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Introduction

. mathematics. In the book the autho:

‘exerciseNfoY €

Cambridge International Examinations (CIE) Advanced Level Mathematics has been
created especially for the new CIE mathematics syllabus. There is one book
corresponding to each syllabus unit, except for this book which covers two units, the
second and third Pure Mathematics units, P2 and P3.

The syllabus content is arranged by chapters which are ordered so as to provide a viable
teaching course. The first eleven chapters are required for unit P2; all the chapters are
required for unit P3. This is indicated by the vertical grey bars on the contents page.

A few sections include important results. that are difficult to prove or outside the syllabus.

‘These sections are marked with an asterisk (*) in the section heading, and there is usually a

sentence early on eXplaining_ precisely what it i he student needs to know.

, ese paragraphs are usually
outside the main stream of the mathematig ay help to give insight, or

off, but they are useful aids in learning
oted where access to a graphic calculator would
be especially helpful bughq¥yenot ass\ry ,they are available to all students.

atpt to more places than are given. Numbers are not
play could be, for example, 3.456 123 or 3.456 789.

e questions of examination standard. There are two Revision
material common to units P2 and P3, and a further Revision exercise
for unit P3 ¥ here ‘are also two Practice examination papers for unit P2 at the end of
P2&3, and two Practice examination papers for unit P3 at the end of P3.

. Some exercises include questions that go beyond the likely requirements of the

examinations, either in difficulty or in length or both. In the P2&3 chapters some
questions may be more appropriate for P3 than for P2 students. Questions marked with
an asterisk require knowledge of results or techniques outside the syllabus.

Cambridge University Press would like to thank OCR (Oxford, Cambridge and RSA
Examinations), part of the University of Cambridge Local Examinations Syndicate (UCLES)
group, for permission to use past examination questions set in the United Kingdom.

The authors thank UCLES and Cambridge University Press, in particular Diana Gillooly,
for their help in producing this book. However, the responsibility for the text, and for any
errors, remains with the authors. ' '



Unit P2 and Unjt P3

~ The subject content of unit P2 is a subset of the subject content of unit P3.

This part of the book (pages 1-158) comprises the subject content of unit P2,
and is required for both units P2 and P3. The additional material required to
-complete unit P3 is contained in the second part of the book."
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Polynomials

This chapter is about polynomials, which include linear and quadratic expressions.
When you have completed it, you should

»  be able to add, subtract, multiply and divide polynomials

o understand the words ‘quotient’ and ‘remainder’ used in dividing polynomials
s be able to use the method of equating coefficients

e  be able to use the remainder theorem and the factor theorem.

Polynomials

You already know a good deal about polynomials from your work on quadratics in
Chapter 4 of Pure Mathematics 1 (unit P1), because a quadratic s a special case of a

leading coefficient. The coefficient £ is the constant term.

Thus, in the qdg dratic pélynomial 4x? —3x+1 , the degree is 2; the coefficients of %2
and x, and the corgtfpr'term, are 4, —~3 and 1 respectively.

Polynomials with low degree have.special names: if the polynomial has
e degree 0 it is called a constant polynomial, or a constant

degree 1 it is called a linear polynomial

degree 2 it is called a quadratic polynomial, or a quadratic
degree 3 it is called a cubic polynomial, or a cubic

degree 4 it is called a quartic polynomial, or a quartic.

When a polynomial is written as ax” +bx"™' +...+ jx + k , with the term of highest
degree first and the other terms in descending degree order finishing with the constant
term, the terms are said to be in descending order. If the terms are written in the reverse
order, they are said to be in ascending order (or ascending powers of x). For example,
3x* +x2 - 7x+5isin descending order; in ascending order itis 5—7x + x% +3x* Itis
the same polynomial whatever order the terms are written in.
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. | 1 .
The functions —=x !and +/x = x? are not polynomials, because the powers of x are
x

not positive integers or zero.

Polynomials have much in common with integers. You can add them, subtract them and
multiply them together and the result is another polynomial. You can even divide a
polynomial by another polynomial, as you will see in Section 1.4.

Addition, subtraction and multiplication of polynomials

To add or subtract two polynomials, you simply add or subtract the coefficients of
corresponding powers; in other words, you collect like terms. Suppose that you want to
add 2x>+3x? -4 to0 x? - x—2. Then you can set out the working like this:

25> + 3x? - 4
2 - x - 2
2x> + 4x* - x - 6

Notice that you must leave gaps in places
addition so often that it is worth geft}

¢ middle step and go straight to the answer.

on (2x® +3x® - 4) - (2x> +3x” - 4) is 0. This is
ero polynomial. It has no degree.

Omials is harder. It relies oh the rules for multiplying out brackets,
A ...+k)y=ab+tac+...+ak and (b+c+...+k)a=ba+ca+...+ka.

To apply these rules to multiplying the two polynomials 5x +3 and 2x% —5x+1,
replace 2x% —5x +1 for the time being by z. Then

(5x+3)(22" - 5x+1) = (5x+3)z
=5xz+3z
= 5x(2x% = 5x +1)+3(24% - 5% +1)
= (10x° = 25x% + 5x) + (6x* —15x +3)
=10x> —19x% —10x +3.

In practice, it is easier to note that every term in the left bracket multiplies every term in
the right bracket. You can show this by setting out the steps in the following way.
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2%t - 5 + 1] X
10x° - 25x% + 5x 5x
+ 6x* - 15x + 3|43

10x° + (-25+6)x> + (5-15)x + 3

giving the result 10x> —19x% —10x+3.

It is worth learning to work horizontally. The arrows below show the term Sx from the
first bracket multiplied by —5x from the second bracket to get ~25x%.

