior 

that the system as a whole displays, or 
how those patterns evolve, and neither does 
anything outside the system’ (Stacey et al., 
2000: 106). Its components (i.e. ‘agents’) 
operate with some measure of autonomy, 
as well as in relation to other system com-
ponents, i.e. both independently and inter-
dependently; and their interactions give rise 
to system-level emergent properties that 
are irreducible, exist only in these underly-
ing relationships, and are unpredictable 
in advance of their manifestation. The agents 
self-organize into patterns that give the 
overall system its shape and identity. 
McKelvey (2004) has identified the central 
focus of complexity science as the study, not 
of complexity per se, but of order-creation 
dynamics that give rise to new forms, such as 
those in a CAS.

In interpretive, metaphorical applications 
of complexity science in management, the 
human analogue of a complex adaptive 
system is typically assumed to be a group of 
individuals, i.e. with individual humans as 
the CAS’ agents (Stacey, 2003). The ana-
logue for self-organization is people forming 
into groups, teams, or organizations; while 
the system programmer, or scientist, is taken 
to be the manager, who somehow stands out-
side the system and is able to alter conditions 
so that the dynamics are brought to ‘the edge 
of chaos’ (i.e. where the system is at once 
both stable and unstable, and is maximally 
adaptive and creative).

Because the critical questions in Strategic 
HRM focus on process, and in particular on 
the processes that build competitive potential 
to create a resource-based advantage, we take 
a process view of complexity for this chapter 
to shine light from a different angle on the 
challenges in SHRM. Stacey and colleagues 
(Griffin et al., 1998; Stacey et al., 2000; 
Fonseca, 2002; Shaw, 2002; Stacey, 2003) 
have elucidated extended and coherent inter-
pretations of organizations as ‘complex 
responsive processes’ (in contrast to the more 
popular ‘complex adaptive systems’ anal-
ogy), with the aim of describing the proc-
esses that give rise to ‘emergent novelty’, 
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which then translates into innovation and 
organizational strategy. Although the con-
cepts within CRP thinking are rather abstract, 
the rigorous treatment given to the full ana-
logical transference of complexity concepts 
to organizations is compelling and persua-
sive, and carefully grounded in consistent 
ontological terms.

A complex responsive processes (CRP) 
view describes organizations as the pattern-
ing of relationships among people; the focus 
is on how processes of communicative inter-
action self-organize into dominant (i.e. 
organizationally legitimate) and shadow (i.e. 
organizationally illegitimate or subversive) 
themes that give and perpetuate meaning to 
organizational life, and how those themes 
and patterns change in unpredictable ways. 
‘Knowledge’ in this view refers not to some-
thing that is codified, but rather to meaning 
which is socially constructed and continually 
recreated in the living present, constrained by 
but also simultaneously shaping power rela-
tions among individuals. Themes are recur-
sively formed and perpetuated through 
narrative, and there is at the same time the 
potential for new propositional meaning 
themes to emerge. The core process for both 
narrative and propositional themes is conver-
sation – free flowing, turn-taking exchange 
of symbols between humans in the living 
present. Because a central but ill understood 
feature of complex adaptive systems is their 
paradoxical ability to simultaneously self-
perpetuate yet adaptively transform, i.e. to 
enable novelty to emerge with no controlling 
plan or pre-determined path, a complex 
responsive processes view endeavours to 
explain emergent novelty in organizations 
from a process perspective.

Under a CRP view, the analogue for the 
interaction among agents in a complex 
system (or for the digital code in computer 
simulations of CAS) is the patterning of 
symbols people use to communicate with 
each other into themes that order relations. 
Human communication symbols interact 
through conversation (broadly defined, 
including verbal and semiotic exchanges), 

and arrangements of those symbols take the 
form of themes of meaning, stories and 
propositions:

In other words, the analogue of agents is the 
themes organizing conversation communication, 
and power relations. What is organising itself, 
therefore, is not individuals but the pattern of their 
relations in communicational and power terms in 
the public vocal arena, and at the same time, in 
the silent, private arena that is mind. The analogue 
of a complex adaptive system in human terms is 
then the self-organising processes of communicat-
ing in power relations. (Stacey, 2003: 332)

Innovation is the emergence of novelty; it 
is ‘not thought of in terms of the action of 
adopting some well-defined novelty, but as 
the process of developing that novelty’ 
(Fonseca, 2002: 17). A complex responsive 
processes view is a way of thinking about 
complex systems as interactions between 
diverse entities that amplifies differences to 
produce emergent novelty (Stacey et al., 
2000). When there is diversity in meaning 
comprehension – which in some instances 
may be labelled by participants as misunder-
standing – there is the potential for new ways 
of thinking, talking and acting to emerge.

Four questions that distinguish a 
complex responsive processes view

Here we present a brief summation of a CRP 
view organized under four core questions 
offered by Stacey (2003) to differentiate sys-
tems theories from a CRP perspective, in 
order to frame the implications for the chal-
lenges in Strategic HRM, which in general 
terms involves a refocusing of attention 
toward important qualities of organization. 
The four questions are: What is the assumed 
nature of human interaction? What are the 
implicit assumptions about human nature? 
What is the methodological stance, and by 
extension, the role of the manager? And how 
is paradox approached? The key distinctions 
between a systemic view and a complex 
responsive processes view of organizations 
are summarized in Table 23.2.
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Nature of human interaction

Dominant theories of organizational dynam-
ics (where ‘dynamics’ refers to the pattern of 
movement over time), such as strategic choice 
theory, learning organization theory, and 
open systems theory, take a systemic theory 
of interaction: interactions between people 
are assumed to create a whole (‘the system’, 
the boundaries of which are arbitrarily 
defined, often as the working group, the 
department, the unit, or the organization); 
people are then seen as parts of this whole, 
and are in some way subjected to the purpose 
of the whole. Attention is on the behavior of 
the macro system, and the notion of micro-
diversity is largely ignored, which is prob-
lematic since micro-diversity is the key driver 
of innovation and adaptation in complexity 
thinking in the natural sciences (Prigogine 
and Stengers, 1984; Kauffman, 1995).

Under a systemic complexity view of 
human systems, the organization–individual 
relationship is most often taken as the sys-
tem–agent analogue in biological complex 
adaptive systems (e.g. Morgan, 1996; Brown 
and Eisenhardt, 1997, 1998; Morel and 

Ramanujam, 1999). Yet human understand-
ing, intention, and action are highly complex 
notions in themselves; therefore to aggregate 
at the level of the individual person is to 
draw an arbitrary conception of ‘the agent’ 
for the sake of metaphorical convenience. 
A systemic view offers limited help in 
explaining the emergence of genuine novelty 
and innovation (Fonseca, 2002).

View of human nature

Stacey (2003) drew on the philosophy of 
Hegel and the sociology of Mead (1934) and 
Elias (1991, originally published in German, 
1939) to outline a ‘process sociology’ per-
spective of human interaction and meaning 
construction, and identified a compelling 
similarity between the dynamics described in 
1930s process sociology and those represented 
in heterogeneous-agent computer-based 
models of complex interaction developed in 
the complexity sciences, both in organic 
simulations (Ray, 1992) and in models of 
economic systems (Allen, 1998). Process 
sociology theorists posit that individual 

Table 23.2 Distinctions between systemic view and a complex responsive processes view*

Four questions Systemic view of organizations
(e.g. strategic choice, learning organization, 
open systems)

Complex responsive processes view of 
organizations

Nature of interaction Dualist: Interactions between people create 
‘the system’; people then interact with the 
reified system, and are subjected to its larger 
purpose

Iterated processes of relating, manifested 
in narrative themes (who we are) and 
propositional themes (who we might be); 
simultaneous formation of power relations

View of human 
nature

Both the individual and the social are seen as 
separate from one another, and are drawn as 
interacting in time and space; relationships 
are drawn between individual schema and 
socially constructed schema

Neither the individual nor group identity is 
prior, but are simultaneously constructed 
through ongoing conversation, both public 
and vocal and private and silent

Methodology: 
position of the 
manager

‘The system’ is something bounded and 
defined that we can stand apart from to 
manage or study; manager seeks leverage 
points at which to intervene and control 
system behaviour

Managers are full participants in the 
conversational processes that shape 
organizational dynamics; cannot control 
dynamics, but only influence the bounds of 
instability

View of paradox Resolve contradictions and remove 
paradoxical tensions, as traditional theories 
of organizational dynamics are equilibrium-
seeking, with stability or gap-closing as a 
core goal

Embrace tension to drive forward iterative 
dynamic of ongoing meaning creation; 
paradox is essential for generating creative 
novelty, which arises from the tension 
between legitimate and shadow themes

*Constructed from Stacey (2003)
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personality and society emerge simultane-
ously: each defines and is defined by the other 
at once, and neither can reasonably be argued 
to be prior cause of the other (Elias, 1991).

This view is clearly distinguishable from 
both cognitive and sociological perspectives 
in human psychology. Cognition theory holds 
the individual as prior to the group; the indi-
vidual mind is the locus of meaning con-
struction, or sensemaking (Weick, 1995). 
Groups are seen as collectives of individuals, 
and those groups might then affect how 
individuals behave (Stacey, 2003). Social 
constructivism places the social level as the 
prior and primary shaping force of individual 
personality. Cognition and sociological per-
spectives are both rooted in system thinking, 
where relationships are drawn between indi-
vidual schema, or structural maps of meaning, 
and social schema. Both the individual and 
the social are seen as separate from one 
another, and are drawn as interacting in time 
and space. In process sociology, ‘individual’ 
and ‘group’ are constructed simultaneously 
– a group cannot exist prior to an individual, 
and individual identities always emerge and 
are defined in a social context.

Conversation is the core process for the 
ongoing creation (and transformative, inno-
vative re-creation) of meaning and identity, 
therefore a CRP view re-focuses attention on 
the quality of conversational life in an 
organization.

Methodological stance and the 
implicit role of the manager

System thinking asks us to consider a system 
as something bounded and defined that we 
can stand apart from to manage or study. 
Strategic choice (Hofer and Schendel, 1978; 
Porter, 1980) and learning organization theo-
rists (Senge, 1990) draw schematic maps to 
characterize system dynamics, and to find 
leverage points for managers to intervene and 
control. Likewise with many applications of 
complexity thinking to organizations; com-
plex adaptive systems management theorists 
(e.g. Morgan, 1996; Brown and Eisenhardt, 

1998) often place the practicing manager out-
side the system as observer and controller, 
and ascribe the manager undue agency and 
control over complex organizational proc-
esses. A complex responsive process perspec-
tive assumes that the manager is one actor in 
the mix, and patterns of interaction form and 
are formed by ongoing exchange of meaning 
symbols and power relating. With a focus on 
pure process and a withdrawal from spatial 
metaphors, the individual cannot stand apart 
from the system. Individual and group are the 
singular and plural form of the same phenom-
enon, relating. ‘individual mind’ and ‘collec-
tive mind’ are constructed simultaneously 
through ongoing conversational exchange of 
narrative themes (framing and describing how 
things are) and propositional themes (framing 
and suggesting how things could be).

A CRP view posits that managerial ‘con-
trol’ of organizational dynamics is impossi-
ble, and that patterns of relating self-organize. 
That does not mean we ignore organizational 
hierarchies, or that the manager or CEO is 
disempowered; only that the path dynamic 
(the pattern of movement over time) is 
co-created by all involved.

Approach to paradox

An apparent paradox can be treated as a 
dichotomy (an either/or choice of action – e.g. 
offer high quality products or drive costs and 
price down), as a dilemma (a choice between 
two unattractive alternatives – e.g. raise prices 
or lay off staff to meet financial goals), or as 
a duality (a ‘both … and’ resolution to a con-
tradiction – e.g. ‘both thinking globally and 
acting locally’ in a mass-customization manu-
facturing model). In all of these conceptions, 
the aim is to resolve the contradiction and 
remove the tension, as traditional theories of 
organizational dynamics are equilibrium-
seeking, with stability or gap-closing as a core 
goal. The first two are binary choices, and a 
dualism locates the two poles of the contra-
diction in different spaces or times – thinking 
in one mode and acting in another, keeping 
both, and resolving the contradiction.
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A true paradox is defined as ‘a state in 
which two diametrically opposing forces/
ideas are simultaneously present, neither of 
which can ever be resolved or eliminated’ 
(Stacey, 2003: 11), with no possibility of 
choice (e.g. individuals in an organization 
may desire freedom, chance, and the thrill of 
uncertainty, but also crave security, order and 
discipline). Real paradox and the attendant 
tension is a key driver of creativity and nov-
elty. A complex responsive processes view 
embraces such tension, and accepts that it 
can never fully be resolved, but can drive 
forward an iterative dynamic of ongoing 
meaning creation in a Hegelian dialectical 
sense, where competing ideas remain, but the 
quality of their tension transforms their 
meaning, and each is seen differently.

Prescriptive challenges in 
complexity: ‘managing emergence?’

Theorists in the CRP school resist offering 
prescriptions for managing, with the argument 
that each context is unique, path-dependent, 
and self-organizing: ‘a theory that focuses 
attention on self-organising processes and 
emergent outcomes can hardly yield general 
prescriptions on how that self-organisation 
should proceed and what should emerge from 
it. The theory would be proposing to do the 
opposite of what it is explaining’ (Stacey, 2003: 
415). Fonseca (2002: 120) concludes: ‘conver-
sational activity in any organization cannot be 
engineered. This means that innovation cannot 
be managed’.

We think it is possible to embrace the 
descriptive tenets of the CRP view as out-
lined in the points above, and still allow 
room for useful recommendations to manag-
ers. If knowledge-as-meaning is continually 
renewed and transformed through conversa-
tion that is bounded by and simultaneously 
formative of power relations, then managers 
do exercise some measure of influence on 
the tenor and shape of themes in those con-
versations, and on communicative processes 
that determine which are legitimate and 

shadow themes. It may be no more influence 
than any other member (though one could 
argue it often is, through structural power 
differential and influence), but it is certainly 
no less. While resisting specific hard pre-
scriptions, Stacey did offer ideas on the 
implications for organizations towards refo-
cusing attention on certain qualities of 
organizational process, with some thoughts 
on the role for managers. There is consider-
able interplay and overlap among these 
qualities, and so we will combine some and 
consider four here: the quality of participa-
tion and interaction in conversation; the 
quality of anxiety and how it is lived with; 
the quality of diversity; and the quality of 
unpredictability and paradox. In the discus-
sion following we extend those implications 
to managerial competencies and to the role 
of Strategic HRM processes. By HRM proc-
esses here we mean the ongoing activities of 
the HRM system: the principles, policies 
and practices as designed and deployed by 
HRM practitioners (Colbert, 2004).

IMPLICATIONS OF THE CRP VIEW: 
MANAGEMENT COMPETENCIES 
AND HR PROCESSES

Next we consider Stacey’s four qualities of 
organization and extend the implications to 
identifying (1) the role of managers; (2) criti-
cal management competencies; (3) the role of 
HRM in helping to develop those competen-
cies; and (4) the role for the HR practitioner, 
and the relevant HR processes to deploy for 
helping to focus attention on the qualities 
important to fostering innovation. We use the 
term ‘manager’ here to mean anyone in a 
formal leadership role, from CEO to the first 
line. ‘HR practitioner’ refers to those who 
design and steward the operation of the HR 
processes of the firm, which could include 
both HR professionals, and line managers 
depending on the size and design of the 
organization. Table 23.3 summarizes the four 
qualities and their implications.
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Quality of participation in 
conversational life: Managers 
and HR practitioners as process 
consultants

The CRP perspective directs attention towards 
the thematic patterning of interaction, such 
as the patterning of power relations, inclu-
sion and exclusion, ideological themes 
emerging, and shifts in patterns of identity 

that can give rise to anxiety. Relationships 
are organized in conversations that form and 
are formed by the power relations between 
people. Organizations can only change when 
the themes that order conversations and 
power relations change, and organizational 
learning represents change in these themes.

Process consultation (Schein, 1998) 
involves attending to the patterns, base 
assumptions and inferences emerging in 

Table 23.3 Implications of a complex responsive processes view for managers 
and the HR function

A complex responsive processes 
view re-focusing attention*

Implications for management 
competencies
(and for HR leadership development)

Implications for the HR function

Quality of participation in 
conversational life of the 
organization 
Attention to the thematic 
patterning of interaction: 
patterning of power relations, 
inclusion and exclusion, 
ideological themes emerging

Manager as process consultant
Observing and feeding back 
thematic patterns; unblocking stuck 
conversational themes
Relevant competencies:
Social process consultation
Emotional intelligence
Critical thinking

HR practitioner as process consultant
Providing high level process consultation 
services and leadership development
Relevant SHRM processes:
Process consultation
Talent management
Executive coaching

Quality of anxiety and how 
it is lived with
Attention to threatened 
identities as innovations arise; 
to feelings of incompetence in 
the face of uncertainty

Manager as holder of anxiety
Reflecting on the sources of anxiety 
in the living present; building trust 
and confidence in change and 
oneself
Relevant competencies:
Reflective practice
Comfort with ambiguity
Counselling 

HR practitioner as holder of anxiety
Identifying organization wide sources of 
anxiety and trust
Relevant SHRM processes:
Inclusive change management
Employee relations

Quality of diversity
Attention to the importance 
of unofficial ideologies that 
undermine current power 
relations

Manager as moderator of 
challenge and conflict
Noticing the tension between 
legitimate themes and shadow 
themes, and how inclusion and 
exclusion occurs
Relevant competencies:
Critical thinking – surfacing 
assumptions
Integrative thinking

HR practitioner as moderator of 
challenge and conflict
Implementing formal and informal 
opportunities for generative and strategic 
dialogue
Relevant SHRM processes:
Appreciative inquiry
‘Fishbowl’ management feedback

Quality of unpredictability 
and paradox
Attention to how 
unpredictability is tolerated 
and how paradox is a source 
of generative tension

Manager as leader of emergent 
enquiry
Accepting that unpredictability is 
inseparable from creativity; holding 
paradox open and leading inquiry 
on it
Relevant competencies:
Integrative thinking
Triple loop learning enquiry

HR practitioner as leader of emergent 
enquiry
Engaging internal and external stakeholders 
in surfacing and generating paradoxical 
creative tension
Relevant SHRM processes:
Stakeholder engagement
Radical transactiveness
Triple loop learning enquiry

*Column 1 adapted from Stacey (2003).
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meaning making, i.e. conversational exch-
anges, and reflexively surfacing some for 
feedback into the ongoing process. Once 
the exclusive domain of organization 
development practitioners and psychothera-
pists, process consultation has moved to 
being a core organizational competency for 
innovation.

A competent manager is one who is sensi-
tive to the themes that are organizing conver-
sational relating and to rhetorical ploys that 
can block the emergence of new conversational 
themes, and who participates to assist in 
altering themes. They observe and feed back 
thematic patterns, unblocking stuck conver-
sational themes. Specific relevant competen-
cies are social process consultation (Schein, 
1998), emotional intelligence (Goleman, 
2005), and critical thinking skills, i.e. the 
ability to identify dominant claims and sur-
face basic assumptions – both reality assump-
tions about how we think the world works, 
and values assumptions about the way we 
think it ought (Dyer, 2006).

The HRM practitioner can also act as 
process consultant by deploying appropriate 
HR processes. Many HR functions offer 
high level process consultation in services 
from strategy development to business plan-
ning to conflict moderation. Such formal-
ized consultation can serve to enrich the 
conversational life of the organization in 
formal settings, and can also set the tenor 
for how conversational patterns are noticed, 
which can carry over to more informal set-
tings. For example, a manager may draw 
upon in-house facilitation services to help 
bring formal process to a conflict situation. 
A skilled process facilitation consultant can 
help to surface issues, underlying assump-
tions and causes of conflict, with attention 
to full, constructive participation by all 
involved, thereby modelling positive dia-
logue techniques for both the manager and 
the team. The HR processes also contribute 
significantly to leadership development 
through training, talent management (Lewis 
and Heckman, 2006) and executive coach-
ing, and by building process consultation 

skills into leadership competency profiles 
and assessments.

Quality of anxiety and how it 
is lived with: Managers and HR 
practitioners as holders of anxiety

The CRP perspective focuses attention on the 
importance of free-flowing conversation in 
which people are able to search for new 
meaning. Themes organizing the experience 
of relating are expressed in vocal, public 
conversations between people, and also in 
the silent, private conversations that are indi-
vidual minds. New ways of talking publicly 
are reflected in new ways of individuals 
making sense of themselves, and anxiety is 
inevitably associated with shifts in themes 
that organize the experience of relating, as 
individual and collective identities are 
threatened. The uncertainty that comes with 
creativity can give rise to anxiety, even 
shame at feelings of incompetence. The 
capacity for living with anxiety is critical to 
organizational change and innovation.

Innovation and competitive potential 
depends on managers who are capable of 
reflecting on the sources of anxiety in the 
living present, and of building trust and confi-
dence in change and in others. Reflective prac-
tice (Raelin, 2002), and comfort with ambiguity 
through mindfulness (Kabat-Zinn, 1994), 
along with the skill to counsel others, are there-
fore important management competencies.

The HRM practitioner can help organiza-
tional members live with anxiety by identify-
ing organization-wide sources of anxiety, and 
embedding trust-building processes into 
change management processes and employee 
relations processes. Inclusive change proc-
esses with high involvement in exploration, 
direction setting and implementation plan-
ning can help to hold feelings of anxiety open 
to allow innovation to surface in ways of con-
versing, power relating, and identity con-
struction. For example, when leaders of an 
organization or a sub-division are seeking to 
strategically re-orient direction, they can do 
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so with high involvement methods, such as a 
‘future search conference’ (Weisbord, 2005), 
in which a whole unit of 500 people can be 
included in explorations of past performance 
and culture, current state, and future possi-
bilities, with all of the attendant implications. 
Transparency and inclusion can surface 
anxiety, and channel it towards innovative 
re-invention rather than destructive conflict.

Quality of diversity: Managers and 
HR practitioners as moderators of 
challenge and conflict

The possibility of the emergent new lies in 
the inherent property of nonlinear interaction 
to amplify small differences, and innovation 
emerges in the amplification of the diversity 
between participants in interactive communi-
cation, even when that diversity is quite 
small: ‘The processes that pattern our experi-
ence of being together are also the processes 
in which emerges the potential transforma-
tion of the pattern’ (Fonseca, 2002: 79). A 
CRP view therefore focuses attention on the 
importance of diversity in meaning (versus a 
culture of sameness), and on unofficial ide-
ologies that can undermine current power 
relations.

While competent managers are not neces-
sarily those who incite revolution and revolt, 
a critical skill lies in noticing, tolerating and 
holding the tension between legitimate 
themes and shadow themes, and observing 
how inclusion and exclusion occurs – what is 
acceptable to discuss or not, and more impor-
tant, how that gets decided. Here again, criti-
cal thinking skills are essential for surfacing 
assumptions, and integrative thinking skills 
(Martin, 2007) are necessary to hold appar-
ent opposites in creative tension.

HRM functions can institutionalize toler-
ance for challenge and conflict by implement-
ing formal and informal opportunities for 
generative and strategic dialogue. Generative 
dialogue aims to unearth underlying assump-
tions and generate shared frames of meaning 
among organizational members (Banathy, 

1996), and is a precursor to strategic dia-
logue, which is focused on identifying direc-
tions and actions for the organization (Liedtka, 
2001). ‘Fishbowl’ management feedback 
processes (Kane, 1995) where leaders receive 
constructive feedback in a structured format, 
balanced with Appreciative Inquiry (Barrett 
and Fry, 2005) processes to generate positive 
feedback effects, can be useful approaches to 
encourage diversity of opinion, and a positive 
approach to diverse opinions. For example, 
weekly meetings to review organizational 
performance metrics could include time to 
reflect and open dialogue on strategic direc-
tions and specific initiatives, with added 
attention to dissenting or devil’s advocate 
views. Dissenting dialogue is often seen as 
the enemy of efficiency, but highly efficient 
organizations are rarely leaders in innovation; 
surfacing shadow conversational themes can 
help to enrich rather than dampen creative 
diversity. HRM processes in leadership devel-
opment are also instrumental in building 
critical and integrative thinking capacity in 
managers, so that they are skilled at surfacing 
and holding open the competing views and 
imperatives of organizational members.

Quality of unpredictability 
and paradox: Managers and 
HR practitioners as leaders of 
emergent enquiry

A CRP perspective focuses attention on how 
unpredictability is tolerated and how paradox 
is a source of generative tension. An apparent 
paradox between two stated organizational 
aspirations can be an ongoing source of crea-
tive tension; e.g. Walmart’s mission to be 
globally dominant in consumer goods and be 
a leader in environmental and social sustain-
ability is to many a paradoxical notion, 
which unresolved has the potential to drive 
many exploratory conversations inside and 
outside the company. Differing, paradoxical 
conceptions of contestable concepts such 
as sustainability can be strong change 
motivators (Colbert and Kurucz, 2007). 
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Unpredictability is inseparable from creativ-
ity as emergent novelty, and therefore the 
focus is on processes of emergent enquiry 
rather than managerial operations of plan-
ning and control.

A critical role for managers then is accept-
ing the unpredictability of the creative state, 
and to holding paradox open and leading 
enquiry on it. In the Walmart example above, 
the inherent paradoxical tension between 
global consumerism and environmental and 
social sustainability has the potential to be an 
overarching driver for novel meanings, inno-
vation and change surrounding Walmart’s 
core identity and business model. The role of 
the manager is to hold the paradox open and 
bring emergent enquiry into everyday 
conversation. Integrative thinking skills are 
relevant here, as is a capacity for triple-loop 
learning enquiry (Waddell, 2005). Triple-
loop learning encourages us to ask funda-
mental questions challenging not only the 
rules of the game, but also the game itself, by 
questioning how we decide what is right. 
Integrative thinking allows managers to 
incorporate these deep questions into exist-
ing modes of operation, and to generate new 
meanings and innovations.

HRM processes and practitioners can lead 
organizationally by engaging internal and 
external stakeholders in surfacing and 
generating paradoxical creative tension. 
Stakeholder engagement processes (Freeman 
et al., 2006) and ‘radical transactiveness’ or 
engaging fringe stakeholders for competitive 
imagination (Hart and Sharma, 2004) can 
help to generate paradoxical conceptions of 
identity and action by drawing attention to 
alternate perspectives and interests regarding 
the organization.

CONCLUSION

Strategic human resource management has 
moved into the era of competitive potential, 
where HRM is important as a driver of stra-
tegic intent, and not only as an implementer 

of a predetermined course. In management 
scholarship, there has been a convergence of 
the resource-based view in strategy and 
SHRM, as many of the long-standing ques-
tions in the RBV are directly relevant to 
building competitive potential and innovative 
capacity. We propose that concepts inspired 
by complexity science, in particular the com-
plex responsive processes view of organiza-
tions, can help us to understand better the 
innovation challenges of the RBV, and offer 
implications for management competencies 
and SHRM processes. The shifting strategic 
dynamics in the era of competitive potential 
and innovative capacity have moved particu-
lar capabilities to the fore in terms of strate-
gic importance, and the CRP view aids in 
re-focusing attention on the strategically 
critical aspects of organization in fostering 
emergent novelty.
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Complexity and the

Rise of Distributed Control 
in Operations Management

A r a s h  A z a d e g a n  a n d  K e v i n  J .  D o o l e y

INTRODUCTION

Production is the creation of goods and 
services. Using a pool of interrelated 
operations, a production system generates 
value by transforming resources (factors and 
inputs) into outputs (Grubbström and 
Olhager, 1997; Heizer and Render, 2009). 
Such a system can be characterized as a col-
lection of agents who share information, 
money, and physical resources with one 
another in order to produce goods and serv-
ices of value to an external market. These 
agents seek to achieve common and distinct 
goals by communicating, making decisions, 
and executing decisions in response to their 
local environment. By definition, production 
systems are therefore complex adaptive sys-
tems (Dooley et al., 1995; McCarthy, 2004), 
regardless of their organization structure, 
their communication method, or their deci-
sion making approach (Dooley, 1997).

Complex systems have intrigued opera-
tions management researchers for a few 
decades (see McCarthy et al., 2000 for an 
overview). Some of the pioneering works 

that explored the complexity of operations in 
a production system were those by Jay 
Forrester in the 1940s, which ultimately led 
to the publication of the book titled Industrial 
Dynamics in 1961 (Forrester, 1961). Yet, it 
was not until a few decades later when inter-
est in connecting complexity science with 
operations management research became 
more mainstream. Leonard-Barton (1988) 
found evidence of nonlinearity in complex 
production processes; Dooley and Benjaafar 
(1994) reported on the use of complexity-
based data analysis tools to better understand 
manufacturing system behaviors; and Tyre 
and Orlikowski (1994) explored the effects 
of complexity on technology adoption in 
manufacturing and service firms. Other nota-
ble works include Pascale’s (1999) review of 
a radical transformation at Royal Dutch Shell 
using principles of complexity science; and 
Larsen et al.’s (1999) research showing how 
the cascading structure of production and 
distribution lead to complex behaviours.

Since, complexity science has been used 
to explain a range of phenomena related to 
supply chains and logistics. For example, 
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Choi et al. (2001: 351) highlight the emerg-
ing nature of supply networks as complex 
adaptive systems and suggest that, while 
imposing too much control may detract from 
innovation and flexibility, too little control 
may ‘undermine managerial predictability’ 
as well as the performance of organizational 
routines; Pathak et al. (2007) underline the 
relevance of complexity in supply chain and 
operations management research; while 
Bozarth et al. (2009) show how complexity 
upstream and downstream from a manufac-
turing plant can affect its competitive and 
customer service performance. From a logis-
tics perspective, Nilsson and Darley (2006) 
show how simulating logistics and manufac-
turing operations as a complex adaptive 
system through agent-based modeling can 
provide better insights to managers and 
researchers; Li et al. (2009) show that a long 
term collaborative strategy among supply 
network partners leads to higher structural 
stability; while, more recently, McElvey et al. 
(2009) have applied complex adaptive sys-
tems concepts to explain electronic auction 
markets in logistics.

An important sub-topic in these research 
streams has been the issue of centralized 
versus distributed control (Pratt, 1985; 
Tunalv, 1990; Deshmukh et al., 1993; Lee 
and Billington, 1993; Mahalik and Moore, 
1997). Traditionally, manufacturing organi-
zations have controlled their operations cen-
trally, with a small set of decision making 
entities in charge of a broad range of activi-
ties. More recently firms have been moving 
to distributed control strategies whereby con-
trol decisions about how they respond to 
their environment are not centralized but 
rather spread throughout the system. 
Distributed control strategies enhance 
flexibility and responsiveness by minimizing 
the distance between sensing and action, and 
are simpler to develop and maintain than 
centralized counterparts.

In this chapter we investigate the condi-
tions which facilitate or enable a centralized 
control approach versus a decentralized, or 
distributed, control approach to managing a 

complex system such as that related to 
production. As many complexity scholars 
have illuminated, a centralized control 
approach is characteristic of mechanistic, 
linear systems thinking, while a distributed 
control approach is more compatible with 
complex adaptive systems thinking (Holland, 
1996; Dooley, 1997; McCarthy et al., 2000). 
Just as scientific thought progressed over the 
last century from focusing on simple, mecha-
nistic systems to complex ones, so too did the 
manner in which production systems were 
organized and controlled. A key question is 
thus raised: why did the shift from centralized 
to distributed control systems occur? To 
address this question, we first use an empiri-
cally grounded historical narrative to examine 
this shift in practice, tracing the process 
through which production systems have 
shifted from highly vertically integrated fac-
tories to vast and global networks where most 
work is outsourced from the product manu-
facturer. Second, we examine the control of 
manufacturing operations from the perspec-
tive of centralized versus distributed control, 
in terms of both production control and inno-
vation. By examining the commonalities 
amongst these trends, we propose that distrib-
uted control systems are more likely to emerge 
in a complex supply network if there is a plu-
rality of organizational agents with sufficient 
capability and opportunity to connect and 
interact, and there is an accompanying abun-
dance of resources. This would suggest that 
the trend towards vast, global supply net-
works is potentially reversible, to some extent; 
if connectivity were to decrease significantly 
and resources to become scarce, production 
systems may revert to more centralized forms 
of control.

CENTRALIZED AND 
DISTRIBUTED CONTROL

Control drives decisions about how an organ-
ization responds to and reacts to its environ-
ment. Ideally, a controller is tasked with 
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finding the ‘optimal’, or most efficient way 
of using limited resources to reach its 
objectives (Ragsdale, 2007), based on infor-
mation available to it from the system. In a 
manufacturing network the controllers’ con-
cern is the efficient transformation of raw 
materials into products through a series of 
process steps. Here, optimal solutions mini-
mize the costs of a given decision to mem-
bers of the network while providing the most 
benefit. On the other hand, a quasi-optimal 
(Muller and Wiederhold, 2002) solution may 
provide the most benefit while not minimiz-
ing costs of a given decision for all members. 
A sub-optimal solution in contrast is one that 
does not provide the solution with the most 
benefit to the network.

One approach to decision making is to 
have a centralized entity. In a production 
system with centralized control, the authority 
to create and execute heuristic rules is in a 
single physical location (Simon, 1957; 
Pratt, 1985; Schilling, 2007). The central 
controller may be in the form of an individual 
(for example a CEO, Provost, or Chief 
Procurement Officer), a group of individuals 
(such as Board of Directors, Board of 
Regents, or corporate purchasing office), or a 
decision making tool (such as a central 
mainframe computer running corporate-wide 
software). The general model of such central-
ized control is shown in Figure 24.1. Inputs, 
representing observations about the current 
state of the system and its environment, are 
provided to a single system controller who 
makes decisions (outputs) via centralized 
rules that coordinate work. So long as the 
central controller is able to observe the entire 
system, decisions made by the controller can 
be optimal, meaning they carry the best 
consequences to the entire system.

However, as systems become more 
complex, the central controller has to reflect 
the complexity in its decision making, per 
Ashby’s law of requisite variety. Ashby 
(1958) suggests that only by having a variety 
of decision choices to select from would one 
be able to manage the increased variety of 
situations that it encounters. A centralized 

controller may adapt to increased complexity 
by changing, and further complicating its 
own internal rules. With increased complex-
ity, further changing can become ever more 
complicated, costly, and time-consuming. 
Furthermore, as systems become more com-
plex, it may become harder to directly pro-
vide information to the central controller. 
With added complexity in a system, a cen-
tralized controller risks not receiving all 
necessary information, becoming over-
whelmed by too much information, or slow-
ing down its decision making. Barabási 
(2002) contrasts centralized control to a tree, 
where branches all lead to the same tree 
trunk. He notes:

Despite its pervasiveness, there are many problems 
with the corporate tree … First, information must 
be carefully filtered as it rises in the hierarchy. If 
filtering is less than ideal, the overload at the top 
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branch can be huge. As a company expands … 
information at the top level inevitably explodes. 
(Barabási, 2002: 201)

To compensate for this loss, the centralized 
controller can standardize (Walker and 
Dooley, 1999), or tightly integrate the opera-
tions of a system (Barabási, 2002). But 
standardization and integration can lead to 
reduced flexibility. Reduced flexibility may 
lead to an inability to effectively respond to 
changes in the environment (Menon et al., 
2002). In sum, as systems increase in com-
plexity, centralized controllers typically 
adjust their response to ever more complexity 
in a system through means that minimizes 
their flexibility to change.

An alternative approach for production 
systems is through a distributed system where 
decision making is delegated from a single 
node to a multitude of agents (Tunalv, 1990; 
Radner, 1993). In a distributed control system 
a number of agents are responsible for sens-
ing, interpreting, and controlling actions 
(Deshmukh et al., 1993). For example, 
instead of a CEO, a decentralized system can 
place the control in the hands of a number of 
business unit managers. Or instead of a large 
software package on a single mainframe, 
smaller software packages running on 
multiple personal computers can help make 
decisions.

There are three key characteristics to 
decentralized systems. First, because distrib-
uted control systems can be built incremen-
tally, they tend to be easier to develop, 
maintain, and modify. Most parts of the 
system are not necessary before others are 
joined in. Similarly, no part of the system 
may be vital for it to survive. Unlike central-
ized systems, a distributed system continues 
to operate even if a node is replaced. Some 
suggest that these characteristics tend to lead 
to more stability and resilience to changes in 
the environment. On the other hand, agents 
operating in a distributed system have no 
central command to look towards. They 
decide their actions based on how they 
interpret their nearby surroundings.

Consider the simple example of control of 
automated guided vehicles (AGVs) which 
transport material from one production 
workstation to another (Yamashita, 2001). A 
centralized control approach would send 
sensor data concerning a vehicle’s location 
and status to a central controller. The central 
controller would have a master list of the 
materials that need to be moved, and the 
locations and required delivery times for 
such movement. By analyzing the state of the 
system (location, status) relative to the goals 
(material list), the controller enacts control 
rules for each vehicle, acting like a central 
brain (Lin et al., 2006). This approach pro-
vides quasi-optimality so long as the control-
ler’s map of its environment is accurate. If 
the environment changes (e.g. a vehicle 
breaks down or a new one is added), then 
rules either need to be written a priori to 
cover these contingencies, or they need to be 
re-written when the change occurs.

A distributed control system would allow 
the vehicles themselves to make decisions as 
to where they should go, how they should get 
there, and which work they should pick up. By 
using simple rules like ‘pick up the nearest 
material if the cart is empty’ or ‘stop moving 
if any object is within one meter’ the vehicles 
can have embedded intelligence (Qiu et al., 
2002). While any particular vehicle’s actions 
may not be best for the whole, the system is 
robust to loss of vehicles, changing transporta-
tion paths, and delays. Thus, if the informa-
tional and physical states of the system cannot 
be well-described or do not remain relatively 
static – which are both more often the case 
than not – then a distributed control approach 
is more attractive than a centralized approach 
(Tuan and De Koster, 2006).

Figure 24.2 provides a simple outline of 
how centralized and decentralized systems 
compare in their configuration. The central-
ized system is heavily reliant on the central 
node. If the central node is removed, then the 
entire system fails to operate. On the other 
hand, the central node has full visibility of 
the entire system. In the decentralized system 
each node has less awareness of the system, 
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Figure 24.2 Centralized and distributed control networks

but also has a limited number of connections 
to maintain. If any of the nodes are removed, 
the system will still continue to function.

Centralized and distributed control systems 
may be more suited for different types of 
production systems. For example, a centrally 
scheduled manufacturing plant for commod-
ity metals can predictably conform with 
demand expectations (McCaffrey et al., 
1995). In contrast, a self-directed work team 
where control is distributed among its mem-
bers can provide more flexibility and respon-
siveness (Levinthal and Warglien, 1999; 
Druskat and Wheeler, 2003). Similarly, 
supply chains managed through distributed 
control have been shown to be more respon-
sive than centrally managed ones; while, 
conversely, those managed through central-
ized control are generally more efficient 
(Randall et al., 2003).

A comparative review of current produc-
tion management practices to historical ones 
suggests a general trend away from central-
ized control and towards distributed control. 
It seems that conditions associated with 
centralized control are giving way to ones that 
lead to the rise of distributed control systems. 

Our goal in this chapter is to illustrate several 
examples of such trends to shed light on some 
basic conditions that facilitate the rise of cen-
tralized and distributed control approaches in 
order to, in turn, shed light on situations when 
one approach may be more appropriate than 
the other. Our analysis reviews the inherent 
characteristics of centralized and distributed 
control systems. We do so to identify condi-
tions when a distributed control can be a more 
desirable operating system. As part of this 
analysis, we explain three antecedent condi-
tions, namely abundance of resources, plural-
ity of agents and network connectivity as 
necessary conditions for distributed control to 
become commonplace.

ORGANIZING THE FIRM: FROM 
VERTICAL INTEGRATION TO 
OUTSOURCING

Historically the production of goods has 
been associated with factories, which were 
referred to as ‘manufactories’ in the nineteenth 
and early twentieth centuries (Rigal, 2001; 



DISTRIBUTED CONTROL IN OPERATIONS MANAGEMENT 423

Cattell et al., 2002). Manufactories were 
early industrial formations where large con-
centrations of material, human and intellec-
tual resources were combined to leverage 
economies of scale towards the production of 
consumable goods. Low to semi-skilled 
workers were guided and controlled by super-
visors to transform raw materials through a 
series of process steps.

Factories preceded roads and mass trans-
portation, requiring them to concentrate the 
necessary infrastructure within centralized 
buildings surrounded by supporting towns or 
urban areas (Scott, 1988). An early example 
of such centrally controlled structures in 
manufacturing is Matthew Bolton’s Soho 
Manufactory in Birmingham where buttons, 
buckles, belt locks and watch chains were 
assembled (Rule, 1986; Quickenden and 
Kover, 2007). A more prominent example of 
centralized manufacturing operations is 
Henry Ford’s famous River Rouge plant. 
Ford used a vertically integrated chain of 
factories to transform iron ore into Model T 
automobiles in a relatively concentrated area. 
Through adjacencies in operation and spe-
cialization of tasks among factories, Ford 
was able to leverage unprecedented econo-
mies of scale from his plants (Chandler, 
1964).

Economies of scale afforded by factories 
such as Bolton’s and Ford’s led to the 
reduction of prices for many items (e.g. auto-
mobiles, ships) and processes (building of 
roads, canals and general infrastructure). 
Shortly thereafter, new transportation and 
communication means (Chandler, 1990), 
coupled with the discovery of inexpensive 
sources of energy (White, 1962; Kinzer, 
2003), allowed for distant operations to be 
interconnected. This made the need for adja-
cent operations unnecessary which – ironically 
– is argued to be the reason for Ford to give 
up its market dominance to General Motors a 
few decades later. By that time, 
GM had implemented a more decentralized 
management model (Chandler, 1964). In 
contrast, the tightly integrated Ford plant was 

unable to make even small modifications in 
automobile design (Davids, 1999). The Ford 
River Rouge plant remains a unique case 
of a fully centralized, vertically integrated 
manufactory (Pietrykowski, 1995).

Over the past century, many manufacturers 
have gradually shifted away from centralized 
operations. Much has been written justifying 
the benefits of decentralization through vertical 
disintegration (Langlois, 1990; Lorenzoni and 
Lipparini, 1999; Chen, 2005; Jacobides, 
2005). By relying on others’ operations, be 
they alternative sites, divisions, suppliers or 
nations, organizations have become more spe-
cialized and therefore beneficiaries of further 
economies of scale (Prahalad and Hamel, 
1990; Burt et al., 2003). But without adequate 
road and transportation systems, sourcing 
from others was impossible (Winder, 1999). 
Moreover, a readily available pool of skilled 
and talented workers across the globe was 
helpful as firms began to break apart and relo-
cate to multiple locations. The major shift in 
workforce abundance occurred just after the 
end of the Second World War where a 
shortage of skilled workers gave way to an 
abundance of human resources. At the same 
time, the combination of product variety and 
customization justified the need for increased 
production, consumption and thereby 
growth. As a result of these changes, vertically 
integrated operations became broken up and 
hence less common (Christensen et al., 
2002).

The trend today is towards even more verti-
cal disintegration. Reduced trade barriers and 
globalization have helped add new markets, 
and new sources of raw materials which have 
further extended the breadth and reach of the 
supply chain (Gottfredson et al., 2005). 
Advancements in technological, communica-
tion and managerial techniques have allowed 
for many of the value added steps in the 
‘supply chain’ of producing goods to be done 
away from a central location. As a result, some 
of the central paradigms of operations and 
supply chain management (e.g. MRP, ERP 
and full automation) which were based on the 
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structural needs of a centralized system are 
being reconsidered (Kumar and Hillegersberg, 
2000; Rondeau and Litteral, 2001). To fit the 
challenges of a decentralized, interconnected 
supply network (Choi et al., 2001), these and 
other manufacturing/supply chain tools may 
need a fresh redesign.

How can we explain this shift from vertical 
integration to outsourcing? Ashby (1958) 
would suggest that as the pace of environ-
mental change increases, organizational speed 
of response becomes essential. While central-
ized control systems often fall behind, through 
increased specialization and interdependence, 
decentralized control may manage more 
effectively in these contexts. However, the 
centralized approach attempts to leverage 
economies of scale by placing the process 
steps near one another, both in terms of 
physical proximity and in terms of manage-
rial decision making. The vertically integrated 
approach assumes that tapping into distant 
sources is either geographically infeasible or 
managerially difficult to administer. On the 
other hand, the distributed approach is less 
concerned with geography or decision making 
issues. Instead, it leverages competitive mar-
kets for sourcing its material and distributed 
agents for its decision making. Underlying 
the functionality of a decentralized system is 
that the broader market provides more choices, 
which allow for more trials and eventually 
efficient forms of production.

Based on the above, it would appear that 
the centralized approach may be a suitable 
means of control in networks so long as there 
is limited availability of human and capital 
resources in the landscape. When the broader 
landscape remains inferior to the immediate 
surroundings, centralized control seems to 
flourish. In contrast, conditions for distrib-
uted manufacturing run parallel to having 
adequate human and capital resources 
throughout the landscape and with having 
necessary physical and informational con-
nections among. We explore these infrastruc-
ture and resource limitation issues as related 
to plant production systems next.

ORGANIZING PRODUCTION: FROM 
MASS TO LEAN PRODUCTION

The original Ford production lines were 
built for efficiency of the production process 
itself. The paced assembly line relegated 
equal work loads across a sequential produc-
tion process so that entire automobiles could 
be produced at an equal pace. Although the 
success of the assembly line made cars more 
affordable, the advent of more customers 
meant more variation in market demand. 
Some manufacturers responded by adjusting 
their production capacity to demand, so that 
over- and under-production was curtailed. 
The long cycle time required for building a 
car implied that parts and labor quantities 
had to be chosen independent of the actual 
demand, i.e. production was planned, or 
‘pushed’. Market forecasts were used to 
determine a monthly production requirement 
which was then translated into an hourly 
production rate. This constant production 
rate had a positive side benefit – by minimiz-
ing the variability of the production rate, 
upstream supply chain processes and down-
stream distribution processes could also be 
synchronized, leading to further efficiencies. 
For example, having certainty of the day’s 
total production allowed the automobile 
maker to order the right amount of steel for 
its automobile bodies, and allowed them to 
schedule trains to transport production to 
local retailers across the country. This model 
became the norm across the industry.

As noted in the previous section, decisions 
within these systems were highly centralized. 
In the case of the automotive production 
system, demand was predicted by corporate 
marketing, auto designs came from corporate 
engineering, and production processes 
were developed by corporate manufacturing. 
Individual production plants were physically 
distant from one another, making the 
actual manufacturing task less centralized. 
Nevertheless, within each plant execution 
authority was highly centralized. Only a 
handful of managers typically decided on 
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what equipment to buy, who to hire, and how 
to execute the manufacturing task.

Ford was in essence, the automobile 
company that led the way toward the era of 
‘build to plan’. It was another automobile 
company that led the way away from it. 
Toyota is recognized by most as being largely 
responsible for a revolutionary change in 
how production systems were managed, 
starting in the 1980s (Womack and Roos, 
1990; Spear and Bowen, 1999). A key 
premise of the Toyota Production System is 
that waste of all sorts should be eliminated 
from the production process (Liker and 
Morgan, 2006). Waste includes that of build-
ing too few or too many products because 
production can only react to planned demand 
rather than actual demand (Pegels, 1984). In 
order to match production to demand, the 
time to build a car had to be reduced. 
Furthermore, the system had to both adapt to 
changing demand as well as maintain resil-
ience to system disturbances (Coleman and 
Vaghefi, 1994; Vaghefi et al., 2000). To 
accommodate these needs, Toyota imple-
mented a decentralized approach, better 
known as the ‘pull system’ (Black, 2007). In 
the pull system, consumer demand is used to 
authorize work from the most immediate 
upstream process, which in turn triggers 
other upstream processes to engage work 
(Krafcik, 1988). This ‘build to demand’ proc-
ess ensures that work is executed only when 
it is needed (Gunasekaran and Ngai, 2005).

There are fundamental distinctions 
between the ‘push’ and the ‘pull’ system. The 
authorization of work in a push system is 
centralized, residing in a production planning 
group and a set of standardized and static 
work instructions. The work that is per-
formed is the work that is centrally planned. 
In a pull system, work is authorized by the 
next downstream subsystem; similarly, deci-
sions concerning how to execute the work are 
left to the actual worker, which minimizes 
decision making delay and builds up local 
intelligence, leading to further improvements 
and efficiencies (Spearman and Zazanis, 
1992). In a push system, efficiency is 

measured by productivity, namely how effi-
ciently inputs are converted to outputs. In a 
pull system, efficiency is measured by how 
closely supply meets demand (Pyke and 
Cohen, 1990). The central controller in a 
push system sees asset utilization as its main 
goal; the distributed controllers in a pull 
system see matching supply to demand as 
their collective main goal. In sum, a push 
system aims for global optimization, at the 
expense of local waste. A pull system allows 
for local optimization to minimize such 
waste. However, pull systems cannot always 
be implemented as they require a set of prec-
edent conditions, as evidenced by the Toyota 
example.

Some factors helped with the rise of pull 
systems. First, for decisions to be made locally 
rather than globally, workers had the skills to 
sense and solve problems themselves, without 
involvement by corporate-level actors. Toyota 
achieved this by emphasizing training, prob-
lem solving skills, and increasing decision-
making authority (Towill, 1996). Hamel 
denotes: ‘Unlike its Western rivals, Toyota has 
long believed that first-line employees can be 
more than cogs in a soulless manufacturing 
machine. … Toyota gave every employee the 
skills, tools and the permission to solve 
problems’ (Hamel, 2006: 74).

Second, information about market demand 
was shared across the network as quickly as 
possible. Toyota (and others such as Hyundai) 
managed to capture market demand in real-
time and implemented information systems 
that allowed them to be reacted to in real-
time (Lee and Jo, 2007). Furthermore, 
demand information had to be connected to 
all of the constituent processes in the value 
chain. In Toyota’s case, they invented an 
approach called ‘Kanban’ (Cheser, 1994) 
which uses simply physical cards in order to 
coordinate work and information between 
two adjacent work activities.

Lastly, there was assurance of availability 
of resources (material and human) for Toyota 
to leverage. The company ensured there 
was an abundance of raw material and human 
resources by implementing long term 
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commitments to their suppliers and to their 
employees (Liker and Choi, 2004). Each of 
these factors helped ensure that a distributed 
control mechanism could be implemented 
and maintained at Toyota.

ORGANIZING INNOVATION: FROM 
PLANNED AND PROPRIETARY 
INNOVATION TO ITERATIVE AND 
OPEN INNOVATION

For the majority of the twentieth century, 
companies were prone to developing ideas in 
close quarters, and in keeping them central to 
their locus of control (Nelson and Quick, 
2006). The scarcity of external knowledge 
forced large organizations, such as AT&T, 
Siemens, and Kodak, to invest heavily in 
their centralized research and development. 
The decades following the Second World 
War were the golden age of corporate R&D 
departments where product development in 
large centralized laboratories, such as that of 
IBM, was the norm. This ‘closed’ world of 
innovation was based on a logic of deep ver-
tical integration and the monopolization of 
knowledge within one’s immediate corporate 
control (Chesbrough, 2006).

The world of research and development 
has since changed. These days the ‘silo’ 
approach to research and development is 
being challenged by more distributed alterna-
tives. R&D traditionalists are being bypassed 
by a new breed of organizations, the likes of 
Nokia and Genentech (Chesbrough, 2006). 
Cisco, another example of a firm with an 
open innovation framework, has leveraged 
outside innovation through acquisition, joint 
ventures and startup funding. The newcom-
ers’ mode of operation incorporates explora-
tions for novel practices that are scattered 
beyond the immediacy of a centralized con-
trol unit or individual. The belief is that in any 
domain of activity, much useable knowledge 
will reside within the broader environment.

During the past few decades the innova-
tion landscape has been redrawn. In the past 

a barren landscape of innovation forced 
organizations to control innovations near 
their proverbial organizational ‘chest’. Today 
most organizations are surrounded by a rich 
landscape of relevant knowledge. As a result, 
an equally important task to developing 
knowledge is to identify, access, and inte-
grate what is applicable from this large pool. 
The open innovation model’s essence is the 
harnessing and combining of available inno-
vations regardless of their source.

What has been the underlying cause of 
such shift from centralized innovation pro-
grams to the leveraging of broader sources of 
ideas in an open system? An innovator’s 
main concern is the efficient transformation 
of novel ideas into new products that meet 
unmet needs of the consumer. The central-
ized approach attempts to allow for this 
transformation by placing the necessary 
brainpower and infrastructure in proximate 
confines of centralized control. The central-
ized approach considers that what is col-
lected and developed within the purview of 
centralized control to be better than what 
resides away from it. On the other hand, the 
distributed approach to innovation does not 
limit search to within the confines of central-
ized control. It involves tapping into the 
broader world to see where novel ideas are as 
well as whether and how they can be com-
bined. Incorporating these ‘partially con-
nected agents’ (McCarthy et al., 2006: 452) 
enhances an organization’s adaptability to 
innovation needs.

The shift from closed to open innovation 
systems appears to have coincided with some 
key changes in the innovation landscape. 
First, increased mobility of professionals and 
transfer of knowledge has made it more dif-
ficult for traditional R&D organizations to 
control ideas (Florida, 2002; Chesbrough, 
2003). When professionals left their jobs, 
they took years of training and skills with 
them. Second, there are now more trained 
professionals in most fields. Higher educa-
tion became more accessible after the 1950s, 
adding a yearly pool of fresh talent to the 
already established set of professionals. 
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Third, availability of additional venture 
capital meant that good ideas that may have 
been rejected by one organization may be 
picked up by another, perhaps a startup. 
These three factors, alongside the ease of 
communication due to new technologies, 
made for faster development and implemen-
tation of innovations.

The distributed approach assumes that no 
matter how elaborate and effective centrally 
controlled research and development capa-
bilities may be, there are novel ideas beyond 
them that are worth considering. So long as 
there are limitations to the availability of 
knowledge across one’s landscape, the cen-
tralized approach is more suited. In fact, 
despite the appeal of open innovation sys-
tems, in some industries innovation is still 
centrally controlled by a small group of large 
organizations, such as jet engines and nuclear 
power plants (Joppke, 1992).

Not only have changes occurred in where 
innovative ideas come from, but also in how 
they are developed into tangible designs. 
Traditionally, innovation has been conceptu-
alized as a work process similar to a produc-
tion process. While the tasks may have more 
uncertainty and unexpected activities like 
product redesigns are inherent elements of 
the design process, the assumption is that the 
new product development process is best 
executed by knowing as best possible which 
work needs to be done, who is going to do it, 
and how it is going to be done. This ‘project 
management’ approach requires that a devel-
opment team identify requirements, link 
design activities to requirements, and exe-
cute. After requirements are made, a concep-
tual design is developed, and then detailed 
design of system and subsystem component 
ensues, with necessary integration steps.

Control of the innovation process when 
using such a centralized approach resides in 
the firm’s engineering department, and devel-
opment teams tend to be made up of only 
engineers; manufacturing and marketing 
expertise may be sought, but only as inputs 
and outputs to the core, functional decision 
making. Design work is assumed to take 

place in a strictly linear fashion: a conceptual 
design is developed only after understanding 
the market; a detailed design is developed 
only after a concept is chosen; and a produc-
tion plan is only determined once the detailed 
design is complete. Desires to reduce the 
cycle time associated with these activities 
may force the firm to overlap activities, 
beginning a downstream activity before an 
upstream one is complete, but the workflow 
assumptions are still the same. In software 
engineering, this design process became 
known as the ‘waterfall’ model, because it 
was easy to swim downstream but hard to 
swim upstream to ‘redo’ an earlier activity. 
Thus, if customer requirements changed sig-
nificantly, a new concept might have to be 
developed, thus wasting all the activity up to 
that point. Likewise, when dealing with risky 
innovations, viability might not be demon-
strable until significant detailed design has 
occurred, invoking yet more risk of wasted 
activity.

Automobile and other consumer compa-
nies were among the first to move towards a 
more distributed model of design decision 
making (Denison et al., 1996). Recognizing 
that there were advantages to having a tight 
fit between the customer, the design, and its 
corresponding manufacturing process, cross-
functional design teams began to be imple-
mented. Rather than consult with procurement 
or manufacturing or marketing experts, 
designers worked hand-in-hand with these 
other functional areas as part of the same 
team (Donnelon, 1995).

The field of software engineering, dealing 
with the development of new software 
products, has recently moved to more 
decentralized, distributed models of control-
ling the innovation process itself. There was 
recognition that not all requirements can be 
known completely before design begins, and 
not all required activities can be identified. 
Whereas a linear sequence of design work 
assumes that project planning, requirements 
analysis, and conceptual design are activities 
to be performed once, an iterative approach 
to design assumes that planning occurs 
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constantly, and requirements often have to be 
identified using multiple, conceptual proto-
types. Many studies have shown an iterative 
approach to be superior in situations where 
requirements and/or technology capabilities 
have a significant amount of uncertainty 
(Eisenhardt and Tabrizi, 1995; Terwiesch 
et al., 2002; Lin et al., 2008).

What enabled innovation to be managed in 
a more distributed, iterative manner? Ashby’s 
law of requisite variety implies the need for 
increased decision choices in order to meet 
the increased variation in the environment. 
Without multiple ideas there is no opportu-
nity to invoke multiple conceptual designs so 
the innovation process can benefit from 
having access to an abundance of ideas. As 
discussed earlier in this section, it is prefer-
able to have openness to the source of the 
ideas, whether they arise internally in a 
department outside of design or externally 
via a customer or supplier. Second, in order 
for design decisions to be distributed, there 
has to be an abundance of competent and 
creative designers. Part of this was driven by 
the large increase in the number of engineer-
ing graduates starting in the 1960s and peak-
ing in the 1980s. Part was also due to the 
influx of computer-aided design tools that 
allowed significant efficiency gains through 
electronic transfer of design information, 
part design databases, re-use, analytical mod-
eling, and rapid prototyping. Third, informa-
tion technology facilitated collaboration 
between physically separated parties, whether 
in the form of cross-functional and/or inter-
firm collaboration, or even in interactions 
with the customer.

DISCUSSION – CENTRALIZED AND 
DISTRIBUTED CONTROL – A SIDE BY 
SIDE APPRAISAL

Our examples of the general progression in 
industrial behavior suggest some fundamen-
tal differences between centralized and dis-
tributed control. Centrally controlled systems 

allow for tight coordination of efforts, with a 
central command unit deciding on the alloca-
tion of tasks and resources. Centralized con-
trol also ensures that communication between 
agents is routed through and filtered by this 
central command unit in order to further 
enhance the efficiency of the system by 
making sure that agents are not preoccupied 
by responding to communication that is not 
relevant to their immediate task. In sum, a 
centralized system is superior at making the 
best of a situation with limitations on 
resources and connectivity, and in finding 
optimalities within a less complex system.

However, as noted in our examples, the 
advantages of a centralized control system 
seem to diminish once limitations on re sources 
and connectivity are removed and as systems 
become more complex. Centralized control 
systems seem to have become less effective 
once more infrastructure was introduced into 
the automotive arena of the early twentieth 
century. Centralized control was of less use 
to Toyota which used better communication 
methods to incorporate real time demand 
data into its production operations. Lastly, 
centralized control seems to become a less 
effective approach to R&D than more open 
forms when a plurality of capable agents 
populates the innovation landscape. Along-
side the rise of infrastructure, better commu-
nication and plurality of capable agents, 
more complexity was introduced into these 
systems. It seems therefore, that the rise of 
the three phenomena accompanies the rise of 
distributed control systems.

Some key characteristics distinguish dis-
tributed control systems from centralized 
ones (see Table 24.1). First, in terms of deci-
sion pursuit, distributed systems are inher-
ently sub-optimal (i.e. considering the 
benefits of the entire system is more difficult) 
as they are built using trials and errors. 
Optimality requires deciding on clear and 
distinctive goals based on facts and specifics, 
in situations where bounded instability 
(Stacey, 1995) provides assurance of a linear 
relationship between input and output, or 
effort and outcome. In contrast, distributed 
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Table 24.1 Comparison of centralized and distributed control
Centralized control Distributed control Conditions

Landscape Suited for predictable 
landscapes with bounded 
instability

Suited for unpredictable instability, constant and 
varying change 

Resource Abundance

Decision 
pursuit

Allows specialization on one 
path

Allows pursuing potentially conflicting paths

Fit for dealing with known 
uncertainties

Fit for dealing with unknown uncertainties

Quicker strategic decisions Quicker local decisions

Decision 
measurement

Economies of Scale on 
Decision-making 

Economies of Scale on pre-specified operations

N
etw

ork Connectivity

Controllable trial rate High failure rate – or uncontrollable trial rate

Milestone based progress, 
planning and analysis

Non-deterministic progress

Linear relations between input 
and output, effort and reward

Non-linear relations between input and output. 

Agents Responsibility is:
 Chosen for (i.e. delegated)
– Through matching task with 

system needs

Responsibility is:
Chosen by (i.e. self-selected)
– Through matching task with skills

Plural Agents 

Motivation
–  Need for tangible 

compensation
 • Salary, bonus, etc.

– More duty than zeal

Motivation
–  Need for intangible compensation
 • Reputation, awards, identity.

– More zeal than duty

Appropriation decisions are 
easier to manage

Appropriation is an issue

control decisions are set to be more reliable 
and stable such that they can survive changes 
and modifications to the business environ-
ment. In a land of abundance, there is less 
need for emphasis on conservation or effi-
ciency in use of resources. However, through 
concurrent processing (Maturana et al., 
2005), distributed controls can pursue a mul-
titude of alternative solutions simultaneously, 
even if some may seem contradictory or 
conflicting; concurrent processing allows 
multiple solutions to be maintained while the 
system adapts to new environmental conditions 
(Holland, 1996). Distributed control systems 
trade off optimality with more resilience and 

reliability by using heuristic rules developed 
through common consensus.

Although distributed control systems may 
be inherently sensitive to small changes in 
their environment, they respond to larger 
changes by allowing new patterns of coordi-
nation to emerge among many agents. This 
makes system-level strategic decision making 
more difficult in distributed control. In turn, 
allowing agents to react to their immediate 
surroundings enhances local decision making. 
In addition, there may be no direct correlation 
between input and output, or effort and 
reward under such a control. As a result, 
determining the productivity of distributed 
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control systems is inherently difficult. Without 
a central command, agents in the distributed 
system may specialize in the same activities, 
i.e. develop redundant skills, which may 
reduce the potential performance of the 
system. However, this allows for decentral-
ized control to rely on these overlapping 
familiarities to develop better heuristics.

Lastly, the role and motivation of agents in 
distributed control is distinct from that of 
centralized ones. Whereas responsibility in 
centralized control is delegated, agents in 
distributed control systems have more free-
dom to choose their role. There is inherent 
choice and freedom for the agents to special-
ize and diversify in a distributed control 
system (Lakhani and Panetta, 2007). This 
makes distributed systems better suited to 
situations where tasks and responsibilities 
are open ended and less deterministic. In 
centralized control settings, having common 
goals, requirements for completion of tasks 
and clear milestones are what motivate mem-
bers (Wenger and Snyder, 2000). In contrast, 
for those in a distributed system proper align-
ment of task with skills, and self-reputation 
of the agent are better motivators.

All this points to distributed systems being 
better suited for landscapes where a stable 
equilibrium in the environment is uncommon 
(i.e. where there is constant change in the 
environment) and when there is adequate 
time to adapt to any major changes; decen-
tralized control appears to be better suited for 
situations where trials and failures are toler-
ated. For example, open source software 
allows for codes to be written and rewritten 
by many. Wikipedia allows for anyone to 
post material, recognizing that reported errors 
will likely be corrected by others. In contrast, 
design of nuclear power plants or large air-
craft engine do not provide the possibility for 
error corrections. Distributed controls pro-
vide freedom for participants to choose their 
skill, specialization and pace of work. The 
tradeoff here is that project progress is diffi-
cult to reliably determine. As such, projects 
where tight deadlines, tight resource require-
ments or tight quality are required may not 

be suited for distributed control. Table 24.1 
summarizes our comparison of centralized 
and distributed control and how they relate to 
the three enabling conditions discussed in 
this chapter.

IMPLICATIONS – THE RISE 
OF DISTRIBUTED CONTROL 
AND COMPLEXITY

A fire is a simple example of a self-organiz-
ing, self-sustaining, adaptive system. Students 
of fire prevention, from Boy Scouts to emer-
gency rescue teams and wild fire fighters are 
familiar with the ‘fire triangle’ (Gil, 2008). 
This simple model suggests that in order to 
ignite and continue to burn, a fire requires 
three elements, namely oxygen, heat and 
fuel. Removing any of the three elements 
leads to the elimination of the fire. Using 
high volumes of water through fire sprinklers 
drops the temperature, while using fire extin-
guishers bans oxygen from entering the 
system. Burning a perimeter area around the 
fire, a common approach for managing forest 
fires, allows for depleting the available fuel. 
In sum, a fire and all the complexities associ-
ated with it, is dependent on the interaction 
of several factors.

Our discussions in this chapter suggest 
that a similar model to that of the Fire 
Triangle can portray the rise and sustenance 
of distributed control systems. In each of our 
examples, three underlying conditions were 
coincidental with the onset of distributed 
control strategies. First, there was a popula-
tion of agents in the environment. Without a 
large pool of agents, trial and error and itera-
tive learning seemed to be less apparent than 
when distributed control surfaced. Second, 
an abundant landscape with useful resources 
seemed to coincide with the rise of distrib-
uted control. What made open innovation in 
industrial settings less possible prior to the 
1990s was the lack of a profusion of informa-
tion. Similarly, lack of abundant energy 
before the discovery of fossil fuels made 
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transportation and therefore inter connected 
manufacturing impractical until the turn 
of the nineteenth century. The third element 
that coincides with the rise of distributed 
control is that of open communication 
between agents, i.e. network connectivity. 
Prior to the advent of the internet this was 
practically impossible, which made open 
source software practices and perhaps the 
advent of open innovation impossible. Henry 
Ford had to centralize because there was 
inadequate infrastructure to support his needs 
(Langlois, 1990).

Our discussions in this chapter explored 
how manufacturing systems have shifted 
from centralized to decentralized systems 
in order to better respond to changes in 
their environment. We witnessed how the 
increased availability of alternative sources 
of raw materials and infrastructure have 
allowed for more manufacturing, design and 
supply capabilities to flourish throughout 
the globe. Furthermore, the availability of 
better material for training (i.e. information 
technology and communication) allows 
for better education and skills develop-
ment, leading to more capable agents. 
Simultaneously, enhanced infrastructure in 
terms of roads and information technology 
has allowed for better connectivity among 
the agents. We explained these changes 

based on Ashby’s law of requisite variety. 
The combination of these three facts (abun-
dance, plural intelligent agents, and freedom 
of communication) is necessary (Figure 
24.3). Arguably the interaction between 
these factors, which may lead to increased 
complexity of the environment, seems to be 
better managed through a decentralized form 
of control. It is therefore plausible to con-
sider the rise of distributed control to be 
associated with a rise in complexity of sys-
tems. As such, close observation and thor-
ough understanding of the characteristics 
associated with decentralized control sys-
tems may be beneficial in understanding the 
dynamics associated with complexity.

There are a number of ways in which our 
model could be empirically tested. An agent-
based model could be developed that simu-
lated either the open innovation or distributed 
manufacturing control contexts, and second-
ary data could be used to parameterize and 
calibrate the model. For example, one could 
examine how increasing uncertainty coupled 
with vertical disintegration (plurality of 
agents), increased competition (resource 
abundance), and the availability of informa-
tion technology (network connectivity) led to 
the increased preferability of lean practices. 
Similarly, secondary data on these practices 
and econometric variables could be collected 

Figure 24.3 The distributed control triangle
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and modeled using time series to determine if 
there is the presence of correlation over time.

In general the movement towards distrib-
uted control is one that is happening in each 
area of the organization where there are 
control issues – e.g. logistics, supply chain 
coordination, production scheduling, innova-
tion, project management, software develop-
ment, etc. As we have shown here in this 
chapter, there is benefit to stepping back and 
viewing these shifts from a broader perspec-
tive, as they represent a somewhat silent but 
wholesale shift in the basic way that we 
organize human economic activity.
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Knowledge Management 

and Complexity

M a x  B o i s o t

INTRODUCTION: MAKING SENSE 
OF A COMPLEX WORLD

As intelligent beings, we act, survive and 
prosper on the basis of knowledge that we 
deploy as an adaptive response to the diver-
sity of phenomena we encounter and have 
to adapt to (see Boisot and McKelvey, this 
volume). Effective action, however, requires 
us to make sense of and relate to a world that 
is becoming ever more connected, and, by 
implication, ever more complex. Today, what 
may appear to be a strictly local interaction 
between feuding tribesmen in the mountains 
of Waziristan, within hours can affect the 
share price of utilities on Hong Kong’s Hang 
Seng Index. But given our inability to inter-
pret the meaning of long and complex causal 
chains in a timely manner, the link between 
the two events typically only becomes appar-
ent to us ex post. Closer to home, the recent 
sub-prime mortgage crisis furnishes us 
with another example of complex local inter-
actions whose effects spread globally in 
unforeseeable ways. Yet policy makers in 
government and business are increasingly-
expected to anticipate and respond adaptively 
ex ante to this kind of complexity. Is this a 
reasonable expectation? And as policy makers 

attempt to respond, does it help that they now 
live in a so-called ‘knowledge economy’? 
Does the availability of new information and 
communication technologies (ICTs), of the 
Internet, of text messaging, of vast data 
bases, etc., effectively add to the knowledge 
that we need to deal with increasing com-
plexity? or could it be that it merely adds to 
that complexity?

Information theory teaches us that com-
plex phenomena are higher in information 
content than simple ones (Shannon, 1948). If 
we take complexity to be a function both of 
the number of elements in interaction in a 
system (Mitchell, 2009) as well as of the 
nonlinearity of these interactions, then we 
can say that a complex system has the capac-
ity to generate a larger number of internal 
states in response to the variety of the exter-
nal world than a simple one and that many of 
these states will require more data for their 
description. Thus the total data required to 
describe the system will be a function of the 
total number of elements and links activated 
by each distinguishable state multiplied by 
the number of these states. Not all of the data 
will be information bearing, however. If, fol-
lowing Bateson (1979), we take information 
to be ‘the difference that makes a difference’, 
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then only those states that make a differ-
ence will be information bearing. And since 
making a difference means making a differ-
ence to some information processing agent, 
whether animate or inanimate, it is clear that 
what is taken to be information-bearing will 
vary from agent to agent, reflecting the vari-
ety of intentions and expectations that char-
acterize agents as a group. In the human case, 
intentions and expectations are shaped by a 
given agent’s background knowledge and 
experiences, by the agent’s feelings, and by 
her ethical stance. These help to identify 
those states that are relevant for a given pur-
pose and to discard the rest as noise. In this 
way, data that is non-information-bearing is 
ignored, allowing the agent to husband her 
scarce data processing and storage resources. 
A radiology student, for example, has to 
process more data to interpret an X-ray pic-
ture than an expert in the field whose years of 
experience allow him to discard massive 
amounts of data at a glance.

The larger the number of states that are 
deemed relevant to an agent and to which it 
can respond adaptively, the greater the agent’s 
capacity for handling complexity and the 
more wide-ranging his expertise. Here, 
however, we must distinguish between com-
plexity as an objectively given property of a 
situation or phenomenon and complexity as 
subjectively experienced by the agent. Viewed 
objectively, more knowledge can handle 
greater complexity. In a communicative con-
text, Shannon (1948) took information to be 
that which reduced the uncertainty – i.e. the 
entropy – of the receiver with respect to the 
information content of the message. Yet 
the greater the background knowledge of the 
receiver – familiarity with the context that 
conditions her prior expectations – the less 
likely she is to be surprised by incoming 
data. For her, such data will then be less 
information-bearing than it would be for a 
less knowledgeable agent. Viewed subjec-
tively, then, complexity is experienced as 
those states that the agent’s existing knowl-
edge cannot handle. In both the objective and 
subjective cases, complexity sets a limit to 

what we can effectively know, but in the sub-
jective case, knowledge and complexity are 
inversely related. Limits to knowledge, how-
ever, are more problematic for some concep-
tions of it than for others. A strictly Platonic 
view of knowledge as justified true belief, for 
example, is challenged by Kurt Gödel’s dem-
onstration in 1931 that we can only ever jus-
tify a small subset of what is true (Gödel, 
1931). A more pragmatic view of knowledge 
as a practical aid to biological survival, one 
that is either enhanced or impeded by our 
affective and ethical stance, is less threatened 
by our epistemic limits.

The foregoing suggests that our ability to 
grow and manage our knowledge base will 
determine how much complexity we can 
handle. Knowledge management and com-
plexity thus need to dialogue. We explore the 
scope for such a dialogue in this chapter. In 
the first section, we discuss the challenges of 
complexity. In the second section, we then 
describe knowledge management and offer a 
critique. In the third section we present a 
conceptual framework that brings them 
together and in the fourth section we assess 
the role played by the new ICTs. In the con-
cluding section, we look at the challenges 
and opportunities for knowledge manage-
ment in an increasingly complex world.