Cradfer-seel) =orae 5o 1)+ o -se 4]
<

105> =25x" + 5x)+ (6x° — 15x +3)

=10x> = 19x> —10 x +3.

You could shorten the process and write

(5x +3)(22% - 52 +1) =10x> —25x% + 5x +{a

If you multiply a polynomial of degree m b omial of degree n, you have a
calculation of the type ' '

(ax"’ +bx™! +) 4

polynomials, the degree of the product
f the degrees of the two polynomials.

Exercise 1A A

1 State the degree of each of the following polynomials.
@@ x3-3x2+2x-7 (b) 5x+1 v (€) 8+5x-3x2+7x+6x*
@ 3 (e) 3-5x ® x°

2 Ineach part find p(x)+q(x), and give your answer in descending order.
@ p(x)=3x2+4x-1, q(x)=x2+3x+7
(b) plx)=4x>+5x2-Tx+3, q(x)=x>-2x2+x—6
© p(x)=3x*-2x3+7x%2-1, q(x) =3x-x> +5x* +2
@ px)=2-3x"+2x, q(x)=2x* +3x> = 5x2 +1
(© p(x)=3+2x- 4x2 —x3, q(x)=1-Tx+2x?
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3 For each of the pairs of polynomials given in Question 2 find p(x)—-q(x).

4 Note that p(x)+ p(x) may be shortened to 2p(x).Let p(x)=x>-2x?+5x-3 and
q(x)=x? — x+ 4 . Express each of the following as a single polynomial.

(@ 2p(x)+q(x) (b) 3p(x)—q(x) (¢) "p(x)—2q(x) (d) 3p(x)-2q(x)
5 Find the following polynomial products.

(@) (2x-3)(3x+1) ® (x?+3x-1)(x-2)

© (x2+x-3)2x+3) (d) (3x-1)(4x%-3x+2)

(&) {x*+2x-3)}x2+1) (B (2x*-3x+1)(4x? +3x-5)
(® (P+2x2-x +6)(x +3) () (x*-3x2+2x-1)(x2-2x-5)
() (143x-x2+2x3)(3~x+2x?) 0] (2—3x+x2)(4—5x+x3)

k) (2x+1)(3x-2)(x+5) M (22 +1)(x-3)(2x2 —x+1)

6 In each of the following products find thecGefficient of x and the coefficient of x?.
@) (x+2)(x%-3x+6) (A=3)(x? +2x-5)
© @x+1)(x?-5x+1) ' B —2)(x? = 2x+7)
() (2v=3)(3x2—6x+1)
(v (x?+2x-3)(x?+3x-4 by (3x% +1)(2x2 - 5x +3)
(@ (x?+3x-1)(x> xg?-2x+ G (3x?-x+2)(4x3-5x+1)

~—

() (Ax+B)(x+5)=2x2+7x-15

) (Ax+B)2x+5)=6x2+11x—10

(f) (Ax+B)(x2+4)=2x>-3x2+8x-12
(h) (Ax+ B)(3x2 ~2x-1)=6x>-T7x> +1

In this chapter so far you have learned how to add, subtract and multiply polynomials,
and you can now carry out calculations such as

2x+3)+(x-2)=3x+1,
(x*~3x-4)-(2x+1)=x"-5x-5 and
( —x)(1+ x+x2) =1-°

fairly automatically.

However, you should realise that these are not equations in the normal sense, because
they are true for all values of x.
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In P1 Section 10.6, you saw that when two expressions take the same values for every
value of the variable, they are said to be identically equal, and a statement such as

(1—x)(1+x+x2)=1—x3
is called an identity.

To emphasise that an equation is an identity, the symbol = is used. The statement
Q —x)(1+x +x2) =1- x> means that (1 —-x)(1+ x+ x2) and 1- x> are equal for all
values of x.

But now suppose that Ax + B=2x+3. What can you say about A and B? As

_Ax + B=2x+3 is an identity, it is true for all values of x.In particular, it is true for
x=0. Therefore AXQ+ B=2x0+3,giving B=3.But the identity is also true when
x=1,80 Ax1+3=2x143,giving A=2.Therefore:

If Ax+B=2x+3, then A=2and B=3.

" This is an example of the process called equating ull result is:

I ax" +bx" 4.+ k= Ax" + Bx"
then a=A,b=8B, ..., k=

¢ wrong in writing down the answer by inspection as 3x+1.
But the process behind this quick solution is as follows.

Suppose that the other factor is Ax+ B.Then (Ax + B)(x —2)=3x% ~5x -2,
and, multiplying out, you get

Ax® +(-2A+B)x—2B=3x> ~5x-2. _

By equating coefficients of x?, you get A=3. Equating coefficients of x°; the
constant term, you get —2B = -2, giving B = 1. Therefore the other factor is
3x+1.

You can also check that the middle term, ~2A+ B=-6+1=-5, is correct.

You should continue to write down the other factor by inspection if you can. However, in
some cases, it is not easy to see what the answer will be without intermediate working.
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Example 1.32
If 4x° +2x% +3=(x-2)(Ax" + Bx+C)+ R, find A, B, C and R.

Multiplying out the right side gives

4x% +2x2 +3= Ax® + (<24 + B)x? + (-2B+C)x + (-2C+R).

Equating coefficients of x*: 4=A.

Equating coefficients of x>: . 2=-24+B=-2x4+B=-8+B,s0 B=10.
Equating coefficients of x: 0=-2B+C=-20+C,s0 C =20.

Equating coefficients of x%: 3=-2C+R=-40+R, giving R =43.

Therefore A=4, B=10, C=20 and R=43,s0
453 +2x2+35(x—2)(4x2+10x+20)+43.

when they really mean the symbol

In practice, people often use the symbol for equgli
for identity, =. The context usually suggest f

o Aactor is given. Find the other factor.
(b) x?+14x-51=(x-3) )

(d) 35x2+48x-27=(5x+9)( )
(f) 14x2+31x-10=(2x+5)( )

1 In each of the following quad
(@ x2+x-12=(x+4)

find the values of A, B and R.

2 B)+R ) x2+9x-3=(x+1)(Ax+B)+R
£2)(Ax+B)+R d) 6x?+x-5=2x+1)(Ax+B)+R
() 21x®-11x+6=(3x—-2)(Ax+B)+R

e following identities find the values of A, B, C and R.
X ——x+125(x+)2)(Ax2+Bx+C)+R'

5x2 +10x+IOE(Jc—3)(A,"c2 +Bx+C)+R

(©) 2x3+x%-3x+4=(2x—1)(Ax? +Bx+c)+1§

(d) 12x3+11x2 -7x+5=(3x +2)(Ax? + Bx+ C)+R

() 4x®+4x?-37x+5=(2x—5)(Ax2 +Bx+C)+R

() 9x3+12x2 =15x—10 = (3x +4)(Ax*+ Bx+ C)+R

4 1In each of the following identities find the values of A, B, C, D and R.
@ 2x*+3x=5x2 +11x-5=(x+3)(Ax® + Bx? +Cx+D)+R
(b) 4x*—7x3-2x?-2x+7=(x-2)(Ax* + Bx? + C)-C'+ D)+R
(€) 6x*+5x%—x? +3Jc+2=(2Jc+1)(Ax3 + Bx? +Cx+D)+R
(d) 3x*-7x3+17x*~14x+5= (3x—1)(Ax3 + Bx? +Cx+D)+R

st s o e L B OB SN P e U B T S P S R S s e ST A SR L b i R N TR SRS
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1.4 Division of polynomials

You can, if you wish, carry out division of polynomials using a layout like the one for
long division of integers. You may already have seen and used such a process. However,
you can also use the method of equating coefficients for division.

When you divide 112 by 9, you get an answer of 12 with 4 over. The number 9 is called
the divisor, 12 is the quotient and 4 the remainder. You can express this as an equation in
integers, 112 =9x 12 + 4. The remainder r has to satisfy the inequality 0 <r <9.

Now look back at Example 1.3.2. You will see that it is an identity of just the same
shape, but with polynomials instead of integers. So you can say that, when

4x3 +2x? +3 is divided by the divisor x — 2, the quotient is 4x +10x+20 and the
remainder is 43. The degree of the remainder (in this case 0) has to be less than the
degree of the divisor. The degree of the quotient 4x® +10x+20, which is 2, is equal to
the difference between the degree of the polynomial 4x3 4234« 3, which is 3, and the
degree of the divisor x —2, which is 1.

quotient q(x) and the remainder r(x

a(x) = b(x)q(x) + r(x)

remainder is 185§ than 1, the remainder is a constant.
Let the quotient be Ax® + Bx? + Cx+ D, and let the remainder be R.Then

x* +x+2=(x+1)(Ax* + Bx> +Cx + D) +R,

0 x*+x+2=Ax*+(A+B) x> +(B+C)x*+(C+D)x+D+R.

Equating coefficients of x*: 1=A.

Equating coefficients ofx> 0=A+B,soB=-A, giving B =-1.
Equating coefficients of x2: 0=B+C,s0C =-B, givingC = 1.
Equating coefficients of x: 1=C+D,soD=1~C, giving D =0.
Equating coefficients of x%: 2=D+R,s0R=2-D, givingR = 2.

3

The quotient is x> — x + x and the remainder is 2.
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Example 142
Find the quotient and remainder when x* +3x% —2 is divided by x?-2x+2.

The result in the box states that the degree of the remainder is less than 2, so
assume that it is a linear polynomial, Let the quotient be Ax> + Bx +C,and the

remainder be Rx+ S. Then

2% +3x2 2= (2 —2x+2)(Ax® + Bx+C) + Rx + 8,

so  x*+3x?—2=Ax* +(-24+ B)x® + 24— 2B+ C)x?
+(2B-2C+R)x+2C+S.

Equating coefficients of x* 1=A.
Equating coefficients of x> 0=-2A+B,s0B=2A, giving B=2.

Equating coefficients of x2: C,s0C=3-2A+2B, givingC =5.
Equating coefficients of x:

Equating coefficients of x°:

The quotient is X +2x+5

‘When you are dividing by a lineax }

ef§ ¥ide, you get (—1)4_ +(-1)+2=2;putting x=-1in
*+ B(-1)* +C(-1)+ D) + R, which is simply R.

When'a polynomial p(x) is divided by x -z,
the remainder is the constant p(r).

Proof When p(x) is divided by x -1, let the quotient be g(x) and the
remainder be R.Then

p(x)=(x—~1)q(x)+R.
Putting x = in this identity gives p(t)=0xq(r)+ R=R,so R=p(r).
Example 1.4.3

Find the remainder when x* —3x + 4 is divided by x+3.

Let p(x)=x?-3x+4.Then p(-3)=(-3)>-3x(-3)+4=-27+9+4=-14.
By the remainder theorem, the remainder is —14 .
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11

Example 144
When the polynomial p(x)= x> —3x2 +ax+b is divided by x—1 the remainder is —4.

When p(x) is divided by x — 2 the remainder is also —4. Find the remainder when
p(x) is divided by x—3.