THE CHALLENGE OF COMPLEXITY

As yet, there is no single and unified com-
plexity science (Mitchell, 2009). But, the 
increasing power of information and com-
munication technologies has given us access 
to a number of powerful concepts in the past 
decades that are collectively labelled the sci-
ences of complexity. The term ‘complexity’, 
however, does not resonate in the same way 
in the natural and in the social sciences. In 
the first, meaning and interpretation are the 
business of independent observers located 
outside the system under study. They cannot 
therefore, qua observers, affect the complex-
ity of the system.1 In the second, observers 
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form part of the system and through their 
interactions with it, actively contribute to the 
system’s complexity. Meaning and interpre-
tation are therefore endogenized – think, for 
example, of how the behaviour of rioter or 
movie stars can be modified by the mere 
presence of TV cameras. In the case of the 
natural sciences, the knowledge one gains is 
deemed to be ‘objective’ (Popper, 1972); in 
the case of the social sciences it is also 
freighted with subjectivity. The evolution of 
both kinds of knowledge will be affected by 
the interplay of interests, power, feelings and 
ethical constraints within the community of 
observers, whether these are external or inter-
nal to the system. If, in the natural sciences, 
the challenge is to acquire knowledge of 
systems consisting of a large number of parts 
interacting in nonlinear ways, in the social 
sciences one is also trying to acquire knowl-
edge of agents whose nonlinear interactions 
are partly guided by the different ways that 
they represent the system both to themselves 
and to each other. Their interactions are con-
ditioned as much by the flow of information 
as by the action of physical forces.

The new sciences of complexity appear on 
the scene at a time when the ever-increasing 
connectivity of an ever-increasing number of 
actors and nonlinear processes in the world 
that we live in – the signature of globaliza-
tion at work – points to the unprecedented 
levels of complexity that we are now required 
to adapt to. Unfortunately, as we have just 
seen, that same complexity sets practical (if 
not necessarily theoretical) limits to the 
knowledge that we can acquire to deal with 
it. A common response to this problem has 
been to collect more data. But not all data is 
information-bearing and not all information 
will yield knowledge. As the Enron scandal 
demonstrated, being flooded with too much 
meaningless data can end up reducing our 
access to knowledge if we lack the means of 
processing it in a timely manner so as to 
extract the relevant information from it. We 
then experience the data as random noise.

Such limitations apply primarily to knowl-
edge-as-prediction where prediction typically 

requires a detailed and explicit representation 
of key features of phenomena as well as of 
how these relate to each other. Knowledge-
as-understanding, by contrast, may require 
no more than a feeling for significant if fuzzy 
patterns that, when recognized, give rise to 
anticipation without necessarily leading to 
prediction. Anticipation rather than predic-
tion, for example, is what scenario planning 
delivered to Shell in the mid 1970s allowing 
it to speedily recognize a pattern that it had 
already processed some time before and to be 
the first to adapt to the oil crisis. Its pattern-
recognition skills thus secured a durable 
first-mover advantage for the firm while its 
competitors were floundering, trying to make 
sense of the situation (Wack, 1985a, b).

Some, aligning themselves with Lord 
Kelvin, would say that unless you can meas-
ure precisely and predict, you haven’t yet got 
knowledge. This is close to the platonic view 
of knowledge in which prediction justifies 
belief. It is held by many natural scientists 
and in many instances – the case, for exam-
ple, of particle physics – it delivers. Yet com-
plexity does not allow much in the way of 
prediction. Indeed, under certain circum-
stances, complexity gives rise to emergent 
phenomena – hurricanes, earthquakes, stock 
market crashes, etc. – that defy any form of 
prediction (Holland, 1975; Bak, 1996). It 
remains an open question how far these can 
be anticipated or even articulated. We are 
thus moving ever further away from the 
linear and mechanistic world of Pierre Simon 
de Laplace who claimed that with a complete 
and precise knowledge of the state of the 
world at time t1 he could predict its state at 
time t2.

But what, then, of knowledge as under-
standing? How does it relate to prediction 
and, by implication, to measurement? Do 
predictability and understanding constitute 
alternative ways of seeing the world? Or does 
the realization of the one facilitate the reali-
zation of the other? Operationalism saw 
predictability as gradually leading to under-
standing (Bridgeman, 1927). Others see under-
standing as ultimately leading to prediction. 
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Both aim to align subjective and objective 
states. Is the aim realistic? How far should 
we take complexity and knowledge as being 
antithetical to each other?

Can we even measure complexity? If we 
could, we may at least claim to have knowl-
edge of it in Lord Kelvin’s terms. Chaitin, 
(1974) and Kolmogorov, (1965) take the 
complexity of a phenomenon to be measured 
by the length of the shortest computer pro-
gram that would reproduce it. Chaitin calls 
this measure the algorithmic information 
complexity (AIC) of the phenomenon. Gell-
Mann, however, agues that AIC measures the 
entropy of the system – its degree of disorder 
– and thus fails to distinguish between com-
plexity and randomness (Gell-Mann, 2002). 
He distinguishes between crude and effective 
complexity. Crude complexity is measured 
by AIC whereas effective complexity is 
measured by the shortest programme that can 
reproduce, not the phenomenon itself, but 
the regularities that reside within it – i.e., its 
degree of structure or organization. Yet, as 
implied by our discussion above, we may 
never get to know what effectively consti-
tutes the shortest programme. To someone 
applying model A, for example, the phenom-
enon will be experienced as simple, whereas 
to someone applying model B it will be expe-
rienced as hopelessly complex. Indeed, the 
difference between models A and B – point-
ing to the enduringly subjective dimension of 
model choice – is the basis of all encryption 
technologies.

As we saw, we inherit from Plato a con-
ception of knowledge that binds it to cer-
tainty and truth. Predictability is deemed to 
get you closer to both. However, as Plato 
himself pointed out, we live in an imperfect 
world where certainty and truth are not gen-
erally on offer. Some, therefore, take valid 
knowledge to be whatever permits you to act 
in adaptive ways given the complexity you 
confront, This is the pragmatic view of 
knowledge that we associate with Charles 
Sanders Peirce and William James (Peirce, 
1931–1958; James, 2000) The more knowl-
edge you have, and the better you make use 

of it, the greater your chances of adapting, 
surviving and prospering. This way of think-
ing powered the rise of Baconian science. 
Recently it has spread beyond science to shape 
the orientation towards knowledge in general 
of commercial and other types of organiza-
tion. It has given rise to a new practice: knowl-
edge management. We turn to this next.

KNOWLEDGE MANAGEMENT 
AS A RESPONSE TO COMPLEXITY

Mankind has always recognized the value of 
knowledge but has had difficulty defining 
and managing it. In ancient times, it was the 
preserve either of a priesthood or a small lit-
erate elite. Following Gutenberg’s development 
of the printing press in 1440 and the resulting 
spread of literacy, access to knowledge in 
Europe gradually became democratized.2  
Arguably, the first institutionalized attempt 
to systematically manage the creation, dis-
semination and employment of knowledge 
was the creation of the Royal Society in 
Britain in 1660, followed a few years later by 
the creation of the Académie des Sciences in 
France. By the eighteenth century, Europe’s 
scientific academies had effectively created 
the world’s first knowledge management 
organizations. Yet, although today many 
claim knowledge management to be an intel-
lectual discipline in its own right with univer-
sity courses offered in the subject and 
professional and academic journals devoted 
to the topic, there is, as yet, no unanimously 
agreed upon definition of knowledge man-
agement or any clear understanding of what, 
exactly, it covers. Much of the interest in the 
subject has been driven by the technological 
possibilities offered by the new ICTs – 
i.e. the Internet and mobile telephony. 
A Wikipedia article on knowledge manage-
ment frames it as either a techno-economic, 
an organizational, or an ecological 
phenomenon.

The techno-economic perspective treats 
knowledge as an economically valuable 
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intangible asset that forms part of an organi-
zation’s intellectual capital (Edvinsson and 
Malone, 1997; Stewart, 1997; Sveiby, 1997). 
To properly exploit the asset it has to be 
measured (Hand and Lev, 2003) and for 
some that means that it first has to be articu-
lated (Davenport and Prusak, 1988; Nonaka 
and Takeuchi, 1994; Von Krogh, 1995; Probst 
and Davenport, 2002). Knowledge articula-
tion then allows the new ICTs to capture, 
store, and retrieve knowledge allowing it to 
be rapidly shared within and across organiza-
tions. How far knowledge has to be articu-
lated in order to be exploitable is a matter of 
debate (David, 1987; Foray and Steinmueller, 
2003). Those who follow Polanyi (1958) 
point to the tacit residue of uncodified knowl-
edge that dogs all attempts at a complete 
articulation. Some will take the tacit knowl-
edge embodied in routines and other behav-
ioural regularities as their point of reference 
(Nelson and Winter, 1982); others will accept 
the articulation of knowledge into a narrative 
form but resist the distortions entailed by 
formalizing it further into purely abstract-
symbolic representations (Snowden undated). 
These different types of knowledge – embod-
ied, narrative, and abstract symbolic – can all 
be embedded in artifacts.

The organizational perspective would treat 
knowledge as a basis for the kind of intelli-
gent coordinated action that characterizes 
agency. A group of individuals exhibit organ-
ized agency when they can coordinate their 
actions in pursuit of some collectively agreed 
upon goal. For this to happen they need to 
achieve a capacity for collective sense making 
(Weick, 1993; Spender, 1996). It does not 
happen spontaneously and requires organiza-
tional learning (March, 1991). Although 
organized agency is formalized in the con-
cept of the firm, a bounded entity endowed 
with a legal personality, the growth of com-
munities of practice suggest that it requires 
neither boundaries nor a legal personality to 
function (Lave and Wenger, 1991; Brown 
and Duguid, 2000). Yet a more networked 
view of agency raises the issue of complex-
ity. Can the different agents that make up 

complex interactive networks agree upon 
goals with sufficient clarity to allow collec-
tive agency to emerge and function?

At the extreme, the organizational perspec-
tive yields to the ecological one. Here, knowl-
edge comes into being through complex 
networks of social interaction, and then either 
dissipates or gets internalized to guide the 
action of individuals or groups (Borgatti and 
Everett, 1999). Whereas some of these inter-
active networks will look like cohesive organ-
izations such as firms, others will be more 
loosely coupled and could look more like 
markets or other types of community (Boisot 
and Lu, 2007). Such loose coupling under-
pins a distributed model of the knowledge 
management process, one more aligned with 
Friedrich Hayek’s (1945) conception of how 
society effectively uses knowledge (Jelinek 
and Schoonhoven, 1994). Interactive scalable 
networks generate and disseminate new 
knowledge through a bottom-up emergent 
process that Prietula and others have likened 
to a socio-computational process (Prietula, 
et al., 1998; Tsoukas, 2005). Interactive scal-
able networks introduce complexity thinking 
into knowledge management. Effective par-
ticipation in such networks builds up the 
social capital of agents who then become 
attractive nodes within them (Coleman, 1990; 
Burt, 1992; Nahapiet and Goshal, 1998; Burt, 
2005), the size of the network being limited 
only by its computational capacity and the 
requirements of collective agency (Buchanan 
and Tullock, 1962).

We can place these three perspectives on 
knowledge along a continuum. At one end 
knowledge is converted into an object that 
can be manipulated, combined with or 
embedded in other objects – both physical 
and virtual – stored, retrieved and transmit-
ted. Such an object becomes a knowledge 
asset when it yields a stream of services over 
time. Intellectual capital is accumulated by 
building up a stock of these knowledge 
assets. At this end of the continuum the main 
concern of knowledge management is getting 
an organization to make good use of its 
knowledge assets, of what it already knows. 



KNOWLEDGE MANAGEMENT AND COMPLEXITY 441

‘If only we knew what we knew’ is the 
lament of those who are aware that what is 
known to the individual members of the firm 
– often tacitly – is not necessarily known by 
the firm itself which therefore cannot act on 
such knowledge. The challenge then involves 
putting knowledge in a form that other mem-
bers of the firm can understand and make use 
of. In other words, the challenge consists of 
converting an individual knowledge asset, 
tacitly held, into an organizational one, 
explicitly held (Nonaka and Takeuchi, 1994). 
Tacit knowledge then has to be ‘captured’ 
and codified to become an object external to 
individuals, capable of being stored and 
retrieved by other members of the organiza-
tion – itself also often viewed as a stable 
object.

From this perspective, knowledge man-
agement seeks to address two issues: (1) How 
far should knowledge be articulated for a 
given purpose? (2) Who can it then be shared 
with? The assumption is that firms, like indi-
viduals, inevitably ‘know more than they can 
say’ (Polanyi, 1958), but that in practice they 
can be induced to ‘say more’. This translates 
into a concern with knowledge capture, i.e. 
getting individuals to articulate what is in 
their heads so that it can be recorded, knowl-
edge codification, getting this knowledge 
stabilized and intelligibly structured, and 
knowledge sharing, making it available to 
other individuals. Articulated knowledge 
now becomes an object that can be embed-
ded in some physical substrate and stored, 
accessed, and retrieved with varying degrees 
of efficiency, independently of a knower.

At the other end of the continuum knowl-
edge always remains internal to an intelligent 
agent – i.e. embodied – and shapes both its 
expectations and its disposition to act (Arrow, 
1974). Here, what gets articulated and 
externalized by an agent is only ever data 
with varying levels of information content, 
not knowledge (Boisot and Canals, 2004). 
Data can be thought of as a set of distinguish-
able states that can register with other agents 
and from which they may be able to 
extract information. Taking knowledge to be 

a dispositional property of agent activity 
leads us to conclude that the Library of 
Congress does not, strictly speaking, store 
knowledge, but data with a high information 
content. An agent’s disposition to action is 
shaped by incoming stimuli that register with 
it as data and interact with its prior knowl-
edge to yield an interpretation of the stimuli 
and to suggest a possible response to them. 
To the extent that the agent’s expectational 
state aligns with the actual states of the 
world, its response will be adaptive and its 
chances of survival in the world improve. 
Effective alignment may be undermined by 
insufficient or misleading data or a distortion 
of the data by the affective, ethical, or con-
ceptual filters that the agent applies to it 
(Clark, 1997). How stringent an alignment is 
actually required will depend on how ‘for-
bearing’ the environment the agent finds 
itself in turns out to be. Some misalignments 
are more likely to threaten the agent’s sur-
vival prospects than others – as Popper put it, 
at some point ‘reality kicks back’ (Popper, 
1972). The realist will argue that alignment is 
both necessary and possible (Bhaskar, 1975). 
The constructivist will argue that the belief in 
an alignment is an illusion and that we have 
managed to survive quite well until now with 
little indication of how aligned our beliefs 
about the world will turn out to be in practice 
(Von Glasersfeld, 1995; Spender 1996).

Some of the incoming stimuli experienced 
by a given agent are generated by other 
agents who are also trying to make sense of 
things and adapt. What these subsequently 
emit as stimuli is the output of their own 
sense making efforts. The receiving agent 
then has two sources of inputs: (1) those 
coming from the natural world in an un-inter-
preted form; (2) those coming from the social 
world in an interpreted form. The challenge 
of collective sense making is to achieve some 
measure of alignment across agents’ respec-
tive interpretations of both kinds of inputs 
(Weick, 1993). Clearly, as complexity – both 
social and natural – goes up, this becomes 
more difficult. With more degrees of free-
dom, the range of possible interpretations 
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increases and these begin to diverge. We can 
frame the challenge of collective sense 
making and of social computation in general 
– of getting aligned with the relevant states of 
the world over time – as one of organiza-
tional learning. Such learning does not 
always deliver a better alignment. It can be 
superstitious (March, 1991) or driven by 
power relationships (Foucault, 1969). To 
the extent that social complexity exceeds 
natural complexity, it is more likely to lead 
to distortions of the learning process, 
manifesting itself in both political and 
commercial organizations as ideology, 
dogma, and prejudice – over-simplifications 
that restore tractability to social computa-
tional processes at the expense of their 
alignment with social realities.

We place the techno-economic approach to 
knowledge management at the knowledge-as-
object end of the continuum and the ecologi-
cal approach at the knowledge-as-agent end. 
The organizational approach would fit some-
where in between. How compatible are these 
different perspectives on knowledge manage-
ment? Are we required to choose between 
them? If not, how might they be reconciled? 
The first yields a view of knowledge as a 
stock of objects available to agents, the second 
a view of knowledge as process – a flow of 
agent activity (Csikszentmihalyi, 1988).

Knowledge management as a 
response to growing complexity: 
a critique

Knowledge management is to date more a set 
of practices than an intellectual discipline. In 
spite of a proliferation of ICT-related tools 
that supports such practices, the subject still 
lacks a clear set of foundational concepts 
concerning the nature of knowledge that 
scholars and practitioners can agree upon. 
Modern physics took off with the stabiliza-
tion of the concept of energy (Mirowski, 
1989), modern chemistry with the develop-
ment by Mendeleev of the periodic table, and 
biology with the modern synthesis of Darwin 

and Mendel. But where is the foundational 
concept of knowledge that can give us lift 
off? Whereas Nonaka and Takeuchi build on 
the Platonic view of knowledge as justified 
true beliefs (Nonaka and Takeuchi, 1994), a 
pragmatic approach to knowledge takes it to 
be that subset of your beliefs that you expect 
to deliver results when you act upon them, 
whether or not these turn out to be true. In the 
first scheme, knowledge-as-truth is the crite-
rion; in the second, knowledge becomes dis-
positional and a property of an adaptive 
agent. But in this second scheme, what do we 
mean by acting? What is the nature and 
strength of my belief, for example, if it leads 
me to buy insurance or take out an option? 
What is the epistemic status of the knowl-
edge that I am acting upon? In these cases, by 
my action, am I not, in effect, acknowledging 
my ignorance in the face of uncertainty and 
complexity?

To the extent that knowledge management 
wishes to accommodate a pragmatic 
approach, it is led to adopt a more ecumeni-
cal view of knowledge than, say, science 
does. Science will only count as valid knowl-
edge which has undergone a rigorous and 
socially controlled process of codification 
and abstraction (Boisot, 1995, 1998), endors-
ing what proves robust and facilitates predic-
tion. But other kinds of knowledge, anecdotal, 
affective, moral, etc. even if more fragile and 
tentative, also form a basis for effective 
action. In many cases predictability is a 
luxury that we cannot afford given the time 
available to react adaptively. Under these 
circumstances, we would be quite happy to 
settle for anticipation. We may not be able to 
locate an emergent threat or an opportunity 
with any great degree of precision (predic-
tion), but we would be grateful enough to be 
able to sense its coming so as to recognize 
it in good time (anticipation). Some form 
of adaptation may then still be possible. 
Unfortunately, knowledge management’s 
ecumenism is paid for in the coin of dross. 
Since more data, information and knowl-
edge is always deemed to be better 
than less, knowledge management often 
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does not know where to stop. Typically, 
more is retained than is needed – sometimes 
much more – and more is deemed necessary 
than is actually ever used. A Freudian might 
be tempted to describe the discipline as anal 
retentive.

This brings us back to our initial concern. 
Where the dosage is controlled, increases in 
knowledge allow us to respond adaptively to 
increases in complexity, hence the need for, 
and relevance of, knowledge management. 
But where the dosage is not controlled, cur-
rent knowledge management practices may 
merely add to the complexity they are sup-
posed to deal with. Much of ICT-driven 
knowledge management, for example, is 
data-increasing rather than knowledge-
increasing and may be compounding rather 
than addressing the challenge. Unfortunately, 
knowledge management scholars remain 
divided on the question of how data, infor-
mation and knowledge – some would add 
wisdom to the triplet – relate to each other, 
one reason being that they cannot agree on 
the meanings of these terms (Boisot and 
Canals, 2004). In the absence of some robust 
founding concepts, they are unlikely to.

How, then, might knowledge management 
help us meet the challenge of complexity? 
We now have data-processing-based meas-
ures of complexity – i.e. AIC – and informa-
tion-based measures of its degree of structure 
(Gell-Mann, 1994). Could our growing 
understanding of complexity then itself help 
knowledge management become more rele-
vant? Both address the problems of uncer-
tainty, but in different ways. Plato required 
knowledge to have certainty as a key attribute. 
Yet we know that certainty is unattainable, 
especially under conditions of complexity. 
Waiting for some justifiable degree of cer-
tainty to be achieved before acting is a luxury 
that in practice we can rarely afford, and we 
are typically called upon to act on the basis 
of uncertain knowledge. Indeed, we often act 
on extraordinarily weak beliefs – hunches, 
vague intuitions, premonitions, etc. – as evi-
denced by our willingness to take out options 
or insurance contracts. Certainty is more 

often than not a subjective or intersubjective 
feeling that may or may not connect to a 
verifiable state of the world. In what follows 
we present an information-based framework 
that points to how the new complexity sci-
ences might endow knowledge management 
with the theoretical backbone that it lacks. It 
offers an inclusive and pragmatic approach to 
understanding knowledge, one less concerned 
with Platonic questions of certainty and of 
justification and more oriented to biological 
processes of survival and effectiveness.

COMPLEXITY AND KNOWLEDGE: 
A CONCEPTUAL FRAMEWORK

The basics

The complexity sciences promote an objec-
tive view of complexity as an intrinsic prop-
erty of states of the world. A subjective view 
of complexity looks at our capacity to make 
sense of the world given both its objective 
complexity and our cognitive and behav-
ioural capacities to match it. Do my subjec-
tive representations of complex phenomena 
match their objective complexity? Do they 
do so fast enough to allow me to make sense 
of them and adapt (Weick, 1993)? Is the 
grainy satellite photo which I must act upon, 
for example, depicting a peaceful village set-
tlement or a nuclear installation? Is the 
rowdy crowd that I see approaching friendly 
or hostile? This is knowledge as adaptive 
sense making as discussed in Chapter 16 of 
this volume. It comes in three different 
forms:

Embodied knowledge •  (aka as phenomenology) – 
acquired dynamically through our sensory inter-
actions with the world (Thelen and Smith, 1994). 
As I write these lines, I am sitting in a Starbucks 
coffee shop. I see chairs, tables, people, pho-
tographs on the wall, etc. I hear music and the 
sound of an espresso machine in the background, 
I taste the coffee. My body experiences the resist-
ance of the chair that supports it while I sit. My 
arms and wrists experience the resistance of the 
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laptop that rests on the table that I am writing 
on. I could go on – forever! Unless something 
anomalous crops up, I have no reason to doubt 
the validity of the knowledge that my senses are 
conveying to me as I interact with my surround-
ings. It forms the basis of what Polanyi referred 
to as personal knowledge. Most of it remains 
unarticulated and some of it will be inherently 
unarticulable (e.g. the taste of the coffee).3

Narrative knowledge •  – that part of my embodied 
knowledge that I am capable of articulating and 
sharing with others through utterances, only 
some of which will be verbal – gossip, water 
cooler talk, commands, etc., but also grunts, 
sighs, voice pitch, and so on (Gazzaniga, 1992; 
Dunbar, 1996; Deacon, 1997). Only a tiny frac-
tion of our embodied knowledge ever gets 
narrated. Until the discovery of radio waves, nar-
rative knowledge facilitated and amplified social 
coordination across a physical space the size of 
which was defined by the reach of the human 
voice. The test for the validity of the knowledge 
conveyed through narrative is its alignment 
with the prior experience of those it reaches. In 
primary groups, such alignment is usually not 
hard to achieve. As the group grows larger and 
more heterogenous, however, securing align-
ment becomes more challenging.4

Abstract-symbolic knowledge •  – those elements 
of my narratable knowledge exhibiting suffi-
cient recurrent regularities that, in addition to 
articulating them, I can formalize them in such 
a way that they can reliably be generalized 
and applied across a range of different situa-
tions – either by myself or by others. Formalizing 
abstract-symbolic knowledge typically involves 
compressing it into a more compact representa-
tion than narrative typically requires, one that, 
when inscribed in some durable medium such 
as stone or paper, can be conveyed to others 
across vast stretches of space and time at low 
cost. Through repeated and varied applications, 
such knowledge – whether in verbal or inscribed 
form – gradually gets validated and acquires 
something of an objective status. It becomes 
knowledge that others are entitled to rely upon 
in drawing inferences or making predictions 
(Daston and Galison, 2008).

Although no clear dividing line separates 
the three kinds of knowledge, We make sense 
of the world by seamlessly integrating them. 
Piloting a wide-bodied aircraft, for example, 

is a complex task that requires you to inte-
grate your body’s sense of acceleration/
deceleration (embodied knowledge), verbal 
instructions from air-traffic control (narrative 
knowledge) and what the countless dials on 
your control panel are conveying to you 
about the state of your aircraft (abstract-
symbolic knowledge). Yet even as simple a 
task as telling someone the time involves 
moving your arm so as to bring your wrist-
watch into view (embodied knowledge), 
interpreting the abstract symbols on the watch 
face (abstract-symbolic knowledge) and 
translating this interpretation into the appro-
priate utterances (narrative knowledge).

The move from embodied to narrative and 
thence to abstract-symbolic knowledge saves 
on the time and effort required to process and 
transmit data. It does so by capturing essen-
tial information and shedding redundant data. 
The resulting economies can speed up adap-
tive responses. Yet whether responses are 
indeed adaptive depends on whether the 
move is information-preserving. Where that 
information resides in readily accessible 
empirical regularities, the process of articu-
lating and structuring knowledge is a simple 
one that is readily performed. But where the 
regularities are elusive – i.e. the algorithmic 
information complexity (AIC) is high – the 
process is much more challenging and one 
runs the risk of losing relevant information 
instead of merely shedding redundant data. 
Knowledge and complexity are thus inti-
mately related. Where complexity stands in 
the way of knowing, we can deal with it 
either by reducing it or by absorbing it. We 
reduce complexity by deploying cognitive 
strategies that give it structure. We absorb it 
by deploying appropriate behavioural strate-
gies, often in coordination with others (Boisot 
and Child, 1999). Since our focus is on 
knowledge management, in what follows we 
only deal with the first.

Reducing complexity involves discerning 
stable structures in the flux of experience – 
i.e. developing insight. As intelligent sys-
tems, we do this through the twin processes 
of discrimination and association (Hahn and 
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Chater, 1997) which we re-label respectively 
codification and abstraction. The first helps 
us to clearly distinguish between categories 
so that we can rapidly assign phenomena to 
these. The second, by treating things that are 
different as if they were the same (Dretske, 
1981) reduces the number of categories that 
we need to draw upon to categorize phenom-
ena. Taken together, codification and abstrac-
tion speed up data processing and facilitate 
adaptation. Furthermore, as our knowledge 
becomes more structured through successive 
acts of codification and abstraction, it 
becomes more compact, more readily diffus-
ible and hence more easily shared. We present 
this relationship between codification, 
abstraction and diffusion in a three-dimen-
sional space called the Information-Space or 
I-Space (Boisot, 1995; 1998) that is depicted 
in Figure 25.1. As indicated by the curve in 
the diagram, the higher the levels of codifica-
tion and abstraction, the larger the proportion 
of a given population of agents to which a 
message can be diffused per unit of time. In 
the I-Space, an agent can be any organized 
entity that exhibits agency – individual human 

beings, firms, nation states, etc. If we popu-
late the diffusion scale with individual 
human beings, for example, we can choose to 
explore the information flows within a single 
organization. If we populate it with firms, 
on the other hand, we can look at informa-
tion flows within an industry or a strategic 
alliance.

The social learning cycle

Over time there is a tendency for collectively 
useful knowledge to move through the 
I-Space, first in the direction of complexity 
reduction, that is, of increasing codification 
and abstraction and then second, in the 
direction of greater diffusion. In the case of 
scientific knowledge, for example, the need 
for parsimonious explanations favours 
increasing codification and abstraction. 
Indeed, such a move provides one of the 
essential criteria for what constitutes a 
scientific explanation (Hempel, 1966). Data 
that is not information-bearing – i.e. noise – 
gets discarded to achieve more compact 
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Figure 25.1 The I-Space
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and hence more transmissible knowledge 
representations. The move, however, sacri-
fices context and richness and may threaten 
the coherence of knowledge so structured. 
Structured knowledge may be more diffusi-
ble but, as any high school math student will 
tell you, its very compactness may stand in 
the way of its intelligibility (Boisot, 1998); 
some face-to-face interaction allowing feed-
back processes to restore context may then 
be necessary to make sense of it. If the 
knowledge is useful there will be pressures to 
get it shared and this may entail its further 
codification and abstraction. But diffusing 
knowledge de-contextualizes it, often making 
it hard to understand. Furthermore, if such 
knowledge is to get absorbed and applied, 
there is often a need to embed it in a new 
context. Codification, abstraction and diffu-
sion, therefore, are not the end points of a 
social learning process. If it is to be used, 
structured knowledge must also get internal-
ized. The total process traces out a six-step 
Social Learning Cycle (SLC) in the I-Space 
as depicted schematically in Figure 25.2 and 
elaborated in Table 25.1.

The SLC can take on different shapes and 
sizes to reflect the learning dispositions of the 
various populations it describes. After all, 
learning takes time and effort, and not all situ-
ations will warrant it. Do the benefits of learn-
ing justify the investments required? If so, 
how does one extract value from such invest-
ments? Economic value combines utility and 
scarcity. In the I-Space, the move towards a 
greater codification and abstraction of knowl-
edge, by reducing the complexity one has to 
deal with, generates utility. Codification makes 
knowledge more stable and robust, and also 
allows it to be either readily stored or easily 
transmitted. Abstraction makes knowledge 
more generalizable, allowing it to find appli-
cation outside the context in which it arises. 
But at the same time, codification and abstrac-
tion, by making knowledge more diffusible, 
threaten to reduce its scarcity and hence its 
value to its possessor useless unless it can be 
harnessed to network effects. Depending on 
whether or not effective barriers to the diffu-
sion of knowledge can be erected, the value 
extracted from the SLC thus accrues either to 
a subsection of the agent population or to the 
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Table 25.1: The Six Steps of the Social Learning Cycle.

1. Scanning A leftward movement in the I-Space that converts data available to others – threats, 
opportunities, etc. – into novel and insightful patterns that are relatively undiffused

2. Codification A gradual articulation of initially fuzzy patterns into clear, compact, and robust representations 
that can be manipulated and stored. This is an exercise in data compression that moves it up the 
I-Space

3. Abstraction Extracting from patterns their invariant and generalizable features. This results in further data 
compression and moves data from the front of the I-Space to the back.

4. Diffusion A rightward shift of data – compressed or otherwise – across a population of agents located 
along the diffusion dimension of the I-Space

5. Absorption The internalization and contextualization of data through acts of assimilation to existing schema. 
This entails a downward movement in the I-Space, one in which data gets interpreted

6. Impacting A movement from the back of the I-Space towards the front in which data at varying levels of 
codification and abstraction is applied to concreted situation

population as a whole. In the first case, the 
relationship between agents is more likely to 
be competitive than in the second where all 
share the relevant knowledge.

Complexity in the I-Space

How does complexity manifest itself in the 
I-Space? If we take complexity to be a func-
tion of the number of elements in interaction, 
then we can locate complexity where the 
number of interacting elements is large. 
Where the interactions exhibit regularities 
and hence become predictable, however, we 
have a gain in structure and a consequent 
reduction in complexity. What do we take to 
be interacting elements in the I-Space? The 
I-Space describes the flow of information-
bearing data across a population of interact-
ing agents. How bits of data relate to each 
other – their interaction – defines their infor-
mation content, so that we can take bits of 
data as one set of interacting elements and 
individual agents as another.

Data: It is data that diffuses across a popula-
tion, data that is hopefully information-bearing. 
But what is the relationship between data and 
information on the one hand and knowledge on 
the other? Data that is information-bearing, 
when absorbed and applied, has the effect of 
modifying an agent’s knowledge base and its 

disposition to act. The data can either emanate 
directly from the natural world in the form of 
physical stimuli, or from other agents in the 
form of a language, verbal or nonverbal.

Agents: When agents communicate with 
each other they can be said to be interacting. 
The I-Space is populated by agents who have 
been placed on the diffusion scale essentially 
because they have reason to interact with 
each other. Whether their interaction is struc-
tured or not depends in part on the way that 
information is distributed within the popula-
tion and in part on the latter’s size. Interactions 
within a large population are more likely to 
be complex than those within a small one.

The complexity that we associate with inter-
acting bits – i.e. data – is cognitive. If, as AIC 
suggests, complexity can be measured by the 
amount of data processing than it entails, then 
we can say than uncodified knowledge entails 
more data processing than codified knowl-
edge. It takes more data processing to distin-
guish between categories and assign event to 
them when both the categories and the events 
are fuzzy than when they are crisp (Boisot and 
Li, 2005). Yet, as we saw above, AIC is an 
aggregate measure of entropy that does not 
separate out the complexity generated by the 
structure of phenomena from that generated by 
the noise in which they are embedded. It is a 
measure of crude complexity. Gell-Mann’s 
effective complexity, by contrast, measures the 



APPLICATIONS448

amount of data processing entailed by the 
regularities residing in phenomena – in their 
degree of structure. In the I-Space, more con-
crete phenomena, being apprehended through 
a larger number of interacting categories than 
abstract ones, are characterized by higher 
levels of effective complexity.

The complexity that we associate with 
interacting agents, by contrast, is social. Data 
processing measures of complexity, however, 
still apply. Other things being equal, it takes 
more data processing to capture the interac-
tions of a large population of agents than of 
a small one. Furthermore, higher levels of 
data processing are called for when those 
interactions are unstructured than when they 
are structured. Structuring agent interactions 
so as to reduce their complexity is what 
formalizing organization is all about. The 
organizational equivalents of codification and 
abstraction are differentiation and integration, 
the drivers of the formalization process 
(Lawrence and Lorsch, 1967). The larger the 
population involved, the greater the need for 
formalization. The alternative is to reduce the 
extent to which agents either need to or can 

interact by subdividing the population into 
independent groups – in large organizations 
they are placed in departments or divisions.

As indicated in Figure 25.3, we now have 
two quite distinct avenues open to us if we 
want to reduce organizational complexity: 
The first is cognitive and moves us up the 
I-Space towards higher levels of codification, 
of abstraction, and hence of structure – 
organizational structuring, for example, calls 
for a codification of roles and standard oper-
ating procedures and their generalization 
(abstraction) across a population. The second 
is social and moves us towards either more 
structured and controlled social interactions 
or a more balkanized social structure. Both 
of these moves reduce the number of inter-
acting agents, thus shifting social interaction 
towards the left along the diffusion scale, 
where the rate of diffusion of information-
bearing data can be brought under some 
degree of control. To control the flow of 
information is to limit its diffusion to specific 
agents and/or circumstances. One may want 
to control the diffusion of information so as 
to achieve better coordination or, for good or 

Figure 25.3 Three regimes in the I-Space
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ill, to keep different groups of agents from 
interacting with each other. Typically, cogni-
tive and social strategies work in tandem to 
reduce organizational complexity.

The dynamics of the SLC suggests that we 
will not always want to reduce organizational 
complexity. Ashby’s law of requisite variety 
states that if a system is to survive, it must be 
able to generate from inside a variety that can 
match that which it confronts outside (Ashby, 
1956). For variety read complexity. If glo-
balization increases the complexity that we 
have to deal with, do we not in fact need 
more complex organizations to match it? If 
so, do the possibilities offered by new infor-
mation and communication technologies 
(ICTs) contribute to the solution or to the 
problem? We turn to this next.

THE NEW ICTS

For any given level of codification and 
abstraction, the new ICTs increase the volume 
of data that can be processed and transmitted 
and increase the size of the population that 
can be reached per unit of time. This shows 
up as a rightward shift of the diffusion curve 
along the diffusion dimension of the I-Space 
as indicated in Figure 25.4. Economists 
would describe this as a shift in the supply 
curve for data.

The figure highlights two distinct effects 
of this curve shift: a diffusion effect and a 
bandwidth effect. The diffusion effect, we 
have just discussed: an increase in the number 
of people that can be reached per unit of 
time, whatever the level of codification and 
abstraction of the message. The bandwidth 
effect is less obvious. It suggests that a popu-
lation of a given size can be reached at a 
lower level of codification and abstraction 
than hitherto. Voices, pictures or video clips 
on YouTube replace terse textual or quantita-
tive descriptions. Snippets of embodied and 
narrative knowledge can then start to flow as 
rapidly and extensively within a given popu-
lation as abstract-symbolic knowledge. 

Unfortunately, one then butts up against the 
ultimate limitation on such voluminous trans-
fers: increase the bandwidth and you may 
effectively end up increasing the claims on 
the scarcest of your cognitive resources, 
namely, your capacity for attention (Simon, 
1986). Extracting information from data in a 
timely fashion is the challenge. There will be 
times when extracting information from high 
bandwidth information will be efficient. I can 
immediately recognize a photo of my wife, 
for example, where it might take me several 
hours to realize that a detailed written descrip-
tion of what the photo conveys actually refers 
to her. But that is because I am already famil-
iar with what my wife looks like. On the 
other hand I am more likely to get an accu-
rate sense of the support garnered by a presi-
dential candidate from the number of people 
who voted for her – an abstract symbolic 
representation – than from a photograph of 
her supporters all assembled. Here, the parsi-
mony achieved by compressing knowledge 
into abstract-symbolic forms of representa-
tions releases attention for other things.

The new ICTs simultaneously facilitate 
the processing of data and add to the data to 
be processed. With increased bandwidth, 
both structured and unstructured data can 
now be transmitted with ease. But the real 
limit to bandwidth resides inside our heads: 
we can only process so much data at a time 
without blowing a fuse. Increasing the band-
width increases the volume of data to be 
processed. Yet unless it is processed before it 
reaches us, it will often only increase the 
complexity we face. There is no free lunch.

THE FUTURE OF KNOWLEDGE 
MANAGEMENT IN A COMPLEX 
WORLD

Knowledge management 
in the I-Space

How far do the practices of knowledge man-
agement help to meet the challenges of 
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increasing complexity? In Blown to Bits, 
Evans and Wuster (2000) tell us that the old 
trade-off between the richness and the reach 
of knowledge has been abolished. With the 
new ICTs we can now have both. A complex-
ity perspective suggests otherwise. Richness 
typically refers to knowledge that is com-
plex, concrete and largely uncodified. Reach 
refers to its diffusibility. As with rich food, 
rich data taken in large quantities will end up 
making us informationally obese, often slow-
ing us down at the very moment that the 
complexity we encounter may require us to 
be lean and agile. Leanness requires us to be 
more selective in the data we process. After 
all, as we have seen, we make sense of the 
world by integrating embodied, narrative and 
abstract-symbolic knowledge in ways that 
achieves coherence – what we experience 
must either align with or modify our existing 
models and expectations in meaningful ways. 
The challenge for knowledge management is 
to enhance our capacities to absorb and 
process data without compromising our 
ability to achieve coherence. If much of the 
sense making literature has tended to focus 
on the link between embodied and narrative 

knowledge (Weick, 1993; Czarniawska, 
1997; Snowden undated), the practitioner 
literature on knowledge management has 
concentrated on the link between narrative 
and abstract-symbolic knowledge (Stefik, 
1995). Coherence requires that these two 
sides of knowledge management be brought 
together. When they are we will discover that 
the management of knowledge is co-extensive 
with the management of complexity. Framing 
this claim in the language of the I-Space we 
see that knowledge management consists of 
managing one or more SLCs for maximum 
value through a judicious mix of complexity 
reduction and complexity absorption. A 
simple knowledge management prescription 
here would be: reduce complexity where you 
can do so at a low cost; absorb complexity 
where you can’t.

NOTES

1 The point holds true for natural systems studied 
above the Planck scale. At that scale, quantum 
effects kick in to make the observer part of the 
system (Omnès, 1999).

Figure 25.4 The impact of ICTs in the I-Space
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2 China developed a printing technology based 
on woodblock printing in the eighth century and one 
based on movable type in the eleventh. The complex-
ity of Chinese characters, however, prevented China 
from exploiting this technology until the late nine-
teenth century. For this reason, printing technology 
did not impact domestic rates of literacy the way that 
Gutenberg’s invention did in Europe (DeFrancis, 
1984; Hannas, 1997).

3 Polanyi has focused primarily on that tacit com-
ponent of our knowledge that we find hard or 
impossible to articulate (Polanyi, 1958). But the term 
‘tacit’ also covers large tracts of knowledge that 
could either be articulated but are not because the 
costs and benefits of doing so are stacked against it 
or because it is so widely shared that articulation 
becomes superfluous.

4 It was the need to secure the alignment of large 
crowds in the agora that pushed the Greeks of fifth 
century Athens to place such a premium on rhetoric 
(Fine, 1983).
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26
Complexity and Innovation

P i e r p a o l o  A n d r i a n i

INTRODUCTION

Innovation is about turning knowledge and 
new ideas into social and economic changes 
through the deployment of new technologies. 
Contrarily to more traditional factors of pro-
duction – land, capital and labour – knowl-
edge is more likely to give rise to positive 
feedback and network effects (Romer, 1986, 
1994; Arthur, 1988, 1990). The more a society 
turns knowledge-intensive, the more dominant 
network effects become. The dynamics that 
these effects generate ‘is lopsided, discontinu-
ous, disharmonious by nature ... studded with 
violent outbursts and catastrophes ... more like 
a series of explosions than a gentle, though 
incessant, transformation’ (Schumpeter, 1939: 
102). Such is the world of innovation. This 
world is characterized by nonlinear dynamics, 
emergent properties, discontinuities and self-
organizing patterns that once established 
become the platform for further disruptions. 
Complexity theory provides conceptual tools 
to understand this world (see the foundations 
section of this volume).

Hence the question: why isn’t complexity 
more dominant in innovation studies? For a 
long time innovation studies have been 
domi nated by neo-classical economics. In spite 
of this, complexity thinking runs deep through 
the history of innovation. Schumpeter’s great 

contribution (1934, 1939) is to have con-
nected the role of innovation with economic 
growth and social change. His analysis 
rejected simplistic circular flow and equilib-
rium theories and introduced topics strongly 
resonant with complexity ideas such as the 
chaotic dynamics of radical change, extreme 
events and the bottom-up, self-organizing 
engine of capitalism: entrepreneurship.

The emergence of the Internet and of the 
‘network society’ (Castells, 2000) has been 
accompanied by the development of the ‘sci-
ence of networks’ (Watts, 2003; Newman et al., 
2006: 2008). This is probably the most impor-
tant evolution in innovation studies in the past 
decade. It brought about a shift in focus from 
the manufacturer-centric to network-centric 
approaches (Powell et al., 1996; Iansiti and 
Levien, 2004). The shift has given rise to new 
approaches which reach beyond the firm and 
its boundary as the main subject of the inno-
vation process and take the network as the new 
unit of analysis. By linking traditional actors, 
such as firms and institutions, with new agents, 
such as communities, users and technological 
platforms, these new innovation networks have 
generated a ‘network of networks’, a massively 
inter dependent ‘organism’ that links together 
companies, research institutions, inventors, 
self-organizing communities, regulatory insti-
tutions and technologies. This super-network 
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generates the collective interdepen dent system 
of technologies known as the technosphere.

The emergence of a globally connected 
technosphere is likely to represent a funda-
mental discontinuity in technology history 
and innovation studies and poses a number of 
crucial issues: Are traditional tools based on 
linear science appropriate to deal with the 
emergence and evolution of a globally inter-
dependent technosphere? How does the col-
lective set of technologies co-construct itself? 
What is the role of self-organizing networks 
in the expansion of the technosphere? I will 
explore these issues in the following sections. 
The description of the universal properties of 
the technosphere as seen through a complex-
ity theory lens concludes this chapter.

Although innovation studies is an ideal 
field for the application of complex systems-
based models, the number of scholarly works 
that directly apply complexity to innovation 
is relatively small. They can be grouped into 
the following categories.

Works that focus on self-
organization and emergent 
properties

This literature takes its move from the rejec-
tion of neo-classical models, which are based 
on assumptions of equilibrium, gradualism 
and use reductionist methodologies. At the 
opposite end of reductionist frameworks sit 
evolutionary frameworks, based on path-
dependency, emergent properties at multiple 
level of aggregation and self-organization. In 
these models the arrow of causality go from 
components to wholes and from wholes to 
components (Juarrero, 1999; Noble, 2006; 
Ulanowicz, 2009). One of the main concerns 
of evolutionary frameworks is the under-
standing and modelling of discontinuities, most 
often triggered by radical innovations. Nelson 
and Winter’s (1982) evolutionary economics 
frameworks, Dosi’s (1982) technological 
trajectories, Abernathy and Utterback’s 

(1978) dominant design model draw from 
Schumpeter’s seminal work and (often 
implicitly) build a complexity-based theory 
of innovation-driven endogenous change in 
the economy (Foster, 2000). Technological 
discontinuities give rise to nonlinear effects 
such as technological lock-ins (David, 1985), 
externalities and positive feedback dynamic 
(Romer, 1986, 1994; Arthur, 1990) and rely 
on punctuated equilibria models (Gould and 
Eldredge, 1977; Tushman and Anderson, 
1986; Tushman et al., 1986; Mokyr, 1990; 
Gersick, 1991). The modelling of techno-
logical discontinuities (Saviotti and Mani, 
1995, 1996) show the fundamental impor-
tance of technological and organizational 
diversity (Mokyr, 1990; Saviotti, 1995, 1996; 
Allen, 1997; Grabher and Stark, 1997) in 
endogenous models of innovations. A paral-
lel stream of complexity studies originates 
from Simon’s (1962) nearly-decomposability 
model (see Baldwin and Clark (2000) for a 
review).

Works that focus on networks

This is a rich area of research with multiple 
streams. This literature can be summarily 
divided into literature that examine the impact 
of collaboration and knowledge diffusion on 
innovation within networks (Powell et al., 
1996; Pyka and Küppers, 2002; Schilling 
and Phelps, 2005) and literature that focuses 
on the relationship between topology of non-
random networks and innovation diffusion 
(Cowan, 2006; Frenken, 2006). These works 
overlap with the literature on simulation 
and modelling. Complexity can legitimately 
claim to have provided a third method for 
scientific inquiry: computer simulation. 
Among the simulation approaches that have 
been used in innovation studies we cite: 
Cellular Automata (Kauffman, 1995), fitness 
landscape and NK models (Kauffman, 1995; 
Gavetti and Levinthal, 2000; Rivkin, 2000; 
Fleming and Sorenson, 2001); agent-based 
modelling frameworks (Gilbert et al., 2001; 
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Fagiolo and Dosi, 2003; Dawid, 2004; Pyka 
and Fagiolo, 2005; Frenken, 2006).

Other works apply aspects of complexity 
theory such as chaos theory (Cheng and Van 
de Ven, 1996) and fractal/allometric theory 
(Bettencourt et al., 2007). This is probably 
the least developed area and, at the same 
time, one of the most promising.

LINEAR MODELS, GAUSSIAN 
TOOLS AND THE INTERDEPENDENT 
TECHNOSPHERE

A large part of the literature on innovation 
tends to treat the technosphere as an additive 
aggregate of individual technologies, devel-
oped by individual companies or institutions. 
A cursory look at the literature, take for 
instance the Oxford Handbook on Innova-
tion (Fagerberg et al., 2005), reveals scant 
attention to the issue of collective interde-
pendence and rules of expansion of the tech-
nosphere.

Many of these traditional approaches share 
the underlying idea that the variability of the 
innovation world is somehow limited and 
that a statistically accurate analysis of the 
history of innovation can provide the salient 
features of the processes concerned with 
innovation. Under the hypothesis of finite 
variability, lessons learnt from the past are 
applied to predict the future and the regulari-
ties found at the aggregate level are consid-
ered to be valid at the single agent level.

The finite variability approaches ultimately 
rely on the General Linear Reality (GLR) 
model (Abbot, 2001):

The phrase ‘general linear reality’ denotes a way of 
thinking about how society works. This mentality 
arises through treating linear models as 
representations of the actual social world.

y = Xb + u

The social world consists of fixed entities (the 
units of analysis) that have attributes (the variables). 
These attributes interact … to create outcomes, 
themselves measurable as attributes of the fixed 
entities.

The GLR has encouraged the view that 
innovation is an exogenous variable in the 
economic landscape. According to this view, 
innovation affects the attributes of the enti-
ties but not the entities themselves. 
Gradualism in innovation is consistent with 
this view.

Typological thinking represents the conse-
quence of this approach. It reduces the com-
plexity and variability of technological 
change and organizational innovation to a 
limited set of categories that ultimately 
follow principles of efficiency and gradual-
ism. For instance, Mokyr (1998) comments 
that:

... economics’ knee-jerk response is to regard tech-
nological diversity [generated by innovation] as a 
source of inefficiency: if a product under very 
similar circumstances is made in different ways, 
our first suspicion as economists is that at least one 
of the producers is doing something wrong. … An 
evolutionary perspective tends to regard variability 
as a source of innovation and long-run successful 
performance.

In this reductionist view of technological 
change, selection processes are efficient and 
optimize outcomes by selecting the best 
option.1

Categorization and taxonomical exercises 
(Pavitt, 1984) often reify the limited variabil-
ity of the sample chosen. The perennial dis-
cussion about whether large firms are more or 
less innovative than SMEs, the various clas-
sification of SMEs into categories in order to 
ascertain the underlying innovation patterns 
are examples of the limited variability view 
(i.e. see De Jong and Marsili, 2006). One can 
raise the objection that these works rely on 
hidden Gaussian assumptions, such as out-
liers elimination even when examining a real-
ity that presents Paretian long tails (Andriani 
and McKelvey, 2009); second, they often and 
implicitly rely on the concept of ‘species’ (for 
a critique in biology see Margulis and Sagan, 
2002) and omology (Lorentz, 1973). As hori-
zontal transfer (Woese, 2004) in technological 
innovation is dominant, the basis for classifi-
cation is questionable. Classificatory studies 
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that partition firms into abstract categories 
such as, low/high tech, MNEs/SMEs, etc. are 
useful to identify minimum common denomi-
nator properties among the set under study. 
However, they tend to ignore the idiosyncratic 
elements that resist classification. These dif-
ferences constitute the pool from which inno-
vations arise and redefine firm populations.

Many studies on innovation also rely on 
the time-honoured tradition of taking sam-
ples of firms, organizations, or other types of 
‘agents’ to prove or disprove hypotheses via 
statistical significance testing (SST). This 
runs into a long series of problems. First, 
SST is based on a dichotomous view of the 
world, null-hypothesis or the opposite. 
Instead, the world of innovation is not dicho-
tomic as it is characterized by strong uncer-
tainty and unbounded variability that is 
difficult to reduce to an either-or formula-
tion. Second, given the inherent importance 
of contextual conditions, and therefore the 
nearly unlimited variability of any sample, 
the possibility of finding a large enough 
number of cases to prove or disprove a statis-
tically formulated hypothesis is low. Third, 
even proving (or disproving) a null-hypothe-
sis at best demonstrates a correlation and 
says little about causal relationships. Starbuck 
(2006: 49) comments:

Choosing two variables utterly at random, a 
researcher has 2-to-1 odds of finding a significant 
correlation on the first try, and 24-to-1 odds of 
finding a significant correlation within three tries. 
… the main inference I drew from these statistics 
was that the social sciences are drowning in statis-
tically significant but meaningless noise.

Reliance on central tendencies is more 
problematic in innovation studies than in 
other fields of management and economic 
studies. The normalization of samples for 
statistical analysis tends to eliminate outliers 
which in a gradualistic view of societal 
change are attributed to measurement errors 
or other spurious effects. Since radical inno-
vation is a discontinuity and appears to be an 
outlier, the result is to throw out the baby 
with the bathwater. Popular books in the 

management literature which claim to explain 
innovation and how to become innovative, 
such as In Search of Excellence (Peters and 
Waterman, 1982), Built to Last (Collins and 
Porras, 2002), Good to Great (Collins, 2001), 
suffers from fundamental analytical flaws, 
well explained in The Halo Effect (Olk and 
Rosenzweig, 2007). Even works that apply 
complexity theory tools and methods such as 
NK landscape modelling often fall in the trap 
of central tendency (see for instance Fleming 
and Sorenson (2001) on modelling innova-
tion via NK landscape).

Moreover, adopting a reductionist view of 
the world leads to spurious connections 
between statistical results and practical 
actions. The assumed normality of social/
economic phenomena leads to a representa-
tion of the system under analysis as a set of 
representative agents with limited variability. 
The statistical properties of the sample 
embodied in the representative agents are 
then de facto applied to the real agents that 
form the populations. As a consequence, 
policy actions based on the representative 
agents are then transferred from the abstract 
world of statistical significance tests to the 
real world. In reality: Neither the industry-
level graphs nor the group – level graphs 
[make] statements relevant for individual 
companies (Cool and Schendel, 1988).

To sum up: general linear reality models, 
typological thinking and finite variance sta-
tistics are appropriate tools to analyse a 
social world based on gradualism, equilib-
rium and finite variability. Hence, it is no 
surprise that the world of innovation and 
technology has been for a long time treated 
as an exogenous black box that disturbs the 
harmony of the whole.

THE DYNAMICS OF THE 
TECHNOSPHERE

In this section I briefly discuss the dynamics 
of the emergence and evolution of the tech-
nosphere. I start by presenting two concepts 
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rooted in complexity theory: positive feed-
back and recursivity. I trace the history of the 
concept of positive feedback in early writers 
on economics and technical change, focusing 
in particular on Schumpeter’s work. Then I 
present some very recent works rooted in 
complexity theory that discuss how the tech-
nosphere originates and evolves.

Not a black box: The origin 
of positive feedback in early 
thinkers in technology and 
economics

Positive feedback, also known as cumulative 
causation, deviation amplification (Maruyama, 
1963) and in economics as increasing returns, 
indicates a situation in which a process 
becomes self-reinforcing and spirals up in an 
explosive way. When the elements of the 
positive feedback loop achieve closure, the 
loop becomes autocatalytic (Eigen and 
Schuster, 1979), or in other terms autopoietic, 
i.e. capable of creating itself out of itself 
(Maturana and Varela, 1987; Arthur, 2009). 
The growth of a system under positive feed-
back usually follows a recursive dynamic 
known as scale-free, explored by Sornette 
(2000), Newman (2005) and Andriani and 
McKelvey (2009). Scale-free dynamics yield 
recursive systems. Recursivity indicates the 
propensity of a system to nest into a hierar-
chy of self-similar structures. A recursive 
system tends to be self-similar, that is its 
subsystems and their dynamical behaviours 
appear similar across multiple scales 
(Mandelbrot, 1982). Recursive dynamical 
systems driven by positive feedback dynam-
ics show the universal signature of Paretian 
distributions. Positive feedback is a crucial 
mechanism in the history of innovation, but 
has rarely been considered as such. It repre-
sents an ‘underground river’ (Warsh, 2006) in 
the history of innovation and technology, 
which emerges from time to time to disap-
pear under the crust of linear thinking and 
reductionist frameworks.

The story of increasing returns coincides 
with the very beginning of the history of 
economic growth, that is, with Adam Smith. 
Interested in economic growth and in the 
allocation of resources mechanism, Smith 
introduced an apparently irreconcilable con-
tradiction at the heart of economics: the 
mechanism of allocation of scarce resources 
is governed by decreasing returns (power-
fully described with the metaphor of the 
invisible hand), whereas the mechanism of 
growth depends on division of labour which 
is intrinsically based on increasing returns 
(the pin factory example). These two ideas 
have had very different histories. The invisi-
ble hand idea has become the foundation of 
modern economics. The pin factory instead 
has become a permanent thorn in the side of 
economics. Malthus, Ricardo and Stuart Mill 
and others dismissed the increasing returns 
mechanism implicit in the pin factory and 
built the foundation of classical economics 
on the diminishing returns mechanism that 
would put economics on solid scientific 
ground, except that it leaves economic growth 
largely unexplained.

The underground river of increasing returns 
did occasionally emerge with the work of 
Marx that defined economics as a critical his-
tory of technology and with Marshall’s theory 
of spillovers and external economies. The 
latter was introduced to justify the survival of 
competitive markets in presence of increasing 
returns to scale due to specialization (division 
of labour). Marshall had correctly observed 
how technological learning and innovations 
would spill over the boundary of the local 
firm and benefit the entire district, thus pre-
venting the increasing returns mechanism to 
degenerate into a monopoly. Marshall is the 
first to notice that space and social routines 
mediate the processes of technology diffusion 
and incremental innovations transforming the 
apparently linear and simple process of tech-
nology diffusion into a nonlinear and cluster-
based problem.

The underground river re-emerged force-
fully but briefly with Alwyn Young in 1928. 
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His paper is concerned with increasing 
returns associated with innovation. Based on 
the smithian pin factory, Young realized that 
the power of division of labour does not 
reside as much in increased efficiency, but 
rather in the potential of applying a fragment 
of activity to new uses. The famous sentence: 
‘one man draws out the wire, another 
straights it, a third cuts it, a fourth points it, 
a fifth grinds it at the top for receiving the 
head ...’ can be reinterpreted as a blueprint of 
generic activities that when mastered can be 
reapplied into contiguous technological or 
market sectors, thus generating waves of 
innovations. In a single stroke, Young trans-
formed the closed world of economics, in 
which effects would strictly follow from 
premises given boundary conditions, into the 
open universe of complexity and innovation. 
In fact, once one makes innovation depend-
ent on a process of unfolding specialization 
based on discovery of serendipitous applica-
bility of existing techniques into new sectors, 
one creates an increasing self-expanding 
returns loop. The larger the available toolkit 
of specialized activities, the larger the prob-
ability of finding further applications. This 
generates income and enlarges the portfolio 
of activities, therefore restarting the loop. 
The important effect of specialization is not 
increased efficiency but the fact that speciali-
zation leads to ‘radiation’ of technologies 
and skills into new sectors, thereby driving 
innovation2 (Jacobs, 2000).

Finally Romer’s new growth theory (1994) 
makes the point that the segment of econom-
ics that deals with the fourth factor of pro-
duction – knowledge – is characterized by 
abundance and non-rivalry: knowledge is 
inherently exposed to increasing returns 
dynamics. This point is critical for the 
understanding of the inequality of knowledge 
distribution and its tendency towards spatial 
concentration (Storper, 1997).

Schumpeter

Schumpeter opens a new trajectory in the study 
of social/economic systems and anticipates 

many of the themes that decades later would 
become accepted. To understand the revolu-
tionary contributions of Schumpeter’s think-
ing, one has to realize that economics has 
struggled with innovation, increasing returns 
and novelty because of deeply engrained 
assumptions:

The typical economic model implicitly assumes that 
the set of goods in an economy never changes. ... 
[An] important stumbling block has been the deep 
philosophical resistance that humans feel toward 
the unavoidable local consequence of assuming 
that genuinely new things can happen at every 
juncture: the world as we know it is the result of a 
long string of chance outcomes. (Romer, 1994: 5)

By putting at the centre of his analysis the 
disruptive role of the entrepreneur, 
Schumpeter proposes a vision of capitalism 
which anticipates a Prigoginian far-from-
equilibrium concept (Nicolis and Prigogine, 
1989). In the Instability of Capitalism (1928), 
Schumpeter rejects the idea of equilibrium 
and suggests that a capitalist society can only 
survive in a disequilibrium state as it depends 
on successive waves of technological innova-
tions to renew the economy and its socio-
logical structures. Capitalism is intrinsically 
unstable and is a dissipative system. 
Schumpeter’s deep understanding of history 
brings him to formulate a view of economic 
change based on the discontinuities triggered 
by radical innovations.

Evidently, we must cease to think of it as by nature 
smooth and harmonious in the sense that rough 
passage and disharmonies present phenomena 
foreign to its mechanism and require special expla-
nations by facts not embodied in its pure model. 
On the contrary, we must recognize that evolution 
is lopsided, discontinuous, disharmonious by 
nature – that the disharmony is inherent in the 
very modus operandi of the factors of progress. … 
the history of capitalism is studded with violent 
bursts and catastrophes which do not accord well 
with the alternative hypothesis we herewith dis-
card, and the reader may well find that we have 
taken un-necessary trouble to come to the conclu-
sion that evolution is a disturbance of existing 
structures and more like a series of explosions than 
a gentle, though incessant, transformation. 
(Schumpeter, 1939: 102)
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By doing so Schumpeter introduces 
evolution (Foster, 2000) into economics and 
anticipates a punctuational view of economic 
change (Awan, 1991; Gersick, 1991).

The issue of novelty raises problems. 
Schumpeter understands that circular flow 
mechanisms are the direct descendent of 
conservation principles in classical physics 
and stand in the way of a correct under-
standing of entrepreneurship. The economy 
co-constructs its own structures. For 
instance, the entrepreneur that faces fixed 
costs to develop new technologies and 
launch new industries before revenues mate-
rialize can use the expectation of future 
revenues to access credit. This is a powerful 
increasing returns mechanism (O’Sullivan, 
2005). Credit creation catalysis entrepre-
neurship that then generates the resources 
that feed credit. The economy builds itself 
out of itself.

The inherent instability of capitalism, 
constantly kept at the ‘edge of chaos’ by the 
endogenous forces of innovation and 
entrepreneurship lead Schumpeter to 
formulate his celebrated idea of Creative 
Destruction:

The fundamental impulse that sets and keeps the 
capitalist engine in motion comes from the new 
consumers, goods, the new methods of produc-
tion or transportation, the new markets, the new 
forms of industrial organization that capitalist 
enterprise creates. ... [T]he opening up of new 
markets, ..., and the organizational development 
from the craft shop and factory ... illustrates the 
same process of industrial mutation ... that inces-
santly revolutionizes the economic structure from 
within, incessantly destroying the old one, inces-
santly creating a new one. This process of Creative 
Destruction is the essential fact about capitalism. 
It is what capitalism consists in. (Schumpeter, 
1950: 83)

Schumpeter introduces and explores 
several issues, which would be recognized as 
important only after his death. These include: 
the description of the capitalistic process as 
inherently unstable and far-from-equilibrium; 
the emphasis on the discontinuities intro-
duced by technological change that redesign 

the rules of the game of economy and 
society; the interpretation of the role of 
change as due to multi-level causes that 
embrace the micromotives of the agents and 
the macrobehavior of systems (Schelling, 
1978); the pluralistic and antireductionistic 
approach to multidisciplinary research draw-
ing on sociology, history, philosophy and 
political sciences in addition to economics; 
the recognition of the power of evolutionary 
interpretations for understanding historical 
change processes;3 the emphasis on extreme 
events as generative forces that create new 
structure via creative destruction. All of these 
struggled with the mathematical formalism 
then and now dominant in economics. 
Towards the end of his life Schumpeter gave 
up on the idea of economics as an exact sci-
ence and on the role of mathematics as the 
only language of economics (Warsh, 2006). 
As Douglas North (1994) puts it: ‘the price 
you pay for precision is inability to deal with 
real-world questions’.

The expanding world of technology: 
Arthur’s scheme

Brian Arthur is one of the most well known 
complexity thinkers and a pioneer in the 
study of increasing returns in the evolution of 
economies and technologies (1988, 1990). In 
The Nature of Technology (2009), Arthur 
proposes an evolutionary framework of tech-
nological development, based on three fea-
tures: first, technologies form tree-like 
structures in which the combination and dis-
tribution of parts, that are other technologies, 
builds up the architecture of the purposive 
system we call a technology. In other words, 
technologies form nested recursive systems. 
Second, most new technologies show a recom-
binant nature. New technologies emerge by 
assembling already existing technologies in 
novel ways. Third, all technologies result 
from the exploitation of natural phenomena. 
Phenomena are the effects of laws of nature 
that regulate the way in which energy or 
information is exchanged or transformed. 
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In Arthur’s view, these three properties of 
technological systems: recursiveness, recom-
bination and phenomena-based, form an 
autopoietic, self-making system. Technologies 
are conceptualized as systems to transform 
technologies into even more complex tech-
nologies. The aforementioned loop is rein-
forced by the fact that technologies enable 
the discovery of further phenomena that are 
added to the stock of known phenomena and 
used to create/invent new technologies. This 
approach accounts for the virtuous conversa-
tion between science (discovery of new phe-
nomena) and engineering (the utilization of 
phenomena) that has become common prac-
tice since the industrial revolution (Murmann, 
2003; Mokyr, 2004).

There is a nice circle of causality here. We can say 
that novel phenomena provide new technologies 
that uncover novel phenomena; or that novel tech-
nologies uncover new phenomena that lead to 
further technologies. Either way, the collectives of 
technology and of known phenomena advance in 
tandem. (p. 66)

The relationship between the economic sys-
tem and the technological system is more than 
co-evolutionary. It is co-constructive. New 
economic domains emerge around new tech-
nological domains with economic demand 
playing a selective role on the expansion of 
the technological sphere.

The dynamics of co-construction 
of the technosphere

How does the technosphere co-construct 
itself? Stuart Kauffman (2000) suggests that 
constraints play a generative role in the 
expansion of the technosphere. Kauffman 
notes that the generation of any entity, from 
information to artefacts, involves a 
constrained release of energy, work.

Constrained means that some boundary 
conditions have to be in place to direct the 
transformation of energy into work. Following 
Juarrero (1999), we note that a pendulum con-
sists of a mass tied to a string anchored to a 

fixed point. The resulting motion (oscillation) 
is a constrained free fall that ensues from the 
reduction of degrees of freedom. The whole 
(mass + string) delivers its energy in an 
orderly periodical motion (new phenomenon) 
that can be used as an oscillator to measure 
time and to build watches. Constraints enable 
the creation of more complex entities via the 
regulation of the delivery of energy. However, 
the question that Kauffman asks is where do 
constraints come from? It takes work to ‘fab-
ricate’ the constraints that allow the conver-
sion of energy into work. This suggests that 
we can reinterpret technological innovation 
as the generation of new constraints (i.e. 
technologies) that makes possible more 
sophisticated conversions of energy into 
work. But then, once new constraints are in 
place, more work can be extracted from the 
same amount of energy and the additional 
energy can be used to generate more con-
straints. The interplay between work and 
constraints reveals something deeper about 
the emergence of technological complexity. 
Echoing Prigogine, Kauffman notes that 
constraints work by utilizing undiscovered 
and unexploited far-from-equilibrium situa-
tions, or, in other words, energy gradients. 
In the field of energy generation, hydro-
electric, wind and tidal energy are obvious 
examples.

Nonequilibrium processes and structures of increas-
ing diversity and complexity arise that constitute 
sources of energy and that measure, detect, 
and capture those sources of energy, build new 
structures that constitute constraints on the 
release of energy, and hence drive nonspontane-
ous processes to create more such diversifying and 
novel processes, structures, and energy sources. 
(2000: 98)

A falling mass is a spontaneous process. It 
liberates energy. The pendulum periodical 
trajectory is non-spontaneous insofar as it 
requires the presence of a constraint to arise. 
The non-equilibrium situation that is being 
exploited is still the same: a falling mass. But 
the constraint allows the discovery of a dif-
ferent form of energy delivery, this time 
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ordered: periodical motion. Moreover, the 
invention of the pendulum enables the dis-
covery and utilization of new more sophisti-
cated sources of non-equilibrium (effects 
that depend on the harnessing of periodical 
motions), the invention of mechanical clocks, 
the escapement mechanism, the resolution of 
the problem of Longitude (Sobel, 1995). A 
new technology (i.e. the set of constraints 
that regulate controlled delivery of energy) is 
first, a device that builds on the discovery of 
new sources of non-equilibrium situations 
and enables the extraction of energy from it 
and, second, a new source of non-equilibrium 
in itself, that can therefore be utilized to 
build more sophisticated constraints. Con-
straints constitute the scaffolding of the 
technosphere into the adjacent unknown. 
By revealing new sources of disequilibrium, 
constraints effectively turn the adjacent 
possible into the new external layer of the 
technosphere.

Explaining the dynamics of constraints is 
crucial to understanding one of the most 
important issues in innovation studies: the 
clustering of innovation. Jane Jacobs pro-
vides a useful analogy:

Sunlight falling on a desert barren of life heats 
sands and rocks, but when night falls, even that 
quantity of temporarily retained energy radiates 
outward. In this case, the passage of energy is 
swift, simple, and vanishing, leaving no evidence 
of the passage. It must have been like this when 
sunlight fell on earth’s primordial rocks and empty 
seas before life began. ... Contrast that with 
energy flow through a well-developed forest eco-
system. In the forest, energy flow is anything but 
swift and simple, because of the diverse and 
roundabout ways that the system’s web of teem-
ing, interdependent organisms uses energy. Once 
sunlight is captured in the conduit, it’s not only 
converted but repeatedly reconverted, combined 
and recombined, cycled and recycled, as energy/
matter is passed around from organism to organism. 
(Jacobs, 2000: 46)

In this example, the tropical forest 
ecosystem constitutes a dense network of 
constraints which enables the use (or recy-
cling) of the same amount of energy in 
multiple tasks. For example, a task like 

growing a leaf generates a gradient of 
energy in terms of micro differences of tem-
perature, humidity and mass that parasites 
can exploit to build a new micro-environ-
ment, that then can be used by specialized 
bacteria, etc. Energy is not wasted, but recy-
cled over and over again. The analogy can 
be used to illustrate the difference between 
zones endowed with little technological 
complexity (the desert) and others (the 
tropical forest) where a rich texture of entre-
preneurship and technological constraints 
allows the conversion of energy (in the form 
of intellectual creativity and funding) into 
technologies. Even if Jane Jacobs never 
used the term ‘constraint’, it was implicit in 
her idea of ‘one work lead[ing] to another’ 
(1970, 1985). The generative power of 
diversity that Jacobs claims is the source of 
clustering of innovation is based on the 
positive feedback loop between the density 
of constraints (linked to diversity) and the 
generation of innovation. This results in  
autocatalytic loops that generates the clus-
tering of innovation. This idea is her funda-
mental contribution to innovation and 
entrepreneurship literature.

THE EMERGENCE OF THE 
TECHNOSPHERE AND DISTRIBUTED 
NETWORKS

Powell (2005) states that, ‘Research on the 
relationship between networks and innovation 
is a relatively recent area of inquiry’. 
Complexity contributes in several ways to the 
understanding of networks. First, it shows that 
the structure of networks is not random but 
governed by general dynamical theories, 
namely scale-free networks and small worlds 
(Newman et al., 2006). Second, it establishes a 
link between network structure and innovation 
thus opening up the field of organizational 
design for innovation. Third, complexity 
theory helps make sense of the emergence of 
distributed and self-organizing networks 
for innovation and shows that these structure 
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conjugate internal flexibility with high diver-
sity of resources and capabilities.

Scale-free networks 
and small worlds

The legendary Hungarian mathematician 
Paul Erdos, in introducing random network 
theory, assumed that the structure of net-
works is fundamentally random: links are 
randomly distributed across nodes and form 
a bell-shaped distribution. Most nodes have a 
typical number of links with the frequency of 
remaining nodes rapidly decreasing on either 
side of the maximum. Watts and Strogatz 
(1998) showed, instead, that real networks 
follow the small world phenomenon, whereby 
society can be described as con sisting of 
weakly connected clusters, each having 
highly interconnected members within. This 
structure allows cohesiveness (high cluster-
ing coefficient) and high speed/spread of 
information (low path length) across the 
whole network. Only two years later, study-
ing the World Wide Web, Barabási and 
colleagues (2002) found that the structure of 
the Web shows a power law distribution, 
where most nodes have only a few links and 
a tiny minority – the hubs – are dispropor-
tionately very highly connected. The system 
is scale-free, no node can be taken to repre-
sent the scale of the system. Defined as a 
scale-free network, the distribution shows 
(nearly) infinite variance and (nearly) infi-
nite or unstable mean. It turns out that most 
real life small world networks, both in the 
natural and social worlds, are scale-free 
(Ball, 2004) and fractal (Song et al., 2005). 
Scale-free networks appear in fields as dispa-
rate as epidemiology, metabolism of cells, 
Internet, and networks of sexual contacts 
(Liljeros, 2001).

Small world and scale-free network theo-
ries, along with other contributions – among 
the most important we cite Granovetter’s weak 
and strong ties (1973, 1983) and Burt’s struc-
tural holes theory (1992) – have opened up a 

new area of research and elaborated new 
methodological tools. The impact of these 
discoveries has been significant. First, the 
non-random structure of social networks 
constrains and regulates the way information 
and knowledge are exchanged. As innovation 
depends on the nature, diversity, density and 
amount of knowledge/information that 
resides, diffuses and is created within a net-
work, it follows that by regulating informa-
tion/knowledge flows, the structure of social 
networks affects innovation. The discovery 
of universal patterns governing the structure 
of networks helps to design networks that are 
more conducive to innovation (Baum et al., 
2003; Verspagen and Duysters, 2003; Uzzi 
and Spiro, 2005; Schilling and Phelps, 2007). 
One could speculate that designing may aim 
at balancing incremental and radical innova-
tion. Networks dominated by strong ties, 
through which relatively homogenous, par-
tially redundant and often tacit information/
knowledge is exchanged (Ahuja, 2000) lead 
predominantly to insular networks and incre-
mental innovation. The injection of even a 
small percentage of weak ties lead to the 
transfer of non-redundant and highly diverse 
knowledge (Hansen, 1999), which may trig-
ger a process of recombinant innovation with 
a radical nature (Hargadon, 2003). By trans-
forming the technical and social weak ties 
that connect previously disjointed domains 
of knowledge into interfaces of the new 
knowledge system, a radical innovation 
results in the emergence of a new small 
world (Hargadon, 2003). The new interfaces 
of the new small world architecture define 
the interaction and nesting rules of the new 
system, and consequently constrain and 
define the interactions among different tech-
nical domains and related social and market 
applications (Arthur, 2009).

A new playing field for innovation

the old industrial economy was driven by econo-
mies of scale; the new information economy is 
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driven by the economics of networks. (Shapiro and 
Varian, 1999: 173)

Complexity theory (Kauffman, 1995, 
2000, 2008; Arthur, 2009) conceptualizes 
innovation as an emergent property of dis-
tributed networks that develop new technolo-
gies by means of two dominant modes:

recombinant innovation • : recombination of 
existing technologies into new configurations;
transfer innovation or preadaptation • : 
discovery of new applications for existing 
technologies.

A large part of the literature stresses the 
recombinant mechanism in economics 
(Romer, 1994; Weitzman, 1998; Arthur, 
2009), in history of technology (Mokyr, 
2004), in management studies (Levinthal, 
1998; Hargadon, 2003), in evolutionary 
biology (Kauffman, 1995; Carroll, 2006), in 
ecology (Ulanowicz, 2009). Recombinant 
innovation is defined by Nelson and Winter 
(1982: 130) as:

innovation in the economic system – and indeed 
the creation of any sort of novelty in art, science, 
or practical life – consists to substantial extent of a 
recombination of conceptual and physical materi-
als that were previously in existence.