By the remainder theorem, when p(x) is divided by x -1, the remainder is
pM)=12-3x1>+a+b=a+b-2. Therefore a+b-2=-4,s0 a+b=-2.

Similarly, p(2) = 2% -3x22 +2a+b=2a+b-4,50 2a+b—-4=—4 and
2a+b=0.

Solving the equations a +b = -2 and 2a + b = 0 simultaneously gives a =2 and
b =~4, making the polynomial p(x)= x> —3x% +2x-4.

The remainder on division by x -3 is p(3) = 3} _3x3%2+2x3-4=2.

The remainder theorem is useful for finding the re
polynomial by a linear polynomial such as x -2,
remainder when you divide by a linear polynomial
the extended form of the remainder theor

\

Remainder theorem: extended
When a polynomial p(x).is\{iwdetb

the remainder is ant .

This proves that the remainder is the constant p(i)

Example 14.5
Find the remainder when x° —3x +4 is divided by 2x+3.

Let p(x)=x®~3x+4.Then p(-3)=(-2)’ -3x(-2)+4=-2L+J+4=51.

By the remainder theorem in its extended form, the remainder is 5% .
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10

11

12

e Exercise 1C

Find the quotient and the remainder when

(a) x?-5x+2 isdivided by x—3, () x?2+2x—6 isdivided by x+1,
© 2x2+3x—1isdivided by x—2, (d) 2x2+3x+1is divided by 2x~1,
(e) 6x2-x-2is divided by 3x+1, ® x*is divided by x°.

Find the quotient and the remainder when the first polynomial is divided by the second.
(@ x3+2x2-3x+1, x+2 (b) x*-3x2+5x—4,  x-5

() 2x3+4x-5, x+3 d) 5x°-3x+7, x—4

(e) 2x3-x2-3x-7, 2x+1 € 6x3+17x2-17x+5, 3x-2

.Find the quotient and the remainder when

(@) x*-2x3—-7x2+7x+5 isdividedb
®)
©

(@

Find the remainder when the
(a) x*-5x2+2x-

is-divided by the second.
®) x*+x2-6x+5, x+2

© (d 4x>-5x%+3x-7, x+4
(©) €  2x>+5x2-3x+6, 3x+1
® x (h) 3x*+x2-7x+6, x+3

¥+ px? —x—4 is divided by x—1 the remainder is the same as when it is divided
by x+3.Find the value of p. '

When 3x%~2x? + ax+b is divided by x—1 the remainder is 3. When divided by x +1
the remainder is ~13. Find the values of a and b.

When x® +ax? +bx+5 is divided by x~2 the remainder is 23. When divided by x +1
the remainder is 11. Find the values of a and b.

When x3 +ax? + bx -5 is divided by x—1 the remainder is —1. When divided by x +1
the remainder is —5. Find the values of g and b.

When 2x3 ~x2 +ax+b is divided by x—2 the remainder is 25. When divided by x+1
the remainder is —5. Find the values of a and b.
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1.5 The factor theorem
When you solve an equation p(x)=0 by factors, writing p(x)=(x—1)(x —u)(x-v)... ,
you deduce that x =¢ or x=u or x=v or ... . So when you substitute x =7 in p(x), you
find that p(z) = 0. The converse is not so obvious: that if p(r)=0,then x —1 is a factor of
p(x). This result, a special case of the remainder theorem, is called the factor theorem.

Let p(x) be a polynomial. Then
-(a) if x—1 is a factor of p(x),then p(t)=0;

(b) if p(#)=0,then x -t is a factor of p(x).

The second of these results is called the factor theorem.

Proof
(a) If x—1 is a factor of p(x),then p(x)=(
polynomial. Putting x =t into this identity §

(b) When p(x) is divided by x — ¢, le

you need 9

Example 1§,
Find the factord\o

- 5‘x -3, and hence solve the equation x> — x2-5x-3=0.
Denote x> —x —5x -3 by p(x).

Could x—1bea factor? p(1)=1°> —12 - 5x1-3=-8%0,s0 x—1 is not a factor.
Try x+1as a factor. p(-=1)=(-1)>—(~1)> —=5x(-1)-3=0, so x+1 is a factor.
Dividing x> — x> —=5x -3 by x+1 in the usual way, you find

x3—x2=5x—-3=(x+1)(x?-2x-3).

Since x2 —2x—3=(x+1)(x—3), you can now factorise x*> —x? —5x—3
completely to get

x}—x2=5x-3=(x+1)(x+1)(x-3)=(x+1)*(x-3).

3

The solution of the equation x* —x2-5x—-3=0 is x=—1 (repeated) and x = 3.
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Example 1.52 -
Find the factors of x* + x> — x—1 and solve the equation x*+x*>-x-1=0.

Let p(x)=x* +x3 —x-1.
Since p(1)=1+1-1-1=0, x—1 is a factor of p(x).

Writing x* + x> - x — 1= (x~1)(Ax® + Bx? + Cx + D) and multiplying out the
right side shows that

x*+x° —x-1= Ax* +(B- A)x® + (C-B)x* +(D-C)x-D.

Equating coefficients of x* and the constant terms gives A=1and D=1, and
you can see by inspection that the other coefficients are B=2 and C=2. So

p(x) = (x-1)(x3 +2x2 +2x+1).

Let q(x)=x? +2x2 +2x+1. Then q(1)#
q(-1)=-1+2-2+1=0,s0 x+1 isas

Writing x> +2x% +2x+1=(x +1)(4
that E=1, G=1and F=1

polynomial. Then

sx —t is a factor of p(x), then p(i) =0;
s

t
(b) if p(—) =0, then sx —¢ is a factor of p(x).
s

The second result is the extended form of the factor theorem.

To prove this, modify the proof of the factor theorem on page 13 in the same way as the proof
of the remainder theorem was modified in Section 1.4. Simply replace p(x)=(x—1)q(x)

by -p(x) = (sx —)q(x), and put x =§ in the identity..

You can save a lot of effort when you apply this form of the factor theorem by using the fact
that, if the coefficients of p(x)=ax" +bx"~! +...+k are all integers, and if sx — ¢ is a factor
of p(x),then s divides a and ¢ divides k. (This can be proved by using properties of prime
factors in arithmetic, but the proof is not included in this course.)
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Example 153
Find the factors of p(x)= 3x® +4x% +5x-6.

Begin by noting that, if sx —¢'is a factor, s divides 3 and ¢ divides 6.So s can
only be +1 or +3,and ¢ can only be *1, +2, +3 or *6.

You can further reduce the number of possibilities in two ways.

e  sx—t is not really a different factor from —sx +¢. So you need consider only
positive values of s.

e  The factors can’t be 3x+3 or 3x+ 6 since then 3 would be a common factor
of the coefficients of p(x), which it isn’t.

So there are only twelve possible factors: x¥1, x+2, x¥3, x¥6, 3x+1 and
3xF2. You can test these by evaluating p(x) for x=+1, £2, +3, +6, i% and
i% until you get a zero.

‘Working through these in turn, you will eventu

oB)=3x(3) 4x(@)'+ <3
So 3x—2 is a factor, and By divisio 2)(3:2 +2x 3).

Since x* +2x+3= (x+ 1)2 + 2, which s wp factors;p(x) doesn’t factorise
further.

© x3-3x2-13x+15
(® x3+3x2—-4x-12 ® 2x3+7x2-5x-4
(M) 6x3+7x2-x-2 @ xP+2x?-4x+1

to factorise the following quartic polynomials p(x).In each case
el roots of the equation p(x)=0.

@ x*-x>-7x2+x+6 ) x*+4x3-x2-16x-12
© 2x*-3x>-12x2+7x+6 d) 6x*+x*-17x2-16x-4
® x*-2x3+2x-1 ® 4x*-12x3 +x2+12x+4

3 Factorise the following.
(@ x*-8 b) x*+8 © x»*-a
@ x¥+4° e x*-a* 6O x+a°

4 (a) Show that x—a is a factor of x" —a".

_(b) Under what conditions is x+ a a factor of x" +a"? Under these conditions, find the
other factor.
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Miscellaneous exercise 1

It is given that

(Jr+a)()c2 +bx+2)5x3 —2x°-x-6
where a and b are constants. Find the value of a and the value of b. (OCR)

Find the remainder when (1+ x)* is divided by x+2.

Show that (x —1) is a factor of 6x> +11x? —5x 12, and find the other two linear factors
of this expression. (OCR)

The cubic polynomial x> +ax® +bx—8, where a and b are constants, has factors (x+1)
and (x+2). Find the values of a and b. ' (OCR)
Find the value of a for which (x —2) is a factor of 3 rax? +x-2.

iag 3x> +ax? + x—2=0 has only one real
(OCR)

Show that, for this value of a, the cubic egqua
root.

Solve the equation 4x> +8x® +x — (OCR)

The cubic polynomial X -

— 6 1§ denoted by f(x). Show that (x~3) is a factor of
Snumber of real roots of the equation f(x)=0,

(OCR)
x+1) is a factor of 2x> +ax? +16x+6, show that ¢ =9.
| thefeal quadratic factor of 2x® +9x2 +16x + 6. By completing the square, or
otherwise, show that this quadratic factor is positive for all real values of x. (OCR)
Show that both (x - \/5) and (x + \/g) are factors of x* + x> —x* -3x-6.
Hence write down one quadratic factor of t+xd-x2-3x-6 , and find a second
quadratic factor of this polynomial. (OCR)

The diagram shows the curve Y

y=—x.3 +2x% +ax-10.
The curve crosses the x-axisat x=p, x=2
and x=gq.
(a) Showthat a=5.

v ? 0 Y
(b) Find the exact values of p and q.

(OCR)
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13
14

15

16

217

The polynomial x* +3x% + ax + b leaves a remainder of 3 when it is divided by x+1 and
a remainder of 15 when it is divided by x — 2. Find the remainder when it is divided by
(x=2)(x+1).

Find the quotient and the remainder when x* + 4 is divided by x? —2x+2.
Let p(x) = 4x> +12x2 +5x — 6.
(a) Calculate p(2) and p(-2),and state what you can deduce from your answers.

(b) Solve the equation 4x> +12x* +5x—6=0.

Itis given that f(x)=x*-3x> +ax? +15x +50, where a is a constant, and that x+2 isa
factor of f(x).

(a) Find the value of a.

(b) Show that f(5)=0 and factorise f(x) completely into exact linear factors.

(c¢) Find the set of values of x for which f(x)>0 .: ' (OCR)

The diagram shows the graph of y=x% -3 y
and the part of the graph of y= 2 for x>0.
: x

The two graphs intersect at C, and A
are the points of intersection of y = x?
with the x-axis. Write down the exact
coordinates of A and B.

The polynomial x° —3x* +2x> —2x? +3x+1 is denoted by f(x).
(a) Show that neither (x—1) nor (x+1) is a factor of f(x).
(b) By substituting x =1 and x = -1 in the identity

f(x)E(x2 —1) (x)+ax+b,

where q(x)-is a polynomial and a and b are constants, or otherwise, find the
remainder when f(x) is divided by (x —1)

(c) Show, by carrying out the division, or otherw1se that when f(x) is-divided by
(x +1) the remainder is 2x .