Transfer innovation instead is based on the 
fact that technologies designed for a set of 
applications within well-defined markets are 
often preadapted for applications in unrelated 
markets (Kauffman, 2000; Dew et al., 2004; 
Cattani, 2005). It follows that the space of 
applications of any technology is open and 
non-predictable. Indeed, technologies purpo-
sively designed for a market can serendipi-
tously bifurcate, sometimes giving rise to 
completely new markets. The non-pre-stata-
bility of the technology application space 
(Kauffman, 2008) transforms the closed and 
linear space of traditional innovation 
management – where new forms emerge in 
response to functional needs – into an open 
universe (Ulanowitz, 2009) characterized by 
unending technological surprises.

Both mechanisms are characterized by 
powerful positive feedback loops between the 
diversity of artifacts (with their underlying 
knowledge) and the diversity of application 
contexts to which they are exposed. Beyond a 
critical threshold of diversity (Kauffman, 
1995), the technosphere expands with the 
speed of combinatorial dynamics (Weitzman, 
1998), which is faster than exponential. By 
increasing the number of available modules 
for recombination/transfer and by partially 
decoupling the module from the function per-
formed within the architecture, the evolution 
of systems towards modular architectures 
reinforces the feedback loops mentioned 
above. Moreover, the advent of the ‘network 
society’ (Castells, 2000) based on the perva-
sive, network-enabling information and com-
munication technologies (ICT), has reinforced 
the power of the positive feedback loops asso-
ciated with recombinant and transfer innova-
tion mechanisms. In particular, the emergence 
of powerful modular technological platforms 
(such as digital computing and software) have 
penetrated all sectors of technologies and cre-
ated a common platform for the combinato-
rial magic of recombinant and transfer 
innovation to reinforce the hybridization of 
the technosphere (Arthur, 2009).

These mechanisms have created a new play-
ing field for companies (Chesbrough 2003). 
Innovation-based competition requires access 
to such a variety of knowledge assets that 
almost no company can individually possess 
(Von Hippel, 1988). Hence the need to use 
networks to access external resources 
(Powell et al., 1996; Brown and Duguid, 
2000; Pyka and Saviotti, 2002; Laursen and 
Salter, 2006). Moreover, citation and patent 
research (Plerou et al., 1999; Newman, 2001; 
Bettencourt et al., 2007; Hung and Wang, 
2010; Huang et al., 2010; see Fleming et al. 
(2007) for a dissenting voice) leads to the 
intriguing result that the architecture of 
technical knowledge itself is scale-free and 
fractal. Hence the emergence of organiza-
tional forms for innovation characterized by 
scale-free, small world and fractal structures 
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can be interpreted as an Ashbian (Ashby, 
1956) matching response to the increasing 
complexity of the technical world. This coev-
olution (i.e. between organizational structure 
and the knowledge underlying products and 
services – Christensen, 1997) can be seen in 
the biotechnology sector where the growing 
reliance on networks, acquisitions and alli-
ances reflects the shift in the underlying 
knowledge structure the industry needs to 
gain. Likewise, the structure of distributed 
organizational forms (ecosystems) evolves to 
mimic the structure of interdependencies of 
the technosphere (Pyka and Saviotti, 2002).

The organizational response has been the 
development of decentralized, flexible and 
hybrid forms that can aggregate a diversity 
of resources and competences. In this new 
environment closed innovation models based 
on monolithic/proprietary networks are becom-
ing increasingly obsolete. Open and distributed 
approaches to innovation in which self-or-
ganization, scale-free networks (Barabási, 
2002) and ‘wisdom of crowds’ (Surowiecki, 
2004; Page, 2008) mechanisms complement 
traditional hierarchies are slowly emerging.

In the quest to access and harness more 
diversity (Page, 2008) organizations have 
been trying to introduce self-organizing prin-
ciples that let innovations emerge from the 
base of the pyramid (Gundling, 2000; Vise, 
2008), and/or, break down organizational 
boundaries in order to hybridize the organi-
zation by co-opting external networks (Von 
Hippel, 1998, 2005). Open Source (OS) 
communities and in particular Linux is a 
paradigmatic case of the latter. Raymond 
(1999: 52) defines Linux as:

a self organizing ecology where a collection of 
selfish and autonomous agents maximise their 
own utility. In so doing they establish a web of 
feedback that generates an order more elaborate 
and efficient than any amount of central planning 
could achieve.

All these principles are subjected to power-
ful positive feedback dynamics and are inher-
ently scale-free, that is, similar organizing 

and causal mechanisms act at multiple levels 
of aggregation. The rise of the innovation 
networks that links companies, inventors, 
self-organizing communities, inventors and 
markets generates a giant technological eco-
system that thrives on combinatorial dynam-
ics, such as the one generated by recombinant 
and transfer innovation mechanisms. The 
emergence of a globally interdependent tech-
nosphere demands innovation strategies to 
survive and succeed in this new interdepend-
ent space. The transformation of Procter & 
Gamble’s innovation strategy from Research 
and Development to Connect and Develop 
(Huston and Sakkab, 2006) might anticipate 
a broader and deeper strategic change.

CONCLUSIONS

Innovation keeps the economy in a far-from-
equilibrium state by renewing the set of 
products/services and altering/creating small 
worlds networks around emergent technolo-
gies. Following the Long Tail (2006) by 
Anderson, if one were to rank the products 
present at any one moment in the economy in 
terms of their impact or diffusion, most inno-
vative ones would appear as minor (apparently 
inconsequential) events in the distribution. 
From there some innovations, by recombin-
ing with existing technologies, radiating into 
adjacent niches and transferring to new appli-
cations in unrelated markets, will grow 
explosively giving rise to new companies and 
markets. The overall result is to build new 
layers of technological complexity. These 
layers nest within existing structures and give 
rise to a collectively interdependent system 
poised at the edge of chaos. Taken in its 
entirety, the world of technology behaves as a 
giant interconnected organism that shares 
with the biological world fundamental evolu-
tionary rules that govern origin, expansion, 
meta bolism and decay of biological and 
tech no logi cal ecosystems (Jacobs, 2000; 
Kauffman, 2000; Mokyr, 2004; Vermeij, 2004; 
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Arthur, 2009). These highlight the existence 
of some universal properties of the techno-
sphere.

The technosphere is intrinsically unstable 
and can only exist in a far-from-equilibrium 
state. It develops variety and diversity at a 
rate compatible with the maintenance of some 
kind of internal coherence. Transfor mations 
seem to cluster in avalanches of change that 
follow a Paretian distribution and indicate 
a state of self-organized criticality (whereby 
rare events of disproportionate intensity punc-
tuate frequent events of moderate and low 
intensity).

The growth of the technosphere seems to 
obey allometric relationships4 described by 
power laws – each system with its own char-
acteristic exponent. The technosphere escape 
complexity catastrophe that may follow the 
expansion of diversity by evolving nearly-
decomposable modular architectures.

In conclusion, the world of technology is 
an integrated whole full of self-organizing 
dynamics and emergent properties. Com plex-
ity theory provides the language and an over-
arching framework to make sense of the 
organic development of the technosphere.

NOTES

1 Paul David’s account of the QWERTY (1985) 
sub-optimal option has in fact been fiercely attacked 
by the defenders of the standard view of the ‘survival 
of the fittest’ hypothesis.

2 On the other side of the account are various 
factors which reinforce the influences which make 
for increasing returns. The discovery of new natural 
resources and of new uses for them and the growth 
of scientific knowledge are probably the most potent 
of such factors’ (Young, 1928: 535).

‘... Notable as has been the increase in the 
complexity of the apparatus of living, as shown by the 
increase in the variety of goods offered in consumers’ 
markets, the increase in the diversification of interme-
diate products and of industries manufacturing spe-
cial products or groups of products has gone even 
further. The successors of the early printers, it has 
often been observed, are not only the printers of 
to-day, with their own specialised establishments, but 
also the producers of wood pulp, of various kinds of 

paper, of inks and their different ingredients, of type-
metal and of type, the group of industries concerned 
with the technical parts of the producing of illustra-
tions, and the manufacturers of specialised tools and 
machines for use in printing and in these various 
auxiliary industries’. (Young, 1928: 536–537).

But Young’s call to arms is quickly buried by the 
orthodoxy. Hicks wrote that increasing returns would 
destroy perfect competition: ‘the threatened wreck-
age is that of the greater part of general equilibrium 
theory’ (Hicks, 1939: 84). Sraffa also commented 
that increasing returns dynamics represent ‘...one 
dark spot which disturbs the harmony of the whole’ 
(Sraffa, 1926: 536).

3 See Foster (2000) for a discussion of evolution-
ary theories in Schumpeter.

4 Allometric refers to a type of growth in which 
the parts of an organism grow at different rates 
determined by fixed ratios. A recent article by 
Bettencourt et al. (2007) finds an allometric relation 
between innovation and city size. I repute this 
finding extremely important as it indicates the 
presence of fundamental structural constraint in 
action. If the technosphere and biosphere follow 
similar principles, then the root of the allometry is in 
a fractal mechanism of distribution of resources 
(West et al., 1997).
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Complexity Science 

Contributions to the Field 
of Entrepreneurship

B e n y a m i n  B. L i c h t e n s t e i n 1

INTRODUCTION

The fields of entrepreneurship and complexity 
science are linked in a number of important 
ways. In particular, studies of entrepreneur-
ship and complexity science are both focused 
on innovation, novelty and emergence: entre-
preneurship scholars study the emergence 
of new organizations, while complexity sci-
ence scholars study the dynamics of emer-
gence (McKelvey, 2004; Meyer et al., 2005). 
Additionally both fields explore interactions 
and emergent phenomena at multiple levels of 
analysis, and both highlight the importance of 
nonlinear and unpredictable processes that 
generate emergent order in dynamic systems.

For these reasons entrepreneurship has one 
of the most long-standing connections to com-
plexity science as compared to other man-
agement disciplines. This connection formally 
began 20 years ago with Bygrave’s (1989) 
theorizing of entrepreneurship using chaos 

theory (also see Bygrave and Hofer, 1991). 
Since then complexity science has provided 
useful approaches for researching emerging 
ventures (Stevenson and Harmeling, 1990; 
McKelvey, 2004), explaining start-up dynam-
ics (Cheng and Van de Ven, 1996; Lichtenstein 
et al., 2006), exploring the creation of new 
markets and new regional economic clusters 
(Chiles et al., 2004; Chiles et al., 2010), and 
understanding the dynamics of technology 
innovation (Saviotti and Mani, 1998; Fleming 
and Sorenson, 2001).

These applications and dozens of others set 
the stage for the present chapter which 
addresses the following questions: What has 
complexity science contributed to our under-
standing of the emergence process at the heart 
of entrepreneurship? What more can entre-
preneurship scholars learn from the sciences 
of complexity, i.e. how can complexity sci-
ence continue to enhance our understanding 
of entrepreneurial action?
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COMPLEXITY SCIENCE APPLIED TO 
THE STUDY OF ENTREPRENEURSHIP

The phenomenon of 
entrepreneurship

The task of defining entrepreneurship reminds 
me of a joke: ‘What happens when you ask 
four Jews a question? Answer: You get at least 
five opinions.’ Entrepreneurship involves such 
a range of activities and levels of analysis that 
no single definition is definitive. At one level 
entrepreneurial activity is almost always initi-
ated by individuals: enterprising (teams of) 
actors who pursue the creation of an initiative 
through a dynamic process of organizing and 
enactment (Katz and Gartner, 1988; Gartner 
et al., 1992). Thus, some streams of research 
have explored why and how individuals 
choose to enact entrepreneurial organizing, 
focusing on the characteristics and propensi-
ties that might distinguish enterprising indi-
viduals from those who are less 
entrepreneurial (Brockhaus, 1980; Shaver 
and Scott, 1991; Baron, 1998, 2008). Scholars 
have also explored actor-based organizing 
processes including the role of intention 
(Bird, 1988, 1992) and action (Aldrich and 
Kenworthy, 1999; Baron and Markman, 2003) 
in the creation of new ventures.

Building on a focus of individual action is 
a rapidly expanding literature on entrepre-
neurial opportunities – untapped economic 
potential that becomes the seed and the moti-
vation of new ventures (Ardichvili et al., 
2003; McMullan et al., 2007). Opportunities 
– their creation, formation, discovery and 
exploitation – represent an intermediate level 
of entrepreneuring: their presence drives new 
venture creation, but their existence is a co-
creative process involving the entrepreneur(s), 
the (far-from-equilibrium) market, and the 
resources necessary to capitalize on them 
(Sarasvathy, 2001; Sarasson et al., 2006). 
Some attempts have been made to integrate 
multiple elements into our understanding of 
opportunity recognition and creation into a 
single framework of entrepreneurial action 

(e.g. Bruyat and Julien, 2001; Chiles et al., 
2007).

Third, a longstanding focus of entrepre-
neurial scholarship has been on the social, 
economic, and institutional environments in 
which entrepreneuring occurs. Starting with 
Schumpeter’s seminal view on the creative 
destruction of entrepreneurs (Schumpeter, 
1934), scholars have explored the entrepre-
neurial underpinnings of economic develop-
ment (Leibenstein, 1967; Tan, 2007); 
entrepreneurial action that creates new organ-
izational fields (Chiles et al., 2004; Maguire 
et al., 2004) and new markets (Sarasvathy 
and Dew, 2005); and institutional enablers 
and constraints to regional entrepreneurial 
development (Van de Ven, 1993; Spilling, 
1996; Sorenson and Audia, 2000).

At the heart of entrepreneurship research 
is emergence – whether the creation of a ven-
ture or other organized entity through a 
dynamic organizing process (Gartner, 1993), 
or the coming-into-being of new organiza-
tional means (e.g. resources) that in turn lead 
to the creation of new entities, e.g. technolo-
gies, firms, networks, clusters and markets, 
industries, institutions. Indeed, one important 
focus of entrepreneurship research is the way 
that new ventures emerge, transform, and ‘re-
emerge’ (Gartner and Brush, 2007), and the 
entrepreneuring process has long been an 
important theme in the field (Bygrave, 1989; 
Bygrave and Hofer, 1991; Steyaert, 2007; 
Rindova et al., 2009). The central role of 
emergence is evident in studies of entrepre-
neurial organizing (Gartner, 1985; Brush 
et al., 2008), entrepreneurial networks (Singh, 
1998; Obstfeld, 2005), opportunity recogni-
tion and creation (Hills et al., 1999; Chiasson 
and Saunders, 2005), institutional entrepre-
neurship (Garud et al., 2002; Lawrence et al., 
2002), and in the core dynamics of organiza-
tional creation (Gartner, 1993; McKelvey, 
2004; Lichtenstein et al., 2007). From this 
perspective, it makes sense that complexity 
science would provide useful models for 
explaining entrepreneurial emergence. To 
explore this connection, I begin with a brief 
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description of emergence and place it within 
the context of complexity science.

COMPLEXITY SCIENCE 
AND ENTREPRENEURSHIP

Emergence

For over 100 years the question of ‘what is 
emergence’ has intrigued philosophers 
(Lewes, 1877; Popper, 1926; Stephen, 1992); 
evolutionists (Morgan, 1923; Kauffman, 
1993); complexity scientists (Nicholis and 
Prigogine, 1989; Crutchfield, 1994a; Holland, 
1994, 1998); and a wide range of manage-
ment scholars (Weick, 1977; Goldstein, 1986, 
2000; Malnight, 2001). In current social sci-
ence, emergence is often defined in terms of 
‘qualitative novelty’ – the coming into being 
of a qualitatively new (level of) order that is 
unexpected or novel in some way (Mihata, 
1997). This notion is central to Schumpeter’s 
original view of entrepreneurship, and is 
often used as a defining characteristic of 
innovation as well (e.g. Fleming and 
Sorenson, 2001).

For management more generally, and ent-
repreneurship in particular, this definition is 
helpfully expanded by Mihata (1997: 31) in 
his summary of emergence in sociology:

The concept of emergence is most often used 
today to refer to the process by which patterns or 
global-level structures arise from interactive local-
level processes. This ‘structure’ or ‘pattern’ cannot 
be understood or predicted from the behavior or 
properties of the component units alone. … In the 
doctrine of emergence, the combination of ele-
ments with one another brings with it something 
that was not there before.

Mihata’s definition expands the scope of 
emergence, by including (a) the creation of a 
‘new level’ of social reality, e.g. the emer-
gence of a team, the emergence of a new 
venture, as well as (b) ‘patterns or global-
level structures’ that are created in dynamic 
systems. These patterns may occur within a 
specific level of analysis rather than leading 

to the creation of a new level. For example in 
the studies of emergence based on Kauffman’s 
NK fitness landscapes model (Gavetti and 
Levinthal, 2000; Ganco and Agarwal, 2009), 
what emerges is a network structure of inter-
actions within the system that is correlated 
with system-level outcomes, including the 
adaptivity of the system overall.

This expanded notion of emergence is 
reflected in Goldstein’s (1999: 49) parsimo-
nious definition, which is most useful for 
entrepreneurship: ‘Emergence … refers to 
the arising of novel and coherent structures, 
patterns, and properties in … complex sys-
tems’. Drawing on the flexibility of this defi-
nition, Lichtenstein et al. (2006: 167) define 
an ‘emergence event’ in a nascent venture as 
a system-wide shift that transforms the ven-
ture but doesn’t result in a new level of 
analysis: ‘An emergence event [i]s a coordi-
nated and punctuated shift in multiple modes 
of entrepreneurial organizing at virtually the 
same time, which generates a qualitatively 
different state – a new identity – within a 
nascent venture’. This new state is not a new 
level of analysis, yet what emerges are new 
properties and characteristics that signifi-
cantly affect subsequent phases of nascent 
organizing.

The complexity sciences 
of emergence

In order to appreciate how complexity science 
has been used to explain and understand ent-
repreneurship, it is important to understand 
complexity science itself. Like many others, 
my perspective is that complexity science is 
actually a series of sciences, each reflecting a 
different focal method or model or approach 
for exploring emergence in some way (Cohen, 
1999; McKelvey, 2001). Drawing on others’ 
maps of the field (e.g. Goldstein, 1999, 2000; 
McKelvey, 2004; Maguire et al., 2006) and 
my own analysis of complexity science in 
leadership (Lichtenstein, 2007), Table 27.1 
summarizes 15 distinct foci of complexity 
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sciences that have been used in management 
and entrepreneurship research, and how each 
of these has helped to explain emergence.

As Table 27.1 shows, the range of 
complexity science approaches applied in 
management and entrepreneurship research 

Table 27.1 Summary of complexity science approaches for understanding emergence

Complexity 
science approach

Insights into entrepreneurial processes Complexity type; contribution 
to understanding emergence 

References from 
management literature

Deterministic 
chaos theory

Entrepreneurial systems are highly sensitive 
to initial conditions. Mathematical methods 
for measuring time series data reveal a 
range of order (i.e. types of attractors) 
in apparently random behavior. Shifts in 
attractors implies entrepreneurial learning 
and/or transformation. 

Complexity Type II
Order emergence can be 
measured through rigorous 
time series analysis.

Thietart and Forgues, 
1995; Cheng and Van 
de Ven, 1996; Dooley 
and Van de Ven, 1999

Self-organized 
criticality

Certain dynamic systems evolve to a state 
in which all changes are related through 
a single equation, known as a power-law. 
Specific strategies and organizational 
processes can generate dynamic structuring 
that support innovation and creativity in 
organizations. 

Complexity Type II
Underlying causes of 
emergent structure can be 
found through repeated 
patterns across scales. 

Morel and 
Ramanujam, 1999; 
Cederman, 2003

Fractals Natural systems exhibit self-similarity 
across scales, whose dimensionality can be 
measured using a mathematical mapping 
technique. Entrepreneurial organizations 
may exhibit self-similar behavior and/or 
values across levels.

Complexity Type II
Emergent order may be 
repeated across adjacent 
levels in certain systems. 

Zimmerman and 
Hurst, 1993

Power laws Entrepreneurial and emergence events are 
best captured through a Pareto distribution, 
not a normal distribution. That is, in 
contrast to traditional strategy, the most 
significant entrepreneurial events are found 
at the extremes – in the ‘long tails’ of the 
distribution, far from the mean. 

Complexity Type II
Emergence occurs all the time 
in high-frequency, low-impact 
events. A small number of rare 
events trigger whole-system 
transformation.

Carneiro, 1970;
Stanley et al., 
1996; Andriani and 
McKelvey, 2007

Increasing 
returns

In ‘winner-take-all’ situations, small 
initial differences in one entrepreneurial 
entity (firm, product) can generate a 
self-reinforcing cycle that produces non-
proportional increases in overall returns. 

Complexity Type II
Quite different emergent 
outcomes may be linked to 
small initial differences and 
path dependence. 

Arthur, 1990, 1994;
Chiles and Meyer, 
2001

Catastrophe 
Theory

Entrepreneurial change can be modeled 
such that incremental improvement 
across one parameter (variable) creates 
‘catastrophic’ (punctuated) changes across 
another. Re-analysis of behavioral data 
using the higher-order polynomial models 
from catastrophe theory explains up to 
400% more variance than the same data 
analyzed using linear regression models.

Complexity Types II, III
Emergence often appears 
punctuated, even though 
underlying processes are 
incremental. 

Bigelow, 1982;
Gresov et al., 1993; 
Guastello, 1995, 1998

System 
dynamics

Multi-level dynamic interactions across 
entrepreneurial systems reflect linked 
feedback loops of stocks and flows. System 
models show how and why unexpected 
behavior occurs in entrepreneurial systems, 
thus identifying ‘leverage’ points for 
emergence and sustainability.

Complexity Types II, III
Emergent (unexpected, non-
linear) outcomes in dynamic 
systems can be discovered and 
generated through rigorous 
modeling. 

Hall, 1976; Sastry, 
1997; Rudolph and 
Repenning, 2002

Continued
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Research stream Entrepreneurial insights from theory Complexity type; emergence 
contribution

Management references

Complex adaptive 
systems (CAS)

Complex entrepreneurial systems involve a 
set of actors or elements – ‘agents’ – whose 
interactions over time can yield emergent 
behavior. CAS assumes that agents follow 
a few ‘simple rules’ which yield collective 
behavior that is unpredictable even from 
a complete knowledge of every agent’s 
capabilities and the rules they follow.

Complexity Type III
Emergent outcomes are the 
result of ’self-organization’ in 
complex adaptive systems.

Dooley, 1997; 
Choi, Dooley and 
Rungtusanatham, 
2001

Genetic 
algorithms

Agents ‘in silico’ can be programmed to 
share traits, in such a way that aggregates 
of agents can form. Entrepreneurial 
emergence can be modeled as an 
evolutionary learning process in which 
qualities and skills from multiple sources 
lead to the emergence of new entities. 

Complexity Type III
Emergence involves the (re)
combination of traits over 
time.

Krugman, 1996, 
Holland, 1998; 
Axelrod and Cohen, 
2000

NK fitness 
landscapes 

Levels of adaptability within a complex 
system are dependent on
(1) the number N of nodes (agents or 
modules) in the system, and (2) the degree 
of interdependence K between the agents in 
the system. The interaction between N and 
K determine the ease of adaptability: the 
higher the interaction, the more ‘rugged’ the 
landscape, yielding more ‘optimal points’ 
of adaptation but making it harder to 
transition from one local optima to another. 

Complexity Type III
Emergent structures are inter-
dependent with the ecology in 
which they are embedded

Gavetti and Levinthal, 
2000; Fleming and 
Sorenson, 2001; 
Ganco and Agarwal, 
2009

Agent-based
simulations
Multi-Agent 
learning models 

Multiple computational algorithms, 
linked in a single model, generate more 
complex phenomena. Simulations show 
that adaptation and learning evolve 
through moves that are conditioned by 
agent qualities (e.g. knowledge) and 
local conditions (e.g. dynamism), which 
themselves change over time. 

Complexity Types III, IV
The ‘rate’ of emergence is 
increased by integrating 
(computational) approaches

Epstein and Axtell, 
1996; Carley, 1990, 
1999; Carley and 
Svoboda, 1996

Autogenesis/ 
autopoiesis

Entrepreneurial systems are self-generative 
and self-replicating, displaying emergent 
behavior. These processes originate from a 
‘deep structure’ of rules and assumptions 
which lead to visible operations. 

Complexity Type IV
Emergence is sustainable if 
its system processes are self-
generating.

Pantzar and Csanyi, 
1991; Drazin and 
Sandelands, 1992

Dissipative
structures

New types and levels of entrepreneurial 
order can emerge in disequilibrium 
situations, through a self-amplifying 
process sparked by fluctuations. Entities 
(groups, organizations) generate new order 
by dissipating large amounts of energy, 
information, and resources. 

Complexity Type IV
Emergence is a process 
that can be enacted (to 
some degree) through 
entrepreneurial leadership.

Lichtenstein, 2000; 
Chiles, Meyer 
and Hench, 2004; 
Plowman et al., 2007

Ecological 
systems

An ecological system reflects the essence of 
emergence, including high interdependence, 
nonlinearity, and self-organization. 
Entrepreneurial ecologies lead to powerful 
emergent effects

Complexity Type IV
Emergence occurs in an 
ecology of resources and 
conditions.

Buenstorf, 2000; 
Colbert, 2004; 
Swanack, Grant and 
Fath, 2008

Table 27.1 (Contd.)
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is quite broad, incorporating deterministic 
chaos theory and other mathematical 
approaches; computational modeling, e.g. 
NK landscapes and spin-glass simulations; 
and dissipative structures theory as well as 
other evolutionary frameworks. In addition, 
entrepreneurship and management scholars 
have developed purely metaphorical uses of 
complexity terminology, which provide an 
aesthetic glossary for understanding the 
nonlinear, unpredictable nature of emergence 
(e.g. Gartner, 1993) – a glossary that is not, 
however, without critique (Maguire and 
McKelvey, 1999; McKelvey, 1999a).

At the core of this critique is the issue of 
categorization and evaluation, i.e. how can 
scholars evaluate the merits of a given complex-
ity science analysis of entrepreneurial emer-
gence? To do so requires a meta-framework 
that encompasses the range of approaches 
from the complexity sciences – a framework 
that would offer a deeper understanding of 
what the sciences of complexity can do ana-
lytically, and how. Such a framework was 
initially developed by Crutchfield (1994a, b) 

who distinguished three different types of 
complexity science – discovery, modeling, and 
intrinsic complexity. In addition to those three 
types, a large proportion of entrepreneurial 
applications draw on metaphors from com-
plexity science to help elucidate some of the 
non-mechanistic, nonlinear dynamics of entre-
preneurial action. Integrating this into his 
analysis we can identify four types of com-
plexity science: (Type I) metaphorizing com-
plexity, (Type II) discovering complexity, 
(Type III) modeling complexity, and (Type 
IV) generating intrinsic complexity. These 
four types provide the framework within 
which I shall now review complexity science 
contributions to entrepreneurship and entre-
preneurial emergence.

FOUR TYPES OF COMPLEXITY 
IN ENTREPRENEURSHIP

Table 27.2  provides an ordering of complex-
ity science research in entrepreneurship, organ-
ized around these four complexity types. 

Table 27.2 Entrepreneurship research across four types of complexity

Focal level of 
analysis1

TYPE I:
Complexity metaphors

TYPE II:
Discovering complexity

TYPE III:
Modeling complexity

TYPE IV:
Generative complexity

Individual Peterson and Meckler, 2001;
Groves, Vance, Choi and 
Mendez, 2009

Minniti, 2004

Venture Bouchikhi, 1993;
Slevin and Covin, 1997;
Hench, 1999;
Fuller and Moran, 2001;
Nicholls-Nixen, 2005

Bygrave and Hofer, 
1991; Cheng and Van 
de Ven, 1996; Fuller 
and Warren, 2006;
Lichtenstein et al., 
2006; Fuller, Warren 
and Argyle, 2008

Lichtenstein et al., 
2007;
Ganco and Agarwal, 
2009;
Sommer, et al., 2009

Lichtenstein, 2000

Network Biggiero, 2001

Cluster/market Chiles and Meyer, 
2001

Chiles et al., 2004;
Chiles et al, 2010

General/theory 
development

Smilor and Fresen, 1991;
Steyaert, 2007;
Schindehutte and Morris, 2009

Bygrave, 1989;
Stevenson and 
Harmeling, 1990

Chiles et al., 2007;
McKelvey, 2004

1 Individual works have been classified according to the most prominent focal level of analysis; most of these studies 
provide cross-level or multi-level analyses.
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Each of the following four sections will com-
mence with a brief description of what each 
type represents and the complexity streams 
that are represented there.

Type I – Metaphorizing complexity

Rather than being based on a particular com-
plexity science or a method per se, meta-
phorizing complexity aims for a shift in 
perspective, a change in our cognitive maps, 
to produce a more dynamic understanding of 
some entity or phenomenon as a complex 
system. Similar to Gartner’s (1993) glossary 
of ‘emergence’, this shift of perspective is 
expressed through specific qualities of 
dynamic systems that can be applied (meta-
phorically in some cases) to entrepreneurial 
ventures. Familiar concepts that show up in 
Type I Complexity include self-organization, 
far-from-equilibrium, nonlinear dynamics, 
sensitive dependence on initial conditions, 
and edge of chaos. Although each of these 
concepts has specific scientific meaning 
within complexity science, their use outside 
of that scientific context becomes metaphori-
cal when the concepts are neither operation-
alized or linked to the same mechanisms or 
underlying drivers that give them their origi-
nal rigorous scientific meaning.

In other words, Type 1– Complexity meta-
phors are not metaphors within their theo-
retical domain. For example, the unpredictable 
and cascading effects of ‘nonlinear dynamics’ 
are well understood through the complexity 
sciences of system dynamics (e.g. Hall, 
1976), cybernetics (Marayuma, 1963), and 
through certain aspects of deterministic chaos 
theory (Bygrave, 1989); the latter science 
also grounds the technical construct of ‘sen-
sitive dependence on initial conditions’ 
(Cheng and Van de Ven, 1996). However – 
and this is an important point – once these 
constructs are taken out of their broader 
theory, used in isolation from their nomo-
logical net and separated from their scientific 
and methodological grounding, they become 
metaphors. Equally important, metaphors in 

general, and complexity metaphors in 
particular, can be useful – even transforma-
tive (Tsoukas, 1991) – for helping us picture 
the world in a more holistic, dynamic, and 
unpredictable way. Yet, even the most artful 
use of metaphors should not be confused as a 
direct application of a complexity science 
per se (Maguire and McKelvey, 1999).

A good example of this research approach 
is demonstrated by Biggiero (2001), who 
studied how individuals can influence the 
‘self-organization’ of a network within a spe-
cific industrial region. His analysis is based 
on interviews with founders and other mem-
bers of a large network in Italy (of 80 firms 
employing 3,000 people), and draws on 
metaphors from fractals, cybernetics and 
deterministic chaos. Although this network’s 
emergence was catalyzed by a single well-
respected entrepreneur, Biggiero shows that 
the growth of the network – now an interna-
tional center for biomedical devices – was 
generated through the combined interactions 
of hundreds of actors, as he suggests: ‘… the 
circulation of tacit and explicit knowledge 
among institutions, educational organiza-
tions, trade associations, firms, firm networks 
and single entrepreneurs’. In this way Biggiero 
argues that the degree of self-organization in 
the network depends on the level of knowl-
edge creation and innovation within and 
between its members.

Fuller and Moran (2001) also use analo-
gies from complex adaptive systems to 
develop an ‘ontology’ of small business with 
six emergent layers, each one transcending 
but including its predecessor. They reference 
autopoiesis to suggest that entrepreneurial 
emergence is ‘… reflexive or self-organized, 
a creative or generative process’ (Fuller and 
Moran, 2001: 57). Their framework makes 
useful links to the concepts of adaptation, 
evolution, fitness and interdependency of 
agents (entrepreneurs, firms, clusters), pro-
viding a broad base for research in entrepre-
neurship.

Another study that draws on complex adap-
tive system analogies is Nicholls-Nixen’s (2005) 
complexity study of entrepreneurial change. 
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Through interviews with founders and CEOs 
of high-growth SMEs she identified five 
‘Organizing Principles’ that characterize the 
‘deep structure’ of these firms. Her approach 
uses metaphors from complex adaptive 
systems to emphasize the importance of 
relationships and interactions between 
agents (Holland, 1988) and the role that 
effective leadership can play in balancing 
productivity and self-interest in dynamic 
settings (Goldstein, 1986; McKelvey and 
Lichtenstein, 2007).

Other papers draw on single complexity 
concepts to propose more parsimonious 
explanations of entrepreneurial phenomena. 
At the individual level, Groves et al. (2008) 
examine the claim that entrepreneurs display 
high degrees of ‘nonlinear’ thinking, which 
they associate with intuition, creativity, 
insight, and emotions. Their analysis of data 
from N =112 individuals shows in fact that 
entrepreneurs have the greatest balance 
between linear and nonlinear styles com-
pared to accountants and professional actors. 
Also supporting their hypotheses, actors 
have higher levels of nonlinear thinking than 
entrepreneurs, whereas accountants have 
a higher level of linear thinking than 
entrepreneurs.

Nonlinearity is also a metaphor applied to 
new ventures by Slevin and Covin (1997), 
who borrow from evolutionary models of 
change to develop a complexity framework 
of new venture transitions. A core insight in 
their model is the suggestion that rapid tran-
sitions can minimize ‘cycle times’ during 
nonlinear shifts in the environment, leading 
to more effective adaptation and perform-
ance. Likewise, Peterson and Meckler (2001) 
argue that nonlinear and non-predictable 
events – i.e. ‘chance’ – played a role in the 
rise of Cuban-American entrepreneurs in 
Miami, Florida. Overall their analysis high-
lights the mix of linearity and chance in 
emergence of an ethnic market environment.

Separately, Smilor and Feeser (1991) 
explore how metaphors from deterministic 
chaos theory – especially ‘sensitive depend-
ence on initial conditions’ – might improve 

our understanding of technology entrepre-
neurship. Steyaert (2007: 453) uses the 
‘attractor’ construct from deterministic chaos 
theory to suggest that ‘entrepreneuring’ 
would make an ideal ‘conceptual attractor 
[for the field,] around which a different ter-
minus for entrepreneurship theory could 
spontaneously self-organize’.

Finally, Schindehutte and Morris (2009) 
utilize a host of complexity metaphors in 
their call for entrepreneurship researchers to 
harness complexity science to create a new 
‘paradigm’ for strategic entrepreneurship. 
Their paper mentions metaphors from 
complex adaptive systems, dissipative struc-
tures, cybernetics, deterministic chaos, mor-
phogenetic fields (cf. Sheldrake, 1981), 
self-organized criticality, fractals, and self-
organization. The result is a ‘… postcyber-
netic, methodologically anti-reductionist 
paradigm … that is transdisciplinary – it 
integrates disciplines, and at the same time it 
transcends conventional disciplinary demar-
cations’ (Schindehutte and Morris 2009: 
269). Like some other metaphorical uses of 
complexity science, their article leaves few 
avenues for operationalizing concepts, 
making it difficult to design and conduct 
subsequent research that could result in 
cumulative knowledge.

Types II – Discovering 
and describing complexity

Crutchfield’s (1994a) discovering complexity 
refers to a post-hoc analysis that measures or 
describes something that has emerged in a 
complex system, whether an emergent 
pattern, an emergent level of order, etc. 
Importantly, the discovery of order in Type II 
complexity is in the eye of an observer: 
‘Surely, the system … doesn’t know its behav-
ior is unpredictable’ (Crutchfield, 1994a: 
517). That is, the discovery of complexity 
involves a post-hoc analysis of time series 
data (e.g. system behaviors); the mathemati-
cal and conceptual tools for this analysis 
allow scholars to verify the existence of order 
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emergence in dynamic systems. In Type II it 
is helpful to include describing complexity, 
which refers to cohesive qualitative frame-
works for describing emergence in complex 
systems. Such descriptions, although less 
rigorous than the mathematical tools for dis-
covering complexity, provide a systemic 
model that coherently explains how emer-
gence can be studied or identified in entre-
preneurial settings.

An exemplar of Type II complexity is 
Cheng and Van de Ven’s (1996) discovery of 
two distinct ‘epochs’ – chaotic attractors – in 
the evolution of two high-tech innovation 
ventures. Previous analyses on these ven-
tures, incorporating 96 and 152 months of 
event-based data, showed that their early 
innovation dynamics were random, unpre-
dictable and faulty (Garud and Van de Ven, 
1992; Van de Ven and Polley, 1992). This re-
analysis, in contrast, utilized well-known 
statistical methods from deterministic chaos 
theory to show that these dynamics were 
‘chaotic’, i.e. they expressed an underlying 
order which transcends the apparent unpre-
dictability of the process. Further, the study 
confirmed the presence of a punctuated shift 
in the dynamics of both ventures, linking 
chaos theory with Prigogine’s dissipative 
structures theory: ‘Transitions between 
chaotic and periodic patterns of learning … 
can be explained by the fact that our dynamic 
system is a dissipative structure …’ (Cheng 
and Van de Ven, 1996: 609). This set of tools 
provides a powerful approach for discerning 
order in complex systems.

A much more well-known instance of 
discovering complexity is the early work 
of Bill Bygrave, a theoretical physicist who 
became a successful entrepreneur and ven-
ture capitalist, and then, as entrepreneurship 
professor and researcher, published one of 
the first applications of chaos and complexity 
theory to management (Bygrave, 1989). 
He starts by advocating catastrophe theory 
(Thom, 1975; Bigelow, 1982) as a way 
to model the start-up process as ‘… a 
disjointed, discontinuous, unique event’ 
(Bygrave, 1989: 9). Then, he explores how 

deterministic chaos theory could generate 
new insights into entrepreneurial phenomena 
such as flows of venture capital and the 
emergence of high-growth companies. 
Although he is skeptical about direct applica-
tions, his outlook is prescient: ‘[C]atastrophe 
and chaos provide us with useful metaphors 
for the entrepreneurship process [that can] 
help us form and sharpen our philosophy and 
methodology’ (Bygrave, 1989: 28).

In response to this call, Stevenson and 
Harmeling (1990) provide an excellent foun-
dation for describing complexity, arguing 
persuasively that complexity science could 
enhance entrepreneurship research methods 
through ‘… tools that illuminate the dyna-
mism and the complexity of real organiza-
tions creating and adapting to change’ 
(Stevenson and Harmeling 1990: 1). Taking 
a ‘disequilibrium’ approach, their recom-
mendations for designing effective entrepre-
neurial research can be summarized as: 
incorporating reciprocal causality and 
nonlinear relations into rich, small-‘N’ 
longitudinal studies emphasizing high-qual-
ity data collection rather than the analysis of 
pre-fabricated data sets. More than a set of 
loose metaphors, their article provides a 
comprehensive framework for exploring and 
describing the complex dynamics of entre-
preneurial systems.

Chiles and Meyer (2001; also see Chiles et 
al., 2004) make use of this framework in their 
analysis of emerging clusters of a specific 
organizational type (in this case, musical 
theaters) as a process of increasing returns. 
Supported by rich case study data on the 
emergence of the Branson, Missouri theater 
cluster, they show how the emergence of a 
cluster of musical theaters in the region was 
due to a series of nonlinear dynamics, posi-
tive feedback loops, and combinations of 
historical accident and dynamic interactions. 
Their theory focuses on the ‘conditions’ that 
lead to self-organizing processes; overall 
their approach leads to an interventionist 
model of ‘stewardship’ in contrast to the 
engineering model of ‘building’ an economic 
area.
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At the organizational level, Bygrave and 
Hofer (1991) reframe the start-up process 
as a ‘discontinuous change of state … [a] 
unique, dynamic process [that is] extremely 
sensitive to the initial conditions of [its] vari-
ables’ (Bygrave and Hofer, 1991: 17). This is 
the first model to describe new venture devel-
opment in terms of cycles of emergence and 
re-emergence through which entrepreneurial 
firms reconfigure their vision, strategy and 
resources to stay current with rapidly chang-
ing environments and perceptions (Brown 
and Eisenhardt, 1997; Nicholls-Nixen, 2005; 
Levie and Lichtenstein, 2010).

For example, the ‘re-emergence’ idea is 
pursued in the companion studies by Fuller 
and Warren (2006) and Fuller et al. (2008). 
Through an in-depth analysis of one high-
potential venture, the authors identify ‘four 
processes of re-creating the business’, i.e. four 
processes of (re)emergence that are based 
on complexity science. ‘Experimentation’ is 
similar to ‘fluctuations’ in dissipative struc-
tures; ‘Reflexive Construction of Identity’ 
and ‘Organizing Domains’ are related to 
the autopoiesis concept of ‘deep structure’ 
(see Csanyi and Kampis, 1985; Drazin and 
Sandelands, 1992); and ‘Sensitivity to Con-
ditions’ is derived from deterministic chaos 
theory. These ‘EROS’ processes (Fuller and 
Warren, 2006) provide a complexity explana-
tion for the drivers of growth and re-emer-
gence in high-growth firms.

Another empirical examination of 
entrepreneurial re-emergence was undertaken 
by Lichtenstein et al. (2006), who tracked 
(bi-weekly for two years) the dynamics of 
one entrepreneur starting from the very 
beginning of her organizing process. Their 
initial analysis identified three modes of 
organizing: Changes in her business vision 
were analyzed through ‘centering resonance 
analysis’ that identified the entrepreneur’s 
most salient issues; changes in her strategic 
organizing were analyzed through an event 
time series analysis of ‘organizing moves’ in 
the data; and changes in her tactical organ-
izing were identified through a visual time 

series analysis of start-up behaviors. In 
combination they identified an ‘emergence 
event’ – distinct and punctuated shift across 
all three modes of organizing through which 
a new and more inclusive opportunity for the 
business emerged, leading to a new era of 
organizing for herself and her prospective 
clients.

Type III – Modeling complexity

Type III refers to complexity modeling: Agent-
based systems designed to enact emergence 
within an ‘in silico’ environment (i.e. wholly 
developed by a human designer). Computa-
tional models and simulations allow research-
ers to learn how specific rules and heuristics, 
when operationalized as algorithms in a com-
puter program, lead to unexpected emergence 
of order over time. Further, complexity mod-
eling provides an unprecedented experimental 
environment in which a range of values in key 
variables can be tested for their influence, 
without interference from spurious or external 
effects (Davis et al., 2007). As such, complex-
ity modeling presents a powerful context for 
understanding emergence, and thus, entrepre-
neurship (McKelvey, 2004).

An exemplar of complexity modeling is 
Ganco and Agarwal’s (2009) study of new 
entrants in expanding markets, contrasting 
large corporations which enter through a diver-
sification strategy with new entrepreneurial 
start-ups in the market. By using intra-firm 
complexity (K) to distinguish ‘diversifying’ 
firms from ‘start-ups’, they compare these 
two entrance strategies across a range of 
industry turbulence and learning capability. 
Their findings show that a diversifying firm’s 
new entry leads to higher performance under 
conditions of greater turbulence, while inde-
pendent start-ups perform better when turbu-
lence is lower, and when the capability for 
industry learning is greater. Overall, ‘start-
ups change more frequently and face greater 
performance variance’ (Ganco and Agarwal, 
2009: 248) than diversifying corporations, 
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but also, and unexpectedly, these new ven-
tures perform better due to their capacity for 
learning.

Minniti (2004) adapted a ‘spin-glass’ sim-
ulation model to explore entrepreneurs’ 
‘decision to start’ that is based on two 
key dimensions of entrepreneurial choice 
(Hayak, 1952) – (1) the ‘alertness’ of indi-
viduals (Kirzner, 1997) and (2) the degree to 
which individuals are connected to each 
other. Results from the simulations show that 
‘more alert agents have higher probabilities 
of choosing entrepreneurship’ (Minniti, 2004: 
654), but that the key driver is the inverse 
of entrepreneurial networking: the less con-
nectivity, the more the chances for unique 
entrepreneurial opportunities, and thus the 
more en trepreneurship. Further, beyond a 
critical threshold of new entrants, the increase 
in entrepreneurial activity limits the potential 
for finding unique opportunities, causing the 
en trepreneurship rate to decline. She con-
cludes that ‘entrepreneurial behavior and the 
rate of entrepreneurship may depend less on 
the characteristics of individuals and rela-
tively more on the relationships between 
individuals’ (Minniti, 2004: 656).

A different form of modeling complexity 
includes studies that develop formal hypothe-
ses based on complexity science, and test 
them using a particular analytic model on a 
relatively large data set. A good example is the 
Lichtenstein et al. (2007) study of nascent 
entrepreneurship, which draws on existing 
theories from complexity science to define 
three hypotheses of new venture emergence. 
They then used a logistic regression model 
that identified emergence as the dependent 
variable; i.e. rather than the traditional 
approach of identifying the firms that ‘drop 
out’ at each stage of the analysis, the model 
identified the firms which stay in the pool, 
leading to a uniquely accurate measure of 
organizational emergence. Their analysis 
identified a generalizable pattern of temporal 
dynamics in the data: ‘Our findings demon-
strate that the ventures which emerged, 
compared with those that did not, pursued 

organizing activities at a faster rate, with lower 
concentration, and with timing that was later 
in the process’ (Lichtenstein et al., 2007: 
253–254).

Sommer et al. (2009) also used a combina-
tion of analytic methods in their study of 
learning and R&D development in high-tech 
start-up companies. They started by drawing 
on the NK fitness landscape model to gener-
ate hypotheses regarding whether trial-and-
error learning or selectionist learning would 
yield higher performance across four condi-
tions – low/high complexity of the decision 
environment, and low/ high levels of ‘unfore-
seeable uncertainty’ in strategic implementa-
tion. Then, using a series of self-reported 
measures, they analyzed N = 58 surveys from 
senior managers in young start-up firms, 
using traditional regression models. Their 
findings extends previous research by show-
ing that, under a combination of high com-
plexity and high unforeseeable uncertainty, 
selectionist learning is most effective, but 
only when final R&D can wait for initial 
feedback from the market.

Finally, I close this section with the analyti-
cal argument made by McKelvey (2004), who 
suggested that complexity science – ‘hetero-
geneous agent-based computational modeling’ 
– can make entrepreneurship research more 
accurate and more relevant. His essay begins 
with several summaries: a distinction between 
complexity’s European school that focuses 
on phase transitions and dissipative structures 
versus its American school of computational 
modeling popularized at the Santa Fe Institute; 
a summary of Cilliers (1998) integration of 
postmodernism to the principles of complex 
adaptive systems thinking; and an epistemo-
logical argument that complexity incorporates 
all four of Artistotle’s causes in contrast to 
economics’ use of only efficient cause. With 
this background, McKelvey shows how com-
plexity sciences can explain more of the 
complex causalities in order creation, by com-
bining the value of rich descriptions with 
the generalizability of repeated modeling 
experiments. In this way a complexity science 
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of entrepreneurship can ‘increase scientific 
legitimacy and practical credibility’ (McKelvey, 
2004: 337).

Type IV – Generative complexity

In Type IV generative complexity, the order 
that emerges is capitalized on by the system’s 
agents, lending additional functionality to the 
system (Crutchfield, 1994b: 518). Beyond a 
description of emergent order (Type II) and 
agent-based models of emergent structure 
(Type III), generative complexity occurs 
when a system agent ‘… has the requisite 
infor mation processing capability with which 
to take advantage of the emergent patterns’ 
(Crutchfield, 1994a: 518). Crutchfield labels 
this as ‘intrinsic emergence’ since the effects 
of order creation are discernible to agents 
within the system, rather than due to post-hoc 
analyses by external observers: ‘In the emer-
gence of coordinated behavior, though, there 
is a closure in which the patterns that emerge 
are important within the system. … Since 
there is no external referent for novelty or 
pattern, we can refer to this process as “intrin-
sic” emergence’ (Crutchfield, 1994b: 4).

A crucial element of Type IV complexity, 
and the reason it is so important for entrepre-
neurship, is that the emergent order that 
emerges actually generates new capabilities 
and greater capacities within the system as a 
whole. ‘What is distinctive about intrinsic 
emergence is that the patterns formed confer 
additional functionality which supports 
global information processing’ (Crutchfield, 
1994a: 518). Thus, generative complexity 
occurs when the emergent order extends the 
capability of the system – the entrepreneurial 
team, the new venture, the region – to create 
and capitalize on new opportunities, to source 
necessary resources, and to expand its overall 
potential to generate value.

One attempt to explore this process of 
creating capabilities was presented by 
Lichtenstein (2000), in his dissertation 
study of transformation and emergence in 

high-growth entrepreneurial ventures. Using 
the methods suggested by Stevenson and 
Harmeling (1990) and the lens of dissipative 
structures (Prigogine and Stengers, 1984), his 
in-depth, longitudinal tracking of four ventures 
identified a generalizable process of emer-
gence involving increased dis-equilibrium 
organizing and increasing stress and experi-
ments, leading to a critical threshold event, 
and the emergence of a new configuration, 
resulting in specific outcomes. The higher 
these outcomes – of self-reference (Smith, 
1986), capacity building (Swenson, 1989), 
and interdependent organizing (McKelvey, 
1999b) – the more likely the new venture 
was successful, i.e. continued to survive 
and grow.

A similar process of emergence and capac-
ity creation was uncovered in the dissertation 
research of Chiles (Chiles et al., 2004) who 
pursued a 100-year study of Branson Missouri, 
now one of the most visited tourist areas in 
America. Using dissipative structures theory 
as a framework, their analysis reveals the 
process of ‘punctuated emergences’ in the 
region, each one being generated through 
fluctuation dynamics, positive feedback 
dynamics, recombination dynamics, and sta-
bilization dynamics. Here again, the process 
of emergence was consistent across the four 
epochs of emergence in the case, and the 
outcomes were generative, sparking the 
creation of a vibrant, self-reinforcing and 
self-sustaining organizational community.

Chiles has taken the lead in extending this 
‘generative’ orientation to develop a coher-
ent complexity approach for understanding 
the emergence of markets, through a series 
of papers proposing a ‘radical subjectivist’ 
model of ‘dynamic creation’. Their project 
begins (Chiles et al., 2007) by distinguishing 
Lachman’s radical subjectivist [RS] approach 
from the classic Austrian views of Schumpeter 
(1934) and Kirzner (1997). They extend 
their theorizing by identifying three proc-
esses that generate order-creating market 
dynamics: empathy, modularizing, and 
‘self-organization’ (see Chiles et al., 2010). 
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The latter explicitly links the radical subjec-
tivist approach to complexity science by 
arguing that entrepreneurs’ future expecta-
tions lead to market divergence – an economic 
process that is stronger than the conver-
gence towards imitation. Divergence serves 
to increase heterogeneity, which pushes the 
market farther from equilibrium, which sparks 
further divergence, in a self-amplifying loop. 
At a critical point the market as a whole will 
‘self-organize’, creating new regimes of order 
through ‘punctuated dis-equilibrium’.

According to this theory, the fluctuations 
which drive divergence and novelty are 
endogenous to the firm – they come from the 
entrepreneur’s imagination and foresight into 
how to provide ‘creative value’ for potential 
customers. When competing entrepreneurs in 
this far-from-equilibrium market continu-
ously produce divergence in relation to each 
other, endogenous entrainment helps cata-
lyze the self-organization of economic order: 
‘Thus, entrainment of entrepreneurs’ activity/
thought patterns in competitive entrepre-
neurial markets may spontaneously create a 
far-from-equilibrium market order that is 
both heterogeneous and coherent’ (Chiles 
et al., 2010: 39). Here we have the foundations 
for an economic model of self-organization, 
an important advance to entrepreneurship 
and complexity science.

THE POTENTIAL OF COMPLEXITY 
SCIENCE FOR STUDYING 
ENTREPRENEURSHIP

Complexity science has generated many 
insights for entrepreneurship, including 
extensions in our research methods so as to 
capture the nonlinear nature of entrepre-
neurial action, and an expansion in our 
understanding of emergence, allowing us to 
better explain and potentially support the 
coming-into-being of new entrepreneurial 
entities (opportunities, firms, clusters, etc.). 

In this section I will highlight two key 
insights that complexity provides to entrepre-
neurship, namely: (1) the potential for multi-
level, longitudinal, rich data research in 
entrepreneurship; and (2) the potential for 
advances from complexity science to become 
the basis for understanding entrepreneurship 
as emergence.

Complexity Science Methods 
for Entrepreneurship Research

A first observation is that virtually all the 
complexity studies in entrepreneurship 
include at least two levels of activity, through 
the integration of two more units of analysis. 
In fact, complexity science-inspired research 
seems to require at least two levels of activity, 
a clear contrast with virtually all mainstream 
research which is primarily single-level 
focused. This interaction across levels is 
easily seen in the empirical studies. For 
example, Fuller and Warren’s (2006) EROS 
framework explains emergent properties 
within the entrepreneur, within new ventures, 
and across venture networks. Minniti’s (2004) 
simulation models show how an individual’s 
decision to become an entrepreneur is inter-
dependent with their position in a network, 
and with the overall degree of entrepreneur-
ship in their geographical region. Schindehutte 
and Morris (2009) describe the ‘nexus’ of 
individual and opportunity; Lichtenstein 
et al.’s (2006) study shows that the emergence 
of a new opportunity is reflected in shifts 
across three levels or contexts, of vision, 
strategy, and organizing. The list goes on. In 
particular I would note Chiles et al.’s (2004) 
study of field emergence, which incorporates 
individuals, networks, organizations, collabo-
rations, government actions locally and at the 
federal level, as well as social trends includ-
ing excess capital from retirees and national 
recognition from television and other media.

This multi-level focus is closely linked to a 
process-based, longitudinal view of entrepre-
neurship and emergence (Van de Ven, 1992). 
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Virtually every study mentioned takes a tem-
poral approach, from the iterative time points 
of Minniti’s (2004) spin glass model, to the 
50+ months in the Cheng and Van de Ven 
(1996) time series analysis, to the 100-years 
of data that Chiles, Meyer and Hench ana-
lyzed (2004). The longitudinal element is at 
the heart of Lichtenstein et al.’s (2007) 
temporal study of new venture emergence; 
Slevin and Covin’s (1997) complexity model 
of entrepreneurial transitions; and the 
conceptual frameworks of Bygrave (1989), 
Sarasvathy, (2001), Steyaert (2007), Chiles 
et al. (2007, 2010), and others. Although this 
temporal approach is unfortunately rare in 
current entrepreneurial research, scholars 
applying approaches from the complexity 
sciences seem to be leading the way.

In addition to focusing on multi-level and 
longitudinal studies, complexity science-
inspired studies often revolve around case-
study data which provides the richness 
necessary to capture ‘the ebb and flow of top-
down and bottom-up causality’ (McKelvey, 
2004: 330). Stevenson and Harmeling (1990) 
make a compelling case for the use of rich 
longitudinal case studies for studying ent-
repreneurship, and their call has been heeded 
by many complexity science scholars in ent-
repreneurship. Specifically, case studies form 
the core data sets for the entrepreneurial 
research of Lichtenstein (2000), Fuller and 
Moran (2001), Nicholls-Nixen (2005), 
Lichtenstein et al. (2006) and Fuller and 
Warren (2006), as well as other studies of 
entrepreneurial processes (e.g. Garud and 
Karnøe, 2003; Baker and Nelson, 2005).

These three qualities – multi-level research, 
temporality, and rich case-based data – are 
extremely rare in entrepreneurship. Accord-
ing to Davidsson and Wiklund’s (2001) com-
prehensive analysis, less than 5% of 
entrepreneurial research is multi-level and 
longitudinal, qualities that they and others 
insist are necessary in order to gain insight 
into entrepreneurial process. In contrast, the 
core of complexity science is an exploration 
of the temporal, multi-level process of agent 

interactions, a process that can best be exam-
ined through rich case-based studies. In this 
way complexity science offers a leading edge 
approach to understanding the process of 
emergence at all levels of entrepreneurship.

Entrepreneurship as emergence – 
further advances through 
complexity science

An underlying theme in my review is the 
deep connection between emergence and 
entrepreneurship, and the ways that com-
plexity science can inform both. Emergence 
is the creation of new ‘order’ – structures, 
processes and system-wide properties that 
come into being within and across system 
levels. Similarly, entrepreneurship is an 
organizing process that generates ‘newness’, 
leading to the creation of new opportunities, 
new products and services, new organiza-
tions, new institutions, new markets, and so 
on. Innovation, novelty and creative unfold-
ing are at the heart of both fields, linking 
complexity science to entrepreneurship to a 
degree unparalleled in other areas of man-
agement research.

An examination of mainstream journals 
shows that these qualities of order creation 
and structural emergence are rarely pursued 
by entrepreneurial researchers. Given that 
emergence is purportedly central to entrepre-
neurship research, the dearth of studies that 
actually explain or track emergence is quite 
surprising. At the same time, with no theory 
of emergence and absent a specific methodo-
logical approach for identifying and measur-
ing it, perhaps it is no wonder that so few 
studies explore entrepreneurial emergence. 
In contrast complexity science offers a pow-
erful solution, providing the outlines of a 
definition and a theory of emergence 
(McKelvey, 2004; Lichtenstein et al., 2006), 
and a methodology for the collection and 
analysis of data that can track and explain the 
emergence of internal structures (Ganco and 
Agarwal, 2009), organizational entities 
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(Stevenson and Harmeling, 1990; Lichtenstein 
et al., 2007), and economic markets (Chiles 
et al., 2007, 2010).

Each of the complexity sciences has 
generated insights into the emergence 
process. Table 27.1 provides a brief sum-
mary of these contributions, and how they 
can expand the value and applicability of 
entrepreneurship research. For example, the 
sciences of self-organized criticality, frac-
tals and power laws all show that emergence 
may be occurring across multiple levels at 
the same time. This insight suggests that by 
focusing closer on the systemic conditions 
of emergence, more reinforcing feedback 
loops may be found – and used – to identify 
and expand the entrepreneurial outcomes of 
emergence.

As another example, complexity Type III 
simulation studies show that emergence is an 
interdependent process that can be enhanced 
through the re-combination and integration 
of traits and knowledge over time. Thus, 
rather than focusing on how the presence of 
initial resources may be linked to entrepre-
neurial outcomes, a more productive analysis 
would explore how resources are interde-
pendent with their ecology, as well as how 
resources can be ‘acquired’ and expanded 
through re-combination and integration of 
existing knowledge and skills.

A third example, based on complexity 
Type IV studies, involves the importance 
of sustainability in entrepreneurship. 
Specifically, models of autogenesis, dissipa-
tive structures and ecology show that emer-
gence is viable only to the degree that system 
processes are self-reproducing and do not 
undermine or destroy the system’s environ-
ment which is the source of energy for the 
system. This observation leads logically to a 
concern for incorporating a social and an 
environmental dimension to understandings 
of success, i.e. a triple bottom line as dis-
cussed below.

In sum, complexity science can be catalyst 
for entrepreneurship research that focuses 
on emergence, generating the most unique 

contribution that entrepreneurship can make 
in management. This prospect – of entrepre-
neurship as emergence – can be achieved 
with some attention to current deficits and 
potential next steps.

DEFICITS AND CHALLENGES – WHAT 
NEEDS TO BE DONE NEXT

Expanding Focal Levels of Research

Table 27.2 reveals two key deficits of com-
plexity science research in entrepreneurship. 
The first involves focal levels of analysis: 
even though most of the complexity work 
involves cross-level or multi-level analyses, 
most studies have one focal level which is 
much more prominent than others. In addi-
tion, complexity researchers have empha-
sized just two focal levels of analysis, at the 
expense of research in the others. Specifically, 
of the 28 studies included in Table 27.2, 
nearly half of them focus on the venture level 
(N = 13), and another 25% focus on general 
advances for entrepreneurship theory and 
methods (N = 7). On the other hand, just three 
studies focus on individuals, another three 
explore the emergence of clusters/markets, 
and one study (3.5%) focuses on the emer-
gence of entrepreneurial networks – a topic 
that should be at the cornerstone of complex-
ity science research. Thus, our first challenge 
is to produce much more complexity science 
research on the following three levels: the 
individual entrepreneur, emergent networks, 
and the emergence of new economic clusters 
or markets.

Individual-level complexity research can 
further explore entrepreneurial decision-
making processes (Minetti, 2004), as well as 
the entrepreneurial leadership of processes 
giving rise to emergence (Lichtenstein and 
Plowman, 2009). Boyatzis (2006) has taken a 
more developmental view by connecting the 
conditions of psychological emergence with 
the prospect for intentional change. His 
complexity science-inspired approach for 
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developing top leaders and managers 
(Boyatzis, 2008) may also be usefully applied 
to entrepreneurial contexts.

The virtual lack of complexity research 
into emergent networks is curious, especially 
given the strategic importance of networks to 
entrepreneurial development (Hoang and 
Antoncic, 2003). As Hidalgo (this volume) 
shows in the chapter on networks, complexity 
science has a great deal to offer in this area, 
and these insights will surely be very useful to 
the theory and practice of entrepreneurship.

In terms of emergent economic clusters or 
markets, Chiles can be credited with leading 
the integration of complexity science into this 
arena. Starting with a study of the emergence 
of musical theaters in Branson, Missouri, 
Chiles and his colleagues (Chiles et al., 2004, 
2007, 2010) have developed a comprehensive 
integration of Austrian economics with com-
plexity science, providing a rigorous concep-
tual view of how dis-equilibrium markets 
self-organize, leading to entrepreneurial 
emergence. Given the paucity of studies of 
emergent markets generally (see Sarasvathy 
and Dew (2007), however, for a notable 
exception), complexity science can provide a 
unique and powerful approach to explaining 
and supporting entrepreneurial emergence.

A Complexity Science of 
Sustainability Entrepreneuring

An extension of this argument regards a par-
ticular focal area of research, namely sustain-
ability entrepreneuring. In particular, the 
strong links between the sustainability of a 
venture and the sustainability of the (social) 
environment would imply that a good amount 
of complexity science research into social 
and environmental entrepreneurship has been 
accomplished. Unfortunately, aside from a 
research program emanating out of Adelphi 
University (Goldstein et al., 2008), virtually 
no one has yet integrated complexity think-
ing into social entrepreneurship generally, 
nor into sustainability more specifically.

The ‘dynamic states’ approach by Levie 
and Lichtenstein (2010) may offer a useful 
theoretical framework for this effort. They 
view entrepreneurial organizing as a dynamic 
state, which is a network of beliefs, relation-
ships, systems and structures that convert 
(entrepreneurial) opportunity tension into 
tangible value for an organization’s custom-
ers/clients, generating resources which main-
tain that dynamic state. In their view, the 
sustainability of a dynamic state is designed 
into its very existence, because as long as a 
firm is generating value for a target market 
willing to exchange resources of some sort 
(e.g. money, license to operate, political sup-
port, etc.) for the value generated, the firm 
can maintain itself over time. In this formula-
tion, financial sustainability is integrated 
into the social and environmental values co-
generated along with goods of economic 
value by the entrepreneurial firm.

Going Beyond Metaphor

Separately, the second key deficit revealed by 
Table 27.2 is the uneven use of the four com-
plexity types in entrepreneurship research. 
Looking again at the 28 studies listed in the 
table, the further up the continuum from 
Type I to Type IV you go, the fewer and 
fewer studies have been done. In particular, 
Type I metaphors have received the most 
work (N = 11), Type II discovery and descrip-
tion is second (N = 8), Type III modeling has 
N = 6 studies, and Type IV generative com-
plexity includes just three. Why is this the 
case, and why is this a potential problem?

According to Crutchfield (1994a: 526), 
Type IV generative complexity is the most 
important of the types: ‘Emergence is mean-
ingless unless it is defined within the context 
of processes themselves; the only well-de-
fined notion of emergence would seem to be 
intrinsic emergence’. In this view, Types III 
and IV provide more significant insights than 
Types I and II.

Although I believe that emergence is 
meaningful across all types of complexity, 
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Crutchfield’s view supports the notion of 
a continuum of complexity, similar to 
Goldstein’s view of a continuum of emergence 
(Goldstein, 2000). Essentially, Type IV and 
then Type III present the ‘strongest’ forms of 
complexity, whereas Type II is a relatively 
weaker form, and Type 1 is the most modest 
application of complexity science.

This framing is buttressed by claims that 
Types III and IV complexity are the most 
challenging for researchers, requiring longi-
tudinal data and advanced methods which are 
very expensive to collect and pursue, and 
whose outcomes are highly risky. This is not 
to say that Cheng and Van de Ven’s re-analy-
sis of corporate entrepreneurship using deter-
ministic chaos statistics was easy! However, 
merely borrowing metaphors from a variety 
of complexity sciences will not lead to the 
development of a comprehensive theory of 
emergence which can be then tested with 
longitudinal, case-based data, as is possible 
with studies using Type III and Type IV com-
plexity. Thus, I argue that we have reached 
the point of quickly diminishing returns to 
metaphorizing complexity, Instead, the field 
of entrepreneurship is entering an era of rig-
orous theoretical explorations and computa-
tional experiments which can identify and 
generate emergence in entrepreneurial con-
texts. Given its ‘firm foundations’ (Maguire 
and McKelvey, 1999) in complexity science, 
such work is likely to produce generalizable 
insights into the emergence process, and to 
make significant contributions to understand-
ing entrepreneurship.

CONCLUSION

Overall, the application of complexity 
sciences has benefited the study of entrepre-
neurship. Because both fields focus on the 
phenomenon of emergence, it is not surpris-
ing that applications of concepts from 
complexity science to entrepreneurial 
thinking were prominent a full decade before 

the Organization Science special issue on 
complexity in management more generally.

My introduction of four types of complex-
ity has two aims, in addition to being perhaps 
a more interesting approach than the more 
common levels of analysis model. First, as 
I’ve mentioned, the framework suggests direc-
tions for further research, away from informal 
metaphors and toward rigorous models and 
disequilibrium approaches that can generate 
emergence, as much as explain it. This direc-
tion would represent a maturing of the field, 
which, after 20 years of complexity applica-
tions in entrepreneurship, seems to be timely 
and appropriate. A second aim is to introduce 
this framework into organization science more 
generally. Although there has been good 
progress in applying complexity science to 
management and organizations, a situation to 
which this volume is testament, there is lots of 
scope for additional rigorous and thoughtful 
research. The four-type complexity frame-
work can encourage and organize this rigor 
and thoughtfulness.

In both cases I am making a broader claim 
which is well-expressed in the summary of 
15 complexity science approaches contained 
in Table 27.1. Complexity science is – and 
should be – much more than a set of compu-
tational approaches. For example, NK fitness 
landscape models may be effective at high-
lighting some dynamics of interaction and 
emergent structures, but they by no means 
address the most paradigmatic type of com-
plexity. Foss and Ishikawa (2007) make this 
argument, and in a much stronger manner, by 
criticizing complexity science-inspired anal-
yses of rugged fitness landscapes that are 
devoid of imaginative, forward-thinking 
entrepreneurial agency. On the other hand, 
emergence as a dynamic, system creating 
process is quite evident in other Type III and 
Type IV complexity models, which can pro-
vide a more nuanced and applicable under-
standing of entrepreneurial behavior.

Overall, my analysis reflects a view 
of entrepreneurship as emergence: the study 
of entrepreneurship is the exploration of 



APPLICATIONS488

emergence, including its processes, dynamics 
and outcomes (e.g. McKelvey, 2004). This 
view implies a broader set of boundaries for 
defining the entrepreneuring process. 
Moreover – and more radically – it provides 
a strong rationale for entrepreneurship schol-
ars to more fully ‘embrace’ the concept of 
emergence as central to their goals. Recently, 
it has been suggested that the field of strate-
gic management has “co-opted” entrepre-
neurship (Baker and Pollock, 2007), but the 
application of complexity science approaches 
and insights to understanding entrepreneur-
ship as emergence may provide an important 
point of leverage for renewing entrepreneur-
ship as a distinct and theory-driven field 
(McKelvey, 2004).

In closing, I remain inspired by Stevenson 
and Harmeling’s (1990) recognition of the 
power and unpredictability of a ‘chaotic 
entrepreneurial theory’. Challenging though 
it is to incorporate complexity science into 
our work, the effort promises to yield signifi-
cant contributions to theory. Additionally, 
these authors provide a kind of manifesto for 
all of us seeking to integrate complexity sci-
ence into relevant research (Stevenson and 
Harmeling, 1990: 13):

If we are so tame as to only report that which can 
be proved beyond a shadow of a referee’s doubt, 
it is unlikely that we will be of significant help to 
those managers who are leading the way. … We 
can either rest on our laurels and rely on theories 
that anesthetize us with their elegant simplicity or 
we can seek to become more thoughtful and sci-
entific in our approach to the study of manage-
ment and organizations.

May we continue to be thoughtful and 
rigorous in our application of complexity 
science to the study of entrepreneurship, 
management and organizations.

NOTE

1 I am extremely grateful to Todd Chiles for his 
insightful and development critique of an earlier 
draft. Heartfelt appreciation goes to my intellectual 

mentors in entrepreneurship and complexity science 
including Bill Bygrave, Bill Gartner, Jerry Katz, Tom 
Lumpkin and Kevin Dooley. Kudos to Steve Maguire 
for his significant contributions to every aspect of the 
chapter.
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Complexity and Competitive 

Advantage

O l i v e r  B a u m a n n  a n d  N i c o l a j  S i g g e l k o w

INTRODUCTION

The notion that firms face many complex 
challenges – both intra-organizational and 
with regard to their competitive environment 
– is a commonplace in the strategy field. At 
the same time, though, the connection 
between complexity and the main issue of 
strategic management – how to gain and 
sustain competitive advantage – is still not 
well understood. Is complexity detrimental 
to this quest, or can it also convey advan-
tages to a firm? What is the role of organiza-
tional design in this context: are particular 
structures better suited for coordination in 
complex environments than others? And 
how do the strategies employed by a firm’s 
decision makers to deal with complexity 
affect organizational performance? This 
chapter provides a review and assessment of 
the literature that has evolved around these 
questions.

The starting point of most of this work (as 
of this review) is Simon’s (1962: 468) semi-
nal article on the architecture of complexity: 
‘[B]y a complex system, I mean one made 
up of a large number of parts that have many 
interactions. […] in such systems the whole 
is more than the sum of the parts in the 

weak but important pragmatic sense that, 
given the properties of the parts and the 
laws of their interaction, it is not a trivial 
matter to infer the properties of the whole.’ 
Clearly, this definition of complex systems 
can be applied to organizational systems as 
well, like, for instance, in Thompson’s 
(1967: 6) work on organizational design: 
‘[T]he complex organization is a set of 
interdependent parts which together make 
up a whole in that each contributes some-
thing and receives something from the 
whole, which in turn is interdependent with 
some larger environment’.

In short, the central tenet of the above per-
spective states that interdependencies between 
intra- and extra-organizational elements 
denote the main driver of organizational 
complexity. Yet as Simon (1962) already 
indicated, the question of how exactly the 
behavior and performance of an organization 
emerges from the interaction of its parts – 
among themselves and with the firm’s envi-
ronment – is a hard one to tackle, in particular 
using ‘standard’ approaches of social science 
research. In recent years, however, this objec-
tive has received renewed attention as com-
putational models from research on complex 
adaptive systems, set initially in the physical 
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and biological sciences, have been trans-
ferred to the management sciences. The gen-
eral approach of these models can be 
summarized as follows: Organizations are 
seen as sets of interdependent activity 
choices. Individual agents (e.g. firms or man-
agers) are endowed with capabilities to search 
and make decisions (typically assuming 
bounded rationality) with respect to these 
activities. The agents are connected in vari-
ous ways (e.g. reflecting the task environ-
ment or the organizational structure) and, by 
acting within their individual purview, are 
collectively arriving at a ‘solution’, a set of 
choices for the various activities. In a 
sense, the agents are trying to solve a high-
dimensional problem.

This explicit treatment of organizations as 
complex adaptive systems conveys an impor-
tant advantage: ‘By not forcing scholars to 
understand all the parts of a complex system 
in a holistic way, [complex adaptive systems] 
allow investigators to focus on an agent in its 
local environment’ (Anderson, 1999: 220). 
Hence, there is no need for any top-down 
functional specification of a system’s behav-
ior. Instead, a modeler only needs to be con-
cerned with the elements that comprise the 
system, with the ways by which they are 
interdependent, and with the agents’ local 
behavior. The global, system-level behavior, 
in contrast, is left to emerge bottom-up. 
Using simulation experiments to rigorously 
explore these emergent properties by system-
atically altering the model parameters, a 
substantial body of research has uncovered 
mechanisms and conditions that shed light on 
the role of interdependencies for competitive 
advantage.

In the following section, we review this 
literature with regard to two major implica-
tions for competitive strategy: (1) creating 
barriers to imitation and (2) requiring firms 
to balance search and stability. The third sec-
tion assesses the current status of this body of 
research and, in particular, its shortcomings. 
The final section points to possible directions 
for future research at the intersection of 
complexity and competitive advantage.

IMPLICATIONS OF 
INTERDEPENDENCIES FOR 
COMPETITIVE ADVANTAGE

Creating barriers to imitation

The notion that a firm’s activities are highly 
interdependent and therefore need to fit 
together to yield high performance, is a long-
standing concept in the strategy field 
(Chandler, 1962; Khandwalla, 1973; Drazin 
and Van De Ven, 1985; Porter, 1996). For 
instance, a firm’s management team faces 
decisions about how to procure, design, 
finance, manufacture, etc., many of which 
are interrelated. For the management team, 
the presence of interdependencies creates 
trade-offs across choices, making the firm’s 
strategizing efforts – the search for a combi-
nation of choices that, together, creates high 
performance (Rivkin and Siggelkow, 2006) 
– highly difficult. For example, a firm may 
only gain a benefit from increasing product 
variety if it also increases the flexibility of its 
manufacturing system, provides additional 
training to its sales force, and enhances its 
logistics processes. At the same time, the fact 
that practices often come in bundles can also 
convey an advantage to a firm that has man-
aged to identify a high-performing set of 
activity choices. Because the advantage for 
the firm stems from the set of interdependent 
activities rather than from any individual 
choice, this systemic property may be hard to 
imitate by competitors.

The above notion is reflected in different 
streams of research. One is grounded in the 
theoretical and empirical treatments in the 
economics literature that have been con-
cerned with exploiting complementarities 
among activities (Milgrom and Roberts, 
1995). Using the introduction of flexible 
manufacturing systems as a motivating set-up, 
Milgrom and Roberts (1990) observe that 
‘successful moves toward “the factory of the 
future” are not a matter of small adjustments 
made independently at each of several mar-
gins, but rather have involved substantial and 
closely coordinated changes in a whole range 
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of the firm’s activities’ (p. 513). Likewise, 
they also suggest why successful bundles of 
practices often diffuse rather slowly, if at all, 
across the competitive landscape. They argue 
as follows: In interdependent activity sys-
tems, benefits tend to arise only if all necessary 
dimensions across which complementarities 
operate are changed in a coordinated fashion. 
Changing only a few of the dimensions typi-
cally conveys only a small or even a negative 
payoff. Instead, major coordinated efforts 
may be necessary to move a system from one 
configuration to another. They illustrate this 
barrier to diffusion with the case of ‘modern 
(lean) manufacturing’ which would require 
changes of a number of system elements for 
firms engaged in traditional mass manufac-
turing. In adopting these new practices, many 
firms did not understand or consider the full 
system of interdependencies, making costly 
(negative) experiences by adapting only some 
of the necessary activities. Subsequently, a 
number of qualitative and quantitative studies 
of industries and individual firms (e.g. 
Milgrom and Roberts, 1995; Porter, 1996; 
Ichniowski and Shaw, 1997; Ichniowski 
and Shaw, 1999; Whittington et al., 1999; 
Siggelkow, 2001) have supported the imita-
tion-deterring aspect of a successful set of 
inter  dependent practices that requires an 
imitator to make a number of simultaneous 
modifications to its activities rather than incre-
mental changes alone. For instance, Porter 
(1996) illustrates how the various choices 
made by Southwest Airlines are reinforcing 
each other, creating one large consistent 
‘activity system’. Attempts by practically all 
incumbent carriers (for instance, Continental 
with Continental Lite, United with Ted, 
Delta with Song, KLM with Buzz, British 
Airways with Go) to create subsidiaries that 
would copy Southwest Airlines activities have 
failed. Given the tradeoffs that South west’s 
activity choices created vis-à-vis the existing 
activities of the incumbent carriers, the incum-
bents were unable (and unwilling) to copy 
Southwest’s entire activity system. Yet, due 
to its inter dependent nature, partial imitation 

of Southwest’s activity system did not yield 
partial benefit … it only created chaos.

Building and extending theoretical work 
on complementarities among activities, a 
number of simulation studies have relied on 
Kauffman’s NK model (Kauffman, 1993, 
1995) to deal with the issue of imitating suc-
cessful bundles of practices between com-
petitors. The NK model allows researchers to 
create settings in which N decisions that a 
firm has to resolve are interdependent to 
varying degrees. In particular, each decision 
is assumed to be affected by K other deci-
sions. Given these features, the NK model 
has proved to be a convenient set-up to study 
the effect of complexity on various strategic 
issues. Rivkin (2000), for example, shows 
that the global optimization of a successful 
strategy, i.e. any optimal algorithmic imita-
tion of a set of interdependent decisions, 
becomes intractable under the following con-
ditions: when the degree of interdependence 
is modest to high, when strategies consist of 
a sufficiently large number of decisions, and 
when the time involved in each algorithmic 
step is not trivial. He goes on to argue that if, 
more behaviorally realistic, firms do not opti-
mize but instead imitate a successful strategy 
by incremental improvement, they are highly 
unlikely to eventually find the global opti-
mum. Instead, most firms get stranded far 
away from the best strategy, i.e. on a different 
but less optimal set of internally consistent 
choices that cannot be further improved 
through incremental change. Likewise, fol-
low-the-leader type imitation efforts – recre-
ating the strategy of a high-performing rival 
as much as possible yet imperfectly – does 
not pay off in the face of complexity: ‘In a 
strategy whose pieces are numerous and 
tightly knit, small probabilities that each ele-
ment will be replicated incorrectly cumulate 
to produce a high likelihood that imitators 
will fare poorly’ (Rivkin, 2000: 839). To 
summarize, assuming that managers’ under-
standing of their rivals and their replication 
capabilities are imperfect, a complex strategy 
can protect a firm against imitation.
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In related work, Rivkin (2001) extends 
these findings to the case in which a firm 
wants to deter imitation efforts but at the 
same time needs to replicate a successful 
strategy for its own purposes. This objective 
poses a trade-off: While simple strategies can 
easily be replicated by a firm, they can also 
be easily imitated by competitors. Yet con-
versely, very complex strategies resist repli-
cation and imitation equally. The main 
finding of Rivkin’s (2001) analysis is that 
moderately complex strategies bear the great-
est relative advantage as they are more easily 
replicated than imitated. This is documented 
for different set-ups. The first one refers to 
the situation in which both the replicator and 
the imitator can (re)discover the best solution 
only by incremental search, and the replica-
tor is at an advantage because it can start the 
search closer to the benchmark solution. 
While for low levels of complexity, both the 
replicator and the imitator will – through a 
sequence of incremental performance-
enhancing steps – eventually find very good 
solutions, both types of firms are likely to get 
stranded on a different but lower-performing 
local optimum when the strategy is highly 
complex. For moderate levels of complexity, 
in contrast, the replicator can exploit its supe-
rior starting position, while the imitator will 
founder more quickly due to its worse start-
ing conditions. Furthermore, the better the 
replicator can reproduce a successful tem-
plate, the more complex the underlying set of 
decisions can be in order to deter imitators 
without hurting the replicator as well. Similar 
results can be observed for follow-the-leader 
type imitation behavior. Here, the replicator 
has an advantage over the imitator, as this 
firm is more likely to know which decisions 
are already aligned with the template and 
which it should continue to copy. For the 
same reasons as above, this advantage is of 
little value for strategies with very low or 
very high levels of complexity, but pays off 
the most for moderately complex strategies. 
In sum, Rivkin (2001) shows that in situa-
tions of imperfect information about success-
ful strategies, a firm’s relative advantage over 

its competitors is greatest for moderate levels 
of complexity. Because the firm has a better 
understanding of the strategy, it is able to 
rather accurately replicate it and at the same 
time ensure that imitation efforts are much 
less fruitful.

More recently, Csaszar and Siggelkow 
(2010) take the perspective of the copycat to 
study the conditions in which it is advisable 
to engage in small, intermediate, or large imi-
tation attempts, taking into account not only 
interdependencies between practices, but also 
the time horizon and the similarity between 
firms. They show that if short run considera-
tions predominate, such as, for instance, in 
fast-changing environments, firms are best off 
– independent of the degree of complexity – 
when they engage in large-scale imitation 
efforts. If they are unable to do so, they 
should copy only a small set of choices that 
does not disrupt too many practices and that 
allows the firms to recover quickly if needed. 
If, in contrast, an intermediate number of 
practices is copied, chances are high that the 
imported practices are incompatible with the 
rest of the firm’s practices, and firms are 
unlikely to quickly recover from this setback. 
What is worst for short time horizons, how-
ever, proves to be the best imitation strategy 
in the long run: copying an intermediate 
range of practices. Especially in the presence 
of many interdependencies, broad exploration 
is often required to ensure a firm’s well-being 
in the long term. A strategy of copying an 
intermediate range of practices supports this 
objective by helping a firm escape from its 
current configuration and trigger further 
improvement efforts, while at the same time 
not locking the firm in too quickly on the cur-
rently (but maybe not globally) best industry 
practices. Only under conditions of low com-
plexity is it helpful to try to copy as much as 
possible. As Csaszar and Siggelkow (2010) 
continue to demonstrate, imitating the con-
figuration of shared practices from dissimilar 
firms (i.e. firms that operate in different 
environments) leads to very different recom-
mendations. They find that in turbulent envi-
ronments (in the short run) and independent 
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from the degree of complexity, firms should 
avoid any imitation attempts. This is due to 
the fact that imitated practices are likely to 
interact with practices that are not shared, and 
will thus create misfits with the copycat’s 
unique set of practices. Furthermore, in stable 
environments (in the long run), firms should 
at best engage in small, random imitations 
that may dislodge them from a local peak and 
induce further exploration. In sum, the find-
ings point to the difficulty of ‘getting it right’ 
when imitating successful practices, and to 
the non-trivial interaction of complexity, sim-
ilarity between firms, and time considerations 
in determining the most effective strategy for 
a copycat. More importantly, their findings 
show that despite the fact that complexity 
harms the ability to imitate, it only plays a 
role under specific conditions in affecting a 
firm’s decision to engage in imitation efforts.

Requiring a balance of search 
and stability

While focusing on the barriers to imitation 
that successful bundles of interdependent 
activity choices may help erect, we have so 
far ignored the question: How do firms iden-
tify such successful bundles in the first 
place? As we have implicitly indicated in our 
review of research on imitation efforts, 
this objective constitutes a significant chal-
lenge in the presence of interdependencies. 
Underlying this challenge is the fact that 
interdependencies between practices create 
numerous local optima, i.e. bundles of prac-
tices that are internally consistent but that 
cannot be further improved by adapting only 
one or a few individual practices. Instead, a 
major coordinated effort is required to 
‘move’ an organizational system from the 
proximity (out of the basin of attraction) of 
one local optimum towards that of a higher-
performing one. However, due to bounded 
rationality (Simon, 1955, 1956) and because 
strategy problems are computationally 
complex (Rivkin, 2000), decision makers 
cannot simply optimize and then implement 

the solution that denotes the global opti-
mum (Simon, 1962). Instead, decision 
makers have to search adaptively for suf-
ficiently good solutions (March and Simon, 
1958; Cyert and March, 1963; Nelson and 
Winter, 1982).

It has become an established notion in the 
strategy literature that in order to deal effec-
tively with this challenge, firms need to bal-
ance search and stability (Levinthal, 1997; 
Rivkin and Siggelkow, 2003). On the one 
hand, firms need to engage in search – by 
generating and evaluating alternative config-
urations of activity choices – to continue 
exploring alternative (and potentially supe-
rior) strategies and maintain their ability to 
adapt. On the other hand, firms also need to 
stick with good solutions once they have 
identified them, rather than wandering off. 
This becomes necessary due to the high risk 
of cycling endlessly: In the presence of inter-
dependencies, any uncoordinated adaptation 
of individual practices, though possibly 
beneficial in a local context, may affect firm 
performance in negative ways. It will, in turn, 
thus trigger further adaptation efforts which 
may result in a repetition of the same cycle or 
a similar one. In the following, we focus on 
work that has studied how a firm’s effective-
ness in balancing search and stability may be 
affected by the design of the organization 
and by the search strategies that its decision 
makers employ.

The role of organizational design
The notion that the right way to organize 
depends on the presence of interdependencies 
goes back to early research by organizational 
theorists that have identified complexity as a 
key contingency in their quest to define a 
mapping between a firm’s environment and its 
optimal design (Thompson, 1967; Galbraith, 
1973; Khandwalla, 1977). In recent years, 
simulation modeling has provided the meth-
odological apparatus to delve more deeply 
into the role of organizational design in the 
face of interdependencies between organiza-
tional activities. We suggest that existing 
work along these lines can be broadly 
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classified by its focus of analysis: (1) individ-
ual design elements and (2) entire organiza-
tional structures.

Representing the first set of studies, Rivkin 
and Siggelkow (2003), for instance, show that 
interdependencies among elements of organ-
izational design – a well-established concept 
of organizational design (Khandwalla, 1973; 
Mintzberg, 1979) – may arise because they 
affect both how broadly a firm searches for 
good sets of choices and whether the firm is 
able to stabilize around those sets once it has 
discovered them. Put differently, ‘[o]ften, a 
firm that adopts an element that pushes it 
toward broad search benefits from a second 
element that pulls it toward stability’ (Rivkin 
and Siggelkow, 2003: 291), and vice versa. 
In particular, the authors study the implica-
tions of three major variables of organiza-
tional design: the decomposition of an 
organization’s decision into departments, a 
vertical hierarchy, and an incentive system 
that rewards subordinates for departmental or 
firm-wide performance. For instance, they 
show that consistent with conventional 
wisdom and prior qualitative research, an 
active vertical hierarchy (a CEO that reviews 
proposals that get sent up from subordinates) 
is particularly helpful when interactions 
among decisions are pervasive. Under these 
conditions, the active hierarchy provides sta-
bility by ensuring that proposals from differ-
ent departments will only be implemented if 
they have high fit from a firm-level point of 
view. For this design element to provide a 
benefit, however, the information flow in the 
hierarchy must be rich in order to make sure 
that the second major challenge – broad 
search  –  finds consideration as well. Other-
wise, an active hierarchy can lock a firm in on 
suboptimal solutions prematurely and even 
lead to worse performance than if the CEO 
were purely passive and simply accepted each 
proposal that got sent up.

In related work, Siggelkow and Rivkin 
(2005) extend this analysis by studying a 
number of organizational archetypes that vary 
in how much power they grant to depart ment 
heads (ranging from a decentralized archetype 

with full autonomy on the side of the depart-
ment heads, to an archetype in which depart-
ment heads have no power at all and a central 
authority provides coordination). The differ-
ent archetypes again consist of a number of 
finer-grained design elements. Siggelkow 
and Rivkin (2005) then focus on how the 
value of these different designs depends on 
the complexity and turbulence of the envi-
ronment. The underlying argument of their 
paper is that in turbulent settings, designers 
should emphasize elements that allow firms 
to improve their performance speedily – by 
emphasizing stability rather than broad 
search, whereas in complex environments, 
choosing a design that induces a firm to 
search broadly becomes paramount. In envi-
ronments that are both complex and turbu-
lent, finally, organizational design should 
help strike a balance between search and 
stability. The results of the simulation model 
employed by Siggelkow and Rivkin (2005) 
indicate that different elements of organiza-
tional design affect the speed of improve-
ment and the diversity of search in different 
ways, depending on the archetypes they are 
embedded in. Only few design elements such 
as rewarding low-level managers for firm-
wide performance to boost the speed of 
improvement, prove beneficial for a particu-
lar purpose independent of the archetype in 
which they are embedded. The effects of 
most design elements, in contrast, tend to be 
strongly contingent.

Focusing on entire organizational struc-
tures rather than individual design elements, 
a second set of studies has put forward a 
different mechanism through which organi-
zational design may affect the balance 
between search and stability. Siggelkow and 
Levinthal (2003), for instance, investigate 
the temporary succession of different organi-
zational structures and its performance 
implications. In particular, they study how 
different generic designs – a centralized 
structure, a decentralized structure, and a 
temporarily decentralized structure that 
is later re-integrated – may help a firm 
explore and adapt after an environmental 
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shock has occurred. They find that in com-
plex environments, temporary decentraliza-
tion yields the highest long-run performance. 
This benefit arises as a temporary separation 
– even if interdependencies remain between 
the different departments – is beneficial 
because it will induce overall broader search 
on the level of the organization. However, to 
reap this benefit of broader search, the firm 
must eventually re-integrate in order to coor-
dinate across the different departments, thus 
providing stability.

Siggelkow and Levinthal (2005) have 
extended this argument to study when tran-
sitions between a broader range of organi-
zational structures are beneficial even in 
stable environments. They demonstrate that 
different organizational structures differ in 
their sticking points, i.e. in the set of con-
figurations at which a firm that possesses 
the respective structure will stop searching 
as it cannot identify any alternatives that 
would be approved by all relevant decision 
makers within the firm. The paper shows 
that if a firm has stopped searching given its 
current structure, a shift in structure may 
induce further search and allow the firm to 
identify higher-performing sets of activity 
choices. (For a case study, of a firm oscil-
lating between forms that create more 
exploration and more exploitation, see 
Thomas et al. (2005).)

The role of decision makers
Apart from organizational design, a firm’s 
effectiveness in addressing complex strategic 
challenges is affected by the search strategies 
that its decision makers apply. In this con-
text, the work reviewed below has uncovered 
two broad classes of mechanisms that affect 
the balance between search and stability: (1) 
managerial cognition (e.g. ‘maps’ or analo-
gies) prior to a search process that dampen 
some of the implications of bounded ration-
ality by allowing a firm to start its search for 
good solutions at above-average alternatives; 
and (2) other characteristics of boundedly 
rational decision making (e.g. imperfect 
evaluation skills or a ‘preferred direction’ for 

search) that may help overcome local search 
by causing perturbations and introducing 
unintentional but helpful ‘detours’.

Starting with research that falls into the 
first category, Gavetti and Levinthal (2000) 
study how cognitive maps, lower-dimensional 
representations of the actual strategic land-
scape (i.e. the relevant variables and their 
interdependencies), affect the dynamics of 
search. Cognitive maps such as particular 
strategy frameworks allow evaluating broad 
and potentially highly different alternative 
courses of action in an offline manner, i.e. 
by means of theoretical reasoning and with-
out the risk of having to implement a particu-
lar alternative to learn about its value. The 
authors argue that such maps, even if they 
are crude and only roughly capture the real 
structure of the environment, can be valuable 
to guide the initial search efforts and like-
wise constrain the direction of further search, 
thereby providing stability, in particular in 
complex environments. Likewise, changing 
one’s cognitive representation can be a help-
ful means of adaptation in order to direct 
attention to different aspects of the competi-
tive landscape and open up further improve-
ment potential, even in static worlds. Such 
shifts, however, also involve a trade-off as 
they imply a loss of tacit knowledge associ-
ated with the prior cognition that may lead to 
a higher risk of organizational mortality. 
Overall, the study starts treading a middle 
ground with regard to the implications of 
bounded rationality for solving complex 
strategy problems that lies between the 
highly constrained notion of experiential 
local search on the one hand, and the highly 
unrealistic assumptions of (cognitive) opti-
mization under constraints on the other. In 
Gavetti and Levinthal’s (2000) world, deci-
sion makers cannot envision the full set of 
alternatives available to them. They may, 
however, act intendedly rational and affect 
their effectiveness in dealing with complex-
ity by how well they form simplified cogni-
tive theories of the world, before continuing 
to flesh them out through experiential 
search.
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A similar mechanism is portrayed in 
Gavetti et al. (2005). This study investigates 
the value of analogical reasoning for strate-
gizing in novel and complex worlds. The 
starting point is the question: How do firms 
create a competitive position in an unfamiliar 
industry? This poses a significant managerial 
challenge because cognitive maps that are 
founded on experience are often not available 
in highly novel environments. However, deci-
sion makers may be able to transfer wisdom 
from similar settings to a new one by gener-
alizing from prior settings to the current 
environment. In Gavetti et al. (2005), manag-
ers form representations about the strategic 
interdependencies in their industries that 
drive the relation between firm action and 
performance, defining characteristics that 
distinguish between similar and different 
industries. Such classification can allow 
managers to identify similar industries and 
transfer similarities between settings to a 
new setting, thus guiding their firms’ search 
in the novel industry by providing them with 
good candidate solutions. The results of this 
study suggest that analogical reasoning is 
most powerful when managers can form 
accurate classifications and when they have 
broad experience, which proves to be more 
important than the actual depth of experi-
ence. Furthermore, the results show that 
applying an analogy in too orthodox a 
manner, i.e. constraining search strictly to 
what the analogy suggests, can be dysfunc-
tional when the quality of a firm’s represen-
tation is poor. Heterodox firms, in contrast, 
by not holding on to (bad) analogies too 
firmly, do not pay the same price, suggesting 
that the value of analogies lies more in seed-
ing good starting points for further search 
efforts rather than as a means to constrain 
them. To sum up, Gavetti et al. (2005) give 
another account for when and how manage-
rial cognition – managers that act intendedly 
rational, although the complexity of the envi-
ronment exceeds their information process-
ing power – can be a valuable response to the 
demand for search and stability in complex 
and novel worlds.

Other research on the role of a firm’s deci-
sion makers in dealing with complex strategy 
problems falls into our second category. In 
this context, for instance, Knudsen and 
Levinthal (2007) study how imperfections in 
evaluating alternative courses of actions –  
affecting an aspect of problem-solving search 
that has only been implicitly considered in 
prior research – the dynamics of search and 
stability. In particular, they study the implica-
tions of two types of imperfections: type I 
errors of rejecting a superior alternative, and 
type II errors of accepting an inferior solu-
tion. Based on this evaluation structure, they 
focus on a collection of decision makers and 
superimpose an organizational structure, 
ranging from a centralized decision-making 
structure (hierarchies) on the one hand, to 
decentralized structures (polyarchies) on the 
other. Their main result is that a moderately 
imperfect evaluation of alternatives can be 
valuable. While perfect evaluation skills 
create a fast search process as only perform-
ance-increasing alternatives are accepted, 
imperfect evaluators can reach higher per-
formance, which is particularly helpful under 
conditions of complexity. This result arises 
because the (unintentional) implementation 
of (some) performance-decreasing alterna-
tives may temporarily lead a firm ‘down-
ward’, but can help it escape the proximity of 
a lower-performing local optimum and move 
into the proximity of superior solutions. In 
this sense, the results of Knudsen and 
Levinthal (2007) also have implications for 
the design of organizations as discussed in 
the previous section: ‘The less able (or, con-
versely, the more able) individual evaluators 
are, the more attractive are organizational 
forms that tend toward hierarchy (polyarchy) 
as the hierarchical structure tends to compen-
sate for the high error rates of less able indi-
vidual evaluators (or, conversely, the variance 
induced by the polyarchy forms tends to 
compensate for the overly precise judgments 
of more able evaluators)’ (Knudsen and 
Levinthal, 2007: 41).

A related effect has also been uncovered 
by Winter et al. (2007) in their treatment of a 
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firm’s ‘obsession’ with a ‘preferred direction’ 
and its implications on the dynamics of 
search. In their conceptualization, a ‘pre-
ferred direction’ can be given a variety of 
interpretations, ranging from foresight or 
causal understanding to irrational obsession. 
They argue that in a process of local search, 
an intermediate weight on non-local consid-
erations, i.e. ‘moderate obsession’, is particu-
larly valuable in the presence of complexity. 
Similar to the above case of imperfect evalu-
ation, such non-local influences may con-
vince a firm to implement alternatives that 
denote a (temporary) setback as compared to 
its status quo solution. In inducing this behav-
ior, however, the pitfalls of local search in the 
presence of interdependence – the quick 
stranding on a low-performing local optimum 
and a premature end of the search process – 
can be overcome. At the same time, the mod-
erate weight on non-local influences helps 
find a balance between search and stability 
and thus avoid that the search leads to an aim-
less drift across the space of alternatives.

ASSESSMENT OF THE FIELD

To be clear, the above review has only dealt 
with a fraction of research at the intersection 
of complexity and competitive advantage. In 
particular, we have been concerned with 
agent-based modeling studies that have 
probed into the strategic challenges posed 
by interdependencies between practices. 
Critically taking stock of this body of research, 
as well as the field more broadly, we believe 
it is fair to state that the research up to now 
has been both fairly fragmented and some-
what disconnected from mainstream strategy 
research. We elaborate on each argument in 
the following.

With the exception of the work on com-
plementarities (Milgrom and Roberts, 1990; 
Milgrom and Roberts, 1995) and the last paper 
(Winter et al., 2007), the above review has 
been largely concerned with studies that have 
referred to Kauffman’s NK model (Kauffman, 

1993, 1995). This model – originally developed 
in evolutionary biology – has been fruitfully 
applied to tackle a number of issues in the 
management sciences in recent years (see, 
e.g. Porter and Siggelkow, 2008, for a review). 
It is particularly well-suited to create – in a 
simple stochastic but well-controlled manner 
– complex problem structures that serve to 
represent a number of elements (e.g. organi-
zational activities). However, besides the NK 
model, a number of other canonical models 
have been developed and put to use, such as, 
for instance, March’s model of exploration and 
exploitation (March, 1991), system dynamics 
models (Sterman, 2000; Sterman et al., 2007), 
multi-armed bandits (Sutton and Barto, 1998), 
genetic algorithms (Bruderer and Singh, 
1996), or cellular automata (Lomi and Larsen, 
2001). While all of these models have been 
applied to conceptualize firms as complex 
adaptive systems, or to study the intra- and 
inter-organizational implications of complex-
ity for strategy issues, each model has taken 
a different approach and generated a some-
what separate stream of subsequent work. 
Given the potential overlap between these 
different approaches, a fruitful avenue for 
future research might be to examine the 
same set of issues with a range of different 
models.

The second observation is that most of the 
work that has addressed the interrelationship 
of complexity and competitive advantage has 
referred to computational models, whereas 
quantitative or qualitative empirical work has 
remained rather sparse (exceptions include, 
e.g. Fleming and Sorenson, 2001; Siggelkow, 
2002; Fleming and Sorenson, 2004; Fleming 
et al., 2006). Likewise, empirical work has 
only been rarely used to inform the particular 
modeling set-up. (For one attempt to let 
empirical work on interdependencies inform 
the modeling structure within the NK frame-
work, see Rivkin and Siggelkow (2007).) 
Clearly, the focus on computational research 
has a number of advantages: It allows mod-
eling and analyzing complex adaptive sys-
tems at a level of detail that would be hard or 
impossible to keep tractable with standard 
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mathematical techniques. At the same time, it 
offers a virtual laboratory that allows con-
ducting experiments and generating data at a 
level of detail that may be hard to obtain 
using an empirical approach. In contrast, the 
bulk of research on competitive advantage 
typically comes in an empirical or a game-
theoretic flavor. Due to the little cross-fertili-
zation that is going on between mainstream 
strategy research and research based on com-
putational models, the latter domain may run 
the risk of being pushed into a marginal 
niche, if this situation remains unchanged.

In sum, for the field to progress further, 
and to persistently move along the path from 
‘fad to firm foundations’ (Maguire and 
McKelvey, 1999), it appears to be necessary 
to stress the connecting links and integration 
potential across two levels: one relates to the 
phenomena currently examined, and to the 
various models used to do so; the other refers 
to the current emphasis on simulation mode-
ling and its relation with other methodologi-
cal approaches to management research. In 
the following section, we outline a number of 
issues that, we believe, could be first steps 
for moving the field into this direction and 
for future fruitful research opportunities, 
more generally.

FUTURE DIRECTIONS

To further advance our understanding of the 
interrelationship between complexity and 
competitive advantage, a number of potential 
directions might be pursued that address the 
two shortcomings identified in the above 
assessment.

One is to include in simulation models 
features that connect them with other, main-
stay strategy models. For instance, one desir-
able extension would be to study competitive 
dynamics by modeling more interaction 
among firms. Currently, competition among 
firms is typically absent (see, e.g. Lenox 
et al., 2006, for an exception that couples 
an NK model to a standard IO model). 

One might conceive of firms as being arrayed 
on a two-dimensional grid, letting each firm 
interact with its neighbor – an approach that 
has been used in similar and other contexts by 
researchers that have applied cellular autom-
ata (Lomi and Larsen, 1996; Wolfram, 2002). 
Alternatively, as firms move closer to each 
other on a commonly shared performance 
landscape, they might ‘deform’ the land-
scape, representing competitive interaction.

A second avenue would be a richer mod-
eling of decision makers. As we have indi-
cated in our review of prior work, current 
research is increasingly starting to tread a 
middle ground in the representation of the 
notion of bounded rationality as intendedly 
rational behavior by agents with (severely) 
limited information processing power. 
Moving further along these lines might 
include different aspects of forward-looking 
behavior (besides cognitive maps or analo-
gies) such as memory and the formation and 
adaptation of theories about the search space 
a decision maker is traversing (Nelson, 
2008). Likewise, a richer modeling of 
knowledge structures within firms (Ren et 
al., 2006) could potentially yield a new set 
of insights.

A third path forward would relate to 
making exogenous variables endogenous. 
Currently, most features of the models – the 
complexity or turbulence of the environment, 
or the search and change behavior of the deci-
sion makers, to name but a few – are directly 
controlled by the modeler. Endogenizing 
some of these variables – e.g. turbulence that 
occurs when one firm has identified an out-
standing new strategy or firms that adapt their 
search efforts based on their performance 
relative to their aspiration level (which, in 
turn, might endogenously result from their 
current understanding of the profitability of 
the industry they are in) – might create inter-
esting dynamics and yield new insights. (For 
a first attempt to endogenize the choice of 
organizational structure, see Siggelkow and 
Rivkin (2009).)

Another important future direction is to 
engage in empirical work that draws on 
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the theoretical insights generated by the 
simulation work. Theoretical modeling has 
in some sense outpaced empirical research 
on the topics of this chapter. To separate solid 
from less solid claims, it would be extremely 
helpful to empirically test hypotheses that 
simulation-based research has generated, and 
to try to replicate empirical observations 
using computational models. Lastly, an alter-
native approach would be to use lab experi-
ments to test and gain further insight into the 
mechanisms at work.

To summarize, it is without doubt that 
numerous exciting opportunities exist for 
future work at the intersection of complexity 
and competitive advantage. However, it will 
be vital for research in this domain to broaden 
its current focus and start considering a wider 
range of aspects and interdependencies that 
characterize the strategy field – in order to 
prevent a premature lock-in and pave the 
way towards higher peaks on the research 
landscape.
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Complexity Theory and 

Corporate Strategy

K a t h l e e n  M. E i s e n h a r d t  a n d  H e n n i n g  P i e z u n k a 1

INTRODUCTION

Corporate strategy focuses on the central 
strategic choices that are faced by multi-
business firms with regard to creating com-
petitive advantage and enhancing corporate 
performance. Multi-business firms are typi-
cally structured using multi-business-unit 
(BU) organization (sometimes termed 
M-form) in which the firm is divided into 
business-units (BUs) that are focused on par-
ticular product-market segments and yet also 
have some degree of interconnection with 
one another (e.g. shared human resource 
function, bundled products, or collaborative 
R&D projects), and are led by a corporate 
office (Chandler, 1991). The central strategic 
choices that form the substance of corporate 
strategy are typically considered to be: 
(1) motivation and control of the firm’s BUs, 
(2) collaborations across BUs, and (3) firm 
scope. In this chapter, we present and con-
trast traditional perspectives on corporate 
strategy with a more recent view – a com-
plexity perspective on corporate strategy – 
informed by theories of complex adaptive 
systems and with a growing body of empirical 
support.

Given the theoretical and practical 
importance of multi-business firms (Freeland, 
1996; Galunic and Eisenhardt, 2001; 
Micklethwait and Wooldridge, 2003), the 
multi-BU organizational form has been 
examined from multiple theoretical perspec-
tives, including information processing 
(Chandler, 1962; Galbraith, 1973), transac-
tion cost economics (Williamson, 1975), and 
social network theories (Hansen, 1999; 
Hansen, 2002). These theories provide varied 
explanations for how the multi-BU organiza-
tional form generates value (Martin and 
Eisenhardt, 2010) such as by effective strate-
gic decision making (Chandler, 1962; 
Galbraith, 1973), mitigation of opportunism 
(Berle and Means, 1932; Murmann and 
Frenken, 2006), and enhanced value creation 
through cross-business-unit collaboration 
(Helfat and Eisenhardt, 2004). While infor-
mation processing, transaction cost econom-
ics, and social network theories offer 
important insights about corporate strategy, 
our purpose is to sketch corporate strategy 
from the alternative perspective of complexity 
theory.

The traditional theories of multi-BU 
organization, notably information processing 
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and transaction cost theories, take a corpo-
rate-centric perspective on corporate strategy. 
That is, corporate executives play the most 
critical role in corporate strategy by shaping 
the overall course of action and the broad 
architecture of BUs within firms. These theo-
ries also assume that corporate executives 
have the required information to make the 
central choices of corporate strategy and that 
they have the appropriate incentives such that 
they adopt the perspective of the entire firm 
(Chandler, 1962; Hill et al., 1992; Gupta and 
Govindarajan, 2000). In contrast, BU execu-
tives are assumed to have the most relevant 
knowledge for running their businesses, but 
also lack the vision and requisite information 
to identify collaborative synergies across the 
corporation and to set the scope of the firm. 
Moreover, particularly in the transaction cost 
economics formulation, BU executives are 
assumed to be likely to pursue self-interest 
that benefits them personally or benefits their 
BUs, but not necessarily the entire firm. To 
counteract this potential opportunism, corpo-
rate executives rely on incentives to align the 
interest of the BUs with the interests of the 
firm and on monitoring BU behaviors 
(Williamson, 1975; Hill et al., 1992). In addi-
tion, corporate executives are typically seen 
as responsible for orchestrating synergistic 
collaborations across the firm such as 
cross-BU collaborations on R&D projects, 
shared sales forces, and so forth. Corporate 
executives also set the horizontal and vertical 
scope of the firm. At the heart of these corpo-
rate-centric theories is an emphasis on effi-
ciency as the driver of competitive advantage 
and superior performance in relatively stable 
markets.

In contrast, practitioners and scholars who 
view corporate strategy from the complexity 
perspective assume that the multi-BU organi-
zation is a complex adaptive system (CAS) 
consisting of modular, loosely linked, and 
unique BUs (Anderson, 1999). While this 
view of overall organizational structure is 
consistent with the well-known M-form, it 
differs from traditional information process-
ing and transaction cost theories in its under-

standing of, and hence prescriptions for, the 
distribution of power and decision making, 
the roles of the various executive-actors and 
the management of important organizational 
processes for change. For example, when this 
approach is enacted the strategies of BUs 
emerge from the individual BUs such that 
BUs executives act relatively autonomously 
and loosely guided by simple rules that enable 
improvised action to adapt to real-time con-
ditions (Eisenhardt and Sull, 2001); and a 
more decentralized distribution of power 
shapes cross-BU collaborations (Martin and 
Eisenhardt, 2010). Instead of corporate-
driven, these collaborations emerge from the 
self-interested interactions of individual BUs. 
Moreover, while the extant theories of corpo-
rate strategy emphasize the design of struc-
tures and incentives, complexity theory 
emphasizes the processes (sometimes termed 
‘dynamic capabilities’) that recombine the 
firm’s resources and co evolve the firm with 
the environment (Eisenhardt and Martin, 
2000). These processes include the morphing 
of the BUs in the context of simple rules to 
fit the environment (Eisenhardt and Sull, 
2001; Rindova and Kotha, 2001), the rewir-
ing of the collaborative connections among 
BUs (Martin and Eisenhardt, 2010), and the 
patching of the architecture of BUs within 
the firm by frequently adding, splitting, exit-
ing and combining extant BUs (Galunic and 
Eisenhardt, 2001; Gilbert, 2006). Complexity 
theory thus calls for a fluid organization with 
multiple motors of adaptation that enable the 
firm to coevolve with changing environ-
ments. The key challenge for corporate strat-
egy from a complexity point of view lies in 
finding the right balance of too much and too 
little structure. Too much structure is overly 
rigid while too little is too chaotic.

The purpose of this chapter is to outline 
corporate strategy from the perspective of 
complexity theory. Specifically, we apply 
the complexity perspective to the central 
strategic choices of corporate strategy, and 
compare the implications of complexity 
theory with those of traditional theories. 
We begin by sketching some key insights 
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from complexity science. We then examine 
multi-business organization as a CAS. We 
continue by describing how the central 
choices of corporate strategy unfold vis-à-
vis the morphing of BU strategies using 
simple rules, rewiring of collaborations 
across-BUs to capture corporate synergies, 
and patching of the BU architecture that sets 
the scope of the firm. Overall, we highlight 
the emergent and process-driven character of 
corporate strategy, the unique roles played 
by different executives, and the critical 
points of comparison between complexity 
theory and extant perspectives.

ESSENTIALS OF COMPLEXITY 
THEORY

A major paradigm shift from a reduction-
ist to a holistic perspective has taken place 
across scholarly disciplines. Since the 
1600s, reductionism has been the dominant 
scientific method in Western theories with 
prominent adherents such as Descartes and 
Newton. For example, Descartes (2006: 17) 
aspired ‘to divide all the difficulties under 
examination into as many parts as possible, 
and as many as were required to solve them 
in the best way’. As a result, large problems 
were broken down into simpler, constituent 
problems; and it was assumed that knowl-
edge of a system’s constituent parts would 
prove adequate for understanding the system 
as a whole. But while this decomposition 
had advantages, such pigeonholing often 
obscured understanding of the entire system 
with its emergent, ‘complex’ behavior 
(e.g. self-organization, nonlinear dynamics, 
and power-law distributions of system-level 
phenomena). Rather, understanding com-
plex systems requires examination of their 
structural dynamics – i.e. constellations 
of elements which comprise the system, 
the connections and interactions among ele-
ments, their similarity, and their degrees of 
freedom.

Rooted in general systems theory and theories 
of nonlinear dynamical systems, com plexity 
theory has been used across a variety of 
scholarly disciplines including biology 
(Kauffman, 1993, 1995, 2004), chemistry 
(Prigogine and Stengers, 1984; Bonchev and 
Rouvray, 2005), computer science (Holland, 
1975, 1996, 1998; Simon, 1996), physics (Gell-
Mann, 1994a; Bar-Yam, 1997; Gell-Mann 
and Tsallis, 2004; Ellis, 2005), entomology 
(Gordon, 1999), and economics (Arthur, 1989; 
Anderson et al., 1998). As concerns manage-
ment, complexity theory has also been devel-
oped within organization theory (Simon, 1962; 
Anderson, 1999; McKelvey, 1999; Chiles 
et al., 2004) and applied to corporate strategy 
(Levinthal, 1997; Brown and Eisenhardt, 
1998; Macintosh and Maclean, 1999; Rivkin, 
2000). Across all of these fields, simula-
tion studies have proved to be a power-
ful method for generating insights into 
whole-part relations and the phenomenon of 
complexity.

The term ‘complexity’ refers to a specific 
type of behavior that emerges from complex 
adaptive systems (CAS) (Holland and Miller, 
1991; Gell-Mann, 1994a; Miller and Page, 
2007), not to the system itself.2 A CAS is 
comprised of partially connected agents 
whose interaction gives rise to the ‘complex’ 
behavior that is characteristic of these sys-
tems (Gell-Mann, 1994b). Within a CAS, 
each agent acts autonomously according to 
specific rules and in response to information 
received via connections to other nodes and 
in coevolution with the environment. The 
behavior of more-structured systems can be 
succinctly characterized by regularities pro-
duced by structures, which lead to ordered 
and predictable outcomes. The behavior of 
less-structured systems can also be briefly 
described by the well-defined property of 
randomness in mathematics. In contrast, in 
systems with moderate structure, the emer-
gent behavior is an unpredictable combina-
tion of behaviors that are neither completely 
structured nor random, and so cannot be 
briefly described. Rather, they are ‘complex’ 
behaviors.
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This transition phase between randomness 
and regularity is denoted as the ‘edge of 
chaos’ (Langton, 1990)3 in which paradoxi-
cal and indeed “complex” behavior emerges. 
In the natural world, the edge of chaos is a 
transition point or zone, characterized by 
rich life forms and the emergence of compli-
cated phenomena like the tidal area between 
sea and land, the transition zone at 32oF 
between water and ice, and the area around 
underwater heat vents. There exists a ‘dissi-
pative’ equilibrium – i.e. it is an unstable 
such that the system is continually falling 
away from equilibrium. To maintain such an 
equilibrium, energy must constantly be 
injected into the system (Prigogine, 1984). A 
central focus of complexity theory is on the 
structures (e.g. rules, scale, formalization, 
and connections) which allow reaching and 
operating at the edge of chaos (Kauffman, 
1995).

Two principal propositions are central to 
complexity theory. The first addresses the 
optimal amount of structure, and is rooted in 
the trade-off between efficiency and flexibil-
ity (Davis et al., 2009). It argues that partially 
connected systems of agents are higher per-
forming than ones that are highly coupled or 
highly decoupled (Kauffman, 1995; Langton, 
1990; Gell-Mann, 1994a). When the consti-
tutive elements of the system are over-con-
nected, the system becomes gridlocked and 
cannot adapt to new opportunities. At the 
extreme, it reaches a ‘complexity catastro-
phe’ in which the organization is able to 
address too few opportunities to succeed. In 
contrast, if the elements are under-connected, 
the system becomes too disorganized and 
error-prone to adapt. At the extreme, it 
reaches an ‘error catastrophe’ in which it 
lacks enough traction to capture enough 
opportunities. Thus, only partially connected 
systems (i.e. a moderate degree of structure) 
are both flexible and efficient.

The second proposition deals with the 
relationship between optimal structure and 
the environment. It argues that, as environ-
mental unpredictability decreases, greater 
efficiency and so more structure become 

advantageous. In such environments, execu-
tives can develop structures that mirror pat-
terns in the environment. In contrast, as 
environmental unpredictability increases, 
greater flexibility and so less structure are 
preferred (Davis et al., 2009). Moreover, 
since such limited structure is highly mis-
take-prone and attention-demanding, the 
range of optimal structures narrows to edge 
of chaos that is difficult to find and maintain. 
The optimal degree of structure (and the 
robustness of its range), therefore, depends 
upon the unpredictability of the environment 
(Eisenhardt and Sull, 2001).

ORGANIZATION AS A COMPLEX 
ADAPTIVE SYSTEM

A key premise of this chapter is that firms 
with the multi-BU organizational form are 
high-performing when they are managed and 
allowed to function as complex adaptive sys-
tems. Specifically, their BUs are unique 
‘agents’ that are partially connected such as 
through common culture, consistent human 
resource practices, and discrete collabora-
tions among BUs. When these connections 
are moderate, then the firm is likely to be 
high performing. Further, when environmen-
tal unpredictability increases, the optimal 
amount of structure (i.e. scale of business 
units, degree of formalization and centraliza-
tion, and number of connections among 
agents) decreases.

Although the relevant empirical research 
within the organization theory and strategy 
literatures often does not explicitly use com-
plexity theory per se, this research is none-
theless broadly consistent with the 
propositions of complexity theory. An exam-
ple is Chandler’s (1962) classic study of 
strategy and structure in diversified firms. 
This work describes how DuPont’s central-
ized functional organization hindered its 
ability to adapt to rapidly evolving markets. 
DuPont went from being a single business 
firm prior to the First World War to operating 
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in diverse businesses in many markets in the 
post-War period. The company retained its 
centralized functional form and performed 
poorly. In reaction, its executives adopted 
multi-BU organization by structuring the 
firm into numerous, loosely linked and mod-
ular BUs. As Chandler (1962) relates, the 
firm became high-performing. In a contrast-
ing case, Chandler (1962) indicates how 
Alfred Sloan brought together previously 
independent producers to form a set of 
loosely coupled, modular businesses that 
became General Motors. A key point is that, 
although these firms began from different 
starting points (i.e. over-structure at DuPont 
and under-structure at GM), both GM and 
DuPont became high-performing when they 
organized as complex adaptive systems.

Other research also supports the complex-
ity theory proposition that firms with loosely 
coupled, modular BUs (i.e. complex adaptive 
systems) are high-performing. For example, 
Tripsas (1997) finds that firms in the typeset-
ter industry with geographically dispersed 
R&D units were more high-performing than 
other firms. Their modular structures of 
loosely connected, but separate, ‘agent’ units 
spurred rapid innovation. These structures 
encouraged competition that was highly 
motivating, increased the variety of scientific 
approaches, and enabled working on overlap-
ping technologies at different locations. In 
contrast, firms with more centralized and less 
modular structures lacked sufficient variety, 
i.e. requisite with that of their environment. 
Overall, the study confirms that firms with 
organizations that more closely resembled 
complex adaptive systems were more high-
performing. Bradach (1997) provides another 
example. Examining five large US fast-food 
chains, he observes the benefits of two, 
unique store types within these successful 
firms – i.e. the simultaneous use of company-
owned and franchised units. While company-
owned units promoted efficiency with rapid 
deployment of innovations and uniform prac-
tices that ensured product and service con-
sistency, the franchised units promoted 
flexibility by greater experimentation and 

innovation. By combining these two types of 
units, the firms balanced efficiency and flex-
ibility to achieve high-performance.

Similarly, extant organizational theory 
and strategy literatures support the second 
complexity proposition that, when the envi-
ronment is unpredictable, high-performing 
organizations are less structured. For example, 
this argument is well-supported in contingency 
theory studies that find organic structures to 
be high-performing when environments are 
volatile and mechanistic structures to be high 
performing in stable environments (Burns 
and Stalker, 1961; Davis et al., 2009).  Another 
example is Gilbert (2005), who examines the 
organizing reactions of multiple newspapers 
to the environmental discontinuity that 
marked the emergence of the Internet. When 
addressing this disruptive nascent market, 
most newspapers retained the tight, structur-
ally integrated organization that they had 
successfully used in their prior, stable envi-
ronment. This monolithic organizing struc-
ture favored efficiency, and so proved to be 
inadequate in the unpredictable, Internet 
environment. Only those newspapers with 
executives who separated their established 
newspaper and Internet businesses into dis-
tinct and loosely coupled BUs were success-
ful. Overall, the extant literatures provide 
support for the primary arguments of com-
plexity theory – i.e. multi-business firms that 
are organized as complex adaptive systems 
are high-performing, and that their optimal 
amount of structure decreases with increas-
ing environmental unpredictability. We turn 
now to consider the complexity perspective 
on the central choices of corporate strategy 
and its differences with traditional theoretical 
views.

MORPHING WITH A SIMPLE RULES 
STRATEGY

As described earlier, three strategic choices 
form the substance of corporate strategy. The 
first centers on how to motivate and control 
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BUs and their managers. The traditional 
view is based upon information processing 
theory (Chandler, 1962; Galbraith, 1973; 
Galbraith, 1974) and transaction cost eco-
nomics (Williamson, 1975). Information 
processing proposes the division of responsi-
bilities within the firm – i.e. corporate execu-
tives engage in high-level strategy, while the 
BU managers focus on the day-to-day opera-
tions of their business units and their BU 
strategy. Transaction cost economics adds 
the assumption that BU managers are likely 
to be opportunistic in their pursuit of self-
interest. Therefore, corporate executives have 
the additional role of monitoring the per-
formance of BU managers such that they 
instead seek the interests of the corporation. 
Alternatively, corporate executives control 
and motivate BU managers through ‘high-
powered’ incentives which reward BU man-
agers for the performance of their BUs and 
stand in contrast to ‘low-powered’ incentives 
which are based on the performance of the 
corporation. Overall, these theories emphasize 
that multi-BU organization is efficient through 
monitoring, incentives, and the rational parti-
tioning of decision-making to the best-in-
formed and motivated executives.

In contrast, complexity theory emphasizes 
the emergence of BU-level strategy from the 
improvisational actions of BU managers 
within the guidelines of simple rules. 
Improvisation enables firms to adapt to rap-
idly evolving markets with frequent strategic 
renewals (Agarwal and Helfat, 2009) that we 
term morphing. A prototypical exemplar is 
Hewlett Packard (HP). The firm started as an 
instruments company, but its BUs morphed 
the firm into a computer firm and then into 
printing by using a highly decentralized 
organization of loosely coupled, modular 
BUs and an improvisational process of adap-
tation driven at the BU-level as anticipated 
by complexity theory.

Central to the complexity theory perspec-
tive on managing BUs is the ‘strategy of 
simple rules’ (Eisenhardt and Sull, 2001; 
Davis et al., 2009). Managing BUs consists 
of focusing on a few key processes and 

related simple rules that enable the improvi-
sational capture of new opportunities at the 
BU-level (Bingham et al., 2007). In other 
words, complexity theory proposes simple 
rules to guide autonomously acting BUs 
such that each BU agent acts accordingly to 
some schemata (Rumelhart, 1984) or rules 
(Gell-Mann, 1995). These rules guide behav-
ior in the absence of central coordination 
such that non-chaotic but ‘complex’ behav-
ior emerges (Reynolds, 1987; Holland, 1996; 
Axelrod and Cohen, 1999). The result is that 
BUs morph in coevolution with the market.

A useful example of this morphing of BUs 
is described in the comparative case studies 
of Internet rivals, Excite and Yahoo!, between 
1993 to 1998 (Rindova and Kotha, 2001). 
This early stage of the Internet was highly 
unpredictable, and so required firms to have 
some, but modest, structure. In particular, 
Yahoo executives focused on several proc-
esses including alliance formation and prod-
uct development, and developed a few rules 
to loosely structure those processes to enable 
improvisation. For example, Yahoo’s simple 
alliance rules included (1) no exclusive deals 
and (2) basic service is always free. Yet 
within these rules, BU managers at Yahoo 
had a significant flexibility to pursue a vari-
ety of unanticipated and often successful 
alliances. Overall, both firms (but especially 
Yahoo) used simple rules to morph from 
being search engines to being Internet desti-
nations, and subsequently Internet portals.

Similarly, Brown and Eisenhardt (1997) 
focus on how the successful BUs of firms in 
the computing industry used a few rules 
within the product development process 
(e.g. responsibility assignments, priorities) 
to morph via frequent release of new prod-
ucts. As a result, these firms frequently 
renewed their product portfolios through 
improvisation. As one developer commented 
‘We fiddle right up until the very end’ (p. 11). 
The resulting interplay of structure and 
improvised action gives rise to ‘complex’ 
behavior that is neither well-structured 
nor completely random (Gell-Mann, 1995). 
So much like a jazz band (Berliner, 1994; 
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Hatch and Weick, 1998), BUs morph (Miner 
et al., 2001).

A key difference between traditional theo-
ries of managing BUs and complexity theory 
is executive roles. From the complexity per-
spective, strategy is not centrally determined 
by corporate executives, but rather emerges 
from BUs. In other words, BU managers, 
who adapt their business activities to chang-
ing market within the context of moderate 
structure, create strategy. A telling example 
is Burgelman’s (1994) study of Intel in which 
he examines the emergence of autonomous 
actions at low levels of the firm in Intel’s exit 
from the DRAM business. The crucial behav-
iors were the reallocation of resources by 
mid-level managers who were following 
simple rules surrounding priorities for manu-
facturing capacity. This action changed the 
trade-off between the mature DRAM busi-
ness and the nascent microprocessor busi-
ness. The later decision to exit DRAMs by 
corporate executives was in fact ex post 
(Burgelman, 1994, 2002). Thus, while tradi-
tional theories emphasize incentives and 
monitoring to motivate and control poten-
tially opportunistic BU managers, complex-
ity theory emphasizes having the appropriate 
processes and the right rules (both content 
and number) in place such that BU managers 
can flexibly and efficiently morph their busi-
nesses in coevolution with their relevant 
environments.

Finally, recent research develops a richer 
understanding of the strategy of simple rules 
by examining more closely the nature of 
simple rules. In a multiple-case, inductive 
study, Bingham et al. (2009) examine the 
internationalization process of entrepreneur-
ial firms to understand how portfolios of 
rules develop over time. They find that the 
relevant rules focus on capturing opportuni-
ties, and that rules for selecting and execut-
ing opportunities are learned first. Later, 
rules surrounding the priority, sequence, and 
timing of multiple opportunities are learned. 
Moreover, the authors find that executives con-
sciously cycle through elaborating and then 
simplifying their rules to maintain moderate 

structures over time. That is, they ‘under-
specify’ their portfolio of rules firms by 
engaging in ‘simplification cycling’. 
Moreover, BU executives actively varied the 
level of abstractness of the deployed rules. 
Lower abstraction renders a rule concrete 
and sharply specified. For example, one BU 
replaced its opportunity selection rule from 
‘retail customers’ to ‘grocery customers’ 
(lower abstraction). Conversely, higher 
abstraction renders a broader, more general 
rule that is more disassociated from particu-
lar instances. For example, one BU raised 
the abstraction of its selection rule from 
‘governments and banks’ to ‘large organiza-
tions with proprietary information and the 
ability to pay’. Recent research has analysed 
the processes how firms develop simple 
rules based on their process experience 
(Bingham and Eisenhardt, forthcoming).  
Overall, this work identifies the types of 
rules, their patterns of being learned, and 
their focus on effective opportunity capture 
such that BUs are able to morph. Table 29.1 
summarizes key differences between tradi-
tional and complexity perspectives as con-
cerns the motivation and control of BUs.

REWIRING CONNECTIONS AMONG 
BUSINESS-UNITS

A second strategic choice at the heart of cor-
porate strategy is the identification and 
implementation of synergistic collaborations 
among BUs. The existence of synergies is a 
prime rationale for the existence of the multi-
business corporation (Panzar and Willig, 
1981; Bailey and Friedlander, 1982; Teece, 
1982; Milgrom and Roberts, 1990). The 
potential for synergies across businesses is 
often central to the strategic logic for firm-
level moves such as diversification and acqui-
sition (Goold et al., 1994; Graebner, 2004). 
Indeed, Bowman and Helfat (2001) have 
argued that cross-business collaborations are 
a significant source of value creation for the 
diversified corporation. Research has shown 
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that the connections among BUs are a 
likely explanation for sustained inter-firm 
differences in profitability (Brown and 
Eisenhardt, 1997; Levinthal, 1997; Rivkin, 
2000; Bowman and Helfat, 2001; Lenox 
et al., 2006). Yet despite its importance, the 
effective capture of synergistic value across 
BUs through collaborations has often proved 
challenging even for otherwise high-per-
forming firms such as Johnson and Johnson 
(Hill and Hoskisson, 1987).

The traditional theoretical perspectives on 
cross-BU collaborations take a corporate-
centric view. They emphasize that central-
ized identification of synergistic collaborative 
opportunities by corporate executives and 
implementation led by corporate executives, 
with firm-wide incentives for BU managers, 
are most likely to yield high-performing, 
cross-BU collaborations (Hill et al., 1992). 
These arguments rest on several assump-
tions. First, according to information process-
ing theory, corporate executives have superior 
information about collaborative opportuni-
ties, and the appropriate authority to 
identify and implement the most promising 
cross-BU connections (Chandler, 1962, 1991; 
Sloan, 1963; Freeland, 1996; Gupta and 
Govindarajan, 2000). It is also assumed that 
potentially high-performing collaborative 
opportunities are well-formed and obvious to 

these corporate executives. Further, as argued 
by transaction cost economics, corporate 
executives have the appropriate firm-wide 
incentives for finding and leading cross-BU 
collaborations while BU managers who might 
otherwise pursue self-interest can be moti-
vated to collaborate by firm-wide incentives 
(Williamson, 1975; Hill et al., 1992). Fur-
thermore, corporate executives are assumed 
to be able to resolve conflicts among collabo-
rating BUs (Boulding, 1964) and enforce 
the sharing of resources (Berg, 1973; Pitts, 
1977). Indeed, from the perspectives of infor-
mation processing theory and transaction cost 
economics, a primary responsibility of cor-
porate executives is the development of cross-
BU collaborations (Chandler, 1991; Collis 
and Montgomery, 2004).

In contrast, complexity theory takes a 
BU-centric view in which high-performing, 
synergistic collaborations across BUs 
emerge from the interactions among BU 
members engaging in their own self-inter-
ested actions (Martin and Eisenhardt, 2010). 
These collaborations often begin with ser-
endipitous problems and opportunities 
rather than being explicitly pursued and 
planned. As a consequence, collaborations 
often start informally and at low organiza-
tional levels such as when low-level BU 
engineers realize that working together on 

Table 29.1 Motivation and control of business units (BUs)

Traditional perspectives Complexity perspective 

Objective Efficient alignment of BU actions with firm 
objectives

Effective morphing of BU in coevolution 
with market 

Role of corporate 
executives

Monitor BU actions and reward BU 
managers with ‘high-powered’ incentives

Appoint high-quality BU managers 
and reward them with ‘high-powered’ 
incentives

Role of BU managers Identify and execute business strategy Identify and execute business strategy 
in accordance with corporate-wide 
simple rules, to morph their BU

Focus Strategic content Strategic content and moderate number 
of rules

Steps Identify attractive markets
Locate defensible position
Fortify that position

Identify key processes with attractive 
opportunity flow
Determine simple rules for capturing 
opportunities

Risk BU managers will be too slow and rigid 
to change

BU managers will be too tentative in 
executing on promising opportunities
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shared product components might be 
mutually beneficial. BU general managers 
and their organizations then develop these 
promising emergent collaborations by rewir-
ing the firm’s web of cross-BU connections 
through the formation of collaborations. 
Frequent ‘rewiring’ (Martin and Eisenhardt, 
2010) allows the firms to coevolve with 
changing markets, target new growth oppor-
tunities, and generate innovation (Wuchty 
et al., 2007). A well-known example is 
Disney, a firm that frequently forms and 
disbands collaborations among diverse BUs 
including theme parks, TV channels, retail 
stores and movies (Eisenhardt and Galunic, 
2000). The result is extensive synergistic 
value creation among Disney’s various busi-
nesses including well-known collaborations 
around proprietary characters such as the 
Lion King as well as lesser-known 
collaborations that leverage competences 
throughout Disney such as managing 
restaurants.

An in-depth example of rewiring is the 
study of cross-BU collaborations within six 
software firms (Martin and Eisenhardt, 2010). 
Examining both a high- and low-performing 
collaboration in each firm, the authors find 
that serendipitously discovered collaborative 
opportunities by BU members are more 
likely to create high-performing cross-BU 
collaborations than planned collaborations 
identified by corporate executives. In this 
BU-centric view, collaborations among BUs 
are not preplanned, but emerge in reaction to 
opportunities such as collectively developing 
shared product components and problems 
such as scarce resources and competitive 
threat. For example, Martin and Eisenhardt  
quote one BU manager: ‘It was really a 
groundswell. … They [engineers from the 2 
BUs] just started meeting to solve the prob-
lem. It did not come from an executive [cor-
porate] level where it’s, “Thou shalt do it” ’. 
Moreover, in contrast with traditional views, 
these collaborative opportunities are typi-
cally ill-defined such that it is not obvious 
a priori how or whether to pursue them. So 
BU members further develop promising 

collaborative opportunities through deliber-
ate learning activities such as experimenta-
tion that involve customer focus groups or 
technological prototyping and deconstruc-
tion of past successes and failures in similar 
collaborations. This learning serves to clarify 
the value of the collaboration and how best 
to proceed as well as builds support for the 
collaboration among participating BUs. 
Martin and Eisenhardt (2010) also find that 
the ultimate decision to implement and the 
implementation approach rest with BU gen-
eral managers. Thus, high-performing 
cross-BU collaborations are driven at the 
BU-level as anticipated by complexity theory, 
and enable BUs to recombine existent knowl-
edge to generate innovations and growth 
(Hargadon and Sutton, 1997; Wuchty et al., 
2007). In contrast, the authors find that a 
corporate centric approach is not effective. 
Rather, corporate executives lack detailed 
knowledge of the BUs, are overly confident 
of their own ability to spot high-performing 
collaborative opportunities (Roll, 1986; 
Hiller and Hambrick, 2005) and are too 
dismissive of the challenges that are posed 
by the implementation of collaborations 
(Freeland, 1996). Yet, given their authority 
within the firm, corporate executives can 
nonetheless impose collaborations on their 
firms.

A key difference between traditional theo-
ries of identifying and implementing syner-
gistic cross-BU collaborations and the 
complexity view is executive roles. From the 
complexity theory view, collaborations 
emerge from BUs and are shaped by BU 
managers. Thus, collaborations are decen-
tralized. But while corporate executives are 
not leading collaborations, they nonetheless 
set the stage for high-performance by facili-
tating their emergence and implantation. 
They do so by reducing the costs of identify-
ing and transferring knowledge among BUs 
(Hansen, 1999), creating mutual trust and 
fostering informal relationships among BU 
managers (Tsai, 2000), and appointing high-
quality BU managers in whom others will be 
confident. Thus, they may institute simple 
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approaches such as placing coffee bars in key 
office areas such that BU members have 
opportunities to meet serendipitously (Brown 
and Eisenhardt, 1997), or more complicated 
approaches such as fostering cross-BU career 
paths (O’Reilly III and Tushman, 2004: 79; 
Williams and Mitchell, 2004; Williams and 
Karim, 2008), allowing double-counting of 
collaboration-related revenues to participat-
ing BUs, and employing ‘synergy managers’ 
whose job consists of connecting BU mem-
bers who might have common interests. 
Overall, the key point is that, while corporate 
executives do not effectively identify and 
implement collaborations across BUs, they 
can set the contexts that enhance the likeli-
hood that useful collaborations will emerge 
and be successfully implemented.

A second key difference between tradi-
tional theories and complexity theory is the 
role of incentives. Transaction cost econom-
ics, in particular, emphasizes the importance 
of firm-wide incentives for BU managers to 
encourage their cooperation in cross-BU col-
laborations. The notion is that BU managers 
will not be motivated to cooperate unless 
their incentives are aligned with the fate of 
the entire firm. In contrast, complexity theory 
assumes that high-performing collaborations 
are motivated by the self-interested actions of 
the BU managers and so incentives based on 
BU performance encourage the formation of 
synergistic collaborations. Here the argu-
ment is that it is difficult and even impossible 
to identify the optimal, high-performing col-
laborations and so the best approach to iden-
tifying such optimal collaborations is to 
identify those collaborations that each 
involved BU sees as adding local, BU-level 
value. Thus, the complexity perspective con-
trasts with a collectivist culture where col-
laboration for the sake of collaboration is 
valued as well as with a top-down, central-
ized view (Eisenhardt and Galunic 2000). 
Further use of high-powered incentives based 
on BU performance is simple, and more 
effective than more complicated blends of 
high- and low-powered incentives (Wageman 

and Baker, 1997; Kretschmer and Puranam, 
2008).

Finally, a particular interesting notion from 
the lens of complexity theory is that a moder-
ate number of cross-BU connections is high-
est-performing with this optimal number 
declining with increasing environmental 
unpredictability (Davis et al., 2009). So 
while traditional views implicitly assume 
that more collaborative connections among 
BUs are more value-creating for the firm, 
complexity theory does not. Rather, fewer 
collaborations can be higher-performing 
when they focus the attention of BU manag-
ers on successfully executing the most prom-
ising collaborations while also ensuring that 
they attend to managing their BUs effec-
tively. Thus, a moderate number of cross-BU 
connections renders the highest performance 
by balancing flexibility and efficiency. 
Indeed, over-connected BUs become grid-
locked, and unable to morph. A good exam-
ple is Vail Ski Resorts, a firm consisting of 
multiple ski destination resorts in the US. 
The firm was assembled through a series of 
acquisitions with the intent of driving syner-
gistic value creation top-down across the 
resorts (Eisenhardt and Galunic, 2000). But 
the resulting over-connection reduced the 
individual uniqueness of the resorts and sti-
fled their flexibility to adapt to their local 
environments. To repair the damage, execu-
tives eliminated numerous ties and set the 
conditions that enabled the emergence of 
new, more high-performing connections from 
the ski resorts themselves. Unexpectedly a 
lower number of collaborations created 
greater synergistic value among the 
BU-resorts than greater connection. The cen-
tral point is the importance of focusing on 
only a moderate number of potentially high-
performing collaborations rather than pursu-
ing all possible collaborations as anticipated 
by complexity theory. Table 29.2 summarizes 
key differences between traditional and com-
plexity perspectives as concerns the identifi-
cation and execution of synergistic BU 
collaborations.
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PATCHING THE ARCHITECTURES 
OF BUSINESS-UNITS

A third strategic choice of corporate strategy 
centers on the determination of horizontal 
and vertical scope within the firm. From the 
perspective of traditional theories, the domi-
nant logic for the scope of the firm is effi-
ciency (Porter, 1980). Vertical scope, i.e. the 
decision to make or buy, is shaped by mini-
mizing the transaction costs associated with 
small numbers bargaining and asset specifi-
city (Williamson, 1975) and gaining the 
economies of scale associated with greater 
volume. Horizontal scope, i.e. the decision in 
which markets the firm is active, is shaped by 
the efficient sharing of resources across BUs 
(Teece, 1980). Thus, executives should 
expand the horizontal scope of the firm if 
there are opportunities to leverage existing 
resources. Overall, this perspective empha-
sizes efficiency and thus appropriate scope, 
but does not consider how firm executives 
structure their internal organization to achieve 

scope efficiencies or adjust that scope as 
environmental conditions shift.

In contrast, the complexity theory view 
focuses on the patching process by which 
executives frequently realign firm scope in 
coevolution with the environment (Eisenhardt 
and Brown, 1999). By patching we mean the 
process by which executives set the architec-
ture of the firm and its scope by adding, 
eliminating, combining and splitting BUs, 
and transferring product-market charters 
among them. The notion is that the corpora-
tion is a complex adaptive system in which 
the patchwork or architecture of BUs is con-
tinually realigned with the environment via 
patching. Thus, the complexity theory view 
not only focuses on scope, but also on the 
internal architecture of the system of BUs. 
Moreover, as environments change, the BU 
architecture may become obsolete. Firms can 
correct these misfits by combining, splitting 
or adding BUs or reassigning an extant BU to 
a new product-market domain4 (Galunic and 
Eisenhardt, 1996, 2001; Eisenhardt and 

Table 29.2 Identification and execution of synergistic BU collaborations

Traditional perspectives Complexity perspective 

Objective Efficient cost synergies Effective rewiring of BU connections in 
coevolution with markets

Role of corporate 
executives

Identify promising, well-defined 
collaborations, with fiat to execute 
given to BUs

Set the context in which cross-BU 
collaborations can emerge from BU-driven 
initiatives

Role of BU managers Corporate driven: Execute cross-BU 
collaborations identified by corporate 
executives

BU driven: Lead deliberate learning to 
shape and vet promising, but ill-defined 
cross-BU collaborations, make decisions 
to collaborate with other BUs, and 
collectively execute

Focus Content of synergistic collaborations Content and number of synergistic 
collaborations

Steps Corporate executives seek collaborative 
opportunities
Corporate executives make decision to 
collaborate
BU managers plan and execute

BU members serendipitously find 
collaborative opportunities
BU members deliberately learn about the 
collaboration
Multi-business team of BU managers 
decide to collaborate and execute

Risks Poor collaborations are executed
Good collaborations are poorly 
executed
Too many collaborations executed 

Optimal, firm-wide collaborations are 
neglected
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Brown, 1999). Thus, by patching, firms are 
able to target changing opportunities, create 
and recombine resources, and generate inno-
vation (Macintosh and Maclean, 1999; 
Lichtenstein, 2000; Karim, 2009). A well-
known example of patching is Dell Computers 
in which the firm reassesses its architecture 
of BUs on a quarterly basis for many years. 
Another exemplar is Hewlett Packard’s (HP) 
where executives relied on patching to grow 
their instruments, computing, and printing 
businesses. To ensure focus, executives fre-
quently rearranged BUs, lopping off pieces 
and transferring them to new and existing 
BUs (Eisenhardt and Brown, 1999). Overall, 
by engaging in patching (Ciborra, 1996; 
Levinthal and Warglien, 1999; Galunic and 
Eisenhardt, 2001), firm executives can create 
corporate value in a way that is uniquely 
available inside corporations and not easily 
replicated by the market.

Galunic and Eisenhardt (1996, 2001) 
examine the patching process within a par-
ticularly successful, technology-based firm 
by studying the frequent re-assignment of a 
product-market domains (or charters) to BUs. 
They find that executives within the firm 
(termed Omni by the authors) frequently 
revisit the match of BUs, their skills, and 
business opportunities with the environment, 
and realign them as appropriate. This gener-
ates competition for charters among BU that 
not only is beneficial for the BU-domain fit, 
but also increases the overall competitive-
ness, fit, and flexibility of the firm. Corporate 
executives act as referees of the BU competi-
tion, find safe BU ‘homes’ for orphaned 
charters and reinvigorate flagging BUs by 
assigning new charter opportunities to them.

There are several antecedent conditions 
that enable effective patching (Eisenhardt 
and Brown, 1999). First, the firm has to be 
organized such that BU modularity exists 
whereby the firm is broken into discrete, 
unique BU chunks (Schilling and Steensma, 
2001; Langlois, 2002). Second, fine-grained 
comparable business metrics are needed to 
allow corporate executives to recognize gen-
eral patterns in the environment, identify 

non-performing BUs, and facilitate the 
novel combination of extant BUs. Third, 
companywide compensation parity is impor-
tant because it mitigates barriers to moving 
employees among BUs. These conditions 
facilitate the realignment of BUs and product-
market charters that is at the heart of 
patching.

A key difference between traditional theo-
ries and the complexity theory view is execu-
tive roles. Prior theory emphasizes the 
corporate executives set firm scope based on 
efficiency criteria. But there is no substantive 
consideration of the process by which this 
occurs. In contrast, complexity theory empha-
sizes a more complicated political process 
involving corporate executives and BU man-
agers who may be competing with one 
another for product-market opportunities. 
This process includes spotting opportunities, 
breaking up BUs that are too big for effective 
morphing, combining ones that are too small 
for scale efficiency, and refereeing by 
corporate executives among BUs that are 
competing for converging product-market 
opportunities. Consequently, a key skill of 
corporate executives is pattern recognition of 
the environment (Ciborra, 1996; Eisenhardt 
and Brown, 1999) that enables them to rec-
ognize trends in how markets evolve to 
develop corresponding products, services or 
technologies.

A second key difference is the critical 
importance of BU scale. While it is straight-
forward to recognize that firm scope and 
architecture should match distinctive BU 
competences with corresponding product-
market opportunities, the complexity view 
uniquely emphasizes the importance of BU 
scale that fits with unpredictability of the 
relevant environments. This means smaller 
scale that favors flexibility in unpredictable 
environments and larger scale to favor effi-
ciency in more predictable ones (Eisenhardt 
and Brown, 1999; Ethiraj and Levinthal, 
2004). Small BUs allow the firm to adapt to 
market niches while large BUs have the 
advantages of economies of scale, lower 
coordination costs, and sufficient resources 
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to pursue opportunities (Eisenhardt and 
Brown, 1999; Burgelman and Grove, 2007). 
The optimal scale occurs at the edge of chaos 
where executives balance efficient scale 
economies with flexible adaption in unpre-
dictable markets. Table 29.3 summarizes key 
differences between traditional and complex-
ity perspectives as concerns the determination 
of firm scope.

CONCLUSION

The purpose in this chapter is to understand 
corporate strategy from the perspective of 
complexity theory, and to contrast that 
understanding with traditional theories of 
corporate strategy. As noted earlier, com-
plexity theory focuses on the fundamental 
tradeoff between efficiency and flexibility. 
So, finding a balance between too much 
structure and too little, and shifting that bal-
ance (and narrowing the range of optimal 
structures) as environments become more 
unpredictable are at the heart of the perspec-
tive. The complexity theory view is unique 
in its focus on processes – i.e. morphing in 
which the BUs coevolve with changing mar-
kets by using a simple rules strategy that 
enables improvisation; rewiring whereby 

the BUs create new connections (dissolve 
obsolete ones) among each other to create 
synergistic value; and patching in which 
corporate executives combine, split, add or 
eliminate, and reassign product-market 
domains to shape firm scope and BU archi-
tecture in coevolution with the environment. 
While these three processes differ, their 
common roots in complex adaptive systems 
are evident – i.e. they emphasize the impor-
tance of a moderate degree of structure and 
the pursuit of coevolutionary adaptation 
with the environment through the decentral-
ized actions of BU-agents who collaborate 
and compete with one another in pursuit of 
self-interest.

We propose several directions for future 
research. Much of the prior work uses case 
studies and simulations. While these meth-
ods provide a useful toolkit for exploring 
emergent, nonlinear dynamics that are the 
mainstay of complexity theory, incorporat-
ing other methods may generate novel 
insights. Recently, some scholars have begun 
to explore questions related to complexity 
theory and strategy using large-scale quanti-
tative analysis (see for example, Lenox et al., 
2010). Another promising direction lies 
at the intersection of complexity and net-
works and questions related to corporate 
strategy and management. Amaral and Uzzi 

Table 29.3 Determination of firm scope

Traditional perspectives Complexity perspective

Objective Efficient firm scope Effective patching of firm scope and 
BU architecture

Role of corporate executives Determine and execute efficient 
external boundaries

Match patterns in evolving markets 
to internal and external boundaries

Role of BU managers Operate BU within assigned product-
market domain

Morph BUs in coevolution with 
product-market domain(s)

Focus Content of firm scope Content of firm scope as well as 
architecture and scale of BUs

Steps Identify economies of scale and 
scope, and transaction costs
Set external boundaries of the firm

Referee competition among BUs
Fill market ‘white spaces’
Set internal and external boundaries 
of the firm

Risks Misalignment of firm with markets
Failure of major corporate 
reorganizations

Excessive competition among BUs
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(2007: p. 1034) argue for example, that there 
are ‘many management scenarios that exhibit 
network structures and emergent behavior’. 
These and other scholars extolled the virtues 
of network analysis as a way to quantify the 
relationships and interactions that may arise 
within a firm and that may shape corporate 
strategy making. A third research direction 
has less to do with methodology and more to 
do with theoretical abstraction. Complexity 
theory, especially as it has been used in 
simulation models, has developed in an 
abstract fashion, and focused primarily on 
the amount of structure in organizations, 
centralization, and connectedness. There are 
opportunities to link the theory more explic-
itly with the real-world characteristics of 
organizations. As an example, our under-
standing of optimal organizational design 
from a complexity perspective might profit 
from a more concrete conceptualization of 
actual structural elements. A final research 
direction centers on temporal dynamics. 
Extant studies provide little guidance on 
appropriate pace of change. While the need 
for corporate adaptation is clear, we have 
limited knowledge about the optimal speed 
of doing so. Overall, there exist several 
opportunities for new research directions 
that extend complexity theory with new 
methods and more explicit linkage of the 
theory to empirical reality.