(d) Find all the real roots of the equatlon f(x)=2x. . (OCR)

R L S R A e e R R D T N T e TR S R T T A e



2 The modulus function ~

This chapter introduces the modulus function, written as | x |. When you have completed
it, you should

know the definition of modulus, and recognise | x| as a function
know how to draw graphs of functions involving modulus

know how to use modulus algebraically and geometrically

be able to solve simple equations and inequalities involving modulus.

2.1 The modulus function and its graph

You met the modulus notation briefly in P1 Section 3.4, and have used it from time to time
since then. Since | x| is defined for all real numbers x, it is another example of a function of
x . Its domain is the set of real numbers, R (g6 Ill ion 11.3), and its rangeis R,y=0.

2 is [mod]; on others
alue of x’. This book

aking an angle of 45° with the
t the scales are the same on both axes .
Fig. 2.1

Suppose th 'you want to draw the graph of y=|x—2|. You can
do this directly from the definition of modulus. When x =2,
x—220,s0 |x—2|=x—2.For these values of x, the graphs of y
y=|x—-2|and y=x-2 are the same. Ny=l=-21
When x<2, x—2<0,s0 {x-2|=—(x-2)=2-x.So for 1
these values of x, the graph of y=|x—2|is the same as the R Ti 3 4 >
graphof y=2—x. _ 11 &

Another way of dealing with the case x <2 is to note that the
graph of y=—(x—2) is the reflection of y=x—2 inthe x-axis. Fig. 22
So you can draw the graph of y =|x—2] by first drawing the

graph of y=x-2 and then reflecting in the x-axis that part of

the line which is below the x-axis. This is illustrated in Fig. 2.2.
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This method can always be used to get the graph of y =|f(x)| from the graph of
y =f(x). In the definition of | x| in the box on page 18, you can write any expression in
place of x. So, replacing x by f(x),

|f(x)|=f(x) if f(x)=0, and |f(x)|=—f(x) if f(x)<O.

It follows that, for the parts of the graph y = f(x) which are on or above the x-axis, the
graphs of y =f(x) and y =|f(x)] are the same. But for the parts of y = f(x) below the
x-axis, y =|f(x)| = —f(x) is obtained from y = f(x) by reflection in the x-axis.

A nice way of showing this is to draw the graph of y = f(x) on a transparent sheet.
You can then get the graph of y =|f(x)| by folding the sheet along the x-axis so that
the negative part of the sheet lies on top of the positive part.

Example 2.2.1
Sketch the graphs of  (a) y=|2x-3|, (b) y=|(x_ [.

Figs. 2.3 and 2.4 show'the graphs of (2) y =

required.

y={(x-1Dx-3)|

18 T a T

| "'--.....-';'= (x~1Xx-3)

Fig.24

Graphs which involve the modulus function are likely to have sharp corners. If you have
access to a graphic calculator, show the graphs in Example 2.2.1 on it.

Example 2.2.2
Sketch the graph of y=|x—-2|+|1-x|.

With two moduli involved it is usually best to go back to the definition of
modulus. For | x—2]| you have to consider x—2=0 and x—2 <0 separately, and
for |1- x| you have to consider 1-x >0 and 1—x < 0. So altogether there are
three intervals to investigate: x <1, 1<x<2 and x=2.

When x<1, |x-2|=—(x—-2) and [1-x|=1-x,s0 y=—x+2+1-x=3-2x.
When 1<x<2,|x~2|=—(x-2)and |1-x|=—(1-x),s0 y=—x+2-1+x=1.
When x =2, |[x-2|=x-2and |1-x|=—(1-x),s0 y=x-2-1+x=2x-3.

X
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The graph is therefore in three parts, as shown in Fig. 2.5.

You may sometimes also want to get the graph of y = f(| x )
from the graph of y=f(x). From the definition, f(| x |) is the
same as f(x) when x=0,but f( x[)=f(-x) when x<0.So
the graph of y = f(| x D is the same as the graph of y =f(x) to
the right of the y-axis, but to the left of the y-axis it is the
reflection in the y-axis of y=f(x) for x>0.

Example 2.2.3
Sketch the graph of y = sin| x | .

—_ N W

y=lx-2[+{1—x]

To the right of the y-axis, where x >0, the graph is the same as the graph of
y =sinx. The graph is completed to the left of the y-axis, where x <0, by
reflecting in the y-axis the graph of y =sinx for x > 0. Fig. 2.6 shows the result.

If a and b are real numbers,

[axbi:{alxlbl and

Example 2.3.1 ‘
Show that (a) |4x+6|=2x|2x+3], (b)|3-x|=|x-3].

(@) |4x+6]=]2(2x+3)|=|2|x|2x+3]=2x]|2x +3].

®) |3-x|=|(=D)x(x=3)|=|~1|x|x-3]|=1x|x-3|=]| x-3]|.

=1— (provided that 6 #0).

0 —_|a| or | a|. Similarly, b is always equal to —1b| or
flto |a|x|b| or {a|x|b|. And since | a|x|b| is positive
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But beware! Similar rules don’t hold for addition and subtraction. For example, if a =2
and b=-3, |a+b|=|2+(-3)|=|-1]|=1,but |a]+|b|=2+3=5. So, for these
values of a and b, |a+b| does not equal |a|+|b|. See Exercise 2A Question 5.