We conclude by noting Pagels’ (1988: 12) 
argument that ‘Science has explored the 
microcosms and the macrocosms; we have a 
good sense of the lay of the land. The great 
unexplored frontier is complexity’. This 
quotation reflects our view of future 
research. Indeed, complexity theory adds a 
rich understanding of corporate strategy to 
the organization theory and strategy litera-
tures even as it moves those literatures away 
from the general linear model (Meyer et al., 
2005) and toward a more complex and 
emergent one. Overall, the holistic and sys-
temic focus of complexity theory is an 
essential lens to better understand ‘the 
causes of things’ in major, diversified 
corporations.

NOTES

1 We appreciate the comments of Steve Maguire 
and our anonymous reviewer as well as the generous 
financial support of the Stanford Technology Ventures 
Program.

2 Different ways of conceptualizing complexity 
exist (see for an overview Lloyd, 2001). For example, 
an alternative stream of research measures complex-
ity capturing characteristics of the system (Simon, 
1976). We regard the measuring of the behavior to 
be more suitable as the structure itself might be very 
simple but nevertheless give raise to complex behav-
ior as evident in the example of the logistic map 
equation (Verhulst, 1838; Ausloos and Dirickx, 2006). 
Thus, even a deterministic and rather simple equa-
tion structure can result in some sort of complex 
behavior and have dynamical trajectories (May, 
1976; Cohen and Stewart, 1994).

3 Almost simultaneously, Crutchfield and Young 
(1990) coined the expression ‘onset of chaos’ to 
describe the same type of phenomenon.

4 A product-market domain consists of the goods 
and services the organization provides and the 
market or populations it serves.
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More than a Metaphor: 

Complexity and the New Rules 
of Management

J a m e s  K .  H a z y

INTRODUCTION

This chapter is written for the practicing 
executive. It explores just how a reader 
should process the material in this Handbook. 
In particular, it considers whether the ideas 
expressed represent only a rich metaphor for 
the problems faced in practice, or if they 
represent a more serious contribution to man-
agement practice and offer new insights that 
must be taken into account by thoughtful 
managers. This is not a trivial distinction, 
and it has significant implications for the 
practicing manager.

If the complexity perspective is but a 
metaphor, it goes like this: If organizations 
were like organisms, or molecules or lasers, 
or automatons, this is how they would work. 
Of course, since we all know that human 
beings are not molecules, and organizations 
are not lasers, although these findings are 
interesting, the reader who is facing practical 
problems in human organizations every day 
would take the material written on the pages 
of this book in a certain way. One would be 
looking for insights, perhaps, but not actually 

searching for a new and better way of doing 
things tomorrow.

If instead, there is more to this complexity 
model than that. If these ideas can be directly 
applied to human organizing efforts and if 
they do indeed tell us what is really going on 
within our organizations, then that same 
reader must take a different stance, realizing 
that he or she had better read this book very 
closely. If this latter interpretation is accu-
rate, then if you don’t understand and make 
effective use of these ideas, one of your com-
petitors surely will. It may become a matter 
of survival. The question then is whether this 
book is an elaborate metaphor or is indeed 
the beginnings of a new science of manage-
ment. In this chapter I hope to convince the 
reader that the latter applies and therefore 
that this Handbook does indeed deserve close 
attention.

To advance my argument I begin with an 
overview and synthesis of key complexity 
and dynamical systems concepts that have 
been covered in the volume. Together, these 
ideas describe a new paradigm in human 
organizing, management effectiveness and 
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adaptation. In this chapter, I distill what I 
found in this volume into some of the key 
lessons for practicing executives that can be 
derived from this new complexity paradigm. 
These are organized into what I call the five 
new rules for management. I conclude with 
some thoughts about the future. To begin, 
I summarize a new complexity-informed 
approach to management.

A NEW PARADIGM FOR 
MANAGEMENT PRACTICE

In this chapter I assume that organizations can 
be represented as complex adaptive systems 
with individuals acting as interdependent, 
semi-autonomous agents. Further, it is assumed 
that not only do individual agents learn, but 
information about the environment can be 
incorporated into the structure of the system 
of agents (Hazy, 2008b), and as a result, the 
collective as a whole can learn through changes 
to its structure just as its individual agents can 
learn (Midleton-Kelly and Ramalingam, this 
volume). In other words, it assumes that organ-
izations can be understood as complex adap-
tive systems as defined by Holland (1975).

Organizations as stable 
dynamical systems

Organizations are complex. As many of the 
chapters in this book argue, they are charac-
terized by nonlinear interrelationships and 
interdependencies among diverse individuals 
(Maguire, this volume; Tracy, this volume). 
It is not surprising that the practice of pre-
dicting outcomes within organizations often 
challenges the limits of simplified analytical 
models. Linear models that assume that a 
change to one variable, such as production 
levels, will have a corresponding ‘linear’ 
impact on another variable, perhaps sales, are 
particularly limited. So many simplifying 
assumptions must be made in these cases, 
that the model’s predictions seem to ignore 

‘the real world’. ‘Sales’ only increases line-
arly with ‘production’ under very restricted 
conditions with respect to demand, consumer 
preferences, the economic environment, etc. 
Taking all of these factors into account 
is often beyond the capacity of the tradi-
tional modeling approaches used in business 
organizations.

Help is on the way. Prietula (this volume) 
describes one approach to dealings with com-
plexity, computational modeling, an approach 
that is particularly useful when analytical 
solutions are not possible. For practical appli-
cations, however, this modeling approach is 
only in its infancy. Fortunately, there has also 
been progress on the analytical side in the 
form of nonlinear dynamical systems mode-
ling (Guastello, this volume, 2002; Goldstein 
et al., 2010; Hazy et al., 2010). This type of 
modeling describes the combinations of vari-
ables that are allowable given boundary and 
initial conditions, and how combinations of 
factors change as a system over time. In other 
words, if one seeks to increase sales growth 
by increasing production, the organization’s 
profitability rate might come down as operat-
ing expenses increase for market develop-
ment and advertising.

As experienced managers realize, however, 
in addition to these direct impacts, free cash 
flow might also decrease into the future even 
more than expected. This is because cash is 
being consumed in working capital to build 
inventories and to extend customer credit to 
fuel growth. Further, time delays in employee 
hiring might require that staffing activities 
begin in anticipation of growth, and these 
may overshoot the mark. If not carefully man-
aged, the delayed effects of increasing payroll 
and operating costs can increase an organiza-
tion’s burn rate putting downward pressure on 
cash flow and profits in future periods. If 
sales growth doesn’t materialize as planned, 
the firm may be more vulnerable to collapse 
than management thought, particularly if they 
were locked into linear-thinking (Hazy et al., 
2010). Many managers know this, of course, 
but they don’t always act like they do partly 
because they don’t have the right tools to 
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think about these issues. This is where com-
plexity science can help.

Individuals acting within complex 
organizations

The nonlinear interrelationships among indi-
viduals and functions (many of which are not 
clearly specified in models) and the critical 
need for effective communication among 
individuals, functions and departments in 
respect to these interdependencies, make an 
organization an exceptionally difficult envi-
ronment for individuals to navigate. Managers 
must make sure their actions don’t inadvert-
ently create an organization that is unstable 
or one that can’t respond quickly to change. 
This realization is the basis of the first new 
rule for management that I describe later: 
Think evolution of resilience not design for 
stability.

Organizational stability and individual 
action within an attractor cage
Several chapters in this book allude to the idea 
that certain organizational states ‘attract’ 
nearby states to them. Merali and Allen (this 
volume) described structures like warehouses, 
factories and even websites that, once estab-
lished, build upon themselves to ‘attract’ 
activity toward them. As a general matter, 
attractors within a dynamical system are 
defined as subsets of all of the possibilities 
that are likely and such that once the organiza-
tion assumes one of these configurations it 
tends to stay there. It attracts other states such 
that the organization gets stuck in the attractor 
state. The organization becomes, in a sense, 
‘stable’, bouncing around within the attractor 
configurations (Abraham and Shaw, 1992; 
Hirsch et al., 2004; Hazy et al., 2010). It is 
common for managers to find that their organ-
izations and groups fall into conformity, rou-
tines and common modes of operations. When 
individuals become socialized to common 
procedures or work rules, whether explicit or 
implicit, it is reasonable to think of these 
procedures as ‘attractors’ in some sense.

The good news from complexity research 
is that when an organization is subject to an 
attractor and even if specific events within 
the system, like sales calls and product 
development efforts, are not predictable, one 
can predict that a system as a whole will 
remain within certain boundaries. These 
boundaries define what is called an attractor 
cage. Action and choices by individuals that 
occur in an organization constrained within 
an attractor cage are said to operate in a 
convergent complexity context where stabil-
ity is the objective of management actions 
(Hazy, 2009a).

Experimentation to learn about the 
environment
Up until this point, I have not described the 
importance of initial conditions. The inher-
ent uncertainty with respect to specific initial 
conditions, and even the possibility that there 
are previously undetected drivers of out-
comes, can make organizational dynamics 
unpredictable in the details even as they 
remain predictable in the aggregate. This 
type of unpredictability is called sensitivity to 
initial conditions (SIC). In other words, all 
that can be known specifically is that the 
system will be in its attractor cage. Where it 
will be exactly is a matter of probability.

Unpredictability also arises due to chance 
occurrences, such as employee turnover and 
customer purchasing decisions, for example. 
In organizations, surprises happen all the 
time. The invention of the microprocessor by 
Intel was serendipitous and unplanned; it was 
a surprise (Hazy, 2008a; Hazy et al., 2010), 
and it fundamentally changed the operating 
environment both within the company and 
beyond it. Not only was this significant event 
not predictable or deterministic – i.e. it was 
an experiment at Intel, a ‘butterfly event’ 
as McKelvey (this volume) calls it, in the 
organization – it also introduced divergence 
and instability into the organization with 
dramatic long term effects. In the process, 
the microprocessor ‘experiment’ created new 
information about growth prospects along 
newly identified independent variables: new 
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technology and a brand new market space 
(Hazy, 2008a; Hazy et al., in press).

To understand these situations it is useful 
to consider the role of information and how it 
is gathered and used (Gell-Mann, 2002) in 
organizations. In the case of organizations, 
there is locally relevant information that is 
largely irrelevant to the organization writ 
large. Which customer calls are planned on a 
given day and which employees are in the 
office, are examples of this. In contrast, there 
is also more globally relevant information 
like technology, economic and market trends. 
Futurists sometimes call information that 
reflects large scale forces in the environment 
‘weak signals’, ‘long waves’, or ‘mega 
trends’. As these forces act on the organiza-
tion, new information – surprise – may 
become available as events unfold. Under 
appropriate management (described later), 
patterns can be recognized and used to pre-
dict future states of the organization in its 
environment. This realization implies the 
second new rule for management that I 
describe later: Be open to surprises across all 
levels of scale.

From the manager’s perspective, the 
demands of maintaining organized stability 
in human systems can easily be allowed to 
dominate day-to-day activities and over-
whelm attempts to recognize ill-formed pat-
terns that result from large scale forces. 
However, if distractions can be set aside and 
the right organizational experiments under-
taken, weak-signals may be recognized. 
Under these conditions, discontinuous change 
across the organization can occur as agents 
gather and use the information and the firm 
absorbs it into its structure (Boisot, this 
volume). This implies the third new rule for 
management: Drive effectiveness looking 
forward (not backward).

Once trends are recognized, the organiza-
tion may need to change direction. Complexity 
offers help here as well. The key idea is that 
the shape of the organization’s attractor cage 
can be changed by modifying the constraints, 
or boundary conditions, acting on the organi-
zation (Guastello, 2002, this volume; Haken, 

2006; Goldstein et al., 2010). Certain changes 
to boundary conditions – for example changes 
to cultural constraints might allow for the 
expression of contrary perspectives, or toler-
ance of projects that are ‘off strategy – can 
cause the organization’s attractor state to 
bifurcate. This means that rather than one 
attractor cage, the organization enters a criti-
cal period where it can follow one of several 
possible paths into the future (Goldstein 
et al., 2010).

When a system switches from one path to 
another, for example when Intel changed 
trajectories from that of a dynamic random 
access memory (DRAM) chip company to 
that of a microprocessor firm (Hazy, 2008a), 
it reflected this kind of bifurcation. At or 
near the bifurcation point, two attractor 
cages coexist, and the organization can 
seem to oscillate back and forth according 
to random events, or it can appear to be 
two ‘firms’ at once. In other words, transi-
tions do not have to be sudden. Intel was 
both a memory and a microprocessor 
company for over ten years as it made the 
transition (Hazy, 2008a). Conditions near a 
bifurcation point, where two or more 
attractor cages coexist, enable the organiza-
tion’s leadership to make a choice about 
future direction. This choice is best made by 
generating experiments, and from them, 
identifying and building on what Haken 
(2006) calls order parameters that describe 
large scale trends and how the organization 
can take advantage of them. These conditions 
embody what has been called a generative 
complexity context (Hazy, 2009b). This is 
where the future of the firm is generated 
through experimentation, variation, selection 
and retention of successful experiments 
(Surie and Hazy, 2006).

Finding the new way forward
When an organization is operating in a gen-
erative context, identifying a preferred 
state among multiple possible futures is 
another challenge for leadership. This I 
describe later as the fourth new rule for 
management: Build models and encourage 
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focused experimentation. To find these 
futures, agents in the organization engage in 
experimentation to generate information 
about the intersection between the organiza-
tion and the environment. Individuals in the 
organization can gather this information and 
use it as they attempt to recognize patterns 
and then infer the presence of opportunity 
potential in the environment. Choosing to 
follow some of these toward a successful 
future is one area where individual decisions 
can influence the organization’s direction 
and success. Along the way, multiple future 
states – several product possibilities – can 
become evident. The challenges for individu-
als who are trying to hold the whole organi-
zation together in the face of both local 
convergence to attractor cages and the gen-
erative dynamics that will come to define 
new attractor cages are a key element of lead-
ership. These conditions constitute what is 
called a unifying complexity context (Hazy, 
2009a), and this brings me to the fifth new 
rule for management: Recognize larger scale 
patterns and ride waves of renewal (Hazy, 
2009b). In the next section, I look at each of 
these new rules in detail.

FIVE NEW RULES

The insights from this book, when consid-
ered in the context of the new paradigm 
described above, change the rules of manage-
ment. In addition to what this might imply 
for executive seminars and business school 
curricula, I also mean that it changes the 
‘rules’ in the sense of local ‘rules of interac-
tion’ (Prietula, this volume) that are a central 
concept to complexity research (Holland, 
1975; Tracy, this volume). Changing these 
rules of interaction changes the structures 
that emerge through interaction over time. It 
changes the future, and this is indeed funda-
mental. Although there are many implica-
tions, I divide those that I feel are most 
important into what I am calling the five new 
rules of management.

New Rule #1: Think evolution 
of resilience and not design 
for stability

One of the most common words one hears in 
today’s organizations is ‘design’. This will 
change as an evolutionary mindset in an 
uncertain future replaces the false certainty 
that is implied by the word ‘design’. Today, 
managers design their organizations for con-
trol, stability and efficiency. Operations 
people design their processes; HR profes-
sionals design their compensation and bene-
fits programs. Engineers design their products, 
or the features of their products, or they 
design an office complex, or a work space, or 
a manufacturing line. Marketers design their 
programs and their advertisements, and mail-
ings and so on and so forth. Even finance 
gurus design derivative instruments.

This design approach, of course, has its 
advantages. It makes use of what the human 
intellect and aesthetic sense has to offer in an 
effort to improve things. However, as a mind-
set for business management, it has a fatal 
flaw: It assumes predictability and an end 
point. A design might be completed, but the 
system is never finished. A design might be 
appealing, or aesthetic, or simple, or elegant, 
but in business, there is no end point in any 
absolute sense. Each design is actually a 
‘variation’ on previous structures, a trial to be 
tested in the real world. Each is one step in an 
endless process of variation, test in context, 
selection of successful tries, and then the 
retention of what is helpful and the discard-
ing of failed attempts (Merali and Allen, this 
volume).

This difference is a critical one for man-
agement, because it determines what we 
manage. In a design mindset, managers 
reward, well, ‘designs’. This misreads the 
drivers of success. What an evolutionary 
mindset rewards, in contrast, is the complete 
process of variation, selection and retention. 
To do this well, attention must also be paid to 
the process of identifying appropriate criteria 
for selection and for retaining the good and 
discarding that which is not helpful. In my 
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experience, many organizations are not so 
good at this part, trusting instead their 
‘designers’. Organizations are not good at 
stopping things that do not help (Royer, 
2003). As a result, organizational artifices are 
built up, office complexes and management 
perquisites, for example, that become struc-
tural attractors (Merali and Allen, this 
volume) in their own right. This is bad for 
business.

Importantly, there is a sense that once 
something new is tried, once a design trial is 
launched, the situation is forever changed 
(Juarrero, this volume), and there is no going 
back. The launch of the New Coke in 1985 
by Coca-Cola is an example of this (Greising, 
1998). Human beings have memory, and an 
individual’s history impacts his or her future 
choices. Although, with the launch of a new 
trial things are not necessarily better, they 
have indeed changed. When New Coke 
failed, the company could not go backward; 
it could only move forward. The firm’s deci-
sion to reintroduce Classic Coke, which ulti-
mately replaced New Coke in the market, 
was an example of effective management 
from an evolutionary perspective. From the 
New Coke experience, the CocaCola com-
pany, and its CEO, Roberto Goizueta, learned 
what the market wanted from the company. It 
wasn’t a sweeter recipe. It was a brand. This 
evolutionary experience was followed by one 
of the most successful periods in the com-
pany’s history (Greising, 1998).

In a rapidly changing world, managers 
must realize that a design, any design is just 
a ‘variation’ in the evolutionary sense, but in 
many cases it is also an irrevocable one to be 
sure, like a baby being born. Changes once 
made cannot easily be undone. They can only 
be changed again. This realization points to 
the importance of resilience as a characteris-
tic of organizations (Juarrero, this volume). 
Organizations must be quick to respond to 
change and also to recover from failed 
attempts at ‘design’ as the New Coke fiasco 
demonstrated (Greising, 1998). That being 
said, managers must also realize that most 
design changes are quite superficial, and are 

usually quite easily shed by a resilient organ-
ization. The focus must be on the nature of 
the variation to be tested, the pressures for 
and against selection that are being experi-
enced, and the execution of an approach that 
ensures that fitness enhancing variations will 
be reinforced while others are quickly aban-
doned at minimum cost (Hazy, 2008b).

One example of the ascendency of a resil-
ience objective (Juarrero, this volume) as a 
management practice is offered by Azadegan 
and Dooley (this volume). They describe the 
trend toward distributed control systems, an 
approach which favors quick response and 
flexibility as an organizational attribute over 
perceived stability and central control. These 
authors identify three conditions that must be 
present for a distributed control approach to 
succeed. First, there must be an abundance of 
resources such that each local group has 
immediate access to the materials they need 
to respond to events in the environment. 
Second, there must be enough intelligent 
agents distributed across the system to 
respond effectively without regard to direc-
tion from a central authority. Third and 
finally, strong and largely unfettered infor-
mation connections must be present among 
these individuals. This later point is neces-
sary so that easily contained local effects can 
be quickly distinguished from those that 
reflect more broadly relevant opportunities 
and threats.

When all three of these come together, 
distributed control works, and works better 
than central control. Variations in practice are 
implemented and tested quickly so that suc-
cess can be reinforced and failure discarded 
without the political baggage that character-
izes central control structures getting in the 
way. Open communication channels allow 
successful variations (but not those that are 
unsuccessful in the environment) to be repli-
cated and widely imitated by intelligent and 
informed agents who tailor them to fit local 
circumstances. Organizational resilience is the 
result because decisions are made quickly by 
intelligent and informed individuals who are 
close to events and to the ‘sensing’ process. 
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Significant and relevant changes in the system 
and the environment are recognized quickly 
and dealt with accordingly without regard to 
a centrally authorized ‘design’. The trend 
toward distributed control is an example 
where the new rules of complexity thinking 
are already informing and improving man-
agement practice in the field.

One final cautionary note: just because a 
particular variation ‘sticks’ in the company 
doesn’t mean it is fitness enhancing. And 
conversely, one cannot assume that a change 
was not helpful just because it didn’t stick. 
The internal dynamics at work within an 
organization are different (with different 
drivers) than those that determine what works 
in the environment and the market. Effective 
managers must never confuse the two. 
Changing the organization by implementing 
‘variations’ must be a continuous effort, but 
this alone is not enough. Managers must 
reinforce the structures that work and elimi-
nate those that do not while realizing that 
there is much that is not, and may never be 
known (Merali and Allen, this volume). So 
what does an enlightened manager do differ-
ently tomorrow? Just as a golfer swings 
‘through the ball’ rather than at it, the enlight-
ened manager must drive execution ‘through 
the design’. The objective is to obtain mar-
ketplace feedback and incorporate that feed-
back into the organization’s going-forward 
plans. To paraphrase the political slogan that 
is credited with putting Bill Clinton in the 
White House in 1992: ‘It’s the feedback 
stupid!’ This brings us to the next new rule.

New Rule #2: Be open to surprises 
across all levels of scale

Another problem with the idea of design is 
that it perpetuates the illusion of control and the 
false belief in absolute knowledge (Juarrero, 
this volume; Allen and Boulton, this volume; 
Richardson, this volume). Managers today 
hate surprises. This is because today’s man-
agers operate with an illusion of control that 
grew out of an organization-as-machine 

mindset where a surprise is interpreted as 
indicating a lack of vigilance, diligence or 
commitment in their subordinates. This leads 
to a fear in the subordinates with respect to 
bringing forward ‘surprises’. Tomorrow’s 
leaders will welcome certain types of sur-
prises, those that provide hints about future 
opportunities or threats that were not previ-
ously known (Maguire, this volume; Marion 
and Uhl-Bien, this volume). The right kind of 
‘surprise’ leads to the right kind of learning 
as Mitleton-Kelly and Ramalingam (this 
volume) describes. Leaders must be catalysts 
of learning and are not directors of machine-
like operations (Marion and Uhl-Bien, 2001;  
Uhl-Bien et al., 2007; Goldstein, Hazy and 
Lichtenstein, 2010; Juarrero, this volume; 
Marion and Uhl-Bien, this volume)

Managers, even top managers, rarely have 
all of the answers. They are stuck inside the 
system as information gatherers and users just 
like everyone else (Gell-Mann, 2002). They 
are also often deep inside a cocoon, dependent 
upon others for all of their information about 
opportunities and threats in the environment. 
Being stuck ‘inside the system’ means that 
what is happening in the environment becomes 
increasingly opaque (Boisot and McKelvey, 
this volume). If one does not see into the envi-
ronment directly, one must be even more open 
to and appreciative of surprises. When han-
dled appropriately, they are windows into the 
future. In fact, as long as the environment is 
changing, and these days it is doing so more 
rapidly than ever, one must hope for surprises. 
They shine light on the unknown which was 
always there but was unseen. In this context 
surprise has a very specific meaning. A sur-
prise is an event which challenges the efficacy 
of an organization’s collective efforts to con-
struct and use their models that predict the 
environment (Shotter and Tsoukas, this 
volume). Gell-Mann calls models used by 
individuals schemata (Maguire, this volume; 
Gell-Mann, 2002). They can be sophisticated 
like a dynamical systems model which seeks 
to address many interacting factors, or they 
can be embodied in a simple heuristic such as: 
‘Our customers make buying decisions based 
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upon taste-test preferences’. When a surprise 
occurs – brand-based preferences at odds with 
taste-tests were observed at Coke (Greising, 
1998), for example – it means that what the 
organization was positioned to expect, did not 
actually happen. This is the right kind of ‘sur-
prise’. It signals that the organization was 
(haplessly) going in the wrong direction. This 
surprise carries with it new information that 
might enable the organization to better predict 
outcomes.

There are essentially two strategies to deal 
with the potential for surprise in the environ-
ment. An organization can steel itself, work-
ing to harden its shell to maintain its structure 
and operating assumptions (Boisot and 
McKelvey, this volume). This is a survival 
strategy that repulses surprises occurring 
within its ecology. It, in fact, denies them, 
holding back potentially disruptive trends 
and attempting to control the environment 
(Maguire, this volume; Cilliers, this 
volume).

Alternatively, an organization can probe 
the environment through experimentation to 
learn about the kinds of surprises that it is 
likely to encounter, gather whatever informa-
tion is available, and attempt to prepare to 
address future challenges. Unlike designed 
variations that were intended to produce a 
desired (and predictable) result (described 
under New Rule #1), these experiments are 
variations that are constructed (designed?) 
specifically to gather information, and they 
can be experiments across all scales, from 
product trials, to new ways to organize 
operations, for example using a distributed 
control approach (Azadegan and Dooley, this 
volume). Andriani (this volume) describes 
this process for innovation and new product 
development.

Experiments help to determine if there is a 
surprise in the environment and to learn what 
had previously been unknown (Lichtenstein, 
this volume). Experiments can be spontane-
ous mutations, or they can be constructed 
recombinations of other capabilities, but in all 
cases they are spawned to see what succeeds in 
the environment (rather than what is acceptable 

politically) and what does not. They are used 
to gather information about the intersection 
of the organization and the environment, 
even if the underlying reason for success or 
failure is not yet known. The new informa-
tion that is uncovered may provide a clue to 
important forces which were heretofore 
unknown.

So what does an enlightened manager do 
differently tomorrow? When presented with 
a surprise, the first step should be to ask 
questions about how the surprise came about. 
What assumptions were made about the com-
pany’s market and environment, and how 
does the result provide new or additional 
information? Of course, the surprise could be 
due to sloppy work or poor discipline, but 
this is not the only reason, and incompetence 
should not be the first possibility explored. 
A negative, accusatory approach will stop the 
flow of information. The organization must 
create an environment that is open to the 
right kind of surprises and welcome them. 
They provide one of the most valuable com-
modities possible: new information. This 
process is discussed in more detail under 
Rule # 4, but before going there, I will first 
discuss a new rule that cautions managers 
who would choose to steel their organiza-
tions against surprises and change.

New Rule #3: Drive effectiveness 
looking forwards (not backwards)

Complexity researchers often miss the rather 
mundane reality that most of what managers 
do is to run the ‘machine’ of a business 
organization. As March (1981) put it: ‘The 
conventional, routine activities that produce 
most organizational change require ordinary 
people to do ordinary things in a competent 
way’ (p. 573). Importantly, as described in the 
chapters in this volume, complexity ideas can 
also inform day to day management by help-
ing managers understand how and why organ-
izations tend to be stable and resilient 
(Juarrero, this volume) even in the face of 
their attempts to perturb them. It also can 
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inject healthy skepticism about the efficacy 
of what’s being done, how it is being done, 
and where the organization is going. In addi-
tion, Sterman (2000) has shown that human 
beings are quite limited in inferring the opera-
tions of a system when nonlinear feedback is 
involved. We take up this point in the next 
section, but it does imply there is room for 
complexity ideas to help day-to-day manage-
ment as well. Important among these consid-
erations is the fact that structural attractors 
(Allen, 2001; Merali and Allen, this volume) 
which dominate the ‘ordinary’ are by defini-
tion backward looking. They are built up by 
repeating what was done in the past.

One insight from complexity is that struc-
tural attractors (Allen, 2001), in other words 
‘all of the current structures’ within any 
organization are always backward looking. 
Organizing structures like work centers or 
operating practices are always built up over 
time from a beginning that was based upon 
decisions taken, often arbitrarily, at some 
point in the past. Gell-Mann (2002) calls 
these ‘frozen accidents’ (p. 21). They are 
built up like a river road that was originally 
an unpaved path that followed the meander-
ing river. Over the years the road is improved, 
and along the way it is enhanced with ever 
greater elegance. But at core it remains an 
artifact built upon what was originally noth-
ing more than a convenience. Most managers 
are unwitting prisoners of ‘frozen accidents’ 
from long before their tenure. Breaking free 
is not easy. It requires thoughtful planning 
and precisely timed and executed action.

This realization is personal to me. As a 
manager, I had always respected processes 
that came before me, reasoning, in effect, 
that ‘if it ain’t broken don’t fix it’. I always 
assumed that ‘other smart people put this in 
place, and so unless I know something differ-
ent or have better knowledge than they had, 
I am not going to change it’. But this is not 
really sound judgement. The ‘if it ain’t broke, 
don’t fix it’ heuristic is far too simplistic. 
Often, smart people did not put the existing 
process together, at least not deliberately. 
Rather, structural attractors often develop 

part by chance and part by the self-reinforc-
ing flow of the system itself. It’s like the river 
itself meandering across a valley. The mean-
der gets further and further afield over time. 
Anyone looking from a nearby hill down at a 
stream meandering across the plains sees that 
following the stream is not the best way to 
get from here to there. Likewise nine-times-
out-of-ten the way the organization does 
things is not the best way to get it done. 
Often times, improving the existing process 
is actually counter productive. Improving a 
poorly conceived process just makes the inef-
fective streambed deeper and harder to 
change the next time. This is how wasted 
efforts perpetuate, ineffective informal work 
rules take hold, and internally focused 
projects rise to prominence. These projects 
are all about the past and say nothing at all 
about the future.

Complexity tells you that from an effec-
tiveness perspective, any process, policy, 
routine, capability or activity looks backward 
and therefore in a very real sense is almost 
always broken. When a manager doesn’t see 
this, he or she is part of the problem, another 
bit of silt flowing in the river, dropping to the 
riverbed in the slow current to decrease 
rather than increase the ‘effectiveness’ of the 
system. Effectiveness must be judged by the 
best way to do what needs to be done tomor-
row, not how to be even better at what we are 
currently doing, or worse, what we have 
always done. Maybe the organization doesn’t 
need to do these things at all!

As Lichtenstein (this volume) points out, 
this is one of the key differences between 
entrepreneurship and ‘business strategy’. 
With existing firms where the firm has been 
largely determines and thus severely limits 
where it can go in the future. For the entrepre-
neur however, the foundation for the future is 
only now being laid. These first few structures 
are critical because they are the seeds that will 
grow into the organization of tomorrow.

In a certain sense, those decisions that 
seem the most inconsequential for the 
entrepreneur – those that are often not 
even possible to make in an existing 
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business – such as where and how to locate 
offices and how to organize employee and 
customer interactions – are indeed the most 
important. It is these decisions that are the 
seeds of the firm’s emerging structural attrac-
tors, and thus it is these decisions that will 
ultimately determine whether the firm will be 
flexible and resilient to change going for-
ward. Thus the job of the entrepreneur is 
much different than the job of the profes-
sional manager. Both have their challenges, 
and neither is any easier than the other. They 
are very different, but both must first and 
foremost drive effectiveness by looking 
ahead, by ‘leaning down the fall-line’, as my 
ski instructor likes to say, to feel the pull of 
the forces that are driving the future. Hidalgo 
(this volume) describes metrics for social 
networks and new technologies that will be 
at the heart of these new approaches. 

So what does an enlightened manager do 
differently tomorrow? Most importantly, 
every routine and process in the organization 
is suspect. ‘This is how things have always 
been done’, is never a good reason to con-
tinue. Each process must be constantly eval-
uated with respect to how it makes the 
organization more efficient going forward. 
Maybe it doesn’t even need to be done. 
Perhaps that report that ‘somebody else must 
read’ is actually read by no one at all and 
should be discontinued. The next section 
describes how managers learn to look ahead.

New Rule #4: Build models and 
encourage focused experimentation

In a forward-looking, evolutionary view of 
organizational processes, surprises today 
offer the promise of better performance in 
the future. Managers who adopt this per-
spective are left with the challenge of dis-
covering ways to uncover this information as 
a means to effectively identify the evolution-
ary path forward even as competitors are 
coevolving (Vidgen and Bull, this volume). 
There are some researchers, for example 
Merali and Allen (this volume), who wonder 

out loud if any individual’s comprehension 
or action can ever anticipate a successful 
evolutionary strategy. However, although 
this is an open question among researchers, 
it is, I believe, a settled assumption in busi-
ness. Executive compensation would seem 
to imply a widely held (if somewhat opti-
mistic) belief that individuals do guide 
organizations and can guide them through 
changing circumstances.

Complexity science implies that what 
executives are looking for are the unfolding 
situations that McKelvey (this volume) calls 
‘butterfly events’. By this reference, McKelvey 
refers to events, experiments with small 
beginnings that grow to have large scale 
effects. The term references a finding from a 
part of dynamical systems analysis called 
deterministic chaos that was originally identi-
fied by Lorenz (1972). The ‘butterfly effect’ 
refers to the possibility that the flick of a but-
terfly’s wings in one part of the world might, 
under the right boundary conditions, cause a 
storm half way around the globe. This is pos-
sible by a characteristic of these systems 
called sensitivity to initial conditions (SIC).

Butterfly events, or what I call construc-
tive deviations from the expected, reveal new 
information about the state space itself, and 
the organization’s attractor cage. This infor-
mation can then be used to enable the events 
to build upon themselves very rapidly 
(Lichtenstein, this volume), often causing 
impacts across scale as the emergence of new 
properties becomes evident (Goldstein, this 
volume). The effects of ‘butterfly events’ 
cross scale when the divergent elements of 
the experiment are ‘scale free’ and are char-
acterized by power law relationships as 
Andriani and McKelvey (this volume) 
describe. In other words, the event might be 
observed at a level of coarse-graining that is 
relevant to a work group or a single retail 
store, or it might be observed at a scale that 
is relevant to an entire firm or industry 
(Maguire, this volume).

The invention of the microprocessor 
by Intel (Hazy, 2008a) is an example of 
this. Small businesses bought PCs to run 
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spreadsheets, but large firms also saw work-
flows across whole departments change. 
Eventually the entire industrial economy was 
impacted by this change that crossed scale. 
The same was true of the Internet and the 
browser when they first appeared. Possible 
butterfly events in the present economy 
include the growth of Facebook and Twitter 
services, renewable energy concerns and 
tightening credit markets after the financial 
downturn that began in 2007 and the ensuing 
banking crisis (Posner, 2009). Butterfly events 
are important to small firms, like a Mom and 
Pop hardware store, and they are important to 
a large firm like The Home Depot. But when 
they first appear, they might very well be 
missed or underestimated. Missing or under-
estimating the relevance of these ‘surprises’ 
can be disastrous. Members of the executive 
management team of The Home Depot told 
me late in 2001 that they were being cautious 
with respect to changing their business model 
in response to the Internet. I don’t know to 
what extent this decision drove their corporate 
performance, many other things happened 
including a change in senior management, but 
I did watch as their stock declined 30% over 
the 18 months beginning in January 2002. The 
Dow Jones Industrial Average (DJIA) was flat 
over that same period.

From a practical perspective, in order to 
understand where butterfly events might 
come from, and to recognize them when they 
arrive, information must be gathered, encoded 
and shared (Boisot, this volume). Conceptual 
models must be built and also shared to 
reflect both the individual’s perspective and 
organization’s potential (McKelvey, this 
volume). I would argue that dynamical sys-
tems models, like discounted cash flow anal-
ysis and business plans (Hazy et al., 2009, 
2010), whether formal or informal, are 
needed to enable the thoughtful exploration 
of interdependent and interacting variables 
that cross scale. Guastello (2002, this volume) 
provides a good overview of this process 
from the psychology perspective of individu-
als within the organization. MacLean and 
MacIntosh (this volume) describe how work 

groups can engage problems and solve them 
in real time through action learning. 
Eisenhardt and Piezunka (this volume) and 
Baumann and Siggelkow (this volume) 
describe the implications of these events on a 
firm’s strategic choices.

In all cases, the process involves a thought-
ful but relentless testing of an organization’s 
capabilities – its abilities in customer service, 
sales, treasury function, innovation, strategic 
partnering, etc. – against the changing needs 
of the coevolving (Vidgen and Bull, this 
volume) environment. In rapidly changing, 
or high velocity environments, rapid exchange 
with the environment is vital if the firm is to 
stay abreast of change and identify potential 
‘surprises’ that might signal a butterfly event 
is happening. The goal is to reduce uncer-
tainty and to roughly determine the shape of 
the forces that are influencing the organiza-
tion across scale. The work of Andriani and 
McKelvey (this volume) on power-law sci-
ence is an analytical approach that can be 
used to identify the presence of forces that 
cross scale.

So what does an enlightened manager do 
differently tomorrow? The short answer is to 
try things, but not just anything. One must try 
things that test the models that the organiza-
tion’s members are using to understand their 
own capabilities in the environment and then 
bring new information into the organization 
that validates or challenges key assumptions. 
Importantly, this process takes time and 
cannot be rushed. At the same time there is a 
point where additional information can no 
longer be gathered. This is a difficult point to 
identify, but when that time comes, the man-
ager must decide what to do, and do it. This 
leads to the next and final New Rule.

New Rule #5: Recognize and 
reinforce larger scale 
patterns to ride waves 
of renewal

Gell-Mann (2002) cautions actors within 
organizations to remember to take a ‘crude 
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look at the whole’ (p. 22). Acknowledge, if 
you will, that each player is only a part of a 
larger system and is generally only concerned 
with a partial, specialized perspective. Still, it 
is vital to bring the big picture into focus. 
Earlier in this volume, Eoyang describes the 
importance of recognizing patterns. But rec-
ognizing the pattern is not enough. To be 
actionable, the local genesis of these patterns 
must be identified in the context of what is 
happening locally and described in terms of 
the mechanisms that, along with forces in 
their environment, form the genesis of an 
emerging big picture. In other words, in com-
plex human systems there is no getting 
around the link between what is emerging on 
a large scale (Goldstein, 2007, this volume) 
and what is happening as human beings 
interact with one another. These are the 
mechanisms that complexity science can 
bring to light for managers.

Although this realization presents its chal-
lenges, especially in light of our limited 
understanding today, it is also liberating. 
This is because it makes explicit the link 
between individual human action and large 
scale social, political and economic change. 
It opens the door to the possibility that, like 
local interactions, these large scale patterns 
across space and time can indeed be influ-
enced by the choices and actions of indi-
viduals acting in the here and now. Nagging 
social problems such as health care reform 
(Zimmerman, this volume), resource limita-
tions (Hazy et al., in press), and global 
warming all become problems which can be 
addressed systematically but also in the 
context of individual human action (Bankes, 
this volume).

The challenges for managers and for policy 
makers are threefold: (i) to uncover and to 
explore the information gained from the 
mechanisms that are operating locally but are 
also distributed widely, often with distinct 
local adaptations (Goldstein et al., 2010), 
across a diverse environment; (ii) to recog-
nize patterns that might indicate a potential 
force that is impacting the organization 
across scale; and (iii) by modifying local 

mechanisms, to exert influence on the patterns 
that are unfolding even as these larger scale 
patterns also exert influence back onto the 
organization and its members. This is a for-
midable challenge to be sure, but because 
humans have well developed observation, 
modeling and communications capabilities, 
human beings are uniquely able to attempt 
this. Admittedly, however, success often 
remains elusive.

The broad impact of the Apple iPod, for 
example, can be used to illustrate what I 
mean here. Even without an exhaustive study 
of the case, for illustrative purposes one can 
quickly identify the most relevant locally 
operating mechanisms as: (i) People had to 
like the iPod product itself and its interaction 
with customers; (ii) stores had to agree to 
carry the iPod units and accessories for broad 
retail distribution; (iii) people had to find the 
iTunes website user-friendly; (iv) artist and 
publisher agreements had to be negotiated to 
enable songs to be posted legally; and finally, 
(v) an economic exchange had to occur to 
enable users to download songs in a way that 
supported the system from an economic per-
spective. These were local interaction mech-
anisms, often with locally adapted specific 
instantiations with their own peculiarities 
that together, in interaction, drove a social 
and economic phenomenon (Silberstang and 
Hazy, 2008).

All of these mechanisms were unfolding 
amid broader technological and social trends 
that included increased internet access, 
improved digital storage, widespread adop-
tion of mobile phone and data services, a 
maturing techno-savvy population, and a 
period of uninterrupted economic prosperity. 
Most observers would agree that the team at 
Apple Computer managed this difficult com-
plexity problem with considerable success. 
On the one hand, the wrong variations to any 
one of the mechanisms above might have 
doomed the emerging ecology. While on the 
other hand, failure to make the right changes 
along the way might also have doomed the 
project. Interestingly, Apple CEO Steve Jobs 
had arguably come out on the short side of a 
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similar complexity face off in the 1980s. As 
Apple Computer navigated the emerging 
microprocessor marketplace, the firm refused 
to separate their operating system from their 
hardware platform. Splitting these two dis-
tinct loci of innovation during that period had 
enabled rapid adaptation by competitors like 
Microsoft, IBM and Intel. These firms, and 
not Apple, went on to shape that computer 
industry in the 1980s in the same way that 
Apple shaped the iPod marketplace in the 
2000s (Linzmayer, 2004; Cruikshank, 2006). 
It seems that Steve Jobs, the CEO of Apple 
during both of these periods, learned his 
lesson from the ‘PC wars’ and changed his 
approach.

Ormerod (this volume) takes up this adap-
tation story at the macro scale with respect to 
economic systems in general and of innova-
tion and strategy development within them in 
particular. His chapter in this volume is funda-
mentally about limitations, about the condi-
tions under which individual human beings 
must act when confronting these emerging 
large-scale patterns. Where on the one hand 
complexity opens the door to human agency, 
Ormerod cautions that on the other hand, com-
plexity also says that the door can never open 
much more than a crack. He points out that our 
capacity to comprehend this unfolding, and 
thus our ability to influence the same is lim-
ited by our collective history. Our only tools 
are those that our species has received through 
evolutionary selection, together with frozen 
accidents (Gell-Mann, 2002) and the luck of 
mutation, recombination, discovery and com-
munication. This tool-kit does not provide 
anything that approximates an instruction 
manual. Richardson (this volume) places these 
limitations in a broad philosophical context 
raising this issue as a cautionary note for all 
science, indeed across all knowledge pursuits. 
But from a practical business perspective, 
once complexity is encountered and its funda-
mental character is acknowledged, one cannot 
think of innovation (Andriani, this volume) or 
strategy (Eisenhardt and Piezunka, this 
volume; Baumann and Siggelkow, this 
volume) in quite the same way.

What then is this last and grandest of the 
‘new rules’? How does one change the way 
one grapples with the 2009 restructuring of 
the once-great US Automobile manufacturer 
General Motors, or the troubled financial 
system in 2007–2008 (Posner, 2009), or for 
that matter the rapid growth of an Internet 
phenomenon like Twitter? In many ways this 
is the grand challenge of economic and busi-
ness experience. It also has great meaning for 
me personally and is my raison d’être as a 
student of complexity science. I spent over 
20 years with the US phone company AT&T 
which was never able to adapt to changing 
patterns on a large scale. With tens of billions 
of US dollars and market opportunities iden-
tical to those that spawned Microsoft, Apple, 
Cisco Systems and Google, the old AT&T 
could never find its way. (In late 2005, the 
old AT&T was acquired by SBC, Inc., a com-
pany that it had divested in 1984. The succes-
sor company was renamed ‘AT&T’.) Why? 
And why do some companies, like Intel suc-
ceed? Complexity does help with this ques-
tion. It points the way, but the road is not a 
‘simple’ one. The five rules listed here are a 
good first step.

So what does an enlightened manager do 
differently tomorrow? Perhaps the most 
important lesson of all is that in today’s 
complex world, leaders have to give up the 
illusion of control. Certain aspects of organi-
zational life are certainly predictable, but 
these are often not the most interesting ones, 
nor the most lucrative. Sometimes the next 
big thing is embedded in exactly the distrac-
tion that just won’t go away.

In 1996, I remember sitting in a top man-
agement team meeting at AT&T where my old 
company was deciding to sell one of its busi-
ness units, AT&T Paradyne, because it wasn’t 
aligned with the firm’s strategy. This modem 
company had recently developed a new tech-
nology that supported Digital Subscriber Line 
(DSL) implementations. At the meeting, one 
of AT&T’s top scientists dismissed DSL as 
‘an interesting transition technology’ but 
not one that AT&T needed to worry about. 
After all, in the future everything would be 
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connected by optical fiber, he reasoned. The 
firm went on to sell the business unit along 
with this technology to a private equity firm, 
the Texas Pacific Group (TPG) for $175M. 
TPG in turn monetized the asset over the next 
few years and earned a portfolio rate of return 
of over 100% for its investors. DSL is the 
technology that telephone companies still use 
today (in 2010) to bring Internet access into 
the homes of millions of Americans. Thirteen 
years and still going is a very long transition 
indeed, longer even than the time left for the 
old AT&T to exist as a stand alone company. 
Riding the wave of renewal is often the only 
path to survival.

CONCLUDING REMARKS

Having had many executive roles over more 
than two decades within some of the largest 
(and smallest) firms in the world, I was asked 
by the editors of this volume to reflect upon 
the contributions represented here and to 
comment on what they might mean to prac-
ticing managers. This challenge is reminis-
cent of a series of conversations I have had 
with old colleagues who are still senior 
executives at Global 500 firms. After I would 
tell them what I was learning about complex-
ity as applied to human organizations, they 
would be intrigued, and they would unfail-
ingly offer a kind smile, but it would be 
accompanied by a question like this: ‘This is 
all quite interesting, but what does it tell me 
to do differently tomorrow?’ This chapter has 
attempted to answer this question.

I do believe that an appreciation for com-
plexity ideas deeply changes how one thinks 
about and acts within business organizations. 
This in turn changes what one should do 
every day as well. The insights developed in 
this volume are both about making meaning 
in a complex and changing world and about 
taking effective action within that world. 
They are about experiencing what is happen-
ing in a thoughtful and realistic manner 
and about making things happen that might 

otherwise never come to pass. They are about 
taking things as they come and also about 
making the world the place one wants it to 
be. But lasting change to the practice of 
management according to these new rules 
will not happen quickly.

In true complexity fashion, I will invoke 
recursion and brashly apply the conclusions 
of this chapter to its own potential. Applying 
rule #1, I observe that evolutionary change 
from traditional heroic leader and manager 
models to a complexity mindset (Marion and 
Uhl-Bien, this volume; Hazy et al., 2007) is 
likely to require a change in generations. 
Perhaps things won’t really change until we 
dinosaurs die. Rule #2 highlights the inevita-
bility of surprise. This all but guarantees that 
we will not know what works best until 
events play out for a while. Applying Rule 
#3’s argument that improving one’s organi-
zation is a forward-looking exercise, implies 
that the organization of the future will not 
simply be a better version of the past; it will 
be qualitatively different.

Rule #4 encourages active experimenta-
tion, a kind of trial-and-error process, to 
search for new approaches that, once per-
fected, will be more effective in the long run. 
New ideas must be protected and nurtured as 
they need time to develop and grow (Allen 
and Boulton, this volume). As the earlier 
discussion of fitness landscapes showed 
(Vidgen and Bull, this volume; Baumann and 
Siggelkow, this volume), it takes time for the 
new structures to be honed into efficient and 
replicable management practices and rou-
tines (Hodgson, this volume). In the end, a 
new way of thinking about and doing things 
will emerge, and this will eventually domi-
nate management practice as the last rule, 
Rule #5 suggests. This new way will be 
embodied as management by these five new 
rules. Managers who catch the wave will 
become the role models for their generation, 
and for the generations that follow.

Today, most managers do not derive their 
personal organizing principles based on a 
complexity mindset. Rather, they remain 
locked in the design and push-to-fit mindset of 
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the industrial age. It worked for a generation, 
but it doesn’t work today. Those managers 
with the prescience to adopt the complexity 
paradigm will gradually do better than their 
peers. They will see things that others don’t 
see, and they will try things that others cannot 
even comprehend. And some of these things 
will work. As more people adopt the new 
ways, these new practices will be imitated 
(with variation) and in the process, manage-
ment practice according to these new rules 
will become ever better. Over time, those 
unable to adopt the new paradigm will drop 
away or die off.

I believe that the effective managers of the 
future will be doing five things differently 
than are even the very best leaders of today. 
The first two new rules describe how manag-
ers will think differently in the future. Rule 
#3 requires that managers both think and act 
differently, and the final two rules describe 
what successful managers, those who will 
rise to the top of their professions, will be 
doing differently than their peers. For prac-
ticing managers who are driven to invest the 
time to read this volume, its overarching 
lesson is that the future will be in the 
hands of those managers who realize that 
complexity is more than a metaphor. It is a 
new way forward. As a follower of this new 
way, you will be the first to see the unfolding 
patterns that are driving deep change. As the 
first to see, you will be in the very best posi-
tion to engage and then to shape the emerg-
ing future as you and your organization rise 
with the tides of change, first by catching and 
then by riding, each successive wave of 
renewal.
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Nonlinear Dynamical Systems 

Applications to Psychology 
and Management 

S t e p h e n  J .  G u a s t e l l o

THE BROAD LANDSCAPE OF NDS 
IN PSYCHOLOGY

This chapter surveys the recent developments 
in the application of nonlinear dynamical 
systems (NDS) theory to theoretical and 
practical problems encountered in psychol-
ogy that are also relevant to management. 
For the benefit of non-psychologists, it is 
important to note that the scope of psychol-
ogy is expansive. Introductory textbooks are 
typically organized around the following 
themes: brain physiology and behavior, psy-
chophysics, sensation, perception, learning, 
memory, cognition, intelligence and mental 
measurement, development, social psychol-
ogy, motivation and emotion, personality of 
normal range people, abnormal psychology, 
psychotherapy and counseling, and industri-
al-organizational psychology. At the other 
end of the professional spectrum, the largest 
professional organization for psychologists, 
the American Psychological Association, 
contains more than 50 topical interest groups 
in addition to its general membership core. 
The literature on NDS psychology reaches 
all the major areas of psychology and is 

growing rapidly (Guastello et al., 2009). For 
that reason it would be beneficial to focus on 
the broad themes that have the strongest sup-
port at present and that are most relevant to 
management.

COGNITIVE SCIENCE APPLICATIONS

Current thinking in NDS theory is that con-
sciousness is an integrated process consisting 
of psychophysics and sensation processes, 
perception, cognition, learning, memory, and 
action. Although it has been convenient to 
think of these processes as separate entities, 
the separations are somewhat contrived. An 
incoming flow of stimuli is first encountered 
by the human processes of sensation and 
psychophysical transduction. Perception 
processes organize the incoming stimuli into 
recognizable wholes through combinations 
of learned regimes and innate capabilities. 
Cognition involves a wide range of processes 
by which the recognized patterns are com-
pared, associated with information already in 
memory, transformed in simple or compli-
cated ways, and organized into responses.
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Learning involves one or more processes 
by which the individual organism acquires 
knowledge, skills, abilities, and adaptive 
responses. Memory pertains to how what is 
learned is organized and stored, and without 
which learning would be impossible. 
Psychomotor response – how the response is 
produced by the individual – is now consid-
ered part of an integrated cognition-action 
process (Shelhamer, 2009). Learning and 
creativity processes are considered in greater 
depth next.

Learning

Learning theory has implications for individual 
training and development, team building, and 
the so-called learning organization. Learning 
theory has undergone numerous developments 
in psychology in the past century. The major 
conceptual developments include trial and error 
learning, the learning curve, the concept of 
reinforcement, conditioned reflexes and asso-
ciationism, operant conditioning and schedules 
of reinforcement, cognitive learning theory and 
cognitive maps, vicarious learning and imita-
tion. Reinforcement, which proceeded from 
Thorndike’s Law of Effect, depends on reac-
tions from the environment, which in turn 
developed into an understanding of how infor-
mation shapes behavior in lieu of actual rewards 
derived from attaining a behavioral objective.

A more recent regime is implicit learning 
theory (Seger, 1994), which focuses attention 
on things that are learned while the learner is 
trying more deliberately to learn something 
else. NDS has extended this principle to the 
explanation of work group coordination, 
making it a group learning phenomenon 
(Guastello and Guastello, 1998; Guastello 
et al., 2005a). Team members implicitly learn 
to coordinate with each other and entrain 
their behaviors to each other while engaging 
in a more explicit task learning objective. 
Coordination is considered in further depth 
later in this chapter.

The nonlinear dynamics of learning can 
follow one of two basic patterns depending 

on one’s interest and emphasis. The first 
involves chaotic processes leading to self-
organization. The learning curve is typically 
drawn as a smooth function. There is actually 
a lot of irregularity in the portion of the curve 
prior to the asymptote (Hoyert, 1992). The 
neurological explanation is that neural firing 
patterns are themselves chaotic in the early 
phases of learning while the brain is testing 
out possible synaptic pathways. Once learn-
ing has progressed sufficiently, the brain 
locks onto a particular pathway to use con-
sistently (Skarda and Freeman, 1987; Minelli, 
2009).

The second dynamic principle involves the 
cusp catastrophe model. If we extend the 
baseline of the learning curve (Figure 31.1, 
left) prior to the onset of the learning trials, 
two stable states are apparent; according to 
Frey and Sears (1978) hysteresis exists 
between learning and extinction curves cannot 
be explained otherwise. Different inflections 
in learning curves can be explained as a cusp 
bifurcation manifold (Guastello et al., 2005a) 
as shown in Figure 31.1 (right).

The cusp model for the learning process 
would be

 dy/dt = y3 – by – a (1) 

where control parameter a (asymmetry, gov-
erning proximity to the sudden jump) is the 
ability of a person or the number of learning 
trials, and control parameter b (bifurcation, 
size of the sudden jump) would be the differ-
ence between treatment and control groups, 
motivation, or differences in schedules of 
reinforcement, or any other variable that 
would contribute to making some learning 
curves stronger or steeper than others.

The cusp model is particularly good for 
training and program evaluation. If a statistical 
cusp effect turns out to be better than the next 
best alternative linear model it would denote 
all the features associated with a cusp model. 
Here the idea of stable end states adds a 
desirable feature to program evaluation: We 
want stable improvements to behavior targets, 
not simply statistically significant differences. 
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‘Stable’ does not mean ‘without variability’, 
however. A bit of variability is necessary if 
it will ever be possible for the person, group, 
or organization to attain greater levels of 
performance (Abbott et al., 2005; Mayer-
Kress et al., 2009). Figure 31.2 illustrates 
the dynamics of performance improvement. 
The person, group, or organization encoun-
ters a new task that cannot be readily 
assimilated into old or crystallized learning. 
With practice the new learning is attained, 
and the level of hysteresis across the 
cusp manifold increases with repeated new 
challenges.

Creative problem solving

Creativity is a complex phenomenon involv-
ing divergent thinking skills, some personality 
traits that are commonly associated with crea-
tive individuals across many professions, an 
environment rich in substantive and interper-
sonal resources, and cognitive style. Cognitive 
style is a combination of personality and cog-
nition; it refers to how people might use their 
talents rather than the quantity of such talents. 
According to an early version of the ‘chance-
configuration’ concept (Simonton, 1988), 
creative products are the result of a random 
idea generation process. Greater quantities of 
ideas are generated from enriched personal 

and professional environments. Idea elements 
recombine into configurations as part of the 
idea generation process. When the creative 
thinker latches on to a new configuration and 
explores it as a possible solution to a problem, 
a form of self-organization of the idea elements 
takes place.

In the context of NDS, however, the gen-
eration and recombination of idea elements is 
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Figure 31.1 Typical learning curve (left) shown as a trajectory on a cusp catastrophe 
response surface (right). Adapted from Guastello et al. (2005a), with permission of the 
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chaotic rather than random. The self-organi-
zation of idea elements is largely a response 
to a chaotic system state. The idea elements, 
meanwhile, are generated by deterministic 
human systems, whether individually or in 
groups. The individuals filter out some ideas 
and attract others depending on their goals 
for problem solving. They also organize idea 
elements according to their own unique 
mental organization and experience; some of 
these mental organizations are shared with 
other people in the society with other prob-
lem solvers in the group, whereas other 
mental organizations are more unique. The 
process of idea generation retraces the paths 
that the individuals have mentally created 
already among idea elements, prior to any 
one particular problem-solving event 
(Guastello, 1995, 1998a).

The mushroom (parabolic umbilic) catas-
trophe was found to explain the dynamics of 
creative problem solving in groups who were 
working together in a real time experiment 
(Guastello, 1995). The response surface rep-
resents two simultaneous and interacting 
clusters of social interaction patterns. General 
Participation included information giving, 
asking questions, and statements of agree-
ment with other people’s ideas; it was found 
to be a bistable variable. Especially Creative 
Participation included statements that initi-
ated courses of action for the group, elabora-
tion of ideas, and rectifying intellectual 
conflicts; it displayed one stable state with 
instability at the high contribution end of the 
scale. Two of the four system control param-
eters, both of which were asymmetry varia-
bles, were occupied by personality traits. 
One cluster of traits distinguished high-pro-
duction participants from low-production 
participants on the factor for general contri-
butions. Assertiveness distinguished those 
who most often gave especially creative 
responses from others. The two bifurcation 
control parameters were overall group activity 
level, which captured a social dynamic, and 
the effect of particular experimental stimuli, 
which captured an environmental contribu-
tion. The news bulletins were introduced 

periodically as part of the game; they con-
tained unexpected changes in the problem 
situation that should provoke an adaptive 
response from the players.

The mushroom structure itself was veri-
fied through a polynomial regression tech-
nique. In this case, a nonlinear regression 
technique was also used for estimating a 
Lyapunov exponent, which was positive and 
translated into a dimensionality of 5.46. This 
high dimensionality, which is also fractal, 
was an important observation because, 
according to the theory, chaos leads to self-
organization, and as creative self-organized 
systems engender more instability, it would 
follow that creative problem solving groups 
are systems operating at the edge of chaos or 
far-from-equilibrium conditions.

Other studies have also explored whether 
computer-facilitated communication can 
enhance the group’s overall level of production 
compared to the production of a collection of 
noninteracting individuals, so long as the 
group is large enough to produce a critical 
mass of ideas. Computer media can facilitate 
chaotic levels of idea production one would 
observe bursts of high and low idea production 
over time by either individuals or groups. 
Larger changes in production by individuals 
are associated with greater quantities of ideas 
that are produced by other group members in 
between two successive inputs from a particu-
lar person. These dynamics conform to the 
logistic map structure where the contributions 
by the other group members act as the control 
parameter (Guastello, 1995).

At the group level of analysis, greater pro-
ductivity is associated with a relatively com-
plex problem task, where the task can be 
broken down into subtopics. At that time the 
group members can work on any subtopic in 
any order they choose, go back and forth 
among the subtopics, and so on. In the actual 
groups studied (Guastello, 1998a), the 
number of active topics increased and 
decreased in a periodic fashion. The level of 
output by the group was chaotic overall, but 
it also showed periodic rises and drops in 
activation level in accordance with the change 
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in the number of active topics. Thus the 
result, in the thinking of synergetics (Haken, 
1984), is a coupled dynamic consisting of a 
periodic driver

A2 = 0.75A1 exp (–0.36A1) + 0.33     (2)

and a chaotic slave

Z2 = exp (0.25Z1) + 0.43A1 – 0.26C – 0.34 
  (3)

In Eqs (2) and (3), Z1 represents group pro-
duction levels can be observed depending on 
the topic that the group is working on (C); 
and A is the number of active discussion 
threads during the time interval of Z1; time 
was measured in four-day periods. The expo-
nent in Eq. (2) was negative, and the expo-
nent in Eq. (3) was positive.

SOCIAL AND ORGANIZATIONAL 
PSYCHOLOGY

This group of topics includes social cogni-
tion, motivation, conflict, creative problem 
solving, group coordination, and leadership 
emergence. The theory related to motivation 
extends to a model for personnel selection 
and turnover, and an interpretation of moti-
vational flow.

Motivation

Psychological theories of motivation have 
taken many forms over the years. Hunger and 
thirst predispose animals to behave as desired 
in learning experiments. The rat knows where 
the cheese is, however, we can leap quickly 
to expectancy theories of motivation whereby 
the decision maker chooses behavior options 
that will produce the desired expected reward 
levels. There is also a theory of equity, in 
which the agent takes action to restore or 
maintain equity with other agents.

Another important theme that pervades 
many social and organizational theories of 
motivation is the distinction between intrin-
sic and extrinsic motivation. Extrinsic moti-
vation and extrinsic reward describe situations 
where the agent receives reward from an out-
side source. It contrasts with intrinsic moti-
vation, where the agent receives reward, 
usually intangible, from the activity itself. 
Examples of intrinsic motivation would 
include the motives for achievement, affilia-
tion, and power.

Physiological motivation consists of only 
one form, which is arousal. Arousal origi-
nates in the reticular formation of the brain, 
transfers to the thalamus, and transfers again 
to the cortical areas where it is interpreted. 
The same essential process applies to emo-
tion as well.

The butterfly catastrophe model of motiva-
tion in organizations draws together many of 
the previously-known dynamics affecting 
personnel selection and training, motivation, 
and work performance, absenteeism, and 
turnover (Guastello, 1981, 1987, 1995). The 
principles of several motivational theories 
are represented in the model. The butterfly 
catastrophe model consists of three stable 
states of performance and four control param-
eters. The three stable states are (a) high 
performance and initiative, low absenteeism, 
and low probability of turnover; (b) adequate 
performance, absenteeism is not out of the 
norm, and low probability of turnover; 
(c) performance is inadequate, or absentee-
ism is excessive, turnover is likely by either 
voluntary or involuntary means. The four 
control parameters are ability (asymmetry), 
extrinsic motivation (bifurcation), intrinsic 
motivation (swallowtail), and a manage-
ment climate that tolerates individual differ-
ences and encourages intrinsic motivation 
to dominate over extrinsic motivation 
(butterfly). The gradients on the butterfly 
responses surface that run between the 
stability points and the point of degenerate 
singularity are interpretable as approach 
and avoidance gradients in motivation and 
conflict theory.
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Personnel selection

Although all parts of the model, including 
the butterfly structure itself, have been empir-
ically verified, it should be noted that some 
practical applications of this model may 
involve only subsets of the butterfly dynam-
ics. One useful case in point is the cusp 
catastrophe model for personnel selection 
and turnover. Conventional wisdom treats the 
two phenomena separately and attempts to 
explain them with separate lines of reason-
ing. The cusp theory (Guastello, 2002) treats 
them as an integrated process wherein the 
two stable states are (a) hired and working, 
and (b) not hired or terminated. The perform-
ance and turnover are measured on the same 
scale where persons not hired or terminated 
are given the performance level of zero. 
Ability measurements would comprise the 
asymmetry parameter, and motivational indi-
cators such as career interests would com-
prise the bifurcation parameter.

In an illustrative example (Guastello, 
2002), the cusp was used to explain and pre-
dict turnover among US Air Force recruits 
during their first term of enlistment. Recruits 
completed a battery of ability and career 
interest measures when they first enlisted. 
Performance-turnover measurements were 
taken at six-month intervals. After time lapses 
of 24 and 30 months, the cusp model pre-
dicted performance and turnover more accu-
rately than the next best linear model. Note 
here that for any dynamical process, it is 
necessary to give the system enough time for 
the dynamics to transpire. Short term changes 
can be locally linear even though the global 
process is nonlinear. The reasons are topo-
logical not statistical (Wiggins, 1988): any 
short distance along a curve can be well 
approximated by a linear model.

Motivational flow

If one were to define a more complex dynam-
ical field, such as having many tasks to choose 
from, the dynamics become progressively 

more complicated. Flow is a motivational 
state of total immersion in a task brought in, 
or sustained by skill demands and chal-
lenges. It is a state where time and the out-
side world seems to disappear while the 
individual is working, particularly in crea-
tive endeavors (Csikszentmihalyi, 1990). 
Individuals who change tasks throughout the 
day are likely to spend more time with tasks 
that engender a high level of flow, rather 
than a low level of flow.

In a dynamical study of flow, Guastello 
et al. (1999) asked 24 subjects to keep a 
diary of daily events for a week, along with 
indicators of skills and challenges that were 
involved, and analyzed the time series for 
any inherent nonlinear dynamics. Three clus-
ters of people were identified: Flow Type A 
showed slightly negative correlations between 
time spent on tasks and ratings of flow, low 
temporal stability (low R2 for the linear com-
parison model), and a low R2 for the nonlin-
ear exponential model. Flow Type A appears 
to change tasks in short cycles with little 
regard for flow and is possibly caught in a 
life style where task selection is governed by 
external forces. Flow Type B also showed a 
negative time-flow correlation, high tempo-
ral stability, and relatively high nonlinearity. 
Flow Type B also appears to experience high 
external control over task selection, but with 
the difference that some tasks produce greater 
flow than others, unlike Type A. Flow Type C 
displayed high time-flow correlations, low 
temporal stability, and high nonlinearity. 
Flow Type C showed differential levels of 
flow with different tasks, but involvement 
periods were relatively long and dependent 
on the flow level for the task. Thus two con-
trol parameters appeared to be operating: 
internally or externally governed task selec-
tion and the range of flow levels associated 
with tasks.

Navarro et al. (2007) asked 20 people to 
keep a motivation log for four weeks. 
Participants periodically recorded their moti-
vation for the task at hand, self-efficacy, 
and instrumentality of the task for achiev-
ing personal goals. They found substantial 
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differences in stability versus turbulence in 
the time series across the 20 people and the 
three measurements. As a rule, self-efficacy 
beliefs were relatively stable over time, while 
motivation and instrumentality were much 
more volatile.

In a subsequent study (Ceja and Navarro, 
2008) participants provided ratings of the 
same three variables plus others involving 
challenges and skills at random intervals 
for 21 days, 6 samples per day. All variables 
showed deterministic chaos over time, as 
determined by visual recurrence analysis and 
comparisons with surrogate data. It was not 
entirely clear what contributed to the levels 
of volatility in the latter two studies, although 
the irregular time intervals could have been 
responsible.

Conflict

The available studies on conflict and NDS 
involve agent-based models, the pathways to 
chaos as pathways to conflict, or the cusp 
catastrophe once again as an explanation for 
approach and avoidance gradients or group 
polarization. Agent-based models illustrate 

how individuals working in their own self-
interest produce self-organized systems as 
they interact with other individuals. Self-
organized systems often manifest sudden and 
discontinuous changes that are recognized as 
catastrophes or phase shifts (Guastello, 
2002). Competition-cooperation dynamics 
are often inherent in those dynamics 
(Maynard-Smith, 1982; Axelrod, 1984). They 
are also inherent in group performance 
dynamics which are considered in a later sec-
tion of this chapter.

There are three basic pathways by which a 
system can become chaotic. The first is an 
application of the three-body problem. 
Figure 31.3 shows a more complicated exam-
ple (from Borges and Guastello, 1996; 
Guastello, 2002, 2009a) of an attractor field 
with three attractors (A1, A2, A3) of different 
strengths. The points labeled S are saddles, 
or compromise points between each pair of 
competing attractors. The opportunity for 
conflict here is that, if a point enters the field, 
it is pulled in different directions in an unpre-
dictable way, as denoted by the tangled 
thread. A partial solution to the conflict 
between two attractors, which represent two 
arguable positions on an issue, would define 

A1 = 4

A3 = 8

S S

S

A2 = 8

Figure 31.3 Path of a point in a field of three attractors and three saddles. From Guastello 
(2009a), reprinted with permission of ISCE Publishing
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saddles that could attract points from two 
directions. In the simulation, a point indicat-
ing the position of the solution entered the 
field in the neighborhood of A1, visited two 
of the compromise positions, and landed 
on A2. The implication, nonetheless, is that 
bilateral agreements are not going to resolve 
any conflict if there are three or more interest 
groups involved; A3 received virtually no 
attention even though it was as strong as A2. 
The odds of people changing their prefer-
ences for possible solutions often increases 
as the number of options and the number of 
interest groups increases. In fact, chaos is 
more or less guaranteed if there are four par-
ticipants and four options (Rand, 1978).

The second pathway involves coupled 
oscillators. Imagine a set of three pendula 
that are pinjointed together at the ends. When 
Pendulum 1 oscillates, Pendulum 2 moves 
faster and its motion pattern becomes more 
complex than strictly periodic, and Pendulum 
3 swings chaotically. The opportunity for 
conflict can be found in a coupled system 
involving, for instance, three organizations in 
a supply chain. Pendulum 3 does not like 
being jerked around, and probably cannot 
function well with all the entropy or unpre-
dictability associated with the motion of the 
system it is experiencing. In human terms, 
the uncertainty associated with entropy is 
equivalent to the experience of risk, which 
the people or groups that reside later in the 
chain would like to control.

The third pathway to chaos involves the 
logistic map bifurcation where a control 
parameter that increases the level of entropy 
in the system. When the value of a control 
parameter passes a critical value, the system 
oscillates instead of remaining stable. As the 
value increases further, the oscillations 
become more complex, and eventually the 
system goes into chaos. The bifurcation model 
was a popular concept in organizational 
development (Michaels, 1989; Guastello 
et al., 1995; Guastello, 2002). At low values 
of the control parameter, the system is ini-
tially stable (Period 1). Pressure to change 
(control parameter) has no effect on the sys-
tem’s behavior until the control parameter 

exceeds a critical threshold. At that point the 
system oscillates between its old behavior 
pattern and a new one (Period 2). In the peri-
od-doubling regime we would observe the 
system making complex shifts among multi-
ple behavior patterns. When the system enters 
chaos (Period 3), the communication and 
work flows become very inconsistent from 
moment to moment, or event to event. At this 
stage the system can self-organize into a new 
stable pattern and regain its stability by using 
the new pattern. On the one hand, the bifurca-
tion mechanism explains how to unravel an 
otherwise stable system in order to make 
some needed changes. It also characterizes a 
group exploring ideas for change that could 
be opposites of each other. Eventually one 
would need to reverse the control parameter 
to bring the system back to stability.

Organizational development scenarios 
often present conflict opportunities because 
the pressure to change points in one direction 
while resistance leads to actions that prevent 
or nullify the change initiative. Although the 
organizational change agents imagine that 
the new processes that they are touting are 
inherently good, that is not necessarily 
something to be assumed. The complex 
adaptive system naturally prevents invasive 
changes from taking root.

Polarization is often connected to conflict 
in groups, either as a starting point, or as a 
high-water mark of the group’s activities. 
Groups often discuss their ideas, plans, and 
attitudes and find they have differences of 
opinion. In cases where the participants are 
not too emotionally involved at a personal 
level, they often find midpoints or compro-
mise positions that are agreeable to most 
participants. If the topic or attitude target is 
‘important’, however, continued discussion 
will lead to polarization of group members, 
rather than compromise. Latane (1996) 
expressed the dynamics as a cusp catastrophe 
model. There are two stable states (attrac-
tors). The group begins at the unstable point 
(a saddle) on the surface and then splits into 
distinctive poles if the importance of the atti-
tude is high, and does not polarize for less 
important attitudes.
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In a related theme, Vallacher et al. (2010) 
characterized intractable conflict states them-
selves are single attractors. The attractors are 
formed by combinations of attitudes, goals, 
and more importantly, interaction patterns 
among the conflicting parties. If a situation is 
inherently complex there are some elements 
that are salient and closely linked to some of 
the other elements, but could also be some 
elements that are not linked or attended to as 
well as they should be linked. The unat-
tended elements self-organize into a latent 
attractor that presents conflict with the more 
manifest attractor. The boilerplate solution to 
conflict is to break up some of the interaction 
patterns, thus creating entropy and a search 
for a new attractor where elements are con-
nected differently, perhaps in a more inte-
grated fashion, and presumably life would be 
better.

Leadership emergence

The rugged landscape model of self-organiza-
tion offers a cogent explanation for organiza-
tional phenomena, particularly where strategic 
management is involved (McKelvey, 1999). 
The rugged landscape model of self-organiza-
tion also explains how leaders emerge from a 
leaderless group, and the possible ways in 
which their emergence could take form 

(Guastello et al., 1998b, 2007a, b; Zaror and 
Guastello, 2000; Guastello et al., 2005b). The 
group activity selected for study involved a 
complex creative problem solving task. Once 
presented with the task and an hour (of 
experimental time) to complete it, numerous 
verbal interactions transpire among group 
members. These local interactions culminate 
in the eventual self-organization of the group 
such that the role of a general leader emerges 
along with several other, more specific roles.

The formation of roles would constitute 
fitness peaks, which denote relative fitness, 
local stability, and clusters of similar subspe-
cies with regard to shared adaptive traits. The 
probability density function that is associated 
with the swallowtail catastrophe model 
(Eq. (4), Figure 31.4) describes the distribu-
tion of people into unstable and locally stable 
social roles. The swallowtail catastrophe 
structure contains a response surface of dis-
continuous events, or qualitatively different 
outcomes, such that there are two stable states, 
with a minor antimode between them, an 
unstable state, and a major antimode separating 
the unstable state from the two stable ones:

 Pdf(z) = x exp (q1z5 + q2z4 + q3cz3 
 + q4bz2 + q5az) (4)

In Eq. (4), z is the extent to which members 
of the group endorse a particular group 

Non-leaders Secondary
Leaders

Leadership Endorsement Ratings

F
re

qu
en

cy

Primary
Leaders

Figure 31.4 Swallowtail catastrophe distribution of leadership ratings after a leadership 
emergence process. From Guastello (2007b), reprinted with permission of the American 
Psychological Association
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member as the leader; a, b, and c are control 
parameters; ξ is a constant that maintains 
unit density; and qi are nonlinear regression 
weights. The model requires three control 
parameters. Research to date has investigated 
the nature of the control variables, which 
vary in their content depending on what type 
of group is involved, e.g. creative problem 
solving, production, and coordination-inten-
sive groups. One control parameter (a) dis-
tinguishes all leaders from non-leaders. The 
second (b) controls the extent to which the 
leaders stabilize into either primary or sec-
ondary roles. The third (c) distinguishes the 
primary from the secondary leaders. Table 
31.1 contains a summary of those findings.