Modulus on the number line

Some results about modulus can be illustrated by the distance between points on a
number line. Let A and B be two points on a line with
coordinates a and & (which can be positive, negative or

- zero) relative to an origin O, as in Fig. 2.7. Then the ' T '
distance AB is givenby b—a if b=a,or b—a=0;
and by a—b,whichis —(b-a),if b<a,or b—a<0. Fig.2.7
You will recognise this as the definition of lb -a |

The distance between points on the number line
with coordinates a and b is |b—a |

As a special case, if a point X has coordifg
origin. This is used in the next example.

Example 2.4.1
What can you deduce abou

(b) If | x| <3 is a point 3 units or less from O.So x is between -3 and 3
(inclusive). It follows that if | x|< 3,then —3< x < 3.

If —3=<x= 3,then X is 3 units or less from O, so |x|$ 3.
Therefore
| x|< 3 is equivalent to —3< x < 3.

_You can prove the result in Example 2.4.1(b) more formally from the definition of | X | .
If-|x|$ 3, then either x = 0 and x=|x|$ 3,500=<x=3;0r x<0 and
x=-x|=-3,50 -3=< x <0.Ineither case, —-3< x <3.

The converse is also true. For if you know that —3=<x =<3, youhave —3 =< x and
x <3. This is the same as —x <3 and x =<3. Since | x| is equal to either —x or x, it
follows that | x |<3.
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Putting the two results together gives
| x|= 3 is equivalent to —3< x < 3.

The phrase ‘is equivalent to’ connecting two statements means that each can be
deduced from the other. In any mathematical argument you can then replace the first
statement by the second, or the second by the first.

You can also say that two statements are equivalent by saying that one statement is true
‘if and only if’ the other is true.

You can use the argument in Example 2.4.1(b) to show that

if a>0, then |x|<a isequivalentto ~as x<a.

'Whathappensﬂa 0’71nthatcasc|x|<ameansthat|x|<0 so x=0,and

‘“a<x<gmeansthat —-0<x<0,s0 x=0
one gives:

ping this result with the previous

If a=0,then |x|< aiseq

ﬁ ent to

This kind of inequality is involved when you give a
number correct to a certain number of decimal places.
For example, to say that x = 3.87 ‘correct to 2 decimal
places’ is in effect saying that | x —3.87|< 0.005.

The statement | x —3.87 |< 0.005 is equivalent to =000 =000 >
3. 865 x 3 87 3. 875
387-0.005= x < 3.87+0.005,
Fig. 2.8

or 3865 < x =3.875.

This is illustrated in Fig. 2.8.



CHAPTER 2: THE MODULUS FUNCTION 23

Exercise 2A

- 1 Sketch the following graphs.

_(a) y=|x+3| (b). y=|3x—1| ©) y=|x—5l
(d y=[3-2x| ) y=2|x+1| ® y=3x-2|
() y=-2|2x-1| (h) y=3|2-3x] () y=|x+4|+|3-x]
G y=|6-x|+|1+x] ® y=|x-2|+[2x-1] Q) y=2x-1]|-|2x+3]
2 Sketch each of the following sets of graphs.
A2) y=x*-2and y=|x*-2| —(b) y=sinx and y=|sinx|
) y=(x—1)(x—2)(x-3) and y=|(x-1)(x-2)(x-3)|
-(d) y=cos2x and y =|cos2x|and y = cos|2x| (€ y=[x-2|and y=||x|-2]

3 Write the given inequalities in equivalent forms of the type a<x <borasx=<b.
(@ |x-3|<1 () |x+2|=<0.1 <0.001 (d) [4x-3|<8

4 Rewrite the given inequalities using modulus
(@ l=sx=2 () -1<x<3

5 Investigate the value of |a +b| for v&
numbers a and b, and make a conject argest possible value for | a+ bl .
qallest possible value of |a +b].

2= VL{ , provided that b #0.

See also if you can make a cofyje

0, show that

6 Construct an argume tha 5= |b

T S B e e R R e A T S o P o I

Method 2 uses\h€ definition of modulus.
e Method 3 uses the idea that | x —a| is the distance of x from a.

Not all the methods are used for each example.

Example 2.5.1
Solve the equation | x —2|=3. A
: . 44 y=|x_2|
Method1  From the graphs of y=|x~-2| and AN y=3
y =3 inFig. 2.9, the solutionis x=-1or x=35. \>

Method 2 | x-2|=3 means that x—2=3 or
—(x—-2)=3. Thus the solutionis x =5 or x=-1.
Method 3 |x——2| is the distance of x from 2. If 10 1 2 3 4 5
this distance is 3, then, thinking geometrically,
x=2+3=50rx=2-3=-1.

w
=Y
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Example 2.5.2
Solve the equation I x=2 | =| 2x -1 I

Method 2 Either x-2=2x-1, giving x=-1
or x—2=—(2x—1),' giving x=1.

The solutionis x=-1 or x=1.

Method 3  Since |2x~1| —' x—l I——-l 2|><' 2, the equation can be
written as | x— 2| =2X | x ——| This means that you want the points x on the
number line such that the distance of x from 2 is
twice the distance of x from é (see Fig. 2.10). It is P IR
easy to see that, if x is between l and 2 then :

x=1;and if x is to the left of 1 3 then x=-1. Fig. 2.10

2.6 Inequalities involving modulus

Example 2.6.1
Solve the inegu

Method 3  From the result ‘If a = 0, the inequalities l x—k | = ¢q and
k—a = x =< k+a are equivalent’, the solution is 2 -3 <x <2+ 3, which is

-l<x<5.

Example 2.6.2 '
~ Solve the inequality | x=2 I = I 2x — 3].

Method 1 Consider the graphs of y =|x 2|

and y =’ 2x-3 l These were drawn in Figs. 2.2 and
.2.3. They are reproduced together in Fig. 2.11; the
graph of y =|2x - 3| is shown with a dashed line.