Work group coordination

Coordination occurs when group members 
make the same or compatible responses at 
the right time for optimal production. 
Contrary to conventional thinking, there is 
more than one type of coordination in game 
theory. As with any type of game, individuals 
make decisions based on the utilities associ-
ated with the options. Prisoner’s Dilemma 

involves choices between cooperation and 
competition. The Stag Hunt game involves 
choices between joining the group (to hunt 
stag) and going off on one’s own (to hunt 
rabbits). A potential negative outcome in 
Stag Hunt is social loafing or the free rider 
syndrome.

The Intersection game requires group 
members to take the correct actions in the 
correct sequence, and to figure out the cor-
rect sequence, similar to what occurs in a 
four-way stop intersection. If the drivers cor-
rectly perceive the turn-taking system adopted 
by the preceding drivers and follow the 
sequence, then all cars pass through the inter-
section in a minimum amount of time with 
the lowest odds of a collision. In a real-life 
intersection, any of several possible rule sys-
tems could be adopted by the drivers, and 
each driver approaching the intersection 
needs to recognize the strategy that is actu-
ally in effect, and then make the correct 
move. If a car tries to go through the intersec-
tion out of turn, then an accident could occur, 
or at the very least, other players would need 
to revert to ad lib turn-taking to untangle the 
confusion at the intersection.

Table 31.1 Summary of results from leadership emergence studies with the swallowtail 
catastrophe model*

Type of group Asymmetry Bifurcation Swallowtail
Creative problem 
solving

General participation and control of the 
conversation; including gate-keeping, 
initiating, following, harmonizing, 
facilitating the ideas of others, task 
orientation, consideration of other 
players’ interests, concern for solution 
quality.

Giving information, creative 
ideas, competitive behavior, 
concern for solution quality.

Unknown

Production Tension reduction, including 
harmonizing, giving information, goal 
realism.

Creative and task control, 
controlling the conversation.

Unknown

Coordination-
intensive

General participation and control of the 
conversation; including gatekeeping, 
initiating, following, creative ideas, 
facilitating the ideas of others.

Verbal vs. non-verbal 
working conditions

Task control

Emergency 
response

Wide-range competitive behavior against 
adversary, controlling the moves of the 
team, helped other members make good 
moves, asked questions, contributed 
information, boosted team morale.

Group size Group performance

* Summarized from Guastello et al. (2005b), Guastello and Bond (2007a), Guastello (2010a).
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The process of group coordination involves 
the development of nonverbal communica-
tion links among the participants. These links 
evolve with repeated practice with each 
other. The evolution of the links is essentially 
a self-organization process. Furthermore, the 
basic process of coordination is non-hierar-
chical, meaning that a leader, who usually 
contributes task structuring activities of some 
sort, is not required. This state of affairs is 
not unlike the flocking of birds, herds of 
beasts, or schools of fish, which operate 
without leaders.

The results of Intersection game experi-
ments to date show that if the experimental 
task is not excessively difficult, the group 
will display a coordination learning curve 
(Guastello and Guastello, 1998). The coordi-
nation acquired during one task session will 
transfer to the learning and performance curve 
of a second task. If the task is too difficult, 
self-organization will not be complete, and the 
time series of coordination data will be cha-
otic. A coordinated group can withstand 
changes in personnel up to a point before coor-
dination breaks down (Guastello et al., 2005b). 
Verbalization enhances performance to some 
extent, but not necessarily the level of leader-
ship emergence (Guastello and Bond, 2007a).

Coordination and hierarchies

Coordination does not require leaders, and 
the mainstay of game theory experiments in 
economics are conducted without leaders or 
even talking between the participants 
(Friedman, 1994). One premise of evolution-
ary game theory is that a large volume of 
simple bilateral interactions produces global 
results for the social system. Individuals can 
adopt hierarchical rules or strategies (oligar-
chic reaction functions) such as tit-for-tat. 
Again, leaders and hierarchical relationships 
are not necessary (which explains some of 
game theory’s popularity with neo-classical 
economists). Another key point is that the 
relationship between long-run equilibria 
(evolutionarily stable states) and the utilities 

within single-shot games is not always 
consistent.

The forms of coordination observed in 
non-hierarchical non-human species are not 
leader–follower relationships. A flock of 
birds will stick together on the basis of only 
three rules: following the general heading of 
the flock, stick close to the flock, and do not 
crash into flock mates. The goose at the 
vertex of a V formation is not the leader; they 
rotate positions. A school of fish stick 
together in much the same way; they have a 
rule of motion whereby they exchange posi-
tions from the outside to the inside of the 
school and out again as a means of hedging 
against predators. Wilson (1975) suggested 
that leadership occurs in non-hierarchical 
groups when one member of the flock detects 
a predator first, even if by virtue of keener 
sight or smell, or a more advantageous loca-
tion for detecting signals. The animal that 
moves first moves the group. The member of 
the flock who has keener senses, or flies fast-
est, moves the group most often and appears 
most similar to anthropomorphic leaders.

Southeast Asian fireflies will start the 
evening by flickering quasi-randomly, but 
after a few hours they synchronize into a 
coordinated pulse throughout the forest. 
Synchronicity can be produced even in non-
living systems with only minimum require-
ments – two coupled oscillators, a feedback 
channel between them, and a control param-
eter that speeds up the oscillations (Strogatz, 
2003). The oscillators synchronize when 
they speed up fast enough. The principle also 
has been demonstrated with electrical cir-
cuits and mechanical clocks. Leadership is 
irrelevant to circuits and clocks.

None of the above negates the principle 
that leaders can emerge in coordination-inten-
sive human task groups that begin without 
leaders. Members that do emerge as leaders 
exhibit a wide range of behaviors that are 
useful to the group who can communicate 
freely and exert control over the task. Thus 
they become the hub of communication 
(information flow) in both verbal and nonver-
bal modalities (Guastello and Bond, 2007b).
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So what do leaders actually do that is con-
structive? Leaders can invent options for 
goals and means of attaining them. Leaders 
can alter perceptions of utilities, and a good 
sense of reality is critical here. Leaders can 
become the hub of communication. Leaders 
can set the pace for the group’s work.

There is some agreement (Guastello, 2008; 
Van Vugt et al., 2008), nonetheless, that lead-
ership is not necessary for many types of 
tasks, and that constituents can adopt strate-
gies to influence the behavior of leaders. 
Nonlinear dynamics offers a more direct path 
to the same conclusions, however, and with 
additional insights: Emergent group struc-
tures and performance patterns can form 
strictly from the bottom up with or without a 
supervenience principle whereby the upper 
level dominates the actions of the lower 
level. It is overly simplistic to think that the 
upper level dominates the lower and that is 
the end of the story. Experimental evidence 
shows that the antics of the lower level can 
destabilize performance at the upper level, 
and the skill of managing a workflow within 
a hierarchy is not widely shared (Guastello, 
2002: Chapter 10). Even in the most benign 
case where people are just trying to do their 
jobs, management can be very scattered in its 
efforts to stabilize a work flow. At present it 
is not clear how much of the skill for manag-
ing this form of chaos could be trainable, or 
something to be studied in a personnel selec-
tion context.

FUTURE DIRECTIONS

Empirical verification is always an issue in 
psychology generally, not only in NDS appli-
cations. Dooley (2009) observed that empiri-
cal studies of NDS in organizational behavior 
that involve real data are rare, particularly in 
comparison to the number of well-reasoned 
concept pieces that have been written. The 
logistic map model for organizational change, 
for the times it has been cited as a prototype 
of the change process, has not received any 
direct empirical study.

Empirical analysis is nowhere near impos-
sible as the studies captured in this chapter 
have illustrated. One does not need a godzil-
lion data points to assess a fractal dimension 
or any other important dynamical indicator, 
nor is it necessary to test a myriad dynamical 
models devised by mathematicians to deter-
mine a viable model for real-world data 
(Gregson and Guastello, 2005; Guastello, 
2009b; Guastello and Liebovitch, 2009). 
Techniques built on the generic characteris-
tics of chaos, self-organization and other 
dynamics, such as entropy measurements 
and structural statistical equations, serve the 
purposes well.

By the same token, many of the theoretical 
models in this chapter have been empirically 
demonstrated only once, although a few have 
received more attention. It would appear that 
significant and practical advances can be 
made by building on NDS models that are 
known already concerning learning, creative 
problem solving, motivation, personnel selec-
tion, leadership emergence, work group coor-
dination, and work flows in hierarchies. The 
material on conflict in organizations is rela-
tively new, however. The principles of path-
ways to chaos are internally rigorous, yet it 
would be beneficial to see how they play out 
during real-world conflict resolution projects.

At the theoretical level of development, 
the concept of the complex adaptive system 
is central to our understanding organizations. 
Psychology has begun to consider what 
adaptive behavior could look like (Pulakos 
et al., 2000). There is a sense that learning 
and creative behavior are both involved. It 
would follow that a highly functional theory 
could result from building on the known 
dynamics of learning and creativity, and 
make greater use of NDS indicators of turbu-
lence and adaptation such as the Lyapunov 
exponent (Guastello, 2010b).
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32
The Value in Between: 

Organizations as Adapting 
and Evolving Networks

C é s a r  A .  H i d a l g o

INTRODUCTION

An F-22 fighter costs around USD$150 mil-
lion and weighs around 20,000 kg. per unit of 
weight, an F-22 costs close to USD$7,500 
per kilogram or USD$3,400 a pound. 
Compare this to a kilogram of gold which is 
currently (February 2010) priced at around 
USD$34,000, or a kilogram of silver which 
costs around USD$500. A kilogram of F-22 
is expensive, yet as scrap metal, the exact 
same airplane will not sell for much. If I 
divide a lump of gold or silver into pieces, 
the value of each one of these pieces, com-
pared to the whole, will be identical to the 
fraction that its weight, volume, or size rep-
resents relative to the whole. This is certainly 
not true for an F-22 fighter, since the value of 
a sophisticated good, such as a computer, a 
car or an F-22, comes from the precise way 
in which its parts are assembled, rather than 
from the materials from which they are 
made. In such cases we can say that the value 
of these goods is in the network that connects 
the different parts, and in the networks that 
were able to get these parts together. The 

value is in between, in the links, rather than 
in the nodes. A copper wire is more valuable 
when connecting two people on the phone, or 
a power plant with a city. A computer key-
board is more valuable when connected to a 
computer and this to a monitor and the right 
type of electricity. In all kinds of systems, the 
value is in the network, so if we want to 
understand what value is and how it emerges, 
we need ways to adequately quantify the 
structure of the networks that products are, 
and the networks that make these products 
come true.

Firms and institutions are not only large 
collections of individuals. They are networks 
of individuals that interact sometimes through 
hierarchies, but mostly, despite them. The 
ability of a firm to be productive depends not 
only on the talents of its employees, but 
largely on the way in which they interact. The 
value of an organization or institution, just 
like that of an F-22, lies largely in the net work 
that sits between its members. The net-
works that define an organization, however, 
are not necessarily the organizational charts 
we see pinned down on an organization 
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meeting room, but rather the networks that 
emerge from the informal interactions that 
occur between an organization’s members. 
Two firms, with the exact same organizational 
chart, can have diverging fates. Can we say 
the same about two organizations character-
ized by similar informal network structures?

Some evidence supporting the hypothesis 
that the structure of an organization’s informal 
social network is related to that orga nization’s 
performance is exemplified, for instance, by 
the recent work of Kidane and Gloor (Kidane 
and Gloor, 2007). Kidane and Gloor looked 
at correlations between the creativity, per-
formance and network structure of open 
source software development teams and 
found that more centralized groups per-
formed better, in the sense that they were 
able to fix more bugs, than less centralized 
groups. They also found that the creativity of 
groups, measured as the number of new fea-
tures a group came up with and implemented 
during a given time period, was smaller for 
more centralized groups. All in all, Kidane 
and Gloor’s findings suggest that trade-offs 
between a team’s performance and creativity 
could be reflected in, or mediated by, the 
structure of the social networks they define.

Oscillations between centralized and 
decentralized network structures have been 
shown empirically to be a defining character-
istic of creative teams. Waber et al. (2007), 
used sociometric badges (a technology we 
will discuss later) to measure the interactions 
between different teams in a German bank 
and found that the oscillation between more 
and less centralized network structures was 
characteristic of teams charged with the 
design of new marketing campaigns, yet it 
did not occur in teams that were not required 
to perform creative tasks.

These examples illustrate how details in the 
structure of an organization’s informal social 
network are related to an organization’s per-
formance. These examples also suggest that, 
in order to adapt, organizations need to be 
flexible, as the ability of organizational net-
works to morph into different configurations 

could be the key allowing organizations to 
perform properly and survive over the long 
run. To properly adapt, however, organizations 
need to achieve a certain degree of self-aware-
ness, they need to see themselves as the net-
works they are, a task that is extremely 
difficult to achieve for organizations involving 
more than 30 or 40 individuals.

Manufacturing companies are well aware 
of the need to understand their own function-
ing and have learned to adapt their production 
processes by paying close attention to their 
mistakes. The key behind the success of the 
Toyota Production System (TPS), or Lean 
Production, is its ability to turn manufacturing 
errors into learning experiences (Spear, 2009). 
Companies that operate under lean production 
use errors to learn about, and improve, their 
production process. This is the direct opposite 
of mass production, which tries to avoid the 
propagation of errors in the assembly line by 
accumulating large inventories at several 
points of the manufacturing process. Mass 
production was successful at lowering pro-
duction costs. Yet, lower costs came at a high 
price. The price of low costs was adaptability. 
Mass production traded off production costs 
for the ability of a company to learn about its 
own weaknesses. Adaptability, however, is a 
price that no organization can afford.

Taking the ideas of the TPS, or Lean 
Production, to knowledge based organiza-
tions, however, may not be completely straight 
forward. This is because most assembly line 
errors have well defined physical symptoms, 
such as the jamming of a machine or incon-
sistencies in delivery times. The ‘cogs’ of 
many private organizations and government 
institutions, however, are people, and the 
assembly lines running across government 
and service organizations are social networks. 
Any attempt to apply TPS to these govern-
ment and service organizations, therefore, 
requires, in some form or another, an increase 
in the knowledge that an organization has 
regarding its own social interactions.

Network science, as a combination of 
sensing methods and analytical techniques, 
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can help organizations become more 
self-aware. Organizations that understand 
their own networks will likely have a better 
chance adapting, as knowledge regarding their 
current configuration can help the design, 
evaluation and performance of working teams. 
Ultimately, this self-awareness can improve 
the ability of an organization to adapt and 
survive. But in order to look at themselves, 
organizations need to be able to see not only 
the performance of their members, but the 
ways in which these are connected. To under-
stand an organization is to understand its net-
work dynamics. Work places are intricate social 
and political environments that can collec-
tively perform tasks that no single individual 
can. Organizations are giant super-organisms 
with a market-like consciousness that emerges 
from the interactions of several, information 
deprived individuals. The question is then, can 
network science help awaken this giant? 
Can network science take the consciousness 
of the super-organisms into the next level?

In the next couple of sections we review 
some of the most standard literature on 
Network Science created during the last 
decade. Both of these sections describe, in 
general terms, some of the measures most 
commonly used to quantify the structure of 
networks. In the sections that follow we will 
review literature on studies that use these 
measures, together with other techniques, to 
understand the structure and organization of 
real world social networks. For a more in-
depth review of Network Science and its 
applications to other scientific fields we sug-
gest looking at the following reviews (Albert 
and Barabási, 2002; Newman, 2003; Borner 
et al., 2007). For more information about 
organization sensing technologies we suggest 
Pentland (2008) as a good starting point.

NETWORK STRUCTURE 
AT THE TURN OF THE CENTURY

Network visualizations can be both inspiring 
and intimidating. Good network visualizations 

can be extremely informative while at the 
same time being aesthetically appealing. Yet, 
for some people, the ‘high-tech’ look of net-
work visualizations can sometimes be intimi-
dating. It is important to remember that 
networks are simply collections of nodes and 
links, dots and lines, and hence the most 
basic measures used to characterize their 
structure are rather simple.

We can begin characterizing the structure 
of a network by looking at measures that 
capture information about a node and their 
immediate neighbors (a.k.a. local measures). 
The most basic of these measures is the 
degree of a node, which is usually denoted by 
k and represents the number of links that a 
node has. One can think of a node’s degree as 
the number of friends a person has. In gen-
eral, it is helpful to think about any network 
using social analogies. The degree of a node 
is the simplest of a class of measures called 
‘centrality measures’ which are measures 
created to quantify the importance of a node 
in the network. Other centrality measures 
are, for example, closeness centrality 
(Bavelas, 1950), which tells us what is the 
average distance between a given node in the 
network and all other nodes and betweenness 
centrality (Freeman, 1977), which tells us 
how many of the shortest paths connecting 
different pairs of nodes in the network go 
through a given node.

Another local measure that is widely used 
is a node’s clustering coefficient, which 
measures the density of triangles in which a 
node is involved. The clustering coefficient 
can be thought as the probability that two 
friends of a node are also friends themselves. 
Mathematically, the clustering coefficient of 
a node can be defined as:

C = 2 Δ /k(k–1) (1)

where Δ is the number of triangles in which 
a node is involved and the k(k–1)/2 factor 
represents the total number of triangles that 
the k neighbors of that node can potentially 
participate in, which is equal to the combina-
torial k choose 2.
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There are also measures that are used to 
characterize the structure of a network by 
capturing global information, meaning that 
these are measures containing information 
that involves, either all, or at least the major-
ity of the nodes in a network. One important 
measure of this kind is the degree distribu-
tion, which is a histogram of the degree of all 
the nodes in the network.

The degree distribution has been shown to 
be a defining characteristic of a network. In 
1999 László Barabási and Reka Albert 
showed that various networks were charac-
terized by a power-law degree distribution 
(Barabási and Albert, 1999) – which 
mathematically means that the probability 
that a node has k links is proportional to k−g 
where g is a constant with a value that has 
been empirically determined to lie in most 
cases in the range of 2 <  g  < 3 (Albert and 
Barabási, 2002). In more qualitative terms, a 
power-law degree distribution tells us that 
there are a few nodes in the network that 
have a number of connections comparable to 
the total number of links in the network, 
while most other nodes have only a small 
number of connections. Nodes with a dispro-
portionately large number of connections are 
known as hubs, and their existence carry 
important dynamical consequences for the 
network (Barabási Linked). Barabási and 
Albert coined the term scale-free network to 
refer to this class of networks.

Barabási and Albert also introduced a 
simple model that could generate scale-free 
networks (Barabási and Albert, 1999). The 
Barabási–Albert, or BA model, can generate 
a scale-free network by allowing the network 
to grow through the addition of nodes that 
come into the network with a set number of 
links. An essential ingredient of the BA 
model is that new nodes are more likely to 
connect to nodes which are already highly 
connected. This mechanism, known as pref-
erential attachment and discovered previ-
ously by Yule (Yule 1940s) and Price (Price 
1970s), is a simple way to generate models 
with power-law degree distributions. Yule and 

Price, however, never used it to simulate the 
structure of a network.

The finding that many networks from the 
most diverse kinds are characterized by 
broad degree distributions, such as power-
laws, was extremely revolutionary for 
Network Science. This simple finding was 
not expected from the theoretical models of 
networks available at that time, which 
assumed that connections occurred randomly, 
and therefore, expected networks to be char-
acterized by Poisson or exponentially decay-
ing degree distributions. Until that time, 
many theoretical models of networks were 
built on the Erdos and Renyi, or ER model 
(Erdos and Renyi, 1959), developed by the 
mathematicians Paul Erdos and Alfred Renyi. 
The ER model was created for abstract rea-
sons, and therefore, was not an accurate 
approximation to most real world networks.

The distinction between networks with a 
broad degree distribution and random net-
works is more than a statistical curiosity. 
Scale-free networks behave qualitatively dif-
ferent than random networks, for example, 
when we remove nodes from them. A well 
studied fact is that the fraction of nodes that 
remain part of the largest connected compo-
nent of a scale-free network is comparable to 
the total number of nodes in the network, 
even after randomly removing a substantial 
number of nodes (Albert et al., 2000; Cohen 
et al., 2000). This property is not shared by 
random networks which break up into several 
components after the removal of a compara-
tively small number of nodes (Albert et al., 
2000). Yet, when instead of removing nodes 
randomly we do so in a targeted manner, by 
removing first the nodes with the highest 
degree and then work our way down to low 
degree nodes, scale-free networks break up 
more quickly than random networks (Albert 
et al., 2000; Cohen et al., 2001). Hence scale-
free networks are relatively more robust to 
the failure of random nodes than random 
networks, but at the same time are consider-
ably more susceptible to fall apart under 
targeted attacks.
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Another property that separates scale-free 
networks from random networks is the way 
in which they affect the spread of quantities, 
such as information or infectious diseases. 
Pastor-Satorras and Vespignani showed that 
scale-free networks have a vanishing epi-
demic threshold (Pastor-Satorras and 
Vespignani, 2001), meaning that in a scale 
free network viruses will always have a 
chance to spread. This was a shocking result 
for the field of epidemiology which until that 
time was dominated by models unable to 
incorporate the relevance of network struc-
ture into the spreading dynamics. In recent 
years, the importance of scale-free and non-
scale-free networks in the diffusion of differ-
ent quantities has become increasingly more 
relevant. Different examples where network 
diffusion studies have captured an important 
amount of attention include (i) the diffusion 
of medically relevant con ditions, such as 
obesity (Christakis and Fowler, 2007) and 
smoking (Christakis and Fowler, 2008), 
(ii) studies on the role of the World Airline 
Network in the spread of infectious dis-
eases (Colizza et al., 2006a; Colizza et al., 
2007) and (iii) the study of the evolution of 
countries productive structures constrained by 
the network of similarity between products 
(Hidalgo et al., 2007; Hidalgo and Hausmann, 
2008).

In addition to the degree, clustering and 
degree distribution, an important variable 
that has been widely used to characterize the 
structure of networks is the average distance 
between a pair of nodes, known as the 
average path length <l>. For a long time the 
intuition that any person in the world could 
reach any other person through a short chain 
of acquaintances had been prevalent in popu-
lar culture, as exemplified for example by 
Karinthy’s popular story ‘Chains’ and by the 
Broadway play ‘Six Degrees of Separation’ 
(Karinthy, 1929; Barabási, 2003). Random 
networks, as those studied by Erdos and 
Renyi, are also characterized by short aver-
age path lengths. Yet, the random networks 
studied by Erdos and Renyi have a clustering 

coefficient that is inversely proportional to 
the number of nodes in them (C  ~  1/N) 
(Albert and Barabási, 2002), and is therefore 
extremely small for networks composed by 
more than a few tens of nodes. Hence, Erdos 
and Renyi random networks cannot explain 
that social networks are simultaneously char-
acterized by high levels of clustering (the 
friends of a person are relatively likely to be 
friends themselves) and short average path 
lengths.

In 1998 Watts and Strogatz showed that 
networks could have, simultaneously, a high 
level of clustering and a short average path 
length (Watts and Strogatz, 1998). In their 
landmark publication Watts and Strogatz 
illustrated their finding by using a circular 
lattice, which was characterized by high 
clustering and high average path length, and 
showed that after rewiring only a small 
number of links the average path length of 
their lattice could be brought down to that 
of a random network. Moreover, they showed 
that the clustering of the network remained 
relatively high even after a substantial number 
of links had been rewired. Watts and Strogatz 
found that in the parameter space of their 
model (given by the probability of randomly 
rewiring a link), there was a large region in 
which networks can exhibit both, high clus-
tering and short average path lengths. 
Networks sharing both of these properties 
became known as Small-World networks, 
while the particular network model intro-
duced in Watts and Strogatz’s paper became 
known as the Watts and Strogatz network 
(Watts and Strogatz, 1998).

GOING DEEPER INTO 
NETWORK STRUCTURE

The works of Réka Albert, László Barabási, 
Duncan Watts and Steve Strogatz, together 
with the availability of large network data-
sets, sparked a landslide of publications that 
have since been concerned with the study of 
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the structure and dynamics of networks of 
the most diverse kinds.

Other structural measures that have been 
used to characterize the structure of different 
networks are measures of degree-degree 
correlations, which look at whether nodes 
with a relatively high or low number of con-
nections are more likely to connect with 
nodes with a relatively high or low number of 
connections. In other words, do hubs tend to 
connect to hubs?

Degree-degree correlations have been stud-
ied with variations by several different 
authors. One of the first examples of the study 
of degree correlations is exemplified by the 
work of Pastor-Satorras, Vazquez and 
Vespignani (Pastor-Satorras et al., 2001). 
Pastor-Satorras et al. used data on the Internet 
at the autonomous system level (simply put 
these are connections between different ISPs) 
to show that, in that particular network, hubs 
tend to connect to low degree nodes. Newman 
took this idea further by creating a measure of 
assortativity, which is positive for networks 
in which hubs are likely to connect to other 
hubs and negative for networks in which hubs 
tend to connect to low degree nodes (Newman, 
2002). Newman applied his assortativity 
measure to several collaboration networks 
(networks in which the coauthors of a scien-
tific paper are connected), a few biological 
networks (such as protein–protein interac-
tions), some technological networks (such as 
the Internet and the WWW) and a few net-
work models. His analysis found that social 
networks exhibited assortative behavior (hubs 
tend to connect to hubs) whereas technologi-
cal and biological networks were more likely 
to show the opposite, disssaortative behavior, 
in which hubs tend to connect to low degree 
nodes (Newman and Park, 2003).

Another group that measured the degree–
degree correlations of networks was Sergei 
Maslov and Kim Sneppen, who noticed that 
the degree distribution of a network imposed 
an important constraint in the degree–degree 
correlations of a network (Maslov and 
Sneppen, 2002). The idea was that in networks 

with a heterogeneous degree distribution, 
such as scale-free networks, hubs will on 
average appear to connect to low degree 
nodes. This is because there are simply not 
enough hubs for a hub to connect to, and 
therefore hubs have to connect mostly to low 
degree nodes. This constraint will also be 
expressed as a relatively high number of 
connections between low degree nodes and 
hubs. Measures that do not consider this 
effect will ultimately be biased towards find-
ing a disassortative behavior in networks 
with a broad degree distribution, such as 
scale-free networks.

Maslov and Sneppen proposed measuring 
degree correlations by comparing the 
observed level of connectivity between nodes 
of given degrees with those of randomized 
networks. In their randomized networks 
every node has the same number of links as 
in the original network, and hence the net-
work conserves its degree distribution 
(Maslov and Sneppen, 2002). By comparing 
the degree–degree correlations of the original 
network with that of the randomized network 
Maslov and Sneppen introduced a way to 
measure statistical properties of a network 
while controlling for the connectivity of its 
nodes. This idea was pushed further by 
Colizza et al. in a study in which they 
introduce the rich club coefficient as a way 
to quantify such behavior (Colizza et al., 
2006b).

Another area of intense study in network 
science is that of community structure. 
Measures on networks’ community structure 
attempt to formalize the observation that in 
some networks there are groups of nodes that 
belong to densely connected groups, or com-
munities, which themselves are only sparsely 
connected to other communities. Measures 
on the community structure of networks look 
to answer questions such as: Are there com-
munities in a given network? And if so, how 
strong is the community structure exhibited 
in that network? How many communities are 
there? And, to which community or commu-
nities does a node belong?
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In recent years several methods to assign 
nodes to communities have been proposed. 
All of these methods are based on different 
heuristics developed to capture the intuition 
behind the idea of communities. One exam-
ple is the method introduced by Girvan and 
Newman (Girvan and Newman, 2002), in 
which they iteratively remove links of a net-
work according to the link’s betweenness 
centrality (Freeman, 1977). The idea behind 
this method is that links that lie between 
communities will tend to have high values of 
betweenness centrality, as the links that lie 
between communities will likely be in the 
shortest paths connecting nodes from differ-
ent communities. Hence, by removing these 
links iteratively, Girvan and Newman found a 
way to break up the network into different 
communities. Soon after publishing this 
method Girvan and Newman and Girvan 
introduced a modularity measure that could 
be used to determine the number of links that 
upon removal would break up the network 
into the most adequate set of communities 
(Newman and Girvan, 2004). Using the 
modularity measure links could be removed 
iteratively in search for a modularity maxi-
mum, which indicated the most adequate 
partition of the network into communities 
according to the authors’ method.

An alternative definition of communities 
was proposed by Palla, Derenyi, Farkas and 
Vicsek, who noticed that previously pro-
posed community finding methods forced 
each node to a single community. Palla et al. 
(2005) pointed out that an individual could 
belong to more than one community and 
proposed an algorithm that could be used to 
assign an individual to several communities. 
The algorithm proposed by Palla et al. con-
sisted of taking a fully connected subgraph, 
or clique, and ‘rotating’ it inside the network. 
All nodes that could be reached by the same 
clique were assigned to the same community. 
Yet, a node could potentially be reached by 
cliques rotating in different subsets of the 
network, as a node could be the nexus between 
several cliques. This allowed this algorithm 
to assign nodes to several communities.

During recent years, several other methods 
for community detection have been proposed 
including methods that can be used to detect 
communities in bipartite networks (Lehmann 
et al., 2008), methods to detect communities 
based on local information (Bagrow and 
Bollt, 2005; Clauset, 2005), Bayesian meth-
ods (Hofman and Wiggins, 2008) and spec-
tral methods (Newman, 2006). Ultimately all 
of these methods can be used to understand 
the natural groups that emerge within an 
organization despite and because of bureau-
cratic constraints.

THE STRUCTURE OF LARGE SCALE 
SOCIAL NETWORKS

To understand organizational networks we 
must complement statistical measures, such 
as the ones described in the previous sec-
tions, with technologies that can help us 
sense social interactions. After all, constraints 
to our understanding of social networks can 
arise from the coverage and reliability of the 
data available as much as from the limitation 
of our analytical methods.

In the past few years, an important number 
of studies have looked at different aspects 
of social networks by looking at the logs 
that record people’s interactions occurring 
through different communication channels. 
These scientific developments have been 
fueled by the rapid advancement of informa-
tion and communication technologies that 
have resulted in a large increase in the 
number of interaction channels that people 
use to communicate with each other. Some of 
these new channels include, but are not lim-
ited to (i) asynchronous channels, such as 
email, text-messages, blogging, microblog-
ging (e.g. Twitter), social networking sites 
(e.g. Facebook), and video posts (e.g. 
Youtube), and (ii) synchronous channels, 
such as instant messaging, video calls and 
mobile phones. The massive adoption of 
these technologies has opened the opportu-
nity to study the networks of interactions that 
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are expressed through each one of these 
channels, as all of these technologies have 
the ability to record users’ interactions, either 
for billing, reliability purposes or both.

During the last five years, anonymized 
mobile phone records have been used to look 
at the structure and dynamics of large social 
networks in an attempt to understand the sta-
tistical properties of the ways in which large 
collections of people self-organize. By look-
ing at the mobile call patterns of a few million 
individuals, Onnela et al. (2007) showed 
empirically that the links located in the more 
densely connected parts of the mobile phone 
network tended to be stronger, in the sense 
that the total amount of time used in those calls 
was longer, than the links located between 
groups. The idea that links between groups 
tended to be weaker than those within 
groups had been already proposed some dec-
ades ago by the sociologist Mark Granovetter 
(Granovetter, 1973). Onnela et al.’s contribu-
tion, however, took this idea further by using 
the empirically determined network structure 
to quantify how this particular property of 
social networks limits the diffusion of infor-
mation across it.

Mobile phone records have also been used 
to study the temporal stability of social inter-
actions. In a recent study, Hidalgo and 
Rodriguez-Sickert (2008) used a year’s worth 
of mobile phone records to study how the 
persistence of a social tie, measured as the 
probability of observing a link when looking 
at the network during a certain time window, 
was related to different network properties. 
The authors found that the persistence of 
links was positively correlated with the den-
sity of the network, measured using the clus-
tering coefficient, and the reciprocity of 
interactions, determined by looking at links 
in which calls were initiated by both parties. 
They also found that there was a tradeoff 
between the degree of an individual and the 
average persistence of that individual’s ties 
(people with more social ties tended to have 
a smaller fraction of persistent ties). Yet, this 
tradeoff was found only to be partial, as 
Hidalgo and Rodriguez-Sickert showed more 

connected individuals tended to have a larger 
number of persistent social connections, 
despite the fact that as a fraction of the total 
number of ties, the fraction of persistent ties 
was smaller for more connected individuals.

The dynamics of social groups has also 
been studied by using mobile phone records. 
In a recent paper Palla et al. used a year’s 
worth of mobile phone data, together with 
their community finding algorithm, to show 
that large social groups that survived for rela-
tively long periods of time tended to exchange 
a large fraction of members. This was con-
trary to lasting small social groups, which 
tended to survive as long as the memberships 
remained (Palla et al., 2007).

Studies like these are important because 
they illustrate that it is possible to character-
ize individuals by looking at the structure 
and dynamics of their social interactions. 
Moreover, they show that in social networks 
different aspects of the network structure are 
strongly correlated, suggesting that the net-
work structure surrounding an individual 
defines categories that can be used to under-
stand the different kind of individuals that are 
part of society. The structure of the social 
network surrounding an individual is likely 
affected by that individual’s personality, as it 
is an objective measure of how that individ-
ual is embedded in society. Hence, by com-
bining log data with network analysis we can 
gain access to aspects of an individual that 
we would not be able to reach with demo-
graphic or socioeconomic data (Hidalgo and 
Rodriguez-Sickert, 2008). For example, 
demographic and socioeconomic data would 
not be useful to differentiate between two 
neighbors living in the same suburb, having 
similar income, family composition, level of 
education and age, but having extremely dif-
ferent personalities. Because of the afore-
mentioned reasons, measures extracted from 
social network data can give us access to a 
more relevant quantitative picture of an indi-
vidual, as the structure of the social network 
surrounding an individual is likely related to 
that individual’s personality more than its 
neighborhood, gender or age.
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From a business standpoint, the characteri-
zation of an individual that can be extracted 
from its social network can be extremely 
relevant. In recent years there has been evi-
dence showing that marketing segmentation 
based on the structure of an individual’s 
social network can produce better targets, 
measured by comparing the adoption rate of 
targets chosen using social network structure 
and more traditional marketing segmenta-
tion methods. Better marketing segmentation 
methods are beneficial for companies and 
customers, as improving marketing segmen-
tation strategies reduces the cost of market-
ing efforts incurred by companies and at the 
same time diminishes the amount of unwanted 
marketing material handed off to customers.

The structure of an individual’s social net-
work can also be a good predictor of future 
behavior (Hidalgo and Rodriguez-Sickert, 
2008). This makes accurate quantitative 
information about an individual social net-
work extremely valuable for companies 
whose businesses require anticipating indi-
vidual behavior, such as, for example, the 
renewal of a service contract or the adoption 
of new services in the future. A good exam-
ple of this is recent work by Dasgupta et al. 
(2008), in which social ties were used to 
accurately predict the churn of mobile phone 
users.

Automatically collected data has also been 
used to study the communication patterns 
defined by small networks of individuals 
within an organization. For example, Aral 
et al. (2009) studied the communication pat-
terns of an executive recruiting firm and 
found that multitasking individuals tend to 
prefer asynchronous communication channels 
(in particular email) over synchronous com-
munication channels (such as phone) (Aral 
et al., 2009). They also found an inverted-U 
shape relationship between multitasking and 
productivity, meaning that multitasking 
increases productivity until a certain point 
after which additional tasks had a negative 
effect in productivity.

Email networks have also been used to 
study organizations. Probably the most well 

studied email dataset is Enron’s email data-
base (Shetty and Adibi, 2004; Keila and 
Skillicorn, 2005). An interesting example of 
the type of information stored in Enron’s 
emails is exemplified by the work of 
Collingsworth and Menezes. In a recent 
study, Collingsworth and Menezes found that 
the number of cliques in Enron’s email net-
work (subsets of the network in which every-
one is connected to everyone else) jumped 
from 100 to almost 800 one month before the 
December 2001 collapse (Collingsworth and 
Menezes, 2009). The author’s interpretation 
of their findings was that, one month before 
the collapse, people in the organization began 
talking directly to people they felt comforta-
ble with and stopped sharing information 
more widely. Collingsworth and Menezes’ 
study shows how changes in an organiza-
tion’s email network can be indicative of its 
internal processes.

HONEST LINKS

Recent technological developments have also 
opened new opportunities for the study of 
face-to-face interactions. A particularly excit-
ing body of research in this area, spearheaded 
by the Human Dynamics Lab at MIT, com-
bines the development of ‘reality mining’ 
technology, which are devices designed spe-
cially to measure personal interactions, with 
signal processing, machine learning, psycho-
logical theories and real life experiments, to 
create the most comprehensive quantitative 
picture of face to face interactions to date.

During several years the Human Dynamics 
Laboratory, led by Alex (Sandy) Pentland, 
has been exploring the limits of wearable 
computing technology and its ability to 
objectively sense social interactions. Through 
a series of experiments, Pentland’s group has 
been able to show that it is possible to quan-
tify several aspects of human interactions 
by analyzing data collected from wearable 
devices that record the location, sound, accel-
eration and direction of those who wear them. 
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In their most recent incarnations, these ‘soci-
ometers’ have been incorporated into small 
badges that can be integrated with current ID 
tags or have been developed as software, 
rather than as hardware solutions, that can be 
incorporated into mobile phones (Eagle and 
Pentland, 2006).

One of the striking aspects of this research 
is its proven ability to quantify the non-verbal 
aspects of human face to face interactions, 
which have been shown to be highly predic-
tive of the outcome of interpersonal exchanges 
of the most diverse kinds. Pentland suggests 
that the information value of this ‘Honest 
Signals’ comes from the fact that they are 
processed unconsciously and that they 
emerge from our brain structure and biology, 
and therefore, they are hard to fake (Pentland, 
2008). This makes this non-verbal signal 
more likely to be honest than the signaling 
produced by more conscious decisions, such 
as the clothes we wear and the cars we drive. 
In other words, the Human Dynamics Lab at 
MIT has been able to scientifically separate 
the information content of the things we say 
and of how we say them.

These sociometric techniques have been 
used to study pairwise social interactions as 
well as the dynamics of small networks of 
individuals. At the pairwise level, honest sig-
nals have been shown to be good predictors of 
the outcome of different types of negotia-
tions. For example, by using these techniques 
in salary negotiations Curhan and Pentland 
were able to predict 30% of the variance in 
individual outcomes by examining a thin slice 
of data consisting of the first 5 minutes of the 
negotiation (Curhan and Pentland, 2007). 
Another example in which these sociometric 
techniques have been shown to be highly pre-
dictive is in predicting the matches that occur 
at speed dating events (Madan and Pentland, 
2006). Speed dating is a matchmaking activ-
ity in which individuals have short interviews 
with a large number of potential partners and 
secretly indicate their preference for any of 
them at the end of the event. After all ‘dates’ 
have taken place the organizers of the event 
provide contact information to those pairs 

of individuals who have expressed mutual 
interest. Madan and Pentland showed that the 
combination of two female honest signals: 
high levels of activity and variable emphasis, 
were highly predictive of the decision of indi-
viduals to trade contact information (Madan 
and Pentland, 2006). They also found that 
males were able to read females quite accu-
rately, as men were more likely to report an 
interest for woman who also reported interest 
in them, according to both sociometric tech-
nology and speed dating records.

While there are several interesting studies 
that use sociometers to relate honest signals 
with different types of interactions, from an 
organizational perspective the most interest-
ing examples are the ones concentrating on 
the dynamics of groups of individuals.

Some of these studies are complementary 
to Bales’ Interaction Process Analysis (IPA) 
(Bales, 1950; Bales and Strodtbeck, 1951), 
which is a method used to classify the inter-
actions that happen in a group based on the 
type of behaviors that the members of a 
group adopt towards each other. Sociometers 
have been used to accurately classify the dif-
ferent roles undertaken by different individu-
als in a small group, helping automate IPA, a 
task that until now could only be performed 
by a trained psychologist. IPA has been 
shown to predict the outcome of group deci-
sion making, including problems such as 
groupthinking and polarization (De Waal, 
2005). For example, if two people in a group 
happen to take the attacking role, decisions 
tend to be more polarized. On the other hand, 
if there is only one protagonist in the group, 
a typical outcome is that everyone follows 
the leader without exploring the entire set of 
options and potential pitfalls of the decision 
proposed by the leader. Sociometers are now 
being used to create real time feedback sys-
tems that can help keep groups on track.

During the last years, the Human Dynamics 
Lab at MIT began collaborating with large 
firms such as Hitachi (Baker, 2009). Hence, 
sociometers could soon enter the workplace, 
either as consumer products or as part of a 
new organization consulting and management 
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standard that relies heavily on information 
about the interactions of an organization’s 
members. The test that organizational sciences 
will pose to sociometric and other technolo-
gies will not be a test of adoption, but rather a 
test of survival. Ultimately, these technologies 
should enhance the survival probability of 
those organizations who adopt them. As the 
survival of organizations will be the one that 
determines whether network science becomes 
a frozen accident (Crick, 1968) in the evolu-
tion of management strategies or if it will be 
selected out until a future rediscovery.

FINAL THOUGHTS

Organizations are networks formed by het-
erogeneous groups of individuals that accom-
plish tasks that no single individual can. Like 
a soccer team or an orchestra, organizations 
are complex super-organisms whose per-
formance depends on the interaction between 
the individuals that make up the organiza-
tion, as well as on the structure of the net-
works that emerges from these interactions. 
Organizations, however, are networks that 
exist within networks. Since firms and insti-
tutions are networks that operate in environ-
ments that are formed by thousands of other 
organizations, firms and institutions can be 
seen as nodes in a large network of organiza-
tions themselves. Organizations are networks 
embedded in other networks and their sur-
vival depends as much on their internal struc-
ture as on the position they hold in their 
networked environments.

The ability for these super-organisms to 
adapt, however, will depend on the level of 
‘consciousness’ that they can achieve. Self-
awareness can be seen as the ability of an 
organization to understand its limitations and 
how to overcome them. Awareness is about 
being conscious about what is going on and 
where you are standing, for both individuals 
and for organizations. All organizations do 
have some sense of self-awareness, which 
comes from their ability to answer questions 

such as: What can they achieve using only 
their internal resources? Do they know if 
they can do it so competitively? And in the 
case they do not, would they be able to 
restructure its internal networks to a configu-
ration that could help them solve this prob-
lem? Self-awareness is, for individuals and 
organizations, related to the ability of assess-
ing relatively quickly and accurately one’s 
own position in the larger picture, under-
standing the role that you are playing and on 
the implications of such role in relation to 
others. Can network science improve the 
ability of an organization to understand where 
it stands? Moreover, can network science 
improve the ability of an organization to 
answer questions about the environment in 
which the organization is embedded?

After all, the success and survival of an 
organization depends on its business ecosys-
tem, and on its position within it. Organizations 
are part of complex economies which are 
formed by institutions and firms of the most 
diverse kinds. In complex economies value 
emerges from the interaction between these 
different organizations, together with other 
private and public inputs (Hidalgo and 
Hausmann, 2009). Ultimately, one of the 
goals of network science is to help this larger 
super-organism to wake up and become better 
at what it already does quite well, which is to 
divide up labor and generate prosperity. One 
step in this direction is to help organizations 
become more adaptable; as it could well be 
that an emergent property of an economy 
which is formed by more adaptable organiza-
tions is an overall system that is not only 
more adaptable, but rather, more evolvable.
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33
The Use of Complexity 
for Policy Exploration

S t e v e n  B a n k e s

INTRODUCTION

Policy decisions, whether made by govern-
ment agencies, for profit companies, or 
individuals, typically concern systems that 
are both complex and open. There are spe-
cial situations involving systems with a 
small number of agents where game theory 
can be informative and others where large 
numbers of effectively equivalent agents 
can be described in the statistical aggregate. 
However, most problems involve the middle 
ground where issues of complexity are 
important. Policy effects ramify through 
multiple iterated decisions, each a nonlinear 
function of perceived circumstances, where 
decisions by individual human agents can 
occasionally tip outcomes. And, public 
policy mostly deals with open systems that 
have no fixed simple boundaries. Economic 
realities can affect political processes, and 
in turn be affected by environmental, cul-
tural, technological, and military develop-
ments. Policy systems are composed of 
individuals whose identities, ideas and 
social networks are undergoing constant 
change. In being complex and open, policy 
systems usually defy closed form analysis 
and reliable prediction.

Indeed, policy problems are frequently 
‘wicked problems’ in the sense of Rittel and 
Webber (1973). This means that not only 
must policy be adaptive to cope with deep 
uncertainty and changing circumstance, but 
the analytic structures used to understand 
policy problems are context dependent and in 
need of adaptive response as policy coevolves 
with the systems being managed.

As a consequence, insights and tools from 
the complexity sciences have the potential to 
be very helpful for policy analysis. While heu-
ristic advice derived from complexity science 
has the potential to be useful for at least some 
situations, this chapter focuses on using com-
putational models to support policy explora-
tion for decision making. We will consider 
first the possible advantages and dangers of 
using complexity inspired computer models 
for policy analysis and argue for the use of 
large numbers of modeling experiments to 
compensate for the deep uncertainty that 
policy must contend with. Methods for explor-
ing parameters vs. non-parametric alternatives 
are discussed. Next, a series of aspects of 
exploratory analysis are discussed:

Exploring Alternative Policies •
Exploring Uncertainties •
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Joint Exploration of Policies and Uncertainties  •
(Robust Decision Methods)
Exploration of Values and Sources of Information •
Iterative and Interactive Exploration •

The chapter concludes with a discussion of 
future challenges and research directions.
While the focus of this chapter is policy 
analysis, model exploration through computa-
tional experimentation is a very general tech-
nique for complexity science. Consequently, 
much of what is described here actually has 
much greater applicability. Through the course 
of this discussion, a number of terms are 
introduced that may be novel for some read-
ers. Table 33.1 provides a Glossary of terms 
that can be consulted for clarification.

THE ROLE OF COMPLEXITY 
IN POLICY ANALYSIS

The crafting of policy is an ancient art, with 
heuristics and compiled wisdom long predat-
ing the advent of the computer. Scientific 
policy analysis and associated computer 
modeling can improve the ability of decision 
makers to utilize data and knowledge in 
crafting policy, but they can produce as much 
harm as benefit if we fail to appreciate the 
complexity of the systems involved. Unwise 
policy actions can result from attributing 
simple causes to the symptoms of a problem 
or overconfidence in the predictive powers of 
a model. Direct actions taken based on 
assumptions of linear relationships and 
simple causal models are prone to produce 
unintended side effects. An example of such 
blowback is reported in Walters (1997). Here 
undesirable changes in the ecosystem of the 
Florida Bay were attributed to decreased 
freshwater flow, resulting in an increase in 
salinity. However, policy actions that suc-
ceeded in increasing freshwater delivery cre-
ated new problems through turbidity plumes 
that decreased light penetration and inhibited 
growth, completely overshadowing intended 
benefits. Similarly, economic analyses that 
neglect political realities, or rational actor 

calculations that ignore cultural factors can 
lead to costly errors.

The advent of complexity science provides 
an important counter-weight for the universal 
human tendency to underestimate both uncer-
tainty and complexity, and consequently to 
put inordinate faith in forecasts and simplis-
tic policy prescriptions. Metaphors from the 
complexity sciences, including tipping points, 
adaptive landscapes, criticality, and co-
evolution, have enriched policy discussions 
and provided a means to better appreciate the 
complexity of policy systems and to seek 
robust, adaptive, and contextually sensitive 
solutions.

Complexity science is facilitated by com-
puter simulation modeling, which brings both 
opportunities and challenges to policy sci-
ence. The use of computer models for deci-
sion analysis is still relatively new (a few 
decades experience), and the use of computer 
simulation is extremely novel for most prob-
lem areas. Computational studies of social 
systems can bring new insights that can 
inform policy. And computational social sci-
ence is emerging to be a novel approach to 
understanding social systems (Carley, 1995; 
Epstein and Axtell, 1966; Axelrod, 1997a,b; 
Prietula and Carley, 1998; Gilbert and 
Troitzsch, 1999; Epstein, 2007). Conversely, 
a wide variety of complexity related computa-
tional social science studies are relevant to or 
were inspired by a policy question. Examples 
include models of advertising (Farrell, 1998), 
group dynamics (Carley, 1991), traffic and 
road planning (Nagel and Rasmussen, 1994; 
Burmeister et al., 1997), military combat 
(Ilachinski, 1997), epidemiology (Carley et al., 
2006), financial markets (Bak et al., 1996; 
Arthur et al., 1997; Darley and Outkin, 2007), 
cultural dynamics (Axelrod, 1997a,b), politi-
cal revolutions (Kuran, 1989), segregation 
(Schelling, 1971), city planning (Ishida, 
2002), and command and control (Bonabeau 
et al., 2003).

Computer modeling provides an 
opportunity to combine disparate sources of 
knowledge and data, incorporate multiple 
phenomena, and illuminate tradeoffs among 
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Table 33.1 Glossary

Abductive Reasoning: ‘Abduction … consists of examining a mass of facts and in allowing these facts to suggest 
a theory’ (Peirce, 1933: 205). Abduction, is an ‘inference to the best explanation’ (Harman, 1965). In contrast to 
induction, abduction uses all available data to generate coherent patterns (Hanson, 1958). In the context of the 
exploratory approach advocated in this paper, abduction can be generalized to mean discovering (possibly multiple) 
plausible explanations consistent with available information. In decision making contexts this could include either 
discovering plausible decisions or plausible future scenarios given a decision.

Alternative Models. More than one model may plausibly represent what is known about a given problem, and ideally 
multiple alternative models would be tested as part of any policy analysis. As model construction is generally quite 
labor intensive, multiple alternative models are available only for problems that have gotten significant attention, 
notably climate and weather forecasting models.

Base Case. A base case is a single special case used to anchor excursions over alternative inputs (cases) for a 
computer model. Typically it is thought of as the best estimate case, and excursions are used to estimate the variability 
of model response around this case. The use of base cases is becoming archaic as the ability to run large numbers of 
cases is increasingly commonplace.

Coevolution is a concept from evolutionary biology, where for example predator and prey species evolve in parallel. 
Similarly, coevolutionary methods search in parallel across sets of possible solutions and challenges. These methods 
can be very powerful in focusing computation on those challenges which are most difficult for the leading solution 
candidates. (See for example Hillis, 1991.) In the context of this chapter, this is applied to searching for robust policies 
by in parallel seeking scenarios that are worst cases for the leading candidate policy recommendations.

Data Farming is the practice of creating a design of experiments for a given model, running all the modeling cases in 
the design (possibly on parallel computers) and analyzing the results.

Design of Experiments is a concept drawn from statistics, originally devised to support the design of physical 
experiments, where for example in medicine one might systematically vary treatments, and the demographic character 
of test subjects. Such algorithms can be applied to designing computational experiments as well. Full factorial and 
Latin Hypercube designs are examples of experimental designs that have been frequently used to create structured lists 
of computational experiments for data farming purposes.

Exploratory Modeling is a term for the general practice of exploring across alternative models or alternative cases 
(inputs) for a single model in search of insight to inform a decision. This is in contrast to the practice of using an 
experimentally validated model to make predictions. Exploratory modeling includes as proper subsets the concepts of 
Exploratory Analysis (exploration of inputs to a single fixed model) and Data Farming (structured exploratory analysis 
utilizing statistical design of modeling experiments and statistical analysis of modeling results).

Extreme Modeling is a term innovated for this chapter. Extreme programming is a term used to characterize 
programming methods emphasizing rapid agile development of computer applications through frequent iterations of 
development, testing, evaluation and modification. It is associated with Web 2.0 development and is often thought 
of as creating applications that are constantly being revised (perpetual beta). In analogy, this chapter speculates that 
future complexity modeling practice will be embedded in the environment being modeled, and that the models will be 
perpetually in flux.

Full Factorial Designs are methods for design of experiments that create a grid of points across the input variables. 
For example, if there are two inputs X and Y, with ranges [0, 10], then a 2 × 3 design would combine two levels of X 
(0, 10) and three levels of Y (0, 5, 10), to create six sample points: (0, 0), (0, 5), (0, 10), (10, 0), (10, 5), (10, 10). Full 
factorial designs require a total number of cases that grow geometrically with the dimensionality of the space. They are 
thus useful only for models with a small number of inputs.

Inequality Constraints are constraints that can be used to filter data or guide case generation where one quantity 
is required to be greater than (or less than) another. For example, in an environmental remediation model, one might 
only be interested in cases where environmental standards are met, or conversely might want to focus on failure cases 
where they are not.

Latin Hypercube Designs (LHDs) are experimental designs that are very useful for high dimensional models with 
large numbers of inputs. For a number of experiments (N) that are desired, N levels are created for each input, and 
these N values randomly permuted. LHDs are space filling, and the N sample points will be uniformly dense for 
any projection, such as one creating a two-dimensional point cloud. The data from the experiments can be used to 
analyze variance, or create a surrogate model that interpolates among the points (a response surface model). These 
latter analysis steps are facilitated if the sampling of the inputs is uncorrelated. This is equivalent to requiring that 
the vectors of values for any two variables have a zero dot product, producing an Orthogonal Latin Hypercube Design 
(OLHD). As the number of inputs grows, finding an OLHD can become computationally taxing. Consequently, Nearly-
Orthogonal Latin Hypercube Designs (NOLHDs) where the correlation between variables is small are frequently used.
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Table 33.1 (Contd.)

Level Sets are sets of points in the input space for a model for which an output of the model has a specific value or 
level. For example, contour plots display level sets of geographic locations that have a specific altitude. For nonlinear 
models, level sets can be non-convex, and not simply connected. The geometry of level sets is one way to portray the 
response surface of a model.

Model Cases. A case for a given model is specified by the list of values for the inputs to the model, and results in 
a list of values for its outputs. A case can be thought of as a point in the space of model inputs, that has associated 
values for the model outputs.

Model Uncertainty. For most policy systems, our knowledge of causal relationships is imperfect, meaning that 
multiple alternative models can plausibly represent dynamic relationships. This can be assessed in part by testing 
alternative models.

Pace Layered. The concept of pace layering was first introduced by Stewart Brand in the context of the life history of 
buildings, with the observation that over time some architectural details change rapidly, while others are more stable. 
Subsequently, it has been observed that in many natural and artificial systems change happens across a wide range of 
time scales. For example, in economic systems, prices change at time scales of seconds to days, companies are founded 
on a time scale of months and years, industries arise on the time scale of decades, and infrastructure change can 
involve time scales of centuries. This chapter hypothesizes that complexity modeling will eventually display similar pace 
layered properties.

Parallel Computation. Many options for running multiple model cases simultaneously (in parallel) exist including: 
single machines with multi-core chips, computational clusters (linked networks of computers) and cloud computing 
(multiple machines accessed through the Internet).

Parametric Uncertainty is uncertainty associated with input parameters of a model. Exploration over parametric 
uncertainty is much more readily accomplished than for uncertainty not associated with parameter values, which may 
be called structural uncertainty, model uncertainty, or non-parametric uncertainty.

Response Surfaces are mathematical objects defined by the behavior of a model. A given model output can be 
thought of as an elevation defined for each point in the space of possible inputs. This surface or terrain can be explored 
by sampling from the input space and running the corresponding cases. For non-linear complex models, the response 
surface can be much more rugged (with multiple peaks) than is true for simple models.

Response Surface Models fit a surface to a database of model results to create a surrogate model that is faster to 
execute and evaluate.

Robust Decision Methods are means of seeking decision options that perform adequately across the broadest 
possible range of uncertainty, in contrast with optimization methods that seek to maximize the value of outcomes 
given a best estimate case or probability distribution.

Scenario Discovery is the problem of discovering scenarios in the output (response surface) of a model. In the 
scenario planning literature, a scenario is a group of possible futures that share salient qualitative properties. A bridge 
between this literature and computational (model based) planning methods is made possible by defining scenarios 
as qualitatively similar regions in model input space. If the outcome of interest is profits, for example, the high profit 
scenarios will be the peaks in the profit response surface of the model in question. Applying classifier algorithms to 
data bases of model results is one option for discovering scenarios.

Space of Alternatives. Alternative cases, alternative futures, and alternative policies can often be structured by a 
topology with an associated way to measure distances between alternatives, creating a space. Structuring alternatives 
as a space is a useful analytic tool, enabling in particular search and visualization.

Spiral Process is an approach to development that emphasizes iteration as opposed to a linear sequence of steps. 
A linear process involving sequentially specification, construction, testing, and use, can be converted to a spiral by 
performing this sequence multiple times, with each spiral being an elaboration on the product of the previous spiral.

Trees, Lattices, and Graphs. Alternatives that are not numeric may still be related to one another, and this 
relationship can be used to identify nearby alternatives, facilitating search and analysis. For example individuals in 
a population can be related to others by being members of the same family, or the same profession. Neighborhoods 
are located in cities, cities in counties, counties in states. Such a web of relationships form a mathematical object 
called a graph or a network. Some graphs have important special properties. Graphs without cycles are called trees. 
Relationships such as part–whole that are transitive are said to structure collections as lattices. Such special properties 
allow more powerful means of exploring the collections of alternatives.
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multiple values or goals. Modeling represen-
tations pioneered by the complexity commu-
nity such as agent-based modeling provide a 
means to reason about the implications of 
classes of knowledge (such as that regarding 
cultural patterns of individual decision and 
action) that heretofore had little influence on 
policy modeling.

The significant limits on our ability to 
accurately predict the future behavior of com-
plex systems presents novel challenges in the 
rigorous application of complexity modeling 
in policy settings. Models that can predict the 
outcome of choices are clearly very useful to 
support decisions. It is less clear to a casual 
audience how to utilize models that cannot 
reliably predict outcomes. Combined with 
other sources of concern with computer 
models, this has presented a significant bar-
rier to using computer simulations for policy 
analysis. In order for complexity models to be 
helpful, they must both be a vehicle for 
informing policy makers of salient informa-
tion, and be exploited in ways that are congru-
ent with human reasoning and existing policy 
systems. Models can usefully provide insights 
that would otherwise not be available, even 
when they cannot be used as prediction tools. 
This requires building suitable models that 
capture salient information, and exploring 
their implications in a manner that provides 
useful insights into the policy problem.

The incorporation of complex computer 
models into policy analysis has potential 
hazards. Policy problems frequently involve 
political realities where multiple factions 
press for policies that serve narrow interests. 
Because policy systems typically are deeply 
uncertain, multiple models can plausibly 
serve to explain observed behavior, creating 
the real possibility that politically expedient 
choices can be promoted by choosing models 
that imply desired conclusions. When the 
models involved are the mental models of 
stakeholders, traditional political heuristics 
can accommodate the biases inherent in 
model proponency, but computer models can 
serve to obscure the logical basis for policy 
arguments and can give a scientific veneer to 

biased analyses. In particular, the biases 
introduced through unstated assumptions 
can lead to naïve inference about the actual 
state of knowledge about the policy issues at 
hand and suggest policy options that are 
insufficiently robust to uncertainty.

Whenever computer models are used in 
policy analyses, there is a natural tendency to 
ascribe predictive power to the computation-
ally envisioned future. While predictive accu-
racy is a very powerful standard for assessing 
model quality (confusingly often referred to 
as model validation) for policy systems, the 
intersection between those situations that 
where prediction is possible and those where 
policies can make a difference is typically 
empty. This is because it is usually only for 
time scales where human agency can have no 
effect that prediction is possible. Prediction 
is possible for where the dynamics of the 
system create a ballistic trajectory where no 
action can affect the outcome, like a car that 
has already gone over a cliff. But in such 
situations prediction is of limited value. On 
the other hand, unless one is the only driver 
on the road, if there is time to avoid the col-
lision, the actual outcome depends not only 
on one’s own actions but those of other driv-
ers. And so, in such a circumstance, accu-
rately predicting the final outcome is not 
possible. Thus, the situations where our 
knowledge can best help to steer outcomes 
are principally those where the outcome is in 
doubt. For policy analysis purposes, we must 
often concern ourselves with models that can 
support valid inference about the implica-
tions of policy choices even though specific 
quantitative predictions may not be reliable.

While models of complex policy systems 
frequently cannot be relied on to predict the 
future, they can still serve a useful role as 
part of a human–machine collaboration, 
where models extend the ability of policy 
analysts and decision makers to envision the 
implications of available knowledge, posited 
scenarios, and available policy options. In 
short, models will often find their most pow-
erful use not as devices to predict, but rather 
as a means to explore the implications of 
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alternative policies and alternative plausible 
scenarios (Bankes, 1993).

Growing hardware capabilities make 
aggressive exploration of alternative deci-
sions and future scenarios increasingly feasi-
ble. Computational experiments conducted 
for exploration can be conducted in parallel, 
and so the techniques of policy exploration 
can benefit greatly from the increasing avail-
ability of parallel computing resources, rang-
ing from the ubiquitous deployment of 
multi-core chips, to cluster machines, and 
grid and cloud computing (see Glossary). For 
many models of interest, there is no barrier to 
routine use of millions of computational 
experiments to inform a policy choice. This 
presents the opportunity of assisting decision 
makers in considering a much wider range of 
uncertainty and future possibility than is cur-
rently possible. Properly exploited, this can 
lead to developing much more robust deci-
sions and designing more resilient systems.

The barrier to aggressive use of emerging 
computational resources are thus less a matter 
of computational resources than of effective 
approaches for generating and interpreting 
large numbers of useful experiments, which is 
to say techniques for exploration. At present, 
very large compound computational experi-
ments (simply stated questions that generate 
multiple model runs) are mostly based on 
exploring different parameter choices for a 
single model. While the value of parallel 
experiments with different plausible models 
is very clear, it is pragmatically more diffi-
cult, and innovation is needed to make such a 
practice routine.

Policy exploration with computer models 
is deeply related to uncertainty analysis. 
Understanding the potential implications of a 
candidate policy requires exploration across 
the range of possible outcomes of that policy. 
Our ability to assess policies requires that the 
range of model behaviors span the possible 
futures or states of the world consistent with 
our knowledge. Otherwise, exploration with 
computer models can produce biased conclu-
sions. For example, while quantitative finan-
cial modeling routinely involves running 

large compound computational experiments 
(for example Monte Carlo simulations using 
probability distributions) failure to consider a 
wide enough range of future situations con-
tributed to catastrophic failure of trading 
strategies based on these models in 2008.1

PARAMETRIC AND 
NON-PARAMETRIC EXPLORATION

Collections of alternative worlds, alternative 
futures, or alternative policy choices can with 
greatest generality be conceived as unordered 
sets or lists. However, tools for the explora-
tion of such unordered collections are limited 
to random sampling, or exhaustive assess-
ment if the set is small in size. If there is 
some structure relating the cases (a topology) 
so that nearby cases with similar properties 
to one of interest can be generated algorith-
mically, then a much wider range of tools can 
be employed to explore alternatives and draw 
inferences from the outcomes of modeling 
experiments. Typically, a single software 
program (‘the model’) is used that accepts a 
list of inputs (parameters). When these 
parameters are integer or real valued num-
bers there are a wide variety of mathematical 
techniques for choosing model cases for 
examination. Non-numeric parameters can 
also be related to one another, perhaps creat-
ing tree or lattice, in which case they also can 
be explored algorithmically.

Structuring the range of alternatives as a 
space with specified axes is a powerful ana-
lytic device even for non-quantitative and 
non-computational analyses. Our abilities to 
reason spatially can then provide a powerful 
means of drawing inferences from the pat-
terns observed in the resulting space. The 
parameter or state spaces of most simulation 
models are very high dimensional, so that 
direct visualization of the complete space 
is not an option. But, lower dimensional sum-
maries can be very informative, and can be 
produced for example by slicing (setting non-
visualized dimensions to specific values), 
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averaging, or using more complex operators 
to reduce dimensionality. From this perspec-
tive, point predictions or best estimate policy 
recommendations can be thought of as zero-
dimensional data objects summarizing the 
larger dimensional space of possibilities. 
Modern computer resources allow us to create 
one, two, or three dimensional summaries 
that can be visualized graphically. The result-
ing pictures can provide more information, 
and better preserve user choice, than do single 
point ‘answers’. In this way, many of the 
techniques of decision analysis can be under-
stood as approaches to dimensionality reduc-
tion. And the art of policy analysis can be 
framed as discovering the most informative 
(and the least misleading) low-dimensional 
depiction of the underlying complexity.

A well established technique in the explo-
ration of a single dimension of uncertainty is 
systematically testing a model parameter 
across a range of values (‘ramping’) while 
holding others constant. For example, in 
Axtell and Epstein (1999) issues of retire-
ment timing were examined, and the number 
of rational actors in the population of agents 
was an uncertainty specifically addressed by 
ramping.

Beyond ramping over single variables, 
experimental designs over multiple variables 
can be used to better understand their interac-
tions and to approximate the behavior of the 
model in question across the space they span 
(Kleijnen et al., 2005).2 Full factorial designs 
can be used for small numbers of variables, 
but for problems with many dimensions of 
uncertainty and choice, require too many 
cases to be practical. A very useful alterna-
tive is the use of Latin-Hypercube designs 
(Cioppa and Lucas, 2007), which require 
many fewer cases, and can be space filling 
and unbiased.3 (See Glossary.)

Search methods can also be used to explore 
spaces of alternatives, an approach that was 
used in operations research long before the 
advent of complexity science. In contrast 
with the problems addressed in classical 
operations research, the response surfaces of 
complex systems are typically rugged, and 

the identification of global optima is in gen-
eral computationally intractable. Exploring 
the rugged landscapes of complex systems 
requires nonlinear optimization techniques, 
and the results of these computations in gen-
eral provide only local information about the 
space being explored. Nonlinear optimiza-
tion methods such as Genetic Algorithms 
(Goldberg and Holland, 1988; Holland, 1992; 
Mitchell, 1998), Tabu search (Glover, 1990), 
and simulated annealing (Kirkpatrick, 1984), 
must concern themselves with exploration as 
much as exploitation (Back and Schwefel, 
1993). In contrast to search algorithms that 
seek single ‘optimal’ points in the input 
space of a model, for complex systems locat-
ing boundaries between qualitatively similar 
regions in a space of alternatives can often be 
much more useful (Horn et al., 1994; Bryan 
et al., 2006). For example, in the case of a 
company that has a standard hurdle-rate for 
internal rate of return of investments it con-
siders, it can be very informative to deter-
mine the boundary between scenarios where 
a candidate investment achieves that return 
from scenarios where it will not. In addition 
to providing better information to decision 
makers, such ‘level sets’ can be very useful 
for Robust Policy Analysis (Bankes, 2002). 
In the case of an investment, knowing the 
situations where it would not perform 
adequately can help in constructing a more 
adaptive (hedged) option (McGrath and 
MacMillan, 1995). This is an example of 
mixed initiative planning, where computers 
and humans collaborate in finding good deci-
sion options. This is frequently more useful 
than having the computer present ‘optimal’ 
solutions as take it or leave it propositions.

EXPLORING POLICY SPACES

Decisions are fundamentally about choice, 
and computational examination of a wide 
range of possibilities brings with it the oppor-
tunity to discover options that would not 
have been considered without computational 
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assistance. One manifestation of this is the 
use of computer models analogously to ‘flight 
simulators’. By repeatedly playing with a 
simulation of the policy world, decision 
makers gain insight and experience, promot-
ing better decisions when the real case 
presents itself.

A rather different approach is presented by 
the use of optimization as a means of formu-
lating policy. Optimization can be a powerful 
method of selecting among options in engi-
neering settings, but is often much less help-
ful for policy problems. An option that 
optimizes some value for an expected future, 
or the expected value over an assumed prob-
ability distribution of futures, will often be 
fragile when confronted with surprise. And 
for many policy settings, surprise is nearly 
inevitable. Hence, robust decision methods 
can often produce much better decision 
options than pure optimization approaches.

Further, in policy settings there is often not 
a single goal to be optimized. Rather, multi-
ple values, measures, or objectives are impor-
tant, and various stakeholders may have 
different priorities across these concerns. 
Similarly, different stakeholders frequently 
will have very different assessments of the 
probability of future circumstances. These 
concerns are sometimes addressed by form-
ing a weighted average of stakeholder values 
and views, and then proceeding to solve for 
the best expected outcome in terms of the 
averaged value function. But this approach is 
unsatisfactory for multiple reasons. Notably, 
in a political context, stakeholders will rou-
tinely game their weightings of values and 
probabilities in response to their anticipation 
of the process used to reach a decision. The 
assumption of a unitary rational decision 
maker that is used in classical decision theory 
does not hold for many policy problems.

A broad exploration over the space of pos-
sible policies can produce a much more 
useful result than simple optimization for 
many problems. Information regarding how 
various options tradeoff among the metrics or 
values of interest can stimulate thinking, elicit 
new knowledge, and provide a backdrop to 

negotiations or other group processes. Clearly 
dominated options will often not be of inter-
est. Focusing instead on policies where values 
are at tension (such as achieved levels of 
public service versus tax rates) results in a 
Pareto surface of non-dominated policies. A 
variety of Pareto search methods (for example 
multi-attribute genetic algorithms (Horn et al., 
1994)) explore spaces of options in order to 
discover such tradeoff sets.

Providing policy makers with a trade space 
of feasible options can be much more desir-
able than computing a single recommenda-
tion for several reasons. Humans often are 
ill-disposed to yield decision making author-
ity to a machine. This can reflect wisdom and 
not just parochial instincts. Often, policy 
makers will possess knowledge that was not 
used in any computation. This may be 
because they possess tacit knowledge that is 
difficult to formally express but that can 
enter as a ‘seat of the pants’ instinct in navi-
gating a trade space. Some knowledge is 
more readily available after seeing an exam-
ple. Only on seeing a bad option may one be 
able to verbalize what is wrong with it. Some 
knowledge cannot be made explicit for social 
or political reasons. Often tradeoffs among 
values are easier to make after inspecting 
alternative options than in an a priori elicita-
tion. For example, directly specifying the 
monetary value of a human life may be unat-
tractive, even though a tradeoff between lives 
and economic growth may be necessary. And 
most centrally, a trade space allows parties to 
a decision to trade horses and roll logs, con-
strained by the information in the computer, 
but not disempowered by it. Thus, computa-
tional analysis can constrain decisions, but 
not dictate them. This allows human and 
computational insight to be combined, in 
contrast to optimal recommendations that 
decisions makers must either accept or 
ignore.

In constructing trade spaces, it can often 
be useful to elicit values not as fixed utility 
functions, but as constraints. One might, for 
example, be willing to consider options with 
tax rates up to X%, and this constraint may be 
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a better representation of individual values 
than an explicit weighting of taxes versus 
public services. Humans in general satisfice 
rather than optimize (Simon, 1955, 1956, 
1957). By eliciting the levels of outcome that 
would be satisfactory, constraints can be 
inferred that will generate the desired trade 
set. Defining the trade set through inequality 
constraints (satisfying threshold require-
ments on the various values) results in a level 
set in policy space. The goal of exploration 
then becomes estimating the boundaries of 
this level set, as discussed above.

An early example of this approach can be 
found in Brooks et al. (1999). This study 
sought to inform choices among possible 
future high-tech weapons by evaluating port-
folios of weapon system stockpiles using a 
complex simulation model of an exemplary 
air campaign. For this problem, the optimal 
portfolio provides much less insight than does 
a level set on the response surface of the 
model in portfolio space. Shown in Figure 
33.1 is such a level set of portfolios that result 
from setting a performance threshold 5% 
worse than the best performance that any 
portfolio can achieve. (Here the level set is 
projected onto the number of weapons of 
type 1 versus the number of weapons of type 
2 plane.) This figure demonstrates several 
salient features. First, it immediately reveals a 
very strong complementarity between the two 
options shown on the axes, with critical 
stockage levels after which benefits are mar-
ginal. While readily explainable, this fact had 
not been noted before this figure was first 
produced. Further, the optimal portfolio was 
not near the center of the level set, but off on 
one wing. Consequently, the performance of 
the ‘optimal’ allocation will be much less 
robust to changes, errors, or missing informa-
tion that modify the model’s response surface. 
Experts presented with this diagram pro-
ceeded to ‘explain’ it, in the process produc-
ing information that had not been elicited 
prior to modeling. And as a result of these 
explanations, this diagram created much 
greater confidence that the model did not 
contain errors than resulted from the previous 

result of a single optimal allocation that had 
no accompanying explanation other than ‘the 
model said so’. A diagram such as this one 
can provide a much better basis for negotia-
tion between proponents of the two weapon 
systems than would be possible if only the 
optimal portfolio was provided. And should 
the decision maker have information or pref-
erence that was not available to the computer, 
that information can be used in making a 
choice from the trade space represented by the 
level set. If, for example, cost is an issue, 
the decision maker could opt for a choice near 
the bend, rather than a modestly more effec-
tive but much more expensive optimum. 
Similarly, information from multiple sources 
(competing models of the system in question 
perhaps) can be fused at decision time by 
determining the intersection of their respec-
tive trade sets.

EXPLORING UNCERTAINTY SPACES

If one had perfect knowledge about the 
world, then good policies could be reliably 
calculated by optimization. A model captur-
ing this knowledge could be used to evaluate 
alternative policy options, and only issues of 
the computational complexity of the search 
process would merit discussion. With the 
exception of engineering simulations, this 
circumstance essentially never occurs. 
Available knowledge about policy problems 
is invariably partial and incomplete, and 
exogenous shocks and other surprises are 
always possibilities. Policy decisions must 
take into consideration issues of model uncer-
tainty and risk, and confront the possibility 
that options that are optimal for the expected 
situation will be very fragile in the face of 
inevitable deviation from the expected.

It is thus a general requirement that policy 
analysis contend with the deep and unavoid-
able uncertainties that accompany policy 
problems. This need can be met by exploration 
of alternative assumptions, alternative models, 
and alternative futures.
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Figure 33.1 A level set in portfolio space

The variability of outcomes resulting from 
modeled uncertainties can be assessed by 
testing around an expected baseline case. 
However, such an assessment of stability is 
not sufficient for most decisions. The limita-
tions of a computational policy analysis are 
better revealed by enumerating the most 
important assumptions required for a given 
choice, and discovering the possible failure 
modes for a candidate decision. In addition 
to alerting policy makers of the risks associ-
ated with a choice, it can also suggest alter-
native options that mitigate those risks.

Testing around an expected baseline case 
can be used to assess the variability of out-
comes to modeled uncertainties providing an 
assay of stability. But the needs of decision 
making typically require other information. 
Discovery of possible failure modes of a can-
didate decision, and enumeration of the most 
important assumptions supporting a given 
choice are much more important devices for 
alerting policy makers of the limitations to a 
computational analysis, and can prompt con-
sideration of other, possibly less risky, deci-
sion options.

Exploration over the uncertainties around 
a problem (in contrast to sensitivity analysis 
framed as analysis of variance) is akin to 
non-computational techniques such as sce-
nario analysis (Schwartz, 1991; Millot et al., 
1993) and assumption based planning 
(Dewar, 2002). Rather than try to predict the 
future, a dubious practice at best, these 
techniques try to understand the range of 
plausible, potentially important futures, and 
the assumptions that characterize them.

Non-computational techniques such as 
scenario planning have proven their worth in 
helping decision makers to escape the tyr-
anny of the expected case, and to discover 
options that prepare for other possibilities. 
Their common weakness is that being purely 
human mediated, they are limited in the 
number of alternative assumptions or futures 
they can examine. Computer models of the 
policy problem together with tools for explo-
ration can allow for the examination of mas-
sive numbers of scenarios, summarizing 
their implications for human users (Davis 
et al., 2007). Summarization can be accom-
plished through a combination of interactive 
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visualization and statistical modeling of the 
results of exploration.

One method for statistical summary that 
has proven especially valuable employs sta-
tistical classifiers to summarize the assump-
tions that lead to qualitatively salient outcomes 
(Lempert et al., 2002, 2006). This has been 
called ‘scenario discovery’. For example, a 
classifier analysis of the failure modes for a 
candidate strategy can give policy audiences 
an appreciation for the assumptions they will 
be making in adopting that option, and the 
possibilities that they would, in effect, be 
wagering against if they adopt it (Groves and 
Lempert, 2007; Groves et al., 2008; Lempert 
and Groves, 2010). Figure 33.2 displays two 
such failure scenarios discovered through this 
technique as part of an analysis of state water 
policy. In this case the classifier used to sum-
marize the two regions where the candidate 
strategy underperforms was PRIM (Patient 
Rule Induction Method; Friedman and Fisher, 
1999). This classifier captures regions of 

interest as rectangular boxes, which is a par-
ticularly convenient form to communicate the 
results to decision makers. Other classifica-
tion methods can also be useful, in particular 
classification trees (Breiman et al., 1984).

Aggressive exploration across uncertainties 
can provide computational support for policy 
analysis in those situations where the 
uncertainties are so large that approaches 
involving prediction and probabilistic analy-
sis founder. An extreme demonstration of 
this possibility is provided by Lempert et al. 
(2003) and Popper et al. (2005) where the 
outcomes from environmental policies across 
the uncertainties associated with a 100 year 
timeline were assessed by massive scenario 
analysis using a simple model.

Computational means for exploring uncer-
tainties are much better developed for para-
metric uncertainty than they are for model 
uncertainty. When multiple models are avail-
able, testing candidate strategies against the 
suite of models can provide an assessment of 
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possible model bias in favor of particular 
decision options. However, the current state 
of model building involves substantial labor 
in creating complex models encapsulating 
considerable data, theory, and assumption. In 
order for model uncertainty to be adequately 
addressed through computational exploration, 
tools are needed to algorithmically create 
complete models from components embody-
ing single assumptions, theoretical snippets, 
or data sources. The recent successes of 
modeling infrastructures that support model 
composition4 provide an indication of the 
feasibility of constructing models from 
pieces, and emergent software practices that 
support composition of software components 
(Szyperski, 2002) suggest that massive explo-
ration across model variants is not infeasible.

JOINT POLICY-SCENARIO 
EXPLORATION: ROBUST 
DECISION METHODS

Exploration over scenarios and uncertainties 
can reveal the weaknesses of a given policy 
option, and exploration over policy can dis-
cover superior alternative policies. Combining 
them to jointly explore policies and uncer-
tainties creates new possibilities for policy 
evaluation. In particular, joint exploration 
enables Robust Decision Methods (RDM) 
(Lempert, 2002; Bankes and Lempert, 2004; 
Bankes, 2005) that seek options highly immune 
to failure. Decisions optimized for the expected 
case (including for the expected probability 
distribution) can potentially fail disastrously in 
other, less expected, but possible circum-
stances. Frequently, joint exploration over 
decisions and uncertainties can reveal options 
that perform acceptably across a broad range 
of possibilities. These options will frequently 
be sub-optimal under all assumptions but 
sometimes can perform nearly optimally 
across a wide range of circumstances.

A variety of Robust Decision Methods 
result from different approaches to defining 
robustness, searching for robust options, and 

summarizing the results of that search. The 
oldest such approach is robust optimization, 
which as the name implies, optimizes a 
measure of robustness. Typically, robust opti-
mization seeks the option that minimizes the 
maximum cost. This method can result in 
highly conservative solutions that can be 
very sub-optimal in likely cases to avoid high 
costs in low probability cases.

A different approach is to define a thresh-
old performance past which a decision option 
is defined as failing, and then searching for 
policy options that minimize the occurrence 
of failure. An example of this is the info-gap 
approach (Ben-Haim, 2006) which specifies a 
linear nesting of sets of possibility and then 
defines robustness as the index of the greatest 
set for which an option performs acceptably. 
Methods of this type have a deep relationship 
to the literature in imprecise probabilities 
(Dempster, 1967; Shafer, 1976; Hand, 1993).

In general, sets of possible challenges are 
only partially ordered (they form a lattice), 
and so for more general methods, the result 
of search across sets of challenges for a fixed 
definition of robustness (i.e. a threshold 
value in some outcome) will be a set of 
robust candidates none of which are domi-
nated by another. That is, different members 
of this set will fail on different scenarios. 
Unless information is available to unambigu-
ously assign probabilities, no a priori infor-
mation will be available to weight one failure 
scenario and hence one decision option over 
others. Thus, in general RDMs produce trade 
spaces where some additional information, 
assumption, or choice criterion must be pro-
vided to produce a final single strategy. 
Consequently, these general methods are not 
suitable for applications that require simple 
criteria producing unique solutions, but are 
well suited for applications where mixed 
initiative decision making is desired, with 
human users making choices from among 
machine provided trade sets. Figure 33.3 
provides an example displaying the perform-
ance of alternative policies against two 
criteria (Lempert and Groves, 2010). It dem-
onstrates both that adaptive strategies tend to 
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dominate (are more robust than) static strate-
gies, and that different options may be 
favored depending on how policy makers 
tradeoff between criteria. Figure 33.4 more 
directly portrays the improvement in per-
formance that can result from augmenting 
policies with adaptive mechanisms (Lempert 
and Groves, 2010).

Various algorithms can be used to search 
for robust strategies. Some approaches search 
over uncertainties to define a robustness 
measure, and then search over policies to 
maximize robustness. Bias inherent in the 
initial framing of the analysis can be 
addressed in part by iterating this process, 
searching for scenarios to defeat leading can-
didate policies, and then searching for options 
to cope with those scenarios. This technique 
can be used in particular to ‘grow’ adaptive 
policies from simple initial option sets 
(Lempert et al., 2003; Popper et al., 2005). 
Coevolutionary methods suggest themselves 
as potentially very useful in dual searches 
across challenge scenario and policy. 
Coevolutionary methods have been used to 
develop strategies for games or other closed 

problems (for example Pollack and Blair, 
1998), and coevolutionary theory has seen 
great use in studies of environmental policy 
(Gowdy, 1994). However, there has been 
limited use of coevolutionary methods in 
policy exploration at this point, though it 
remains a promising idea.

EXPLORING OVER VALUES 
AND INFORMATION SOURCES

The use of exploration to discover sets of 
decision options that are robust to uncer-
tainty can be extended to consider robustness 
to variation in other inputs to the decision. 
Particularly useful is exploration over values 
and information sources. Frequently, policy 
decisions are of concern to communities of 
‘stake holders’, whose interests can be quite 
diverse. Contention between communities 
defending the environment and those promot-
ing economic growth is a particularly common 
example of this. Also frequent are negotia-
tions between representatives of different 

Level of Additional Effort

N
um

be
r 

of
 H

ig
h 

C
os

t S
ce

na
rio

 (
to

ta
l c

os
ts

 >
 $

3.
75

 b
ill

io
n)

+ efficiency+ DYY and recycling w/ adaptivity
+ replenishment w/ adaptivity

UWMP w/ adaptivity

+ replenishment

+ DYY and recycling

Low Effort. High VulnerabilityUWMP

+ efficiency w/ adaptivity

+ all enhancements

High Effort, Very
Low Vulnerability

0

0

20

40

60

80

100

120

5 10 15 20 25

Figure 33.3 Tradeoffs between reducing vulnerabilities and effort for alternative state water 
policies. Circles indicate static strategies and diamonds indicate adaptive strategies. 
DYY refers to supply from MWD’s dry-year-yield program



THE USE OF COMPLEXITY FOR POLICY EXPLORATION 583

0

2.5

3.0

3.5

4.0
78% 22%

UWMP with Adaptivity (dots)
UWMP (origin)

48%

52%

1 2

PV Shortage Cost ($billions)

P
V

 S
up

pl
y 

C
os

t (
$ 

bi
lli

on
s)

3 4

Figure 33.4 Differences in projected present value (PV) shortage costs ($ billions, x-axis) 
and supply costs ($billions, y-axis) for 200 scenarios for an Urban Water Management Plan 
(UWMP) strategy (unmarked line endpoints) with the same strategy that monitors signposts 
and adopts additional actions if the signpost is observed (marked line endpoints)

geographic areas, or different demographic 
populations.

Important decisions generally must bal-
ance a variety of interests. Individuals also 
have multiple interests, but with individual 
decision makers it is frequently possible to 
elicit weights for the various attributes of a 
decision, and then form a compound value 
function that is the weighted sum of its 
components. A policy can then be chosen to 
optimize this composite value function. This 
weighted sum approach does not work well 
with communities of stakeholders however. 
The process of eliciting weights quickly 
results in gaming and polarization among 
competing interests. And ‘optimal’ decision 
for some composite value function may be 
unsatisfactory for many or all of its constitu-
ents and they may have the ability to block a 
decision made on that basis. Robust decision 
methods provide an important alternative in 
these situations. Rather than form a fictitious 
composite interest function for optimization, 

solutions can be sought that are as robust as 
possible to the dissatisfaction of any interest 
group. In this context, choice sets that result 
from computational exploration can be a 
backdrop to community discussions and 
negotiation. The result is an ecosystem of 
decision making where the computational 
element can facilitate community discussions 
and consensus by imposing constraints on 
final decisions that emerge from accepted 
theory and available data, but that leave flex-
ibility for negotiation where the implications 
of available information remain uncertain. 
Frequently in these contexts, knowledge 
emerges from human participants that they 
were initially unable to explicitly provide.

Communities with different values often 
also have different sources of information 
that they trust, or different models of the 
problem they believe in. In defense analyses 
for example, it is not infrequent that the 
Army’s favored model and that of the Air 
Force provide somewhat different predictions 
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and imply different decisions. In such situa-
tions, the models usually reflect the interests 
of their sponsors, even if there has been no 
conscious bias in their construction. 
Aggregating the recommendations that come 
from different knowledge sources, by for 
example simple averaging, is not a reliable 
method for reaching a good consensus. 
Robustness techniques can be used to deter-
mine policy options that are consistent with, 
to the extent possible, each of the contributing 
sources of information. As with multi-attribute 
decision problems, the result typically will be 
a trade set, and not a single uniquely defined 
option. In this context, implicitly held human 
judgments can be thought of as just another 
information source. Robust Decision Methods 
can thus be used as a means for knowledge 
fusion, including both machine and human 
resident knowledge.

This approach to the fusion of information 
sources can readily be understood from the 
perspective of constraint satisfaction. If each 
knowledge source is used to calculate a 
single ‘optimal’ decision, the recommenda-
tions of the various sources will in general 
differ. Instead each source can be used to 
derive a set of acceptable decisions (a level 
set resulting from a threshold of acceptable 
performance). In this alternative framing of 
the problem, resolution of the difference 
between knowledge sources, values, or 
expectations, is transformed into a relaxation 
of thresholds until the intersection of the 
solutions sets is non-null.

ITERATIVE AND INTERACTIVE 
EXPLORATION

Exploration of cases on a fixed model using a 
fixed analytic framework can reveal properties 
and hence implications of the knowledge con-
tained in that model that otherwise would 
have remained hidden. However, the complex 
systems that concern policy decisions can 
seldom be reliably dealt with using a fixed 
model or framework that views the analyst 
and policy maker as outside the system. 

Instead, models and computation must often 
be understood as part of a socio-technical 
system where human and machine compo-
nents each contribute to the discovery of solu-
tions. In this context, a linear process of model 
creation followed by model exploitation, and 
of computation followed by interpretation is 
not adequate. Rather, a spiral process is 
needed where model creation, utilization, and 
interpretation are iteratively employed and 
multiple rounds of option selection and stress 
testing are supported.

Interactive exploration provides a means 
where the tacit knowledge of the analyst can 
be employed to guide machine search across 
high dimensional spaces of model cases or 
alternative models. This results in yet another 
sort of knowledge fusion, where knowledge 
implicit in the minds of users through inter-
action is combined with knowledge that is 
explicitly held within models.

Results from computational experiments 
provide insight to users and can stimulate 
reasoning. Human guidance steers search 
and iterative sampling to focus exploration 
on computational experiments more likely to 
be informative. Interaction between users 
and computers can by this means provide 
higher quality results than a linear approach 
where all human inputs are made at the 
beginning of a process of computational 
decision analysis, followed by a phase where 
computation occurs independently.

An example of the power of this approach 
is provided by Robalino and Lempert, 2000. 
This study used a method where a broad ini-
tial exploration of the space of inputs using a 
Latin Hypercube experimental design was 
used to support an analysis of variance. Based 
on this analysis, the eight inputs of greatest 
impact on the decision being investigated 
were then explored intensively. Conclusions 
reached on the basis of this analysis were then 
checked for counter-examples across the total 
input space. A genetic algorithm was used for 
this search, which resulted in four counter-
examples. Each of these required extreme 
assumptions, and were dealt with in footnotes 
in the final paper.
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Iteration and interaction provides an impor-
tant means for coping with high dimensional 
spaces. Typical models will have large num-
bers of inputs, often numbering in the hun-
dreds or thousands. The number of cases 
required to thoroughly explore the responses 
of even a simple model is often astronomical, 
and essentially infinite. This ‘curse of dimen-
sionality’ has often been used in arguments 
against computational approaches, and as a 
defense for examining only a small number 
of cases, such as a base case plus variations. 
However, an iterative process that can, in 
principle, visit any part of the model’s response 
space has properties possessed by no single 
static design. In such a process, the results of 
cases examined to a given point influence the 
choice of where to look next. Infinity is a 
mathematical concept that stands for no con-
crete object but can be defined through 
unbounded iteration. Similarly, iterative 
exploration, including human interaction, 
while not deductively closed, can inductively 
and abductively discover important proper-
ties of models with very high dimensional 
input spaces. The epistemological justifica-
tion for conclusions drawn from explorations 
in highly dimensioned spaces is akin to that 
for experimental science generally. From a 
specific laboratory procedure that is in effect 
a sample out of an infinite set of experiments 
that might be conducted, general conclusions 
are often drawn. For example, after examining 
the response properties of a handful of neu-
rons out of billions in a vertebrate brain, neu-
roscientists will advance theories about overall 
neural structure and function. Such theories 
advance science, and can win Nobel prizes, 
even though they may be overturned or sig-
nificantly modified by subsequent experimen-
tation. The single act of making an inference 
about billions of neurons from data about a 
handful may seem specious. But, embedded 
in the iterative process of normal science, 
where beliefs are tested and potentially falsi-
fied, our knowledge increases. Similarly, con-
clusions about the implications of a complex 
model based on a finite number of computa-
tional experiments drawn from a vast number 

that might be conducted can be very useful, 
even when there is no guarantee that all 
important behaviors have been observed.

LOOKING AHEAD – EXTREME 
MODELING TO SUPPORT RESILIENCY 
ANALYSIS

Complexity theory can make a major contribu-
tion to policy analysis in providing a basis for 
representing the interaction of multiple inter-
acting systems and an accounting for the true 
uncertainty attending our knowledge about 
causal relationships. However, the incorpora-
tion of complexity concepts in models that are 
then used in a reductionist fashion may do 
little to improve upon previous approaches to 
scientific policy analysis. An agent-based 
model can embed just as many questionable 
assumptions as a linear calculation with matrix 
algebra. Consequently, developing models that 
incorporate complexity concepts but then 
using them for prediction and forecasting 
simply adds nonlinear modeling representa-
tions to fundamentally reductionist practice 
(Richardson, 2003). In order to fully bring the 
insights of complexity science to policy, they 
must be applied not only to the construction of 
models but to their use. Institutions and deci-
sion makers are part of the systems they 
manage. In order to incorporate a complexity 
standpoint into policy formulation, the com-
plete socio-technical system must be consid-
ered, including models of the system, the 
policy makers, and their decision processes.

A reductionist decision process using com-
plexity models will not suffice to create sys-
tems adequate to deal with deep complexity. 
Novel modeling methodology and technol-
ogy is needed that will allow problem fram-
ing, modeling, and decision to be agilely 
combined within an entrepreneurial process 
(MacMillan and Boisot, 2004). Linear ana-
lytic strategies will not suffice to deal with 
the challenges of complex systems nor will 
they allow computational science to achieve 
its full potential.
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Ivory tower modeling methods that study 
systems from afar can be fruitful for aca-
demic theory development. But, in order to 
cope with highly complex and deeply 
uncertain systems it is going to be necessary 
to build models as they are to be used. 
Frequently, the system under study may 
change between model development and 
exploitation. Consequently, for complex prob-
lems, what is needed is not a single fixed and 
validated model but ‘just in time’ support for 
modeling. For modeling to have a useful role 
as a component of a complex system, new 
modeling techniques and methods are needed. 
These may perhaps be thought of as ‘extreme 
modeling’, analogous to extreme program-
ming. Modeling techniques akin to program-
ming innovations devised to support Web 2.0 
applications (O’Reilly, 2005) are needed that 
can provide the agility needed to contend 
with volatile environments, emergent require-
ments, and continuous model development.

At present, static closed models are used to 
represent open and evolving systems. Methods 
for creating open and adaptive model based 
infrastructure are needed to better suit these 
problems. Such open representations will 
presumably consist of a small, highly con-
served kernel, and a much larger and more 
rapidly adapting periphery, just as do existing 
open source software projects and crowd 
sourcing based web applications (Kazman 
and Chen, 2009). Depending on the applica-
tion, rates of change in the periphery will vary 
as well, resulting in the pace layering seen in 
many engineered and natural systems (Brand, 
1999; Gunderson and Holling, 2002).

In this way, the process of modeling com-
plex systems must evolve to more closely 
resemble the systems with which it contends. 
Just as the phenomena of interest are pace 
layered and emergent, so modeling itself 
must produce models composed from com-
ponents that adapt to changes in their envi-
ronment with varying paces of change. The 
challenges of doing this are significant. But 
the opportunity is for complexity modeling 
to become ubiquitous. Rather than a special-
ized activity that sits outside most of human 

life and economic activity, computational 
modeling can become a major means by 
which humans communicate with their tech-
nology. The practice of extreme modeling, 
which at this moment exists only in prospect, 
will allow us to cross the chasm between 
model creation and model use which has 
consigned computational science to a periph-
eral role up to now. The role of the computa-
tional scientist in this vision would not be the 
creation of final models but rather the crea-
tion of modeling infrastructure. That infra-
structure would capture knowledge but also 
provide means of adaptation. Many capabili-
ties may prove useful in establishing this 
approach, including improved means of rep-
resenting and reasoning with structural model 
uncertainty, the ability to create models from 
composeable parts, and mixed initiative mod-
eling where model snippets, human judg-
ment, and data can all be used in the creation 
of model instances.

One of the great challenges before our 
technological culture is creating systems and 
institutions that are highly resilient in the 
face of complexity and deep uncertainty. 
Resiliency involves both robustness to exter-
nal shocks and adaptive mechanisms that 
allow for recovery even when robustness 
fails. To play its role, complexity modeling 
must be able to adapt to changes both fre-
quent and rare, and be able to contend with 
future situations that cannot now be antici-
pated. In reaching that goal, complexity 
modeling can play a key role in making 
society resilient to future surprises.

NOTES

1 In particular, financial modelers assumed Normal 
probability distributions underestimating the proba-
bility of extreme events, and in many cases allowed 
the absence of knowledge about correlation among 
sources of risks or the behavior of other traders in the 
market to be modeled as an assumption of no cor-
relation. Testing a wider range of assumptions would 
have revealed the risks that this era of financial mod-
eling concealed.
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2 This approach is sometimes associated with the 
phrase ‘Data Farming’ (Brandstein and Horne, 
1998).

3 Latin Hypercubes (LH) are statistical designs for 
experiments that are very useful in assessing the 
behavior of a model in a high dimensional space of 
cases through a limited number of computational 
experiments. In contrast to full factorial designs, 
where the number of cases needed grows exponen-
tially with the dimensionality, LH allows the specifica-
tion of the number of experiments that can be 
afforded, and creates a design of experiments that 
still provides a statistical cover for the space. In con-
trast with Monte Carlo sampling approaches, LH is 
space filling, and does a better job at sampling from 
the corners and edges of the multi-dimensional cube 
of cases, where extreme or unusual model behavior 
may often be discovered. (See further description in 
the Glossary.)

4 Examples include COMPOEX (Waltz, 2008) and 
the Computer Assisted Reasoning system – CARs 
(Bankes et al., 2002).
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34
Complexity, Habits 

and Evolution

G e o f f r e y  M .  H o d g s o n

INTRODUCTION

This chapter addresses what are often 
described as ‘complex adaptive systems’. 
Typically such systems involve populations 
of entities that store and replicate informa-
tion. But these micro aspects are less fully 
explored in most accounts, which concen-
trate on macro-outcomes of complex adap-
tive systems, particularly self-organization 
and emergent properties. These omissions 
are addressed here, with a stress on the roles 
of individual habits and organizational rou-
tines. It is argued that such considerations 
open up the possibility of a meta-theoretical 
evolutionary framework for understanding 
complex adaptive systems. This essay also 
makes use of some insights from evolution-
ary and institutional economics and contrasts 
its approach with some standard assumptions 
in mainstream economics.

The growing appreciation of the complex-
ity of social as well as natural phenomena has 
promoted a diversity of responses, especially 
within the social sciences, including varieties 
of relativism, post-modernism and post-
structuralism (Morçöl, 2001). Important ideas 
within the complexity narrative include self-
organization, autopoiesis, emergent properties, 

requisite variety, non-linearity, path depend-
ence, positive feedback, chaotic behaviour, 
and so on. But while these are important con-
cepts, neither singly nor jointly do they amount 
to a unifying theory of complex phenomena.

Is such a theory possible? Paul Cilliers 
(1998: ix) claims that complexity itself 
rules out such an over-arching theory. Notably 
his argument would apply to natural as well 
as social phenomena. Yet despite the com-
plexity of the natural world, scientists have 
made considerable progress in developing 
explanatory frameworks and theories, even if 
the task of prediction is often confounded by 
complexity. To take an example, while the 
human body is highly intricate, successful 
curative medicine is possible.

Stephen Wolfram (2002) argues that com-
plex phenomena can be generated by simple, 
algorithmic rules. While the outcomes are 
often unpredictable because of nonlineari-
ties, their understanding and explanation 
centres on the generative algorithms or pro-
grams. A danger here is the conflation of 
reality with a computer simulation. Simple 
algorithms can give rise to complex out-
comes but that does not mean that the com-
plexity we find in reality has an equivalent 
and equally simple origin.
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The apparent absence of a unifying theo-
retical framework has encouraged the scep-
tics. One of these is John Horgan (1995) who 
critiqued the original claims of some com-
plexity theorists (including those at the Santa 
Fe Institute) that they were in sight of a grand 
unifying theory of complex phenomena.

I agree with Horgan that such a grand uni-
fying theory is very far from our grasp. Its 
elevation to a major objective is a symptom 
of a tendency to excessive generalization that 
has caused serious problems, at least in the 
social sciences. Among these is the neglect of 
historical and other specific phenomena and 
their specific roles and dynamics. Much of 
post-war economics and sociology has been 
diverted into a competitive quest for ever-
greater generality and abstractness, to the 
reckless neglect of specific phenomena 
(Hodgson, 2001). Despite the generation of a 
number of important insights, it is increas-
ingly acknowledged that there is no unified 
and coherent narrative worthy of the title of 
‘complexity theory’ (Anderson, 1999; 
Marion, 1999).

But both advocates and critics of ‘com-
plexity theory’ have been diverted by univer-
salities. The advocates have hunted for 
general principles that might apply to slime 
moulds, piles of sand, tree leaves, chemical 
reactions, astronomical bodies, weather sys-
tems and much else, including all human 
organizations and societies. Their very lim-
ited success is the cue for the critics, some of 
whom bemoan the failure to come up with 
anything remotely like Newton’s laws or the 
general theory of relativity.

Any theorization of complexity applied to 
human societies or organizations, addresses a 
specific set of phenomena. We consider some 
of the very basic features of this set and 
establish that they apply to a large class of 
natural phenomena as well. Furthermore, it is 
then possible to establish some general prin-
ciples that apply to this broader domain. But 
the nature of these principles is very different 
from the aforementioned ‘laws’ that have 
been established in physics.

I am concerned with complexity in human 
society. Consequently, I start the argument 
with the human agent, placed in a social and 
natural context, interacting with others. The 
ontological and epistemic complexity of this 
configuration is acknowledged. I then point 
to some basic cognitive and behavioural 
mechanisms that are necessary to deal with 
this complexity. There are some related but 
very different mechanisms in the natural 
world. There are also related mechanisms at 
the higher level of social organization. These 
communalities at three different levels point 
to some limited over-arching principles rele-
vant to all complex systems in this broad 
class. But before I outline the nature of these 
principles it is necessary to dispense with 
some rival claims, such as the universality 
and sufficiency of self-organization theory. 
Once this is done I make a specific claim 
concerning the evolutionary character of 
most complex adaptive systems. This claim 
is well over a hundred years old, but it is 
relatively neglected, and some theorists may 
find it surprising.

ADAPTIVE POPULATIONS

Much of the work carried out under the rubric 
of complexity research makes quite specific 
ontological assumptions. Much of ‘complex-
ity theory’ addresses not complex phenomena 
in general, but a particular form of complexity 
typically described by John Holland (1992), 
Brian Goodwin (1994), Stuart Kauffman 
(1995), Ralph Stacey (1996, 2003) and many 
others as a ‘complex adaptive system’. In 
practice, such systems are made up of multi-
ple interconnected entities. In complex adap-
tive systems theory a number of agents interact 
with each other and together form a system 
that adapts to its environment. Also the indi-
vidual entities are adaptive in that they have 
the capacity to change or learn from interac-
tion and experience. A central question is: 
how do such complex nonlinear systems 
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function to produce ordered and novel pat-
terns of behaviour, in the absence of any over-
all blueprint or ruling designer? We are dealing 
not merely with singular wholes, but with 
populations of adaptive agents that interact 
with others and form structured relations, 
which themselves adapt through time.

Consider the basic nature and capacities of 
these agents. In real circumstances they need 
inputs of matter or energy to survive. They 
face a complex and changing social and natu-
ral environment, posing vital problems that 
require solutions. They cannot only replicate 
and pass on some of their capacities and 
physical characteristics, but also they can 
communicate useful knowledge and tech-
niques. This broad description applies to 
human society and to a large number of types 
of natural and artificial phenomena: but it is 
not universal. By sacrificing its universalist 
objective and specifying a particular ontology, 
complexity theory can make significant 
further progress.

The predominant emphasis in the litera-
ture on complexity has been on the structure 
and adaptations of the system as a whole and 
not on the individual components. The 
explanatory focus has been on the possible 
emergence without design of organization 
and orderly patterns of behaviour. This 
agenda is important and valuable. But it is 
one-sided. The emphasis has been on the 
complexity of the system, rather than on the 
complexity of the components, their environ-
ments, and the adaptive problems that they 
face. Discourses on self-organization, sponta-
neous order and autopoiesis acknowledge the 
interacting components, but often – perhaps 
in the pursuit of universal explanations – fail 
to consider adequately their particular char-
acteristics and micro-contexts.

I propose to bend the stick in the other 
direction. I shall concentrate first on the 
interacting agents and their complex environ-
ments. Macro-systemic considerations will 
be brought in later.

The next section briefly reviews the treat-
ment of agents and their environments in 

mainstream economics. After revealing 
various limitations, we consider contrasting 
approaches in dealing with complexity in the 
section after that.

HYPER-RATIONALITY IN 
MAINSTREAM ECONOMICS

Although mainstream economists urge us to 
take individuals and their incentives seri-
ously, in their pursuit of the ‘science of 
choice’ they have overlooked the complexity 
of the decision environment, and the limita-
tions of human cognitive and communicative 
capacities when faced with this complexity. 
They have assumed that individuals can per-
form immense feats of deliberation and cal-
culation, or that it is legitimate to assume that 
individuals act ‘as if’ they had such capaci-
ties. It is only since the 1990s that these 
assumptions have been successfully con-
tested on mainstream terrain, despite the 
longstanding complaints of several hetero-
dox critics including Thorstein Veblen (1898) 
and the Nobel Laureate Herbert Simon 
(1957).

Even today, with significant mainstream 
acknowledgement of ‘bounded rationality’, 
contrary ideas remain entrenched in some 
quarters. The rational expectations hypothe-
sis is still widely used in economic models: it 
assumes that outcomes do not differ system-
atically from what people expected them to 
be, and that people have the mental capac-
ity to process all available information. 
Significantly, some influential challenges to 
this hypothesis have used insights from chaos 
theory. Non-linearities make predictions by 
agents difficult or impossible (Akerlof and 
Yellen, 1985; Grandmont, 1987). The rational 
expectations hypothesis is also challenged by 
models where a small minority of agents are 
not fully rational. Outcomes can diverge 
radically from models where agents all have 
equivalent rational capacities (Haltiwanger 
and Waldman, 1985).
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Despite all its emphasis on the individ-
ual, mainstream economics often assumes 
that individual preferences are similarly 
structured or identical, and that informa-
tion-processing capacities are equivalent. 
Relaxation of these assumptions often leads 
to a breakdown of mainstream results 
(Arrow, 1986).

Furthermore, although economists have 
relaxed the ‘perfect information’ assump-
tions of earlier decades, to embrace various 
forms of incomplete or imperfect informa-
tion, cognitive divergences are rarely 
acknowledged. The ‘Harsanyi doctrine’ is 
still commonplace: this attributes differ-
ences in individuals’ beliefs entirely to dif-
ferences in information and upholds that 
every individual interprets information in 
the same way. Yet in reality cognitive diver-
gences are typical. That is one reason why 
conversation and communication are impor-
tant. They help (albeit with limited success) 
to overcome different interpretations and 
establish some common meanings. Cognitive 
divergence is an important facet of the com-
plexity that we all face in social interac-
tions, yet the Harsanyi doctrine assumes 
it away.

Game theory is at the cutting edge of 
mainstream economics. One form of game 
theory assumes not only that agents are 
rational, but also they know and fully take 
into account the rationality of others: this is 
the ‘common knowledge of rationality’ 
assumption. But some game theorists have 
moved away from this supposition of hyper-
rational agents, with theoretical results that 
are strikingly different from those where 
common knowledge of rationality is assumed 
(Gintis, 2000; Camerer, 2003).

Overall, mainstream economics has only 
partially moved away from assumptions of 
agent rationality and homogeneity. Where 
such moves have been made, they have led to 
very different results. Mainstream economics 
has half-opened the Pandora’s Box of com-
plexity but does not know how to keep its 
contents under control.

THE NATURE OF HABIT

Contrasting assumptions are found in non-
mainstream thought, including within evolu-
tionary and institutional economics. By 
contrast, these approaches start from the 
assumptions of heterogeneous agents, cogni-
tive divergence, and complex interaction. 
Known forms of mathematical analysis meet 
barriers of intractability in such circum-
stances, and consequently one has to fall 
back on indicative theorizing including 
agent-based computer models, case studies 
and historical research.

Rather than starting a priori from relatively 
simple models of rational individuals and 
trying to draw logical conclusions from their 
assumptions, these approaches rely much 
more heavily on psychological and cognitive 
research to understand how boundedly 
rational agents deal with uncertainty and 
complexity. The work of William James 
(1890) is highly relevant here. He founded a 
school in psychology that stresses the role of 
habits in dealing with complexity and uncer-
tainty. His work inspired evolutionary and 
institutional economists such as Veblen (1898, 
1914), philosophers such as John Dewey 
(1922) and is enjoying a renaissance today 
(Johnson and Henley, 1990; Plotkin, 1994).

Instincts are inherited biologically. By 
contrast, habits are conditional propensities 
moulded by environmental circumstances 
and transmitted culturally rather than bio-
logically. The mechanisms of habit are largely 
unconscious, but they may press on our 
awareness. Habits are submerged repertoires 
of potential behaviour; they can be triggered 
or reinforced by an appropriate stimulus or 
context. The meaning of habit adopted by 
James (1890), Veblen (1898) and Dewey 
(1922) was of an acquired proclivity or 
capacity, which may or may not be actually 
expressed in current behaviour. A similar 
interpretation of habit as a disposition is 
found in the work of contemporary psycho-
logists (Ouellette and Wood, 1998; Wood 
et al., 2002; Wood and Neal, 2007).
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Brain imaging studies on human subjects 
(Poldrack et al., 2001) show that the forma-
tion of habits involves a shift away from parts 
of the brain associated with conscious, 
declarative memory and goal-setting (the 
medial temporal lobe and pre-frontal cortex) 
towards areas associated with procedural 
memory and context-triggered responses (the 
basal ganglia).

This conception of habit contrasts with 
that used by some other authors. For exam-
ple, the Nobel economist Gary Becker (1992: 
328) wrote: ‘I define habitual behavior as 
displaying a positive relation between past 
and current consumption’. Becker here 
defines habit not as a behavioural propensity 
but as sequentially correlated behaviour. In 
contrast, the view of habit here is of a dispo-
sition, which, once acquired, is not necessar-
ily realized in any future behaviour. Habit is 
a causal mechanism, not a set of correlated 
events. Repeated behaviour is important in 
establishing a habit. But if we acquire a habit 
we do not necessarily use it all the time.

HABITS AND COMPLEX 
ENVIRONMENTS

In terms of energy requirements, the brain is 
very expensive. While it accounts for less 
than 2% of our weight, it consumes up to 
20% of our calorific intake (Drubach, 2000). 
Bigger brains mean that we have to consume 
more calories, and our ancestors had to spend 
more time on hunting and gathering. The 
evolution of the human brain was a trade-off 
between its survival advantages and its energy 
costs.

Rather than trying to amass and process all 
information, habit is a much cruder way of 
storing information from past experience. It 
vastly economizes on brain storage capacity. 
Habit crudely encapsulates past adaptive 
behaviour: much information is not retained. 
The capacity to form habits has evolved in 
humans to cope with complex changing 

environments with large amounts of 
information, given the limited capacity and 
energy costs of the human brain.

The role of habit is illustrated by an agent-
based computer simulation developed by 
Thorbjørn Knudsen and myself (Hodgson 
and Knudsen, 2004a). The simulation con-
siders the evolution of a traffic convention, 
concerning whether to drive on the left or 
right side of a circular track. Agents make 
decisions through weighted combinations of 
‘rational deliberation’ on current information 
and habitual dispositions to drive on one side 
rather than the other. The most important 
result of these simulations concerns the effect 
of introducing habit into the modelling of 
agent behaviour. In most of parameter space, 
strength of habit can increase the systemic 
rate of convergence towards a left/right con-
vention. In some circumstances it can also 
enhance systemic resistance to error. In short, 
habit helps agents to deal with uncertainty, 
complexity and change. It requires less 
mental storage capacity than fully rational 
deliberation.

Another computer simulation that illus-
trates the role of habits (or similar rule-like 
behavioural dispositions) in complex environ-
ments was performed by Giovanni Dosi et al. 
(1999). Their work addresses the computabil-
ity and complexity of the decision procedures 
of agents. Instead of taking an axiomatic 
approach grounded on the principles of ration-
ality and optimization, they use algorithms 
where decisions are evolving outcomes of 
processes of learning and adaptation to the 
particular environment in which the decision 
must be made. They apply genetic program-
ming (Koza, 1992) to agent behaviour in oli-
gopolistic markets. Consistent with evidence 
of the behaviour of real economic agents, the 
simulation shows that the response to com-
plexity is often to increase the reliance on 
behaviour driven by relatively simple rules.

Both simulations establish that the higher 
the ratio between the complexity of the envi-
ronment, on the one hand, and the informa-
tional and deliberative capacities of agents, 
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on the other, the more that agents have to rely 
on something like habit, and the more effica-
cious it becomes in the circumstances. Habit 
is a vital psychological mechanism to deal 
with complexity and change.

Often acquired through cultural transmis-
sion, habits serve as means of learning skills 
and fixing useful knowledge in human socie-
ties. Anthropologists Peter Richerson and 
Robert Boyd (2001) have argued that human 
capacities to develop and transmit a sophisti-
cated culture evolved during periods of rapid 
climate change, when the relatively rapid 
transmission of useful knowledge on how to 
adapt to the environment was vital. 
Biologically inherited instincts have impor-
tant uses, but they change far too slowly to 
accommodate new knowledge in complex 
and changing environments.

Without habits our brains cannot deal with 
the vast amounts of information involved. 
For example, when using a language, we 
cannot deliberate upon every element. Such 
calculations would bring discourse to a halt. 
We have to rely on acquired habits to deal 
with standard linguistic rules, so that the 
brain is freed up to contemplate higher-level 
decisions. Similar remarks apply to all human 
skills of thought or behaviour. In a complex 
world, habit is a necessary foundation for our 
knowledge and skills.

FROM HABITS TO 
ORGANIZATIONAL ROUTINES

In everyday parlance the word ‘routine’ is 
used loosely to refer to repeated sequences of 
behaviour, by individuals as well as by 
organizations. But when Richard Nelson and 
Sidney Winter (1982) used the concept in 
their seminal work on economic and organi-
zational evolution, and repeated the meta-
phor of ‘routines as genes’, they suggested a 
more specific and technical meaning for the 
term. It is important to clarify and refine this 
technical meaning.

A consensus has now emerged that rou-
tines relate to groups or organizations, 
whereas habits relate to individuals (Cohen 
et al., 1996; Dosi et al., 2000). Individuals 
have habits; groups have routines. But rou-
tines do not simply refer to habits that are 
shared by many individuals in an organiza-
tion or group. Routines are not themselves 
habits: they are organizational meta-habits, 
existing on a substrate of habituated individ-
uals in a social structure. Routines are one 
ontological layer above habits themselves.

Nelson and Winter (1982) refer repeatedly 
to ‘routines as genes’. This is another useful 
analogy. But of course, as these authors 
emphasize, routines are very different from 
genes. Routines do not replicate biologically 
and they are much less enduring. All analo-
gies are inexact in some respects and must be 
handled with care. The gene analogy usefully 
points to routines as relatively durable carri-
ers of information through shorter periods of 
time, with the capacity to generate particular 
outcomes in given circumstances. Routines 
are like genes in the abstract sense that they 
are both generative, rule-like structures and 
potentialities.

Contrary to some ambivalence in the litera-
ture, routines (like habits) are best treated as 
stored behavioural capacities or capabilities 
rather than behaviour as such (Hodgson, 
2008). Consider a firm in which all employ-
ees and managers work between 9 am and 
5 pm only. During this working day a number 
of organizational routines can be energized. 
At other times the firm is inactive. But the 
routines do not all disappear at 5 pm, to reap-
pear mysteriously the next day. The routines-
as-capacities remain, as long as the individuals 
have the potential and disposition to work 
again together in the same context. Subject to 
this condition, the routines can be triggered 
the next day by appropriate stimuli.

Routines energize a series of conditional, 
interlocking, sequential behaviours among 
individuals within the organization (Cohen 
and Bacdayan, 1994). Routines depend upon 
a structured group of individuals, each with 
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particular habits, where many of these depend 
upon procedural memory. The behavioural 
cues by some members of a structured assem-
bly of habituated individuals triggers specific 
habits in others. Hence various individual 
habits sustain each other in an interlocking 
structure of reciprocating individual behav-
iours. Together these behaviours take on col-
lective qualities associated with teams. The 
organization or group provides a structured 
social and physical environment for each 
individual, including rules and norms of 
behaviour, of both the explicit and the infor-
mal kind. This environment is made up of the 
other individuals, the relations between them 
and the technological and physical artefacts 
that they may use in their interactions. This 
social and physical environment enables, 
stimulates and channels individual activities, 
which in turn can help trigger the behaviour 
of others, produce or modify some artefacts, 
and help to change or replicate parts of this 
social and physical environment.

Hence organizations have important addi-
tional properties and capacities that are not 
possessed by individuals, taken severally. 
The organization provides the social and 
physical environment that is necessary to 
enable specific activities, cue individual 
habits and deploy individual memories. If 
one person leaves the organization and is 
replaced by another, then the new recruit 
may have to learn the habits that are required 
to maintain specific routines. Just as the 
human body has a life in addition to its con-
stituent cells, the organization thus has a life 
in addition to its members. The additional 
properties of the whole stem from the struc-
tured relations and causal interactions 
between the individuals involved (Blitz, 
1992; Weissman, 2000; Hodgson, 2004).

The above discussion has established that, 
in addition to genes at the biological level, 
there are additional information-carrying 
mechanisms in human societies, namely 
habits at the individual level and routines at 
the organizational level. An abstract commu-
nality exists, despite huge differences at the 
level of detail. The significance of this point 

will be developed later. But we are already 
hinting at the possibility of extending the use 
of Darwinian principles beyond the biological 
sphere.

SELF-ORGANIZATION VERSUS 
DARWINISM?

Emergent properties are a facet of ‘self-
organization’. Organizations have undesigned 
properties that are not features of individuals, 
taken severally. Let us tackle the relationship 
between self-organization and Darwinism, 
before elaborating the relevance of the latter 
and returning to the role of habits and 
routines.

Much has been written on how our knowl-
edge of complexity should modify the 
Darwinian theory of evolution, particularly 
through the acknowledgement of the role of 
self-organization (Depew and Weber, 1995). 
Some interpreters of this work go so far as to 
suggest that self-organization provides an 
alternative to Darwinian theory. These inter-
pretations are mistaken, both in terms of their 
misunderstanding of the claims of leading 
theorists of self-organization, and in the via-
bility of their claim.

Self-organization may be necessary to 
explain the emergence of a number of com-
plex phenomena. But in the absence of selec-
tion there is little chance of the development 
of increasingly complex structures. Thus, 
rather than being alternatives, Kauffman 
(1993: 465) saw a ‘natural marriage of self-
organization and selection’. He and several 
other pioneers of self-organization theory do 
not present their argument as an alternative to 
Darwinian theory. Jeffrey Wicken (1987) 
wrote of ‘extending the Darwinian para-
digm’, not exterminating it. David Depew 
and Bruce Weber (1995) considered 
‘Darwinism evolving’, not Darwinism aban-
doned. Weber and Depew (1996: 51) wrote:

the very concept of natural selection should be 
reconceived in terms that bring out its dynamical 
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relationships with chance and self-organization. In 
our view, Kauffman’s recent work, as expressed in 
The Origins of Order, does just this.

What is involved here is a revision and exten-
sion of natural selection theory, not its nega-
tion. Kauffman (1995: 8) himself called for a 
‘revision of the Darwinian worldview’ not 
its abandonment. As Kauffman (1993: 644) 
also related:

I have tried to take steps toward characterizing the 
interaction of selection and self-organization. … 
Evolution is not just ‘chance caught on the wing’. 
It is not just a tinkering of the ad hoc, of bricolage, 
of contraption. It is emergent order honored and 
honed by selection.

Once self-organized systems and subsystems 
emerge, natural selection acts upon these 
self-organized structures once they emerge. 
Far from being an alternative to natural 
selection, self-organization requires it in 
order to determine which self-organized units 
have survival value. Accordingly, other self-
organization theorists, such as the biologists 
Scott Camazine and his colleagues, similarly 
recognize that self-organization complements 
rather than displaces the ‘orthodoxy’ of natu-
ral selection. Echoing Kauffman, Camazine 
et al. (2001: 89) write,

There is no contradiction or competition between 
self-organization and natural selection. Instead, it 
is a cooperative ‘marriage’ in which self-organization 
allows tremendous economy in the amount of 
information that natural selection needs to encode 
in the genome. In this way, the study of self-
organization in biological systems promotes 
orthodox evolutionary explanation, not heresy.

Consequently, evolutionary economists who 
propose that self-organization theory is an 
alternative to Darwinian principles are at 
variance with their prominent mentors in self-
organization theory. Leading theorists of self-
organization recognize that natural selection 
is required at some point in the explanation.

Crucially, an exclusive focus on self-
organization concentrates on the develop-
ment of the entity, neglecting its interactions 

with its environment and providing no ade-
quate explanation of how the entity comes to 
be adapted to survive in this environment 
(Cziko, 1995). The mistake is to concentrate 
entirely on internal development and evolu-
tion from within, even to the extent of defin-
ing evolution in these narrow and unwarranted 
terms.

On the contrary, in biology, neither indi-
viduals, species, nor ecosystems are entirely 
‘self-transforming’. Evolution takes place 
within open systems involving both endog-
enous and exogenously stimulated change. 
Generally, evolution takes place both through 
internal changes and interactions with the 
(possibly changing) environment.

THE DARWINIAN EVOLUTION 
OF COMPLEX ADAPTIVE SYSTEMS

Darwin himself (1859: 422–423; 1871, vol. 
1, 59–61, 106) hinted at the possibility that 
his core principles might apply to other 
evolving systems, such as human language. 
This insight was taken up by others in the 
nineteenth century (Ritchie, 1896; Veblen, 
1899), revived later in the twentieth century 
(Campbell, 1965), but is only recently receiv-
ing wider attention.

Theorists working in this area suggest that 
in typical ‘complex adaptive systems’ 
Darwinian core principles are not only rele-
vant but ultimately unavoidable. Importantly, 
there is no adequate rival over-arching theory 
to deal with these systems.

Most ‘complex adaptive systems’ involve 
populations of adaptive agents that interact 
with others and form structured relations, 
which themselves adapt through time. To 
emphasize their population properties, they 
are described elsewhere as ‘complex popula-
tion systems’ (Hodgson and Knudsen, 2006; 
Aldrich et al., 2008).

By definition, entities in complex popula-
tion systems face specific problems that have 
to be solved to minimize degradation and 
raise the chances of survival. In short, these 
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entities are engaged in a struggle for exist-
ence, to use the term adopted by Darwin 
(1859: 62–63).

We also assume some capacity to retain 
and pass on to others workable solutions to 
problems faced in the struggle for existence. 
Examples include tools and technological 
know-how. Retaining such problem solutions 
or adaptations means avoiding the risks and 
labour of learning them anew. Given that the 
entities in the population are mortal and 
degradable, there are also good reasons to 
assume that some capacity exists to pass on 
to others information about such workable 
solutions. This is the basis of the Darwinian 
principle of inheritance.

In sum, a complex population system 
involves populations of non-identical (inten-
tional or non-intentional) entities that face 
locally scarce resources and problems of 
survival. Some adaptive solutions to such 
problems are retained through time and may 
be passed to other entities. Examples of such 
complex population systems are plentiful 
both in nature and in human society. They 
include the ensembles of every biological 
species, from amoebas to humans. In addi-
tion, they include collections of human 
organizations such as business firms, as long 
as these organizations are cohesive entities 
with a capacity to retain and replicate problem 
solutions.

Crucially, an adequate explanation of the 
evolution of such a system must involve the 
three Darwinian principles of variation, 
inheritance and selection. These are the 
broad Darwinian theoretical requirements. 
They do not themselves provide all the nec-
essary details, but nevertheless they must be 
honoured. Otherwise the explanation of evo-
lution will be inadequate.

Consider the three Darwinian principles in 
turn. Each principle is an explanatory require-
ment. First, there must be some explanation 
of how variety is generated and replenished 
in a population. In biological systems the 
answers – established since Darwin’s death 
– involve genetic recombination and muta-
tions. By contrast, the evolution of social 

institutions involves innovation, imitation, 
planning and other mechanisms very differ-
ent from the detailed processes found in biol-
ogy (Aldrich and Ruef, 2006). The general 
problem of the existence and replenishment 
of variety remains a vital question of evolu-
tionary research in the social and technologi-
cal domain (Nelson, 1991; Saviotti, 1996; 
Metcalfe, 1998). Innovations are a common 
source of new variation, but the determinants 
of such novelties are not fully understood.

Second, there must be an explanation of 
how useful information concerning solutions 
to particular adaptive problems is retained 
and passed on. This requirement follows 
directly from the broad nature of the complex 
population system that we are required to 
explain, in which there must be some mecha-
nism by which adaptive solutions are copied 
or passed on. In biology these mechanisms 
often involve genes and DNA. In social evo-
lution we may include the replication of 
habits, customs, rules and routines, all of 
which may carry solutions to adaptive prob-
lems (Veblen, 1899; Nelson and Winter, 
1982; Hayek, 1988). There must be some 
mechanism that ensures that some such solu-
tions (embodied in habits, routines or what-
ever) endure and replicate; otherwise the 
continuing retention of useful knowledge 
would be impossible.

Third, and not least, there must be an 
explanation of the fact that entities differ in 
their longevity and fecundity. In given con-
texts, some entities are more adapted than 
others, some survive longer than others, and 
some are more successful in producing off-
spring or copies of themselves. Here the 
principle of selection comes in. Selection 
involves an anterior set of entities, each inter-
acting with its environment and somehow 
being transformed into a posterior set where 
all members of the posterior set are suffi-
ciently similar to some members of the ante-
rior set, and where the resulting frequencies 
of posterior entities depend upon their proper-
ties in the environmental context (Price, 1995; 
Andersen, 2004; Knudsen, 2004). Through 
selection, a set of entities, a population, will 
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gradually adapt in response to the criteria 
defined by an environmental factor. Thus in a 
cold environment, the proportion of mam-
mals with more fat or long fur is likely to 
increase.

The principle of selection is different from 
the principle of variation. The latter is the 
requirement for some explanation of the 
sources and replenishments of variety. 
Selection refers to the mechanisms that bring 
about the survival of some variations rather 
than others, often reducing variety. Even 
when both variety-creation and selection 
involve human agency, as often is the case in 
the human domain, the two processes are 
quite different. Innovation is about the crea-
tion of new variations; selection is about how 
they are tested in the real world.

Note that outcomes of a selection process 
are necessarily neither moral nor just. 
Furthermore, there is no requirement that 
outcomes of a selection process are necessar-
ily optimal or improvements on their precur-
sors. Insofar as these outcomes carry 
connotations of refinement or efficiency, it is 
efficiency relative to the given environment, 
and efficiency that is tolerable rather than 
optimal. Darwinism does not assume that 
selection brings about globally efficient or 
(near) optimal outcomes, and in certain 
instances selection can even lead to system-
atic errors (Hodgson, 1993). There is no 
reason to believe that the special require-
ments needed to asymptote global efficiency 
are generally prevalent in nature or society 
(Winter, 1964; Gould, 2002).

Without honouring the principle of selec-
tion, we have no way of explaining how 
some entities or their offspring prevail over 
others. The principle is widely held to apply 
in the natural world; the fitter members of the 
species often have greater chances of sur-
vival and procreation. This helps to explain 
how species become adapted to their envi-
ronment. But the move from the natural to 
the social world does not undermine the prin-
ciple of selection. Even if there is not a fierce 
life-and-death struggle between rival cus-
toms or institutions, some explanation is 

required of why some enjoy greater longev-
ity than others, why some are imitated more 
than others, and why some diminish and 
decline. Any such explanation must come 
under the general rubric of selection, as 
defined above.

Darwin’s principles of variation, inherit-
ance and selection are required not only to 
explain evolution within populations but also 
the origins of those populations themselves. 
Overall, as long as there is a population with 
imperfect inheritance of their characteristics, 
not all of them having the same potential to 
survive, then Darwinian evolution will 
occur.

CONCLUSION: HABITS, ROUTINES 
AND DARWINIAN EVOLUTION

If Darwinian principles apply to social as 
well as biological entities, then we need to 
search for the appropriate units of selection, 
replication and variation at the social level. 
Richard Dawkins (1976) suggested the 
‘meme’ as the answer, vaguely defined as 
ideas, brain patterns or behaviours. But even 
if it becomes fashionable, the coining of a 
new word does not solve the problem of 
explaining the mechanics of social evolution. 
The ‘meme’ beholds more problems than it 
gives answers.

Recent work in the philosophy of social 
and biological evolution (Sterelny et al., 
1996; Godfrey-Smith, 2000; Hull et al., 
2001) has established general definitions of 
the common abstract units and processes in 
Darwinian evolution. Developing and using 
these definitions, Thorbjørn Knudsen and 
myself (Hodgson and Knudsen, 2004b, 2006, 
2010) have established that psychological or 
organizational entities such as habits or rou-
tines can be treated as replicators, and organ-
izations such as business firms can be treated 
as ‘interactors’ (Hull, 1988) – the generaliza-
tion of the phenotype concept in biology. 
This work brings us closer to a ‘genetics’ of 
social evolution, but the detailed mechanisms 
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involved are very different from those found 
in the biological domain.

Generally, organisms, individuals or 
organizations develop mechanisms to acquire, 
retain and enact relatively simple heuristics 
or ‘rules of thumb’ to cope with complexity. 
Among such mechanisms are (biologically 
inherited) instincts, (culturally inherited) 
habits and (culturally transmitted) routines 
within organizations. These ‘simple heuris-
tics that make us smart’ (Gigerenzer and 
Todd, 1999) economize hugely on both 
memory and computational capacity, and 
they can be replicated relatively easily. A 
disadvantage is that they are relatively rigid 
and difficult to adjust. The more complex and 
adaptive entities develop higher-order habits 
or routines to scrutinize lower-order habits or 
routines. In society as well as nature, a fur-
ther means by which instincts, habits or rou-
tines adjust in a population of entities is by 
the selective demise of organisms, individu-
als or organizations that fail to adapt to their 
environment, or to discover or create suitable 
niches for survival.

In sum, the Darwinian approach provides 
an over-arching framework for further theo-
retical and empirical exploration into the 
detailed mechanisms involved in learning, 
knowledge transfer, organizational competi-
tion, and organizational change.

Note that complexity comes into this 
account in at least two important ways. 
Accounts of complex adaptive systems rightly 
emphasize the complexity of the interactions 
between entities, the existence of emergent 
properties as a result of their interaction, and 
the unpredictability of outcomes. This is com-
plexity largely from a macro perspective.

Less prominent in the complexity literature 
are discussions of the complexity facing agents 
and the psychological or other mechanisms 
that are required to deal with it. In the 
approach to social evolution summarized here, 
individual habits and organizational routines 
are different replicators and part of the multi-
level evolutionary process in society.

In a Darwinian framework, social evolu-
tion is addressed simultaneously from both a 

macro and a micro perspective. This dual 
micro-macro approach raises new questions 
concerning complexity. Both natural and 
social evolution have led to the emergence of 
highly complex phenomena. In human soci-
ety in particular the complexity of social 
organization has increased vastly in the last 
few hundred years.

We know that in the biological sphere 
genetic information changes only very slowly. 
By contrast, habits are much more malleable. 
Individual habits can be formed in response 
to institutional and cultural circumstances. 
This is a version of ‘reconstitutive downward 
causation’ where system properties lead to 
changes in individual dispositions and capac-
ities (Emmeche et al., 2000; Hodgson, 2003; 
Hodgson and Knudsen, 2004a).

A relevant question is what are the charac-
teristics of replicators that permit such an 
increase of complexity in the system as a 
whole? An attempt to answer this question is 
in another paper (Hodgson and Knudsen, 
2008). This paper argues that to enhance the 
potential for complexity in the system, 
the replicator must store instructions to guide 
the development of the relevant interactor. 
Consequently, the approach outlined here has 
a ‘positive heuristic’ that lays out new 
research questions and begins to provide 
some answers.

Such micro aspects of ‘complex adaptive 
systems’ are given less emphasis in much of 
the previous complexity literature. It is nec-
essary to acknowledge that such systems are 
composed of populations of entities that face 
problems of complexity and survival in their 
local environments. Darwinism provides a 
meta-theoretical framework for beginning to 
analyse such systems from both a macro and 
a micro perspective. It does not provide all 
the answers and it always requires specific 
auxiliary theorizing at every level. That is 
part of the beauty of Darwinism; it provides 
a multi-level, micro-macro perspective that 
does not claim to explain or predict every-
thing. Yet with such complex population 
systems the Darwinian principles of inherit-
ance, variety and selection are unavoidable. 
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It is no exaggeration to claim that Darwin is 
one of the earliest and most important theo-
rists of complexity.
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Economics, Management and 

Complex Systems

P a u l  O r m e r o d

INTRODUCTION

There are several key features of complex 
systems which indicate that the economy 
is best analysed from the perspective of 
complexity science.

Perhaps the single most important feature is 
that the macroscopically observable properties 
of a complex system emerge from the interac-
tions of its constituent parts. In the context of 
economics, this implies that there is a need in 
any theoretical model for micro-foundations. 
In other words, a need for rules which describe 
the behaviour of the individual agents in the 
system, even when it is the macro properties 
of the system in which we are interested.

This view is shared by conventional eco-
nomic theory, but the focus of such theory is 
to describe equilibrium situations. It is in 
essence a system of thought which is anti-
thetical to the principles of complexity.

A further feature is a low (or even zero) 
ability to predict the state of the system at 
any given point in the future. There may 
very well be stable statistical distributions 
which describe the range of behaviours of 
the macroscopic factors, so that we can rea-
sonably estimate the proportion of time 

which the system spends in any particular 
state. But we cannot predict consistently at 
particular points in time with any reasonable 
accuracy.

An important implication of this is that the 
understanding which individual agents have 
of the world is inevitably imperfect. They 
cannot be ascribed the cognitive powers of 
gathering and processing information which 
exist in conventional economic theory. This 
fits in very well with developments in eco-
nomics itself in the late twentieth/early 
twenty-first centuries.

From the conventional paradigm of the 
fully rational agent with full information and 
using a universal behavioural rule of maximi-
zation, economics initially relaxed the assump-
tion of full information, creating the concept 
of bounded rationality. Now, experimental 
and behavioural economics point to the use of 
limited information and rules of thumb, each 
one customized to particular circumstances

A final feature is that complex systems 
will typically exhibit multiple possible histo-
ries. By definition there can only ever be one 
actual history, but at any point in time the 
system has the potential to move in a variety 
of different ways.
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A methodology which inherently captures 
these features is that of agent-based model-
ling with the agents connected on a network. 
Ideas/behaviour spread are contained across 
the network, which may either be fixed or 
may evolve.

The next section considers agent behav-
iour and whether the assumption of economic 
rationality can be justified. The third section 
discusses the inherent predictability of key 
macro-economic variables, and the fourth 
section presents evidence on non-Gaussian 
outcomes in the social sciences. The final 
section examines aspects of firm behaviour 
from a complex systems perspective, includ-
ing an illustrative example of an agent based 
model with interacting agents.

HOW DO AGENTS BEHAVE?

Rationality

The understanding which individual agents 
have of the world is inevitably imperfect. 
They cannot be ascribed the cognitive powers 
of gathering and processing information 
which are implicit in conventional economic 
theory, even when agents are operating under 
bounded rather than full rationality.

The assumption of full rationality requires 
all agents to be able not only to gather all 
relevant information prior to making a deci-
sion, but to then be able to process it in a way 
which enables an agent to make the best pos-
sible decision for him or her, given a fixed set 
of tastes and preferences. The concept of 
bounded rationality relaxes only one of these 
key features of agent cognition, namely that 
of the possession of all relevant information. 
Agents are still presumed to take the optimal 
decision given the set of information avail-
able to them.

There is now a very large literature in the 
field of experimental/behavioural econom-
ics. The work of the 2002 Nobel Prize win-
ners, Vernon Smith and Daniel Kahneman,1 
makes clear that in general agents do not 

behave according to the postulate of economic 
rationality. Kahneman, for example, states 
unequivocally in his Nobel lecture that 
‘humans reason poorly and act intuitively’.

Their conclusions are reinforced by, for 
example, the 2010 book by Bardsley et al., 
Experimental Economics: Rethinking 
the Rules.2 The six authors all have distin-
guished pedigrees in experimental econom-
ics. Two in particular, Loomes and Sugden, 
have been involved with this research pro-
gramme almost from its very outset some 
two decades ago. The book provides a com-
prehensive list of almost 500 scholarly refer-
ences which ranges across the entire field of 
experimental economics.

Many of the key results were discovered in 
fairly simple experiments in the early years 
of the whole enterprise of experimental eco-
nomics. For example, consumer preferences 
appear in general to be non-transitive. In 
other words, if I prefer A to B and B to C, 
then transitivity requires me to prefer A to C. 
But this logical postulate is frequently not 
observed in reality. Further, agents’ decisions 
are influenced by irrelevant alternatives. In 
other words, preferences expressed by agents 
between a set of alternative choices can be 
influences by the introduction into the set of 
an alternative which is worse than any of the 
alternatives already on offer. So, for exam-
ple, introducing a product which has both a 
higher price and worse quality than existing 
products can affect the decisions which 
people make. Preference reversal is wide-
spread, in other words the preference order-
ing of a pair of alternatives depends on the 
process used to elicit the preference. These 
are just some of the examples, all of which 
violate key assumptions of conventional eco-
nomic theory.

Despite the existence of this large amount 
of empirical evidence, the postulate of ration-
ality is still held widely in the economics 
profession. There are many reasons for this, 
but it is useful to reflect upon just one in the 
current context. The recent financial crisis, 
for example, was simply not anticipated by 
the central banks, Treasuries and international 
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institutions around the world. This theme is 
picked up again below in more detail. But 
how can this be, we might ask, if agents are 
presumed to form expectations about the 
future in a rational way? This question is 
dealt with easily by the true believer.

Rational expectations do not require that 
an agent’s predictions about the future are 
always correct. Indeed, such predictions may 
turn out to be incorrect in every single period, 
but still be rational. The requirement is that 
on average over a long period of time, expec-
tations are correct. Agents are assumed to 
take into account all relevant information, 
and to make predictions which are on aver-
age unbiased. Deviations from perfect fore-
sight in any given period are an inherent 
feature of this behavioural postulate, but such 
deviations can only be random. If there were 
any systematic pattern to the deviations, the 
agent would be assumed to incorporate the 
pattern into his or her expectations. Again, on 
average over a long period, such expectations 
are correct.

It will be apparent that the theory is diffi-
cult to falsify to someone who really believes 
in its validity. Even the most dramatic failure 
to predict the future, such as the 2008 finan-
cial crisis, can be explained away as a 
random error. A rational expectations enthu-
siast can still continue to maintain the cor-
rectness of the theory by simply assuming 
that over some (theoretically indeterminate) 
period of time, on average agents’ expecta-
tions prove accurate.

An assumption of the theory is that, as part 
of the set of information being processed, the 
agent is in possession of the correct model of 
the economy. Indeed, on the logic of the 
theory itself, if the model being used to make 
predictions were not correct, the forecasts 
would exhibit some sort of bias, some sys-
tematic error, and agents would realize that it 
was wrong.

It might reasonably be argued that it is dif-
ficult to subscribe to the view that agents 
understand the correct model of the economy 
given that economists themselves differ in 
their views as to how the economy operates. 

For example, in the autumn of 2008, many 
prominent American economists, including a 
number of Nobel Prize winners, vigorously 
opposed any form of bail-out of the financial 
system, arguing that it was better to let banks 
fail. Others, including decision makers at the 
Federal Reserve and Treasury, took a differ-
ent view entirely.

The response of the academic mainstream 
has been to insist that there have been strong 
moves towards convergence within the pro-
fession on opinions about macroeconomic 
theory. By implication, anyone who takes a 
different view and is not part of this intellec-
tual convergence is not really a proper econo-
mist. Olivier Blanchard, Chief Economist at 
the International Monetary Fund, published 
an MIT discussion paper in August 20083 on 
the state of modern macroeconomics. He 
concluded ‘the state of macro is good’. The 
state of macro is good! Just three weeks 
before the financial crisis nearly brought 
capitalism to a halt!

Game theory

An important strand in modern economics is 
game theory. Uncertainty surrounds most 
economic decisions, and game theory appears 
to be an attractive way of dealing with it. In 
certain very limited contexts game theory and 
the concept of Nash equilibrium can be 
useful. Players, whether people, firms or gov-
ernments are assumed to act rationally and 
seek to find a strategy that means that they 
themselves are as well off as they can possi-
bly be, given how everyone else is behaving. 
Consider, for example, the game of noughts 
and crosses.4 The outcome of this game 
should always be a draw since most combina-
tions of moves will lead to this conclusion. In 
technical terms, the game has multiple Nash 
equilibria.

But beyond the confines of children’s 
games, the concept of game theory is much 
less useful. Substantive assumptions about 
the pay-off matrix must be made before 
game theory can even begin to offer an 
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account of any real world situation. The 
informational demands placed on agents by 
this are, of course, such as to render game 
theory useless in most practical situations.

More simply, in real life people do not 
appear to recognize Nash equilibrium strate-
gies. A clear example of how an apparently 
simple game proves hard to play in practice 
is given by the Price is Right, a very popular 
television game show in America and many 
other countries. The rules are very straight-
forward and easy to remember. In other 
words, players have full knowledge of the 
rules. At all times, each player knows the 
state of the game. In addition, we can be sure 
that all those who actually get to play the 
game on television are devotees. They will 
have previously watched many previous epi-
sodes, shouting out advice or derision at the 
contestants from the comfort of their televi-
sion rooms at home, and have had every 
opportunity to consider good strategic 
moves.

Tenorio and Cason (2002),5 worked out 
analytical solutions for the Nash equilibrium 
strategy in every possible play in the game. 
Even more interestingly, they went on to 
compare these with the outcomes of what 
actual players did in some 300 editions of the 
programme. They discovered that, except 
where the Nash strategy is trivially obvious 
as it is, for example, in noughts and crosses, 
most of the time most of the players did not 
find it. Sometimes, their actual strategies 
were far removed from the optimal Nash 
decision.

The Price is Right is not a difficult game. 
The dimension of the problem might not 
seem to be large a priori. The rules are clear. 
There is no uncertainty about the situation in 
which a decision has to be made. Each con-
testant is in possession of full information 
about it. Yet in practice, people with every 
incentive to succeed, usually failed to com-
pute the Nash equilibrium.

The disjuncture between how people ought 
to behave according to game theory and how 
they actually do behave is not a modern dis-
covery. As Philip Mirowski makes clear in 

his book Machine Dreams,6 experiments at 
RAND established this almost as soon as 
games such as the Prisoner’s Dilemma had 
been invented over 50 years ago. Indeed, 
Merrill Flood, its inventor, soon abandoned 
work on game theory altogether for exactly 
this reason.

Two examples will suffice. Flood offered 
RAND secretaries a choice. One of them was 
given the option of either receiving a fixed 
sum of money ($10, say), or receiving a total 
of $15 provided that agreement could be 
reached with another secretary as to how this 
money was to be divided between them. One 
Nash solution is that the two split the mar-
ginal difference. In other words, they divide 
the extra $5 between them so that they get 
$12.50 and $2.50 respectively. Obstinately, 
in practice most secretaries appealed not to 
the new idea of the Nash equilibrium but to 
the concept of fairness, as old as humanity 
itself. They divided the total amount exactly 
equally, $7.50 each.

The second is even more interesting. Flood 
carefully devised a pay-out system in the 
Prisoner’s Dilemma in which the best option 
for both players was not the usual co-opera-
tive one. The Nash equilibrium was unequiv-
ocally for both players to defect. To play the 
game, he recruited distinguished RAND ana-
lysts John Williams and Armen Alchian, a 
mathematician and economist respectively. 
They were to play 100 repetitions of the 
game. They each knew about von Neumann’s 
work, but not about the Nash equilibrium, 
which had only just been discovered. Both 
were asked to record their motivations and 
reactions in each round.

The Nash equilibrium strategy ought to 
have been played by completely rational 
individuals 100 times. It might of course 
have taken a few plays for these high-pow-
ered academics to learn the strategy. But 
Alchian chose co-operation rather than the 
Nash strategy of defection 68 times, and 
Williams no fewer than 78 times. Their 
recorded comments are fascinating in them-
selves, and a single aspect will have to suf-
fice us here. Williams, the mathematician, 
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began by expecting both players to co-oper-
ate, whereas Alchian the economist expected 
defection. But as the game progressed, co-
operation became the dominant choice of 
both players.

In other words, even leading academics 
who had been involved in game theory 
research, but who were not yet aware of the 
newly discovered concept of the Nash equi-
librium, behaved most of the time in a way 
contrary to the predictions of Nash’s theory.

Nash was immediately told of these results, 
and his reaction is quoted at length by 
Mirowski. Many of the points are technical, 
but the most dramatic by far is the following: 
‘It is really striking how inefficient the play-
ers were in obtaining rewards. One would 
have thought them more rational’. In other 
words, his theory predicted a particular kind 
of behaviour. The players did not follow it 
and, clearly, the mistake lay with them and 
not the theory. Two very clever people, inti-
mately familiar with game theory in general, 
had persistently chosen a non-Nash strategy. 
But the theory simply could not be wrong, 
because that is how rational people ought to 
behave!

HOW PREDICTABLE IS THE 
ECONOMY?

Most of the results above relate to individu-
als. Could it be the case that institutions such 
as central banks, the International Monetary 
Fund or national Treasuries have knowledge 
which is superior to that possessed by the 
typical individual?

Certainly, the track record of forecasting 
macroeconomic variables such as next year’s 
growth in GDP does not suggest any special 
knowledge on the part of the authorities. For 
example, at the start of 2008, decent growth 
was predicted both for Europe and the US in 
2009.7 Even as late as August, the general 
view was that there would still be positive 
growth in 2009. But in fact, the West was 
already in recession in August 2008!

This was not simply a one-off error in an 
otherwise exemplary forecasting record. The 
major crisis in East Asia in the late 1990s 
was, for example, completely unforeseen. In 
May of that year the International Monetary 
Fund (IMF) predicted a continuation of the 
enormous growth rates which those econo-
mies had experienced for a number of years: 
7% growth was projected for Thailand in 
1998, 7.5% for Indonesia and 8% for 
Malaysia. By October, these had been revised 
down to 3.5, 6 and 6.5% respectively. But by 
December the IMF was forecasting only 3% 
growth for Malaysia and Indonesia, and zero 
for Thailand. Yet the actual outturns for 1998 
for these countries were spectacularly worse, 
with output not growing but falling by large 
amounts. The fall in real GDP in 1998 was 
–10% in Thailand, and –7 and –13% in 
Malaysia and Indonesia respectively.

Over the past 40 years in particular, a track 
record of forecasts and their accuracy has 
been built up. Economists disagree about 
how the economy operates, and these disa-
greements are reflected in, amongst other 
things, the specification of the relationships 
in macro-economic models. But, over time, 
no single approach has a better forecasting 
record than any other. Indeed, by scientific 
standards, the forecasting record is very poor, 
and a major survey of macro-economic fore-
casting8 concluded that there is no real evi-
dence which suggests that accuracy has 
improved over time.

As examples of the one-year ahead fore-
casting record for GDP growth, for the US 
economy recessions have not generally been 
forecast prior to their occurrence, and the 
recessions following the 1974 and 1981 
peaks in the level of output were not recog-
nized even as they took place.9 In general, 
the forecasting record exhibits a certain 
degree of accuracy in that the average error 
over time is smaller than the size of the 
variable being predicted. But the error is 
still large compared to the actual data, and 
most of the accurate forecasts were made 
when economic conditions were relatively 
stable.
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As long ago as the 1920s, Irving Fisher, the 
most distinguished American economist of 
the early decades of the twentieth century, 
argued that the business cycle – the short term 
fluctuations in GDP growth – is inherently 
unpredictable. He believed that movements 
over time in the volume of output were ‘a 
composite of numerous elementary fluctua-
tions, both cyclical and non-cyclical’ (Journal 
of the American Statistical Association, 1925) 
and quoted approvingly from his contempo-
rary Moore, who wrote that ‘business cycles 
differ widely in duration, in intensity, in the 
sequence of their phases and in the relative 
prominence of their various phenomena’.

In such circumstances, it would be virtu-
ally impossible to distinguish this type of 
data from data which was genuinely random 
in terms of its predictability. There are too 
many factors, and not enough data with 
which to identify their separate impacts. As 
noted above, the actual macro-economic 
forecasting record is certainly compatible 
with this view.

Ormerod and Mounfield (2000) formal-
ized Fisher’s insight.10 Essentially, they 
formed a delay matrix of time-series data on 
the overall rate of growth of the economy, 
with lags spanning the period over which any 
regularity of behaviour is postulated by econ-
omists to exist. They used methods of random 
matrix theory to analyse the correlation 
matrix of the delay matrix. This was done for 
annual data from 1871 to 1994 for 17 econo-
mies, and for post-war quarterly data for the 
US and the UK. The properties of the eigen-
states of these correlation matrices are simi-
lar, though not identical, to those implied by 
random matrix theory. This suggests that the 
genuine information content in economic 
growth data is low, and that the time-series 
data on GDP growth is very similar to genu-
inely random data.

The poor forecasting record of GDP 
growth by economists appears to be due to 
inherent characteristics of the data, and 
cannot be improved substantially no matter 
what economic theory or statistical technique 
is used to generate them. Over what is 

thought of as the time period of the business 
cycle in economics, in other words the period 
over which any regularity of behaviour of the 
growth of GDP might be postulated to exist, 
the genuine information content of correla-
tions over time in the data is low.

The same technique can be applied to the 
change in the inflation rate, and the results 
are qualitatively very similar. Monetary 
authorities such as the Bank of England and 
the European Central Bank are each set a 
target rate of inflation which they have to 
try to achieve by the manipulation of short-
term rates of interest. But the rate of infla-
tion in, say, a year’s time is inherently 
unpredictable. Indeed, we do not even know 
whether it will be higher or lower than it is 
at present, given that the changes in infla-
tion are very similar to purely random data. 
So the monetary authorities are essentially 
attempting to target and control a random 
variable.

The conventional approach to the control 
of the economy at the aggregate level requires 
the ability to:

make reasonably accurate predictions of what  •
will happen in the future in the absence of policy 
changes
have a reasonably accurate understanding of the  •
impact of policy changes on the economy.

Neither of these is the case. There are 
inherent reasons why the ability to forecast 
with any reasonable degree of accuracy over 
time is severely limited, and why the ability 
to extract information from aggregate time-
series data about the ways in which economic 
variables interact is also restricted.

Short-term lack of predictability is of 
course a key feature of complex systems.

POWER LAWS AND NON-GAUSSIAN 
OUTCOMES

A second key characteristic is correlated 
behaviour amongst the individual agents of 
the system, which gives rise to distinctly 
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non-Gaussian outcomes for the system as a 
whole.

There is a literature, stemming from the 
physical sciences, which tries to fit a particu-
lar kind of distribution, namely a power law. 
Before moving to a more general discussion 
of this, it is important to clarify a confusion 
which sometimes arises in fitting such rela-
tionships.11 We often observe relationships 
reported between the size of an event and its 
ranking. So, for example, Zipf12 reported a 
relationship between the number of times a 
given word is observed in a language and its 
rank number when all words are ranked by 
size. Given a variable y which orders a set of 
data by the size of the individual observa-
tions and the rank of each observation in this 
ordering, r, if the data follows a power law 
distribution, we will observe the relationship: 
y = r-b. We might equally, however, examine 
not the size/rank relationship but the fre-
quency distribution. In terms of the distribu-
tion of high-income earners, for example, we 
could perform a regression with the Zipf 
relationship so that a given income is propor-
tional to the ranking of that income in the 
data set, or we could regress the number of 
people whose income is higher than this on 
income. But the two regressions13 are simply 
different ways of looking at the same thing.

Perline14 offers a detailed critique of the 
claim that power laws characterize many data 
sets in the social sciences. He notes that find-
ings are often represented as though data 
conformed to a power law form for all ranges 
of the variable of interest. Perline refers to 
this ideal case as a strong inverse power law 
(SIPL). However, many of the examples used 
by Pareto and Zipf, as well as others who 
have followed them, have been truncated 
data sets, and if one looks more carefully in 
the lower range of values that was originally 
excluded, the power law behaviour usually 
breaks down at some point. This breakdown 
seems to fall into two broad cases, which 
Perline calls here weak and false inverse 
power laws (WIPL and FIPL). WIPL refers 
to the situation where the sample data fit a 
distribution that has an approximate inverse 

power form only in some upper range of 
values. FIPL refers to the situation where a 
highly truncated sample from certain right-
skew (and in particular, ‘lognormal-like’) 
distributions can convincingly mimic a power 
law. His paper shows that the discovery of 
Pareto–Zipf-type laws is closely associated 
with truncated data sets. Further, through 
detailed analysis of some reported results, he 
concludes that many, but not all, Pareto–Zipf 
examples are likely to be FIPL finite mixture 
distributions and that there are few genuine 
instances of SIPLs.

The problems of truncation in data sets are 
particularly acute. For example, as Perline 
observes ‘it is in the nature of things the low 
end, or very commonly, all but the upper tail, 
of many kinds of data is hidden because of 
definitional fuzziness and the difficulties 
associated with measurement below some 
threshold. At the same time, it is frequently 
the high end that is most important or most 
likely to capture our attention’.

The reasons why power laws are particu-
larly attractive to the physical sciences, whilst 
important, are nevertheless a diversion to the 
themes of this chapter, and the interested 
reader is referred to the Wikipedia entry on 
power laws for a clear introduction to this 
topic.

However, there is a fundamental differ-
ence between physical systems and human 
and social systems. In the latter, the compo-
nent parts, the agents, can act with purpose 
and intent, unlike the component parts of the 
former, the particles.

As a modelling strategy, there is a great 
deal to be said for taking the ‘particle’ model 
as the ‘null model’. In other words, to set up a 
model in which the agents by definition have 
zero cognition, with no ability to gather or 
process information or to learn from the past. 
We initially see how far this model takes us, 
how far it is able to account for the phenom-
ena under investigation, before starting to 
make it more realistic by ascribing weak 
cognitive powers to agents. This concept is 
discussed in much more detail in Bentley and 
Ormerod (2010).15 The contrasting approach 
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of the standard social science model is to 
posit the fully rational agent as the null, and 
then make agents slightly less smart if the 
model needs to be refined.

A particular success with the ‘zero intelli-
gence’ agent approach is reported by Farmer 
et al.16 They use data from the London Stock 
Exchange to test a simple model in which 
minimally intelligent agents place orders to 
trade at random. The model treats the statisti-
cal mechanics of order placement, price for-
mation, and the accumulation of revealed 
supply and demand within the context of the 
continuous double auction and yields simple 
laws relating order-arrival rates to statistical 
properties of the market. They test the valid-
ity of these laws in explaining cross-sectional 
variation for 11 stocks. The model explains 
96% of the variance of the gap between the 
best buying and selling prices (the spread) 
and 76% of the variance of the price diffu-
sion rate, with only one free parameter.

There are, however, few such examples 
and better models are usually obtained when 
a small amount of cognitive ability is ascribed 
to the component parts. The implication is 
that in the social science we should not have 
the same fixation with trying to discover 
power law properties at the system level. 
What is significant, however, is that we 
observe very generally right-skewed (heavy 
tailed), distinctly non-Gaussian.

For example, Ormerod (2010)17 examines 
both the duration and size of economic reces-
sions in 17 Western economies using annual 
data over the period 1870 to the present. Two 
definitions of recession are used. First, the 
duration of a recession is the number of con-
secutive years in which real GDP growth is 
less than zero. The size of a recession is the 
cumulative percentage fall in GDP during 
these years. Second, a recession is defined as 
a period of successive years during which the 
level of real GDP remains below its previous 
peak. The size of this definition is the cumu-
lative sum of the percentage differences 
between the level of GDP in each of the 
recession years and the level of GDP at its 
previous peak.

On either definition, most recessions are 
very short, lasting only one year in around 
two-thirds of the cases. Power law fits to the 
data give relatively poor approximations, and 
both the size and duration of recessions are 
more clearly exponential. Two approaches 
were used to calibrate both the exponential 
and the Weibull distributions to the size data. 
First, estimation by nonlinear least squares of 
the appropriate functional form. Second, a 
grid search of the parameters which maxi-
mize the p-value at which the null hypothesis 
that the actual data and the theoretical distri-
bution are the same, again using the 
Kolmogorov–Smirnov test.

On both definitions of a recession and 
using both statistical approaches, the data are 
best approximated by the Weibull distribu-
tion with shape parameter less than one, 
indicating the probability of exit from reces-
sion is reduced as duration and size are 
increased. This is consistent with Keynes’ 
concept of ‘animal spirits’, of the sentiment 
of agents, becoming depressed.

There are now many examples of right-
skewed distributions in the social sciences, 
regardless of whether they are strong, weak 
or false inverse power laws in the sense of 
Perline discussed above. All the data sets 
share the property that their distributions, 
whatever they may be, are distinctly non-
Gaussian. This has been known to be a fea-
ture of the distribution of income and wealth 
since the time of Pareto around 1900. 
Decisive evidence on the right-skew distri-
bution of firm sizes, for example, has been 
both available and well known in industrial 
economics for many years.18 Plausible can-
didates in the economics literature to 
represent the empirical size distribution 
are the lognormal, the Pareto and the Yule. 
The main problem is in capturing the cover-
age of small firms. Recent attempts to do 
this, such as on the population of US 
firms,19 lend support to a power-law distri-
bution linking firm sizes probability densi-
ties with the size ranking of firms. However, 
this may well be an as yet unexplained out-
come of aggregation, because the findings 
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seem not be robust with respect to sectoral 
disaggregation.20

An innovative finding by econophysicists 
is that the variance of firm growth rates falls 
as firm size increases, although this too was 
anticipated in the early 1960s.21 A further 
discovery is that the size-frequency relation-
ship which describes the pattern of firm 
extinctions appears to be very similar to that 
which describes biological extinctions in the 
fossil record.22

MODELLING FIRM BEHAVIOUR

Empirical evidence

An excellent insight of life inside a giant firm 
is given in Marlin Eller’s book Barbarians 
Led by Bill Gates.23 Eller was from 1982 to 
1995 Microsoft’s lead developer for graphics 
on Windows. Eller’s introductory remarks are 
worth quoting at some length: ‘There was a 
great disconnect between the view from the 
inside that my compatriots and I were experi-
encing down in the trenches, and the outside 
view … in their quest for causality [outsiders] 
tend to attribute any success to a Machiavellian 
brilliance rather than to merely good fortune. 
They lend the impression that the captains of 
industry chart strategic courses, steering their 
tanker carefully and gracefully through the 
straits. The view from the inside more closely 
resembles white-water rafting. “Oh my God! 
Huge rock dead ahead! Everyone to the left! 
NO, NO, the other left!”’. Eller goes on ‘real-
ity is rarely a simple story and is probably 
more like a Dilbert cartoon’.

The experience of Microsoft illustrates 
much more general points about the behav-
iour of firms within the complex system 
which is the economy. Windows now of 
course dominates the PC operating systems 
world. But its success was based far more on 
a series of accidents than on a far-sighted, 
planned strategy.

In the late 1980s, the main strategic goal of 
Microsoft was to link up very closely with 

IBM. In particular, the two companies were 
developing jointly a new operating system, 
OS/2. Windows merely limped along. Bill 
Gates staged a major publicity coup at the 
computer industry’s biggest exhibition, 
COMDEX, in 1983. He announced that 
Windows 1.0 would be shipped in the spring 
of 1984. After immense effort, it finally 
appeared in November 1985. The reviews 
were blistering. The product size was huge 
relative to the capability of the personal com-
puters which then existed. The New York 
Times observed that ‘Running Windows in 
512K of memory is akin to pouring molasses 
in the Arctic’. In Eller’s blunt description: 
‘the product was essentially useless’. The 
support team within Microsoft for Windows 
was cut back to a mere three people.

In contrast, great effort was being put into 
the relationship with IBM. In October 1988, 
the two companies launched OS/2 
Presentation Manager, with Bill Gates pro-
claiming ‘[this] will be the environment for 
office computing in the 1990s’. Marlin Eller 
quotes Steve Ballmer, Gates’s number two, 
as saying ‘This is it, after this we’re not going 
to have any more Windows. It’s all OS/2’.

Windows 2 meanwhile had been launched, 
with little success. Only a couple of people 
were left within Microsoft to maintain the 
product. Sporadic development of the prod-
uct still took place on the next version, 
Windows 3.0. But an article in the National 
Review summed up the view of the industry 
‘Microsoft would cease development of its 
Windows software after the release of 
Windows 3.0 … IBM’s OS/2 would become 
the main PC operating system for the 
1990s’.

On 22 May 1990, Windows 3.0 was made 
available to the public. It sold 2 million 
copies in the first six months.

The point is that, despite the enormous 
business abilities of Gates and his key play-
ers, they did not foresee that it would be 
Windows and not OS/2 which would fulfil 
this role. Windows was almost abandoned as 
a stand-alone product. Its support team was 
cut to virtually zero. And it proved a massive, 
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overwhelming success. Success, like failure, 
comes in many guises.

It is the sheer complexity associated with 
many decisions which defies the orderly 
application of the rational calculation of eco-
nomic theory. The number of possible per-
mutations of outcomes is simply too great to 
be computed. The degree of uncertainty 
rarely permits the computation of the opti-
mal, the unequivocally best strategy at any 
point in time.

A further practical illustration of the com-
plex nature of the system in which firms 
operate is provided by Marc Levinson’s 
book24 on how the humble shipping container 
transformed the world. Almost 50 years ago, 
in April 1956, a refitted oil tanker made the 
first ever container voyage from Newark to 
Houston.

From this modest start, the container has 
revolutionized economic geography, devas-
tating traditional ports such as New York and 
London and enabling massive growth in 
obscure ones like Oakland and Felixstowe. 
Shipping costs have fallen so dramatically 
that the structure of world trade itself has 
been altered. Most trade used to be raw mate-
rials or finished products. Now it is mainly 
intermediate goods, with manufacturers able 
to source from almost anywhere, thanks to 
cheap transport costs. In turn, this has facili-
tated the massive economic growth of Asia. 
The container has enabled global supply 
chains and just in time production to become 
routine.

The most powerful and general insight of 
the book is set out in the final chapter: ‘time 
and again, even the most knowledgeable 
experts misjudged the course of events ... 
almost nothing [the container] touched was 
left unchanged, and those changes were often 
not as predicted’.

For example, the leader of New York’s 
longshoremen warned in 1959 that contain-
ers would eliminate 30% of his members’ 
jobs. Within 15 years, three quarters of them 
had disappeared. Even the inventor of the 
container himself, Malcolm McLean, made 
colossal misjudgements. At the time of the 

1973/74 oil price shock, he had just ordered 
a new fuel-guzzling fleet, and he built a 
new squadron of slow but fuel efficient ships 
just before fuel prices fell sharply in the 
1980s.

Governments in New York, San Francisco 
and Britain invested heavily in reconstructing 
traditional ports, yet the investment was 
obsolete almost before the last of the con-
crete had dried. Top American economists 
predicted that containerization would be 
good for manufacturing in the metropolitan 
North Eastern states, enabling them to ship 
more cheaply to the South than could the 
landlocked Midwest. No one foresaw that the 
collapse in transport costs would enable 
entirely new competitors from elsewhere in 
the world to decimate the region’s traditional 
industries.

This massive uncertainty about the future 
is an inherent feature of the world, which 
permeates both public and private sector 
decision making. Carroll and Hannan25 take 
an ecological approach to understanding 
firms, and provide many interesting illustra-
tions. A hundred years ago, for example, in 
the first two decades of the twentieth century, 
over 2,000 firms attempted to make cars for 
the new American market. Over 99% of them 
failed.

The endorsement of the book by Oliver 
Williamson, 2009 economics Nobel 
Laureate, brings out a further key point 
from their empirical examples: ‘... the 
authors adopt a demographic perspective in 
which variety among firms within industries 
becomes the object of analysis. Vitality 
resides in the differences – which has impor-
tant ramifications for organization theory 
and for public policy toward business’. In 
other words, a key empirical feature of 
firms is their diversity. In the jargon of eco-
nomics, the agents are heterogeneous. To 
non-economists, this may seem blindingly 
obvious, but the theoretical model of the 
‘representative agent’, the single agent 
whose behaviour can proxy that of all 
agents in the economy, survives strongly in 
mainstream economics.
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Failure and extinction

Failure and extinction is in fact a pervasive 
feature of firms, and one which is almost 
entirely neglected by mainstream economic 
theory. On average, just over 10% of all 
firms, both in the US and Europe, become 
extinct in any given year. And even giant 
firms fail. Modern examples include Enron, 
WorldCom and of course Lehman’s. Evidence 
on this is provided by the British economic 
historian Les Hannah26 and by the American 
sociologist Neil Fligstein.27

Fligstein’s evidence is less detailed than 
Hannah’s for our immediate purposes, though 
it contains much interesting material. His 
data set does not include evidence on whether 
a firm failed completely and ceased to exist 
as an independent entity. Rather, it focuses 
on whether or not a company was in the list 
of the largest 100 American firms at the end 
of each decade from 1919 to 1979. Only 33 
out of the top 100 in 1919 remained in the list 
in 1979, and since then the attrition amongst 
the 1979 survivors has continued.

Fligstein notes that no fewer than 216 com-
panies in total made it into the American Top 
100 over the 60 year period. Some, such as 
Bethlehem Steel, WF Woolworth, Chrysler 
and Goodyear Tire and Rubber were in the 
list for the entire period. Others enjoyed their 
15 minutes of fame in a single appearance, 
such as Atlantic Gulf and West Indies Shipping 
Line in 1919, Lehigh Valley Coal in 1929, 
Climax Molybdenum in 1939, Allied Stores 
in 1949, Kaiser Steel in 1959, International 
Utilities in 1969 and, anticipating the future, 
Rockwell International in 1979. International 
Business Machines (IBM) makes its first 
appearance in 1939, but otherwise computing 
firms such as Microsoft are absent, simply 
because for the most part they barely existed 
at the last date on Fligstein’s list, 1979.

On average, over the individual decades 
from 1919–29 to 1969–79, 78 out of the top 
100 at the start of any decade were still there 
at the beginning of the next. But no fewer than 
22 out of 100 were not. These are, or rather in 
most cases were, the giants of American 

capitalism. Operating on a massive scale, and 
possessed of enormous resources, almost one 
in every four were unable to remain in the top 
100 for more than a decade.

Hannah traces the survival of the world’s 
100 largest industrial companies in 1912 
through to 1995. The companies in the world’s 
top 100 in 1912 represented the cream of 
capitalism. These were the survivors of a 
brutal era of competition, and had success-
fully survived the massive wave of mergers 
around the turn of the century. As Hannah 
points out ‘They were, on the whole, firms 
that contemporary stock market analysts con-
sidered attractive and safe because of their 
consistently reliable record of generous but 
sustainable dividends. A population of the 
largest firms of 10 years earlier would almost 
certainly show earlier exits and faster rates of 
decline than this population’.

Yet within 10 years, no fewer than 10 of 
these companies had disappeared. Over the 
course of the twentieth century, 29 became 
bankrupt and in total 48 disappeared. Of the 
52 survivors, only 29 remained in the 
world’s top 100 in 1995. Hannah notes 
laconically, ‘the tendency to over-emphasise 
successes, and to rationalize them ex post is 
chronically endemic amongst business his-
torians and management consultants’. The 
latter group are particularly prone to the 
temptation of claiming to have found the 
unique formula for business success. Books 
proliferate, and occasionally sell in very 
large numbers, which claim to have found 
the rule, or small set of rules, which will 
guarantee business success. But business is 
far too complicated, far too difficult an 
activity to distil into a few simple com-
mands, or even some of the more exotic 
exhortations of the business gurus.

Firms certainly act with purpose and intent, 
and have no intention of failing. But the com-
plexity of the environment in which they are 
operating means that it is as if they were 
operating much closer to the zero intelli-
gence particle model of agent behaviour than 
to that of the fully rational agent.



ECONOMICS, MANAGEMENT AND COMPLEX SYSTEMS 615

An illustrative agent-based complex 
adaptive systems model

An example of a complex systems approach 
to modeling key aspects of firms which uses 
the ‘zero intelligence’ model of behaviour is 
given by Ormerod and Rosewell.28

The methodology used here, that of com-
puter simulation of an agent based model, is 
the standard way of modeling complex sys-
tems in the social sciences. Conventional 
economics remains constrained by its insist-
ence on obtaining analytical solutions to sets 
of equations. Analytical solutions are nice to 
have if you can get them, but they act as seri-
ous constraints on the types of model which 
can be built. Partial differential equations are, 
for example, routinely solved by numerical 
algorithms rather than brain power being 
wasted in an effort to obtain an analytical 
result. We have all moved beyond using the 
abacus or slide rule to perform calculations, 
and so we should embrace computer simula-
tion as the best way to make progress in the 
social sciences.

There are two key ‘stylized facts’ at the 
system level which the model attempts to 
replicate. First, it has been known for some 
time that the probability of extinction is high-
est in the early life of a firm, but declines 
rapidly and is thereafter more or less invari-
ant with respect to the lifespan of the firm.29 
Second, it has been shown recently, that the 
empirical relationship between the frequency 
and size of firm extinctions is described well 
by a power law,30 very similar to that observed 
in the palaeontological record of the extinc-
tion of biological species.31

The model contains N agents, and every 
agent is connected to every other. The 
model evolves in a series of steps. The rules 
of the model specify, (a) how the connec-
tions are updated, (b) how the fitness of 
each agent is measured, (c) how an agent 
becomes extinct, and (d) how extinct agents 
are replaced. The overall properties of the 
model emerge from the interactions between 

agents. The connections between agents can 
be thought of as representing the way in 
which the net impacts of the overall strate-
gies of firms impact on each other. Both the 
strength and the signs of the connections 
vary. Each firm can be thought of as attempt-
ing to maximize its overall fitness level. In 
the model, the firm proceeds by a process of 
trial-and-error in altering its strategy with 
respect to other firms. The model is solved 
over a sequence of iterated steps, and at 
each step, for each agent one of its connec-
tions is chosen at random, and a new value 
is assigned to it.

Despite the fact that firms are postulated to 
act at random, the system wide properties 
which emerge from the model are very simi-
lar to those observed empirically on the dis-
tribution of firm extinctions with respect to 
age, and on the relationship between the fre-
quency and size of extinctions.

After establishing this initial level of con-
fidence in the model, Ormerod and Rosewell 
go on to add successively greater levels of 
purpose and intent to the behaviour of firms, 
and see how far this process can go. They 
find that there are very considerable returns 
to acquiring knowledge, for even a small 
amount leads to a sharp increase in the mean 
agent age at extinction for agents with knowl-
edge compared to those without. Indeed, they 
find that as both the amount of knowledge 
available to firms increases and as the number 
of firms capable of acquiring such knowl-
edge rises, the lifespan of agents begins to 
approach the limiting, full information para-
digm of neo-classical theory in which agents 
live for ever.

However, even with relatively low levels 
of knowledge and numbers of agents 
capable of acquiring it, the model ceases to 
have properties which are compatible with 
the two key stylized facts on firm extinc-
tions. The clear implication is that firms 
have very limited capacities to acquire 
knowledge about the likely impact of their 
strategies.
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How Complexity Science is 

Transforming Healthcare

B r e n d a  Z i m m e r m a n

INTRODUCTION

Healthcare in Western societies is at a turning 
point. The enormous medical and public 
health advances of the last half century have 
extended life spans and improved quality of 
life for millions of people. The costs, how-
ever, have had an equally rapid ascent, lead-
ing many to believe we have created an 
unsustainable system. Personalized medi-
cine, the subject of science fiction only a few 
years ago, has increasingly become a reality. 
One’s genetic and proteomic profiles can be 
used to predict and treat diseases with an 
individually tailored approach. Paradoxically, 
population based health concerns, which 
address the health needs not of individuals 
but of large groups (or populations), have 
become increasingly important to understand 
how to improve the health status and quality 
of life across communities, countries and 
continents. Personalized medicine and popu-
lation health are putting further demands on 
an already strained healthcare system.

What does complexity science offer to this 
stressed system? In the UK, USA and Canada, 
members of the healthcare sector are looking 
to complexity science for insights to address 
the public policy, clinical and management 

challenges of healthcare. For policy makers, 
complexity science provides a new way to 
understand public policy as being coherent 
across populations while, at the same time 
and paradoxically, ‘inconsistent’ in applica-
tion because it allows for variation in response 
to local needs. This creates tensions for 
public policy makers which have often seen 
coherence and consistency as synonymous 
just as equity and equality have often been 
taken to mean the same. In practice, the 
National Health Service (in the UK) has used 
design principles inspired by complexity sci-
ence (hereafter ‘complexity principles’ in 
their redesign of the delivery of healthcare; 
while the Institute of Medicine (in the USA) 
has drawn upon complexity science to under-
stand and address quality shortcomings in 
healthcare delivery.

The clinical applications of complexity 
science range from relationship-centered care 
to using fractal geometry for diagnosis and 
treatment of cardiac conditions. In practice, 
most of the clinical applications are still in 
their infancy but show great promise for 
diagnosis and treatment of a wide range of 
diseases, especially chronic diseases. Indeed, 
the Canadian Academy of Health Sciences in 
2009 chose complexity science as its 
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theoretical frame for the study of chronic 
disease management.

In terms of health care management and 
leadership of health care organizations, com-
plexity science has been transformative in 
many health care organizations through 
understanding distributed network models of 
control and authority. In practice, jobs have 
been redesigned, care delivery modes have 
been altered and patient safety initiatives 
have applied complexity science-inspired 
principles to address issues such as hospital 
acquired infections.

Clearly, then, complexity science is 
impacting healthcare across the Western 
world. In this chapter we review three 
domains – public policy, clinical practice, 
and management of healthcare organizations 
– to outline how complexity science has been 
applied (or at least discussed) in each; and to 
compare the rhetoric of complexity science 
as a transforming force in healthcare with the 
reality of practice to date. We conclude by 
identifying some of the key challenges com-
plexity science faces in transforming health-
care, i.e. attitudes, mindsets, traditions, and 
power structures.

A CONTINGENCY FRAMEWORK 
FOR COMPLEXITY APPLICATIONS 
TO HEALTHCARE

It is possible to distinguish between simple, 
complicated and complex contexts of human 
action (Zimmerman et al., 1998; Glouberman 
and Zimmerman, 2002; Westley et al., 2006; 
Snowden and Boone, 2007). Simple contexts 
are known a priori and hence are well suited 
to consistent applications of ‘best practices’; 
while complicated contexts are knowable 
a priori but often require more rigorous anal-
ysis and investigation than a simple context. 
Because simple and complicated contexts are 
inherently knowable, action within them is 
often guided by a sense of being able to fully 
understand and potentially to control the 
system. Holman and Lorig (2000) argue that 
this is the case with acute illness wherein the 

healthcare provider can normally identify the 
cause and address it. They contrast this with 
chronic disease which, in the language of 
this Handbook, represents an inherently 
complex context for intervention because 
chronic diseases frequently have multiple 
causes, co-morbidities and morph or evolve 
over time. As a consequence, action is guided 
by a sense of inherent unknowability in com-
plex contexts which require approaches that 
incorporate, in addition to the knowledge and 
skill of health care providers, the knowledge 
and skills of patients, their families and the 
communities in which they reside. This con-
tingency framework of simple, complicated 
and complex contexts can be applied to 
policy and organizational issues of health-
care, in addition to clinical ones.

‘COMPLEXITY PRINCIPLES’ 
IN HEALTHCARE

There is no definitive list of complexity sci-
ence-inspired principles in healthcare. In 
both healthcare literature and practice there 
is great diversity in the attention paid to the 
different attributes of complex systems and 
ensuing principles for intervening within or 
managing them. In this chapter, ‘complexity 
principles’ is the label used to describe a 
broad cadre of complex system attributes and 
associated management principles, for ease 
of reading. Some of the most common of 
these used in healthcare are described briefly 
below as they are discussed in more detail in 
earlier chapters of this Handbook.

Emergence •  is the appearance of outcomes in the 
form of new structures, patterns or processes 
at the system level that are unpredictable from 
the components that created them through their 
interactions. In healthcare, emergence has been 
crucial in recognizing the role of uncertainty and 
surprise from each of a public policy, clinical and 
organizational perspective.
Self-organization •  is order created internally 
through the interaction of components rather 
than directly by an external force or individual/
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institution. Recognition of the importance of 
self-organization challenges the command and 
control paradigm which has dominated health-
care since the early twentieth century.
Distributed control •  arises when there is no 
central controller for a system such that design 
and management of the system is distributed. 
A departure from most Western medical and 
policy approaches, intervening in contexts of dis-
tributed control requires looking at the patterns 
across a system and between systems rather than 
for searching for single point causes.
Feedback •  is the reciprocal effect of one sub-
system on another subsystem or larger system. 
Negative feedback has a dampening effect on 
deviations or changes whereas positive feedback 
has an amplifying effect. In healthcare, this has 
important implications for policy makers and 
clinicians as they assess their interventions and 
impacts.
Minimum specifications •  are also known as simple 
rules. They refer to a small number of guidelines 
that typically determine the design and function-
ing of a complex system. This notion is used 
both inductively to understand what rules of 
interaction are shaping the current system and 
deductively to identify new rules of interaction 
which could create a healthier system (clinically 
or organizationally).
Sensitive dependence on initial conditions •  (or the 
butterfly effect) is a property of a complex system 
in which small changes have a disproportionate 
or nonlinear impact. Hence the past is a crucial 
part of understanding the trajectory of a system. 
In healthcare this principle is often translated 
into a rationale for context-specific solutions.
Connectivity •  in complex systems favors rela-
tionship-centered approaches to understanding 
and managing them because the connections 
or relationships between ‘parts’ of a system are 
key to its functioning. Rather than changing the 
parts, the focus becomes recognizing interde-
pendence and connected networks that need to 
be changed.
Fractals •  are geometric patterns (temporally or 
spatially) that exhibit self-similarity across scales, 
also known as scalar invariance. In healthcare, 
the recognition of fractals requires looking at 
data at multiple scales to diagnose problems and 
prescribe solutions.
Embedded or nested systems •  refers to how 
systems exist within systems such that change 
often involves the co-evolution of systems. This 

has been extended to include co-creation of 
meaning in healthcare organizations.

This chapter will identify examples of 
these complexity principles across the three 
healthcare realms of public policy, clinical 
medicine and management of healthcare 
organizations.

COMPLEXITY AND PUBLIC 
POLICY FOR HEALTH

Public policy for health includes articulating 
objectives for the government, choosing pri-
ority areas, selecting policy instruments (e.g. 
legislation, budgets, contracts, etc.) as well 
as content, and implementing. Complexity 
science has something to contribute to the 
selection of policy instruments as well as 
policy design and implementation. Health 
policy deals both with the front-line delivery 
of healthcare to individual patients and with 
public health activities which are population 
based such as pandemic preparedness or 
reduction in rates of obesity or substance 
abuse. In both arenas, complexity science has 
started to play a role.

The Institute of Medicine (IOM) in the 
USA issues an annual report on the state of 
healthcare in America. In 2001 the report 
focused primarily on front-line service deliv-
ery issues. It described quality problems not 
merely as a gap but as a ‘chasm’, an enor-
mous difference between what is delivered 
and what should be delivered based on 
resources employed and expectations of the 
public (IOM, 2001). The IOM described the 
US healthcare system as a complex adaptive 
system. The report used complexity princi-
ples, focusing particularly on ‘simple rules’ 
or minimum specifications, to both describe 
the current state of healthcare and prescribe 
solutions to address the quality chasm. The 
simple rules of behavior for the current 
system were derived inductively by examin-
ing the current patterns and practices of 
healthcare delivery and financing. To create a 
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more cost-effective, safe, patient-centered 
and high quality system, these rules were 
turned on their head in the recommendations 
contained in the prescriptive sections of the 
report. For example, current implicit rules 
have the physician in charge of a patient’s 
records and treatment decisions. The revised 
rules have the patient in control. The existing 
rules include professional autonomy allow-
ing physicians to operate independently for 
the most part versus the revised rule of col-
laboration and continuous information flow 
between all care providers and the patient. 
The IOM was influenced by and influenced a 
number of independent healthcare groups 
concerned with quality of care such as the 
Institute for Healthcare Improvement which 
has also used the complexity principles of 
self-organization and simple local rules lead-
ing to emergent outcomes (see examples at 
IHI.org).

One of the challenges of public policy for 
health is the concept of planning in light of 
uncertainty, emergence and surprise. Many 
traditional planning approaches in policy 
across the globe focus on developing single-
point forecasts or extrapolations of current 
trends into the future based on probability 
distributions (Lempert et al., 2002). With 
these approaches, surprise is problematic 
and is often downplayed or even ignored. 
Complexity science-inspired planning 
approaches using both quantitative modeling 
approaches and narrative scenario planning 
modes provide enhanced tools for policy 
makers dealing with conditions of deep 
uncertainty (Lempert et al., 2002). A goal of 
prediction of the future, which is unlikely in 
unpredictable emergent contexts, is replaced 
by a goal of anticipation of multiple possible 
futures, i.e. a perspective emphasizing the 
need for preparedness for multiple plausible 
realities. Robust strategies that can adapt to 
changing circumstances replace optimal 
strategies (Lempert et al., 2002).

In the UK, the National Healthcare Service 
(NHS) has applied complexity principles in 
their planning processes in several health 
trusts (regions) across the UK as well as in 

individual hospitals (Fraser and Greenhalgh, 
2001; Plsek and Greenhalgh, 2001; 
Greenhalgh, 2008). Embracing the ideas of 
uncertainty, emergence and surprise they 
designed policy experiments and leadership 
programs for policy makers and managers in 
healthcare. They used primarily qualitative 
aspects of complexity, the metaphorical 
power of looking at the NHS as a complex 
adaptive system and applying complexity 
principles of simple rules, emergent out-
comes and nonlinear interactions in their 
planning and policy making. Leadership pro-
grams based on these principles eschewed 
the notion of centralized control and recog-
nized the power of self-organization and the 
need to focus on relationships to understand 
and improve healthcare systems. The reac-
tions to these approaches in the NHS are 
mixed. Some argue that the knowledge of 
complexity has had a profound impact on 
how the NHS is managed (Manning, 2001; 
Sweeney, 2004) but others challenge whether 
any real impact on health care delivery to 
patients has been realized (Reid, 2001).

Public health, which focuses on popula-
tions rather than healthcare delivery to indi-
viduals, is often seen in a negative light 
within healthcare systems as distracting 
attention away from the more visible front-
line service delivery of healthcare (Merson 
et al., 2006). Rather than a focus on the cure 
aspects of healthcare, public health is more 
focused on prevention of health problems. It 
doesn’t make for front page news stories, 
except in the case of flu pandemics, but when 
public health is effective, it can have pro-
found and long-run implications for improv-
ing the health of populations. Vaccines, which 
were unheard of decades ago, have all but 
eliminated many devastating illnesses in 
many countries and some diseases, like polio, 
have been eradicated globally through public 
health efforts. A decrease in smoking, largely 
driven by public health campaigns and pro-
grams, has dramatically reduced the rates of 
lung cancer in North America (Skinner, 
2002: 38–39). What does complexity science 
add to meeting public health challenges? 
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Quite a bit, it turns out, as the next few para-
graphs outline.

Epidemiology has long been a mainstay of 
public health. Tracking a virus or disease or 
prevalence of a condition (e.g. obesity, smok-
ing, and substance abuse) has been central to 
public health. Since SARS (severe acute res-
piratory syndrome) and with the evolution of 
avian and swine influenzas, public health 
agencies across the globe have been focused 
on pandemic preparedness. Complexity sci-
ence, with its focus on relationships and inter-
dependence, challenges public health to look 
beyond epidemics and pandemics to syndem-
ics. Whereas epidemics and pandemics look 
at an individual disease, virus or health factor, 
syndemics looks at two or more synergisti-
cally interacting diseases, viruses or health 
factors. The unit of analysis for syndemics is 
the connection between the factors or dis-
eases. Medical anthropologist Merrill Singer 
coined the term syndemic in the early 1990s 
as he studied the patterns between linked 
afflictions (Singer and Snipes, 1992; Singer 
1994, 1996). Syndemics explores the connec-
tions, for example, between HIV/AIDS, vio-
lence and substance abuse. Syndemics builds 
on epidemiology but adds a higher order 
dimension to the analysis. Studying a single 
disease alone may ignore key patterns of 
spread of the disease that could give insights 
into prevention and treatment.

In addition, syndemics points out that 
because of the synergistic interactions 
between afflictions, i.e. both biomedical and 
social determinants of health, some popula-
tions bear a disproportionate disease burden. 
Diseases are rarely evenly distributed across 
a population so some communities or groups 
are harder hit. By focusing on the distribution 
of diseases and how they interact with other 
afflictions, new prevention strategies can be 
discovered (Singer, 2003; CDC, 2008).

An ancient Sufi saying helps capture the 
essence of the syndemics approach.

You think that if you understand one, you under-
stand two – because one and one are two. But you 
must also understand ‘and’.

Syndemics looks to system dynamics for 
the causes of diseases and uses network 
mapping to identify patterns in the interac-
tion of health factors and diseases. By focus-
ing on the ‘and’ in disease burdens across 
populations, syndemics suggests an expan-
sive role for public health policy makers and 
managers.

In the province of Ontario in Canada, 
public health policy makers are looking to 
complexity science to create a contingency 
framework of policy interventions depending 
on the degree of unpredictability and the 
degree of variability between the contexts in 
which the policy will be applied (e.g. diver-
sity in the communities or sub-populations 
across a region) (Touhy et al., 2009). The 
contingency framework is an acknowledg-
ment that policy makers face issues that are 
increasingly complex; and that traditional 
policy making tools of centralized directives 
to ensure consistency, or decision tree 
approaches to application of legislation, do 
not work effectively for complex contexts 
with lots of interdependence, unpredictable 
change, emergence and self-organization.

Zimmerman and Ng (2008) present a 
framework that contrasts health public policy 
from a traditional mechanistic approach with 
that from a complex systems view. They 
noted that complexity science changes the 
(1) perspective, (2) planning, (3) implemen-
tation and (4) evaluation of public policy. 
They contrasted traditional and complexity 
inspired approaches to three policy chal-
lenges: national HIV/AIDS strategies, 
regional nursing shortages, and patient safety 
within healthcare institutions. In each realm, 
complexity science-inspired public policy 
was shown to have practical and conceptu-
ally sound insights for each of the four 
dimensions of public policy.

For example, traditional/mechanistic 
approaches to HIV/AIDS public policy would 
include creating a national infrastructure 
which ensures consistency in application of 
policies through centralized planning in a 
top-down approach. Policy makers would 
want generalizable standards of care that 
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focus on aggressive therapies that attack the 
disease and will be evaluated by randomized 
control trials and assesses against generaliz-
able evidence. In contrast, a complexity sci-
ence-inspired view would look for what is 
already working in the system to build upon 
existing relationships. Planning would be 
decentralized but within the constraints of 
simple rules and hence would be both top-
down and bottom-up. Experiments and learn-
ing from others would be considered part of 
the public policy framework which is 
designed to work with local cultures to co-
create appropriate care. There would be 
explicit recognition of the interdependence 
of the medical aspects of the disease and the 
social, political and economic contexts in 
which it manifests. Evaluation would be con-
ducted using a balance of locally derived or 
highly specific evidence and evidence that is 
generalizable across populations or commu-
nities. A prime example of this complexity 
science-inspired public policy approach to 
HIV/AIDS is the late 1990s approach taken 
by Brazil which managed to stem the tide of 
this raging epidemic (Begun et al., 2003).

If complexity science-inspired perspectives 
hold such promise for health public policy, 
why are they not more prevalent? One of the 
challenges of a complexity-inspired approach 
is that it goes against the grain of the ‘equity’ 
value that is so central to many public policy 
makers and is frequently seen as synonymous 
with equality and hence consistency. Equality, 
consistency or sameness across a population is 
deemed to be good – is deemed to lead to 
equity even if the contexts in which the policy 
applies are radically different. Universality 
principles in healthcare are interpreted as con-
sistent application of policy instruments to all. 
Complexity science-inspired approaches, with 
their emphasis on self-organization, emer-
gence and unpredictability, fly in the face of a 
consistency approach. Coherence at best can 
be aimed for within a complexity frame. In 
addition, public health is almost always paid 
for by government which is inherently a 
political entity. Political agendas often call for 
dictated solutions from the top to show the 

voters that the political party in power is 
fulfilling their election promises. The media 
too plays a role in their desire for sound bites 
and simplistic explanations that work well 
as headlines. Complexity science-inspired 
approaches are often not conducive to a sound 
bite translation.

Tobacco control – Example of 
a complexity science-inspired 
approach to policy making

A prime example of the challenge of using 
simplistic explanations and interventions that 
can be explained in sound bites is the issue of 
tobacco control. Smoking rates are a key 
concern for public policy makers. Reducing 
the prevalence of smokers in a population 
results in significant increases in the health 
status of populations as well as reduction in 
healthcare costs for treatment for the diseases 
caused or exacerbated by smoking (e.g. lung 
cancer, type 2 diabetes, etc.). Yet too often 
the policy solutions have had limited impact 
(Sterman, 2006). For example, knowledge of 
the link between cancer and smoking, com-
bined with a major social marketing cam-
paign approach in most Western countries in 
the late twentieth century, have had consider-
ably less than predicted impact in smoking 
cessation. Like the complex challenge of 
HIV/AIDS, smoking is deeply embedded in 
social and economic contexts. It is a complex 
public policy challenge.

The Center for Diseases Control (CDC) in 
the US is home to ISIS (the Initiative on the 
Study and Implementation of Systems). ISIS 
argues that complex public health challenges 
need to incorporate the following complexity 
principles:

Simple rules1  by which to navigate complex 
adaptive systems and participatory processes 
that engage stakeholders at all levels.
Feedback2  and evaluation mechanisms that 
allow adaptive, evolutionary change.
Tools and infrastructure to enable functioning 3 
as a system characterized by connectivity of 
networked interdependent stakeholders.
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Methods for organizing and transforming 4 
knowledge which recognized emergence 
as key to achieving more effective change 
in the system.

They chose to study tobacco control as their 
initial case study to demonstrate the applica-
tion of these principles.

Tobacco control involves a wide number 
of players including the tobacco industry, 
individuals, public health, media and health-
care providers. As ISIS studied the history of 
tobacco control strategies around the globe 
they identified a three stage evolution (Best 
et al., 2007: 227–229). In the early stages, the 
issue was seen as an individual behavioral 
change problem. Smoking cessation pro-
grams were initiated and they used individual 
controlled trials to study the effectiveness of 
various interventions for cessation and pre-
vention of smoking. The second stage 
changed the unit of analysis from the indi-
vidual to the population. Collaborative popu-
lation-based studies using logic models were 
used by researchers. Broad dissemination of 
knowledge was seen as key and hence media 
and web access became increasingly signifi-
cant. The third stage further extends the 
systems thinking to look at the person–envi-
ronment interactions and networks. At this 
stage, both tacit and explicit knowledge are 
seen as important. Researchers used partici-
patory stakeholder-based methodologies and 
network analyses. Complexity principles (i.e. 
simple rules, feedback, connectivity, and 
emergence) were gradually embraced explic-
itly or implicitly as tobacco strategy 
evolved.

ISIS had to confront the cultural barriers to 
systems thinking that dominated the tobacco 
field. Traditionally isolated industry players 
and multiple siloed disciplines in public 
health were linked by transdisciplinary 
approaches to build and maintain stakeholder 
relationships. Knowledge translation net-
works were created to support systems 
knowledge capacity amongst a diverse group 
of stakeholders. Although the ISIS project 
saw great progress in the global public health 

efforts for tobacco control, they also recom-
mended that more needed to be done (Best 
et al., 2007: 233). Some were frustrated that 
the attempt to create systems thinking 
amongst all the players was not fully real-
ized. In all, ISIS represents both the promise 
and practice of complexity systems thinking 
approaches in public policy.

COMPLEXITY AND 
CLINICAL MEDICINE

The clinical applications of complexity sci-
ence range from technical applications, such 
as using fractal geometry for diagnosis and 
treatment of cardiac conditions, to more 
qualitative applications such as relationship-
centered care. But the biggest impact com-
plexity science has made in clinical medicine 
is in terms of a paradigm shift in the theo-
retical understanding of disease. Primarily 
this has been in the area of chronic diseases 
where the relevance of the reductionist para-
digm has been challenged as theoretically 
inadequate (Petty and Petty, 2005; Brown, 
2006). Reductionist modes of analysis 
assume that a thorough understanding of the 
parts will yield the greatest medical advances. 
Indeed, as this paradigm took hold during the 
twentieth century, Western medicine devel-
oped a proliferation of specialties and sub-
specialties. This led to a further focus on the 
‘parts’ as key to understanding disease and 
health. General practitioners, those who by 
necessity looked at the connections between 
the parts, were not usually as well paid as 
specialists nor were they as highly regarded 
in the medical profession.

In Western societies, traditionally homeo-
stasis, a steady state, was seen to be a sign of 
good health and clinical treatments were 
designed to return patients to this steady 
state. This structural reductionist approach is 
seen to be running out of insights for medical 
advancement (Petty and Petty, 2005). 
Complexity science, particularly the subsets 
of deterministic chaos and fractals, turns 
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conventional wisdom on its ear. Rather than 
a steady state, a complexity science-inspired 
perspective posits health as more variable, 
more dynamic or even dynamical. And the 
unit of analysis shifts from an emphasis on 
the parts to a focus on the relationships 
between the parts. Focusing on biophysical 
dynamics can provide insights into how the 
connections between the system parts yield 
emergent behaviors which can be either 
functional or dysfunctional (West and Griffin, 
2004). This paradigm shift has potentially 
enormous implications for changing the way 
clinicians diagnose and treat patients.

One of the areas where complexity science 
has made an impact in the clinical literature 
is in understanding the characteristics of 
good health in contrast with disease and dys-
function. From a complexity perspective, 
good health ‘reflects the harmonious integra-
tion of molecules, cells, tissues and organs’ 
and ‘is dynamically stable’ rather than 
homeostatic (Buchman, 2003). Healthy sys-
tems are said to exhibit fractal qualities such 
as scalar invariance, where patterns repeat 
across a physical or temporal space, and 
organized variability (Goldberger, 1997) 
which can be seen throughout the human 
body. For example, spinal motoneurons which 
control the movements of muscles are organ-
ized with a macro structure or organization 
indicating which set of motoneurons need to 
be firing for a specific muscle to move but 
need a great deal of variability to be able to 
adapt to the nuanced context specific move-
ment need and also to compensate when 
motoneurons are injured. This state is main-
tained through ‘feedback mechanisms and 
the spontaneous properties of interconnected 
networks’ (Buchman, 2003).

In contrast, disease is characterized by a 
loss of variability, both within an individual 
and between individuals with the disease. 
The disease state can be conceptualized as 
a reordering manifestation rather than a 
‘disorder’ which has been the long standing 
euphemism for disease. This reordering 
decreases variability, results in a loss of self-
similarity and, in the long run, leads to a loss 

of resilience needed for health and adaptabil-
ity. This ‘pathological order may serve as a 
basis for clinical diagnosis and disease detec-
tion’ (Goldberger, 1997).

In this section, we review some of the key 
aspects of complexity science that have 
impacted clinical research and practice.

Fractal geometry 
and clinical medicine

Clinical researchers have drawn upon the 
mathematical foundations of complexity sci-
ence, particularly fractal geometry. Medical 
journals have numerous articles looking at 
fractal geometry in a number of clinical 
domains: cardiology (Bassingthwaithe et al., 
1994; Goldberger, 1997; Kloner and Jennings, 
2001a; 2001b; Lopez et al., 2001; Saeed, 
2005), medical imaging (Chen et al., 1989), 
fetal development (Kikuchi et al., 2006), 
aging (Goldberger, 1996), comas or vegeta-
tive state (Sarà et al, 2008), neurodegenera-
tive diseases (Scafetta et al., 2007); chronic 
disease (Goldberger et al., 1990), cerebral 
autoregulation (Latka et al., 2005), and reha-
bilitation (Brown, 2006). This stream of 
research argues that traditional medicine 
faces a ‘central clinical paradox: individuals 
with a wide range of different illnesses are 
often characterized by strikingly periodic and 
predictable (ordered) dynamics, even though 
the disease processes themselves are referred 
to as dis-orders’(Goldberger, 1997: 544). The 
paradox is that although diseases are called 
dis-orders, clinicians recognize disease by its 
order. For example, autism and obsessive-
compulsive disorders are frequently associ-
ated with highly repetitive patterns. 
Parkinson’s disease has very little variation 
in the tremors and certain types of chronic 
leukemia show highly periodic fluctuations 
in neutrophil counts (Goldberger, 1997).

From a diagnostic perspective, fractal phys-
iology points to the promise, although largely 
unrealized to date, of using data on the 
degree of variability, or orderliness, to identify 
a healthy or diseased state. Fractal analysis 
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could also be used longitudinally to show the 
rate of change in orderliness; the faster and 
more profound the increase in orderliness, 
the more significant is the disease state or 
loss of good health.

Aging is a natural process of losing varia-
bility and so understanding what the typical 
variability is for different ages would be cru-
cial to making sense of data on aging. Infants 
have far more variability in their patterns 
such as temperature and heart rate as do 
adults. This is why a baby can have a rela-
tively high fever and still be functioning 
quite well whereas the same level of fever 
would likely represent a very dangerous state 
for the baby’s parents and even more so for 
the grandparents. As we age, we lose some of 
our variability and hence our capacity to 
adapt to extremes. Hence longitudinal data 
would be critical to making sense of changes 
in variability between patients of different 
ages and also for a single patient over time.

Fractal patterns exhibit self-similarity or 
scalar invariance with irregular or jagged 
boundaries and, like organized variability, 
these are distinguishing characteristics of 
good health. The question becomes: what are 
the functions of these characteristics in good 
health. Do fractal patterns in space and 
time improve the functioning of human 
physiology?

If we look to fractal patterns over space, 
such as the vascular system, the fractal quali-
ties allow for ‘rapid and efficient transport [of 
blood components] over a complex, spatially 
distributed system’ (Goldberger, 1997: 544). 
Fractal patterns increase the efficiency of 
spread throughout the system. Fractal pat-
terns have also been observed in the healthy 
or efficient functioning of other organs beyond 
the heart, e.g. for information flow (nervous 
system) and absorption of nutrients (bowel).

By measuring the inter-beat intervals in 
hearts or breathing or even walking strides, 
clinical researchers have discerned fractal 
qualities over time in healthy patients 
(Scafetta et al., 2007). These fractal patterns 
over time allow for adaptability to changing 
circumstances by seemingly increasing the 

sensitivity of a person to subtle changes in 
context, particularly rapid change (Goldberger, 
1996). Insensitivity to changes in context is a 
sign of poor health. This has been demon-
strated in a number of chronic diseases 
(Goldberger et al., 1990). Growth restricted 
fetuses have a statistically reduced variability 
in heart beat intervals compared to normal 
fetuses (Kikuchi et al., 2006). Identifying the 
reduction of variability in various organ sys-
tems is useful in diagnosing patients (Saeed, 
2005) but it is far less clear how this informa-
tion could be used to treat or return patients 
to a healthier state. Fractal analyses could 
lead to treatments, both in terms of exercise 
and drug protocols that will increase the frac-
tal qualities of a person’s heart rate or 
breathing. But the science of treatment in this 
area is still in its infancy.

Chronic disease

Complexity science also has a lot to contrib-
ute to both diagnosis and treatment of chronic 
disease. Acute disease is the primary focus of 
most hospitals and medical school curricula. 
The aim when treating acute diseases is cure 
– to return the patient back to their normal 
pre-disease state. Patients are generally seen 
as passive recipients of treatment as they do 
not need to be expert in the cure to be healed. 
Acute diseases are usually simple or compli-
cated in that onset is often abrupt and usually 
all causes can be identified and measured. 
However, chronic diseases are more complex. 
They rarely involve cure. Instead, the patient 
is irreversibly changed. There is often a 
gradual onset to chronic diseases which fre-
quently have multi-variate causes. Diagnosis 
therefore becomes more uncertain and prog-
nosis is more obscure than with single-cause 
acute diseases. The patient and their families 
need to be reciprocally knowledgeable with 
the healthcare professionals for any improve-
ment in health or at least a slowdown in the 
evolution of the chronic disease. The aim in 
treating most chronic diseases is care rather 
than cure and the patient is a partner in the 
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treatment rather than a passive recipient 
(Lorig et al., 1993; Lorig et al., 1999; Holman 
and Lorig, 2000).

In complexity science language, chronic 
diseases are unpredictable with emergent 
outcomes. Patients with chronic diseases, 
particularly the elderly, often have more than 
one disease and the diseases interact with 
each other. Reminiscent of the earlier discus-
sion on syndemics, relationships between the 
afflictions are crucial. The disease and the 
patient co-evolve and hence the patient 
becomes a crucial partner in any treatment 
plan.

Rehabilitation medicine

Brown (2006) outlines the key characteristics 
of complex adaptive systems and links these 
to the challenges of rehabilitation medicine 
and, particularly, physiotherapy. He argues 
that the focal object or target of rehabilitation 
medicine is inherently a complex adaptive 
system with nested systems, simple iterative 
rules, interdependence, emergence and unpre-
dictability. Relationships, clinical and social, 
are central to understanding the system and 
hence the key unit of analysis according to 
Brown. Yet the field of rehabilitation medi-
cine has not yet adopted these ideas into their 
language or theories. Hence he argues many 
rehabilitation protocols are inconsistent with 
these complexity science-inspired principles 
and need to adopt these ideas to increase the 
effectiveness of rehabilitation medicine.

Examples of rehabilitation medicine fail-
ing to appreciate the complex nature of the 
work include the dominance of reductionist 
thinking which seeks single solutions for 
therapeutic problems. Brown (2006) argues 
that single solutions only work for straight-
forward issues (such as a ruptured appendix). 
Most of rehabilitation medicine deals with 
conditions such as rheumatoid arthritis that 
have co-morbidities or interdependent influ-
ences, including the medical condition itself 
in addition to the lifestyle and social context 
of the patient, all of which make it impossible 

to find a one-size fits all solution. Instead, 
rehabilitation therapists need to understand 
their work in terms of the relationships, the 
implicit attractor patterns, etc. and to create 
therapeutic interventions that are adaptable 
to the individual patient and that change over 
time. ‘Searching for a global “best” solution 
is seen as a futile, counterproductive exercise 
in which it can take so long to formulate the 
action plan that the dimensions of the origi-
nal problem have long since evolved and 
often compounded into a new issue’ (Brown, 
2006: 589).

The simple-complicated-complex 
contingency framework applied 
to pneumonia

In addressing the action plans for an acute 
illness such as pneumonia, researchers have 
also been struggling with the search for a 
global best solution. Liu et al. (2009) used the 
simple-complicated-complex contingency 
framework to identify specific improvement 
approaches for patients hospitalized with 
community acquired pneumonia. They con-
cluded that all three categories could be 
applied to patients in a systematic fashion to 
improve the appropriate matching of medical 
interventions and care treatments to the nature 
of the problem facing the patient and the 
healthcare providers. By using the framework 
explicitly they looked to increase the success 
of improvement efforts and the reliability of 
care while retaining the much coveted physi-
cian autonomy to apply their own judgment 
for the more complex problems (Liu et al., 
2009: 93). Healthcare improvement efforts 
normally require increased standardization 
and consistent therapeutic approaches. This 
increase in reliability has a cost on a cultural 
level because of the desire by physicians for 
autonomy but Stevens (2009) points out a 
clinical cost because the application of global 
standardized rules needs a more nuanced 
approach to deal with the context-specific 
needs of patients. Stevens (2009) argues that 
the simple-complicated-complex framework 
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could increase the potential for physicians 
and other clinicians to recognize when stand-
ardization of therapies improves care and 
when the complexity of the context calls for a 
more relational approach. This relational 
approach implies that the patient is more 
involved and contextual considerations are 
more prominent in the choice of therapies and 
course of treatment than would be warranted 
for the known (simple) and knowable (com-
plicated) contexts.

Relationship-centered care

Relationship-centered care is a clinical phi-
losophy with the premise that by focusing on 
relational processes, care for patients can be 
improved. Complexity science with its focus 
on nonlinearity, emergence and self-organiz-
ing patterns of meaning in human interac-
tions and patterns of relating (e.g. power 
relations) provides theoretical support for 
the relationship-centered care clinical 
approach (Suchman, 2006). By deliberately 
looking to complexity science-inspired prin-
ciples, researchers and practitioners can fur-
ther their depth of understanding the power 
of relationship-centered care (Suchman, 
2006). Similarly, complexity science-
inspired approaches to family nursing (Nash, 
2008) aim to increase the care component of 
healthcare by being more deliberate in the 
analysis of the relationships between nurses, 
patients and family members. Traditional 
nursing theory focuses on external assess-
ment and intervention whereas complexity 
science-inspired approaches move away 
from reductionism to a mode of inquiry and 
engagement that recognizes and respects 
nonlinearity, emergence, self-organization 
and uses relationship as the key unit of 
analysis (Gambino, 2008; Nash, 2008). This 
refocus of attention to things hidden from 
view in traditional nursing theory is most 
significant as we move our attention in soci-
ety from a primarily acute illness needs 
to primarily chronic care needs (Gambino, 
2008).

Although relationship-centered care began 
as a clinical approach, it represents the blur-
ring of the boundaries between clinical med-
icine and organizational design: just as 
clinical practices can focus on relationships 
between healthcare providers and their 
patients for new insights into clinical inter-
ventions, organization theorists and health-
care managers can focus their attention on 
the relationships between organizational 
departments and between institutions to 
address the management challenges of 
healthcare.

Emergency medical 
services systems

Emergency medical services is an area that is 
deeply embedded in both the clinical practice 
domain and the management domain of 
healthcare. Some argue that the emergency 
medical services system (EMS) in the US, 
and elsewhere, is an obvious example of a 
complex adaptive system in healthcare 
(Trochim et al., 2006). A person calls 911 and 
the operator assesses the situation. Instructions 
to the caller are given to address basic care 
needs until the emergency workers (e.g. fire-
fighters, paramedics) arrive. The emergency 
workers communicate with the hospital and 
administer care and transport. Once in the 
hospital the emergency department takes 
over and acute care needs are met or connec-
tions are made with the appropriate special-
ists. In the language of complexity, in the 
EMS independent agents following a set of 
simple rules interact with each other to create 
the system. The agents are very familiar with 
their own role and the simple rules they need 
to follow to ensure fast, effective care. 
Thousands of people and organizations are 
involved in EMS and although some agents 
are aware of being part of a larger system, 
their focus is on satisfying the local needs 
and connecting with adjacent parts in the 
system. EMS operates without a hierarchical 
control center; coordination is not centrally 
controlled and the system is highly adaptable 
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to a wide variety of emergency medical situ-
ations (Trochim et al., 2006: 539–540).

COMPLEXITY AND THE 
MANAGEMENT OF HEALTH 
CARE ORGANIZATIONS

In the health management literature, com-
plexity principles have been used (1) as a 
normative approach to create more effective 
healthcare delivery (Miller et al., 1998; 
Dershin, 1999; Anderson et al., 2000; Ashmos 
et al., 2000; Barger, 2003; Begun et al., 2003; 
Iedema et al., 2005) and to make sense of 
observed patterns in managing quality in 
healthcare institutions (Begun et al., 2003; 
Anderson et al., 2005; Stroebel et al., 
2005; Chaffee and McNeill, 2007; Forbes-
Thompson et al., 2007) and communities 
such as among Ojibwa natives (Buscell, 
2006); (2) to increase integration in health-
care delivery by managers applying ideas 
such as self-organization or minimum specifi-
cations (simple rules) (Baskin et al., 2008), 
(3) to refocus energies in the system toward 
care and dignity for patients (Letiche, 2008).

Managing quality

Physicians, particularly primary care ones, 
are facing a paradox in their mode of practice. 
On the one hand, they are being asked to pre-
serve their commitment to the sacredness of 
the doctor–patient relationship. At the same 
time, they are being pushed to change the way 
they organize and deliver care and to alter and 
adjust the specific skills, knowledge, and 
style of practice they use. Team based 
approaches, with teams of doctors or mixed 
professional teams, are considered the better 
approach to care and cost-containment across 
the Western world. Physicians are thus torn 
between their traditional one-to-one patient–
doctor relationship and a more novel one-to-
many patient–team relationship (Batalden 
et al., 2006). Attempts to introduce change by 

policy makers, administrators, and research-
ers have been rejected or implemented in 
unanticipated ways or with unforeseen conse-
quences. Miller et al. (1998) argue that com-
plexity science explains the organization of 
primary care practices and the changes needed 
to transform the system in a way that is more 
powerful than the traditional top-down, mech-
anistically inspired models of most healthcare 
policy makers and administrators. Zimmerman 
et al. (1998) present some prescriptive com-
plexity science-inspired approaches for 
healthcare leaders and teams. In spite of its 
power, Miller et al. lament the limited use of 
complexity science in healthcare manage-
ment (Miller et al., 2001).

Anderson et al. (2003, 2004) tackled the 
seemingly intractable problem of quality of 
care in nursing homes. They identified nurs-
ing homes which implicitly applied complex-
ity principles and compared them against 
nursing homes with more mechanistic 
approaches to management and care. Their 
premise was that nursing homes applying 
complexity science-inspired approaches 
would fare better on key quality outcomes 
(aggressive behavior, restraint use, immobil-
ity of complications, and fractures) while 
controlling for case mix, size, ownership, and 
director’s tenure and experience. The hypoth-
eses were supported in that each manage-
ment practice explained one or more of the 
resident outcomes although some of the 
positive results were also explained by size 
of the nursing home and the tenure of the 
director of nursing.

In a very different context, Clyde Parkis, 
an executive with Veteran Affairs, was 
charged with the task of reducing infant and 
maternal mortality as he led a healthcare 
team in Afghanistan in 2004 (Buscell, 2004). 
He faced a number of obstacles: the building 
compound had been the only hospital allowed 
to treat women until recently yet had also 
been headquarters for the Taliban, making it 
a hostile environment for women to visit. 
Other adversities included short supply in 
necessities and building infrastructure in 
disrepair. Mr Parkis realized change needed 
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to happen at an administrative structural level 
to improve conditions. To do this, he applied 
complexity principles such as simple rules, 
context specificity of approaches and self-
organization. His work saw positive change: 
infection rates had dropped from 16% to 
under 1% by the time he left after 2.5 months. 
It was too early to tell how this would impact 
the goals of infant and maternal mortality but 
there is a strong correlation between infec-
tion rates and mortality rates (Buscell, 
2004).

In another example, Waterbury Hospital 
(Connecticut, USA) spent years working on 
medication management which ensures the 
drug routines needed by a patient before, 
during and after a hospital stay are appropri-
ate and understood by patients so as to 
increase compliance. This may seem like a 
simple challenge, yet healthcare profession-
als are fiercely independent and patients 
often receive confusing or even conflicting 
information from the wide range of care 
providers involved during their stay in a hos-
pital and after discharge. The hospital 
addressed the problem using a complexity 
science-inspired collaboration approach 
(termed ‘positive deviance’) and self-organ-
ization (Cusano, 2008).

Positive deviance is an approach that was 
not borne out of the complexity movement 
per se but has rather been adopted by com-
plexity theorists who see consistency between 
the underlying premises and approaches of 
positive deviance and complexity science. 
The premise of positive deviance is that in 
every community there are certain individu-
als whose uncommon practices/behaviors 
enable them to find better solutions to prob-
lems than their neighbors who have access to 
the same resources (Pascale and Sternin, 
2005; Walker et al., 2007). It began with the 
work of Jerry and Monique Sternin who 
demonstrated its power to reduce childhood 
malnutrition in Vietnam (Lapping et al., 
2002; Mackintosh et al., 2002; Marsh et al., 
2004); and developed its principles, many of 
which are consistent with complexity 
principles such as context-specific solutions 

(due to sensitive dependence on initial condi-
tions), connectivity and relationships as the 
key unit of analysis, nested systems, self-
organization, and simple rules.

Healthcare researchers and practitioners 
have begun to look at positive deviance 
(Smith, 1975; Tarantino, 2005) to address 
seemingly intractable problems such as hos-
pital acquired infections (e.g. MRSA, C. dif-
ficile, etc.), the so called ‘super bugs’ because 
of their resistance to antibiotics. Research 
studies conducted in five US hospitals in 
2008 and 2009 showed significant reductions 
in the incidence of MRSA (CBS, 2009; 
Medical News, 2009) which has spawned a 
more extensive research study still underway 
at the time of publication of this chapter. The 
Center for Disease Control is involved in 
positive deviance research and reports that 
statistically significant results are beginning 
to appear.1 The positive deviance movement 
has generated enthusiastic support because it 
represents an actionable process rather than a 
more descriptive approach which is more 
common in the literature on applications of 
complexity science to healthcare.

Managing integration

Nursing was one of the first areas of health-
care to adopt a complexity science perspec-
tive both for clinical practices and, more 
significantly, for their management work. In 
2008, an edited book of papers looking at 
nursing and complexity (Lindberg et al., 
2008) outlined the role of complexity science 
for nursing and specifically for the role of 
clinical nurse leaders. The clinical nurse 
leader (CNL) represents the new era of nurs-
ing as a lateral integrator or connector charged 
with following a patient across the continuum 
of care in a hospital (Begun and White, 
2008). The CNL view of nursing also rejects 
the false dichotomy or care versus science in 
healthcare but rather sees them as interde-
pendent attributes (Nelson and Gordon, 2006 
as cited by Begun and White, 2008). Signaling 
an increased role for complexity science in 
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healthcare, clinical nurse leaders in the USA 
are required to study complexity theory as 
part of their standard curriculum for their 
masters’ level degree. The curriculum 
addresses the relationships at the front-lines 
of healthcare, as well as complexity science-
inspired management theories to address the 
challenging role of a clinical leader in modern 
hospitals and healthcare systems. Indeed, 
there are numerous examples of complexity 
science being used to transform the organiza-
tion and management of healthcare services.

For example, complexity science was used 
as the conceptual framework for the develop-
ment and formation of a Stroke Center at 
Saint Luke’s Hospital in Kansas City (Baskin 
et al., 2008). Stroke victims require immedi-
ate treatment to minimize long-term damage. 
Hierarchical approaches in academic health 
centers were seen to inhibit the swift inter-
ventions needed when inpatients suffered 
from strokes. Because of the multidiscipli-
nary approach to treatment, the hospital rec-
ognized a need for cooperation amongst 
departments and the need for a management 
structure different than the traditional top 
down model. Utilizing complexity principles 
of self-organization, distributed control (or 
shared leadership) and minimum specifica-
tions (or simple rules), a stroke center which 
implemented new approaches was created. 
These new approaches included developing a 
template known as ‘critical path’ which ena-
bled healthcare providers throughout the 
system to quickly respond to stroke patients’ 
needs and a SWAT team from the stroke 
center able to respond to emergencies.

Managing care

Letiche (2008) argued that healthcare man-
agement and leadership must mirror the core 
processes of healthcare which are inherently 
emergent, unpredictable, dynamic and rela-
tional. The human aspects of care are often 
lost in the redesign, reengineering approaches 
to healthcare management and hence 
ultimately do not have as profound an impact 

as their designers intended (Letiche, 2008). 
Complexity science-inspired approaches to 
healthcare, which are consistent with the core 
processes of care, need to be flexible, adapt-
able and need to deal with indeterminancy. 
Letiche (2008) built on Lissack and Roos’ 
(1999) ‘simple guiding principles’ which are 
actionable, have clarity without over-specifi-
cation and create conditions for accountabil-
ity. The simple guiding principles require 
leaders to think deeply about their definitions 
of health, healing and wellness (Letiche, 
2008) and in so doing increase the chance of 
bringing the humanity and care back into 
healthcare management. ‘Healthcare leader-
ship requires … giving definitions [of health 
and healing] and comparing these concretely 
to our possible actions’ (Letiche, 2008: 16). 
The focus of his work is on the chronically ill 
for whom cure is usually not an option but 
rather co-created care and support are the 
norm. The link between the focus of clinical 
medicine, shifting from acute (simple or com-
plicated) to chronic (complex) clinical chal-
lenges requires a rethinking of the management 
of healthcare. The interdependence of the 
clinical and the management or leadership 
aspects of healthcare is profound.

DISCUSSION: CHALLENGES 
COMPLEXITY SCIENCE FACES 
IN TRANSFORMING HEALTHCARE

Although complexity science holds out great 
promise for healthcare in an era of chronic 
disease, the promise has not been fully real-
ized for a number of reasons. There is a lack 
of awareness, literacy and training for health-
care professionals in complexity science. 
Although there are a variety of programs in 
the US, UK and Canada that address this, 
they are a drop in the bucket compared to 
programs that reinforce the mechanistic, re-
engineering approach to healthcare for clini-
cians, policy makers and managers. Indeed, 
the accountability and standardization trends 
in healthcare, although laudable for the gains 
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they have made in outcomes, seem at odds 
with complexity science. Rather than seeing 
these as mutually exclusive options, there is 
a need to recognize a contingency approach 
so that the best of standardization can be 
utilized while simultaneously supporting the 
emergent, self-organizing and context-
specific solutions suggested by a complexity 
science. We see glimmers of hope for the 
reconciliation or perhaps transcendence of 
the paradox but in many realms of health-
care, mechanistic approaches trump com-
plexity science-inspired approaches for 
reasons of history or habit and the sophistica-
tion of the language and models of the 
mechanistic approach. Expediency, particu-
larly in the politics of healthcare, often leads 
to quick-fix announcements to demonstrate 
progress on a platform agenda item. These 
announcements often result in decisions 
which are antithetical to complexity princi-
ples in that they do not take into account 
emergence, self-organization, relationships 
or context-specific solutions.

Transparency is sometimes challenging 
with complexity as it is hard to explain com-
plex contexts in sound bites. Hence there may 
be a reversion back to the explainable – 
simple cause–effect relationships. Random-
ized control trials are seen to be the gold 
standard of research in healthcare. This is 
inconsistent with context dependent solu-
tions and leads to suspicion of local varia-
tion. Finally, Western medical training is 
primarily focused on acute care, even though 
70% of patients have chronic diseases. The 
acute care model is more consistent with the 
traditional mechanistic modes of healthcare 
clinical interventions and management. As 
the system of healthcare gradually reorients 
to focus on chronic conditions, with their 
unpredictable, emergent attributes and need 
for co-created relational care plans, the prom-
ise of complexity may yet be realized.

For healthcare researchers, complexity sci-
ence offers an opportunity to study surprise, 
emergence and unpredictability to understand 
how they impact on healthcare outcomes. 
Deliberately focusing on relationships and 

patterns of interaction as the unit of analysis 
can lead to insights for health public policy 
makers, healthcare providers and managers of 
healthcare organizations. ISIS and the tobacco 
control story is an example of this shift in 
research focus in an applied research project 
focusing on public policy; the fractal move-
ment in clinical medicine pioneered by cardi-
ologist Ary Goldberger shows the power of 
using complexity to diagnose and treat a wide 
range of diseases; while the positive deviance 
movement embraces and draws upon data 
held by local ‘experts’ – those embedded 
deeply in the system as front-line workers and 
patients – to identify the simple rules that 
hold a system in a dysfunctional state and that 
need to be challenged to create positive out-
comes in the management of healthcare and 
healthcare organizations.

Healthcare is an old industry with deeply 
embedded epistemologies. Dr Paul Batalden, 
pediatrician and prolific author in the area of 
quality improvement in healthcare, argues 
that the traditional preparation of a physician 
involved epistemological narrowing – dis-
missing all other epistemologies that are not 
covered in medical school curriculum.2 
Reductionist scientific approaches are legiti-
mized at the expense of other knowledge 
producing modalities. Mostly ignoring soci-
ology, anthropology, information systems, 
politics, economics and other epistemologies, 
our contemporary society has created a 
healthcare system with almost impenetrable 
barriers to shared decision making and funda-
mental change. Western medicine has been 
dominated by professions with a monopoly 
over both knowledge claims and service pro-
vision related to healthcare. As a result, those 
trained outside of traditional medical profes-
sions are frequently deemed as illegitimate 
interlopers. Our socially accepted modes of 
organizing and producing knowledge in 
healthcare have created a self-reinforcing 
closed system. Because of epistemological 
narrowing, particularly of physicians but 
more broadly across healthcare professionals, 
new knowledge is often not even recognized 
as such let alone accepted. Any study applying 
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complexity principles will face the challenge 
of the narrow epistemological stance in 
healthcare. Between the monopolies on 
knowledge and service provision and the 
organizational silos that dominate healthcare 
delivery, the challenges to acceptance of com-
plexity principles are profound. Complexity 
science potentially represents a fundamental 
challenge to the nature of expertise in health-
care. Distributed control, self-organization, 
emergence, unpredictability and relationship-
centeredness fly in the face of traditional 
health care.

Yet all is not lost. Across the fields of 
health public policy, clinical medicine and 
management of healthcare organizations, 
there is building frustration and impatience 
with some of the increasingly intractable and 
embarrassing healthcare problems. For exam-
ple, healthcare acquired infections, a topic 
rarely discussed a few years ago, is front 
page news across the globe. In many jurisdic-
tions, policy makers are forcing healthcare 
institutions to reveal their statistics on how 
many patients were infected by their health-
care providers. The economics of healthcare 
are frequently one of the toughest challenges 
for governments (and employers) to address. 
There is an endless demand for expensive 
healthcare interventions. As boom times turn 
to recessions, governments can no longer 
afford to ignore the escalating costs of health-
care as it has been traditionally delivered. 
Perhaps the attention of the media and the 
public to such seemingly intractable prob-
lems will erode some of the impenetrable 
barriers to knowledge creation and a broader 
acceptance of complexity science in health-
care and its management.

NOTES

1 ‘A Successful Multi-Center Intervention to 
Prevent Transmission of Methicillin-resistant 
Staphylococcus aureus (MRSA)’ – John Jernigan, 
MD and Kate Ellingson, MD presented the results of 
the initial research study at the Annual Society for 

Healthcare Epidemiology of America (SHEA) meeting, 
19–22 March 2009. 

2 Based on interview by author with Dr Paul 
Batalden, 9 April 2009.
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