The solid line is above or coincides with the dashed
line when 1< x<12.




CHAPTER 2: THE MODULUS FUNCTION

25

2.7 Squares,square

Method2 In | x— 2[ you have to separate the cases x <2 and x 2 2; and in
| 2x — 3| you have to separate x < 1% and x = 1%. So it is necessary to consider the
cases x<1%, ll<x<2and x=2.

2 -
When x<1%, |x—2|=—(x—2) and |2x—3|=—(2x—3),so —x+2=-2x+3,
giving x =1. So the inequality is satisfied when 1 < x < 1%.
When 1%$x<2, ]x—2|=—(x—2) and ‘2x—3|'=2x—3,so —x+2=2x-3,
giving x < 1%. So the inequality is satisfied when I%st 1%.
When x=2, |x—2|=x-2and |2x-3|=2x-3,50 x—2>2x-3,
giving x <1. This is inconsistent with x = 2.

Since the inequality is satisfied when 1< x < 1% and when 1% sSx< 1% , the

\

complete solution is 1< x < 1% .

Example 2.6.3
Solve the inequality | x—2|= 2x+1.

Method 1  Consider the graphs of
y =|x—2| and y=2x+1,shown i
Fig.2.12.

The solid line is above or §

line when x < % .

gots and moduli
You know that, if x is any rea_l number, then x2 2 0. Tt follows that | %2 | = x> Also,

from the rule !axb!=|a|><|b|,itfollowsthat |x2‘=|x|x|x|=|x|2.

If x is any real number, |x2 ’= |

. 2 .. . _ .
Now since [ x| = x*,and | x| is positive or zero; it follows that | x | is the square root
of x?. You can show this by evaluating the composite function

x — [square] — 2 > [\f] — \/?

on your calculator with various inputs for x, positive or negative. If you put x =3, say,
then you will get the display sequence 3,9, 3. But if you put x = -3, you will get -3,9, 3,
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because \/_ always gives the positive square root. That is, «/;7 isequal to x when x=0,
but equal to —x when x < 0. This is just the definition of lx , It follows that:

If x is any real number, \/F =|x|.

If you have access to a graphic calculator, verify this identity by displaying the graphs of
y=v x* and y= | x l on it. In fact, if your calculator does not have a key for the modulus

function, use y =+ x2.

Example 2.7.1
Find the distance between the points with coordinates (a,k) and (b,k).

inate, so the distance is the same as the
the number line, which is l b-a ] .

two points in

2 =,b,—a'5

O\s eqixalent to | x|-|a|=0,
0 Is equivalent to | x[~|a|>0,
0 is equivalent to | x|-|a|<0.

You can easily check that the first two of these are also true when a =0 ; but the third is
impossible if @ =0, since it gives x <0, which can never occur for any real number x.

It is useful to introduce the symbol < for ‘is equivalent to’.

lx|=]a] o x’=a?,

|x|>|a] & x*>a%

if a#0,|x|<|a] o x*<a

These relations are sometimes useful in solving equations and inequalities. They are
effective because, although squaring is involved, the two sides are logically equivalent.
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The usual warning that squaring may introduce extra roots which don’t satisfy the
original equation (see P1 Example 4.7.2) doesn’t apply.

Example 2.7.2 (see Example 2.5.2)
Solve the equation Ix—2|=|2x—1 I
|x—2|=|2x—1| e (x-2?%=02x-1?2
& x?-4x+4=4x"-4x+1
3x*~3=0
(x+1)(x-1)=0
x=-1 or x=1.

§¢8¢

Example 2.7.3 (see Example 2.6.2)
Solve the inequality l x-=2 ' = | 2x-13 [

[x=2|=|2x-3] & (x-2)*=(2x-3)}

o xP-4x+4=4x2\1%

assuming it can be apphg

|£(x) | =] g(x)]

False solution

|x=2|+|1-x]|=0 & |x-2|=-1-x]
s (x-22=(01-x)?
& P-4x+4=1-2x+x2
S 2x=3

There is no justification for the step marked (!). The previous line has the form
| x| = a|,not | x|=|a|, so the result in the box can’t be used.
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%5 Exercise 2B ix

1 Solve the following equations, using at least two methods for each case.

@ |x+2|=5 ) ®) [x-1[=7

© |2x-3|=3 ' @ |3x+1|=10

) |x+ll=|2x—3| ) |x—3l=|3x+‘1|

(® |2x+1]=|3x+9| (h) |5x+1]=]11-2x|
2 Solve the following inequalities, using at least two methods for each case.

(@) |[x+2|<1 ' ®) [x-3[>5

© |2x+7|<3 @ [3x+2]=8

@ |x+2|<|3x+1| ) |2x+5|>|x+2]

® |x]>|2x-~3] O\ | 4x+1|<|d4x~1|

olve the equations
@@ |[x+1j+|1-x|=2, (b) £, © —x+1|+|1-x|=2.

olve the equations

Miscellaneous exercise 2 VT

(OCR)
greatest and least values of x satisfying the inequality | 2x ~1|< 5. (OCR)
3 Sketch, on a single diagram, the graphs of x + 2-y =6and y= | x+2 | Hence, or
otherwise, solve the inequality | x +2|< —5(6 -x). (OCR)
v 4 Solve the equation | x | = | 2x+1 ‘ (OCR)

5 " Sketch the graph of y = I x+ 2| and hence, or otherwise, solve the inequality
C|x+2]>2x 41 (OCR)
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10

1

12

13

14

15*

(@ x>4

Solve the equation 4 |_x | = | x-1 | .
On the same diagram sketch the graphs of y = 4| x| and y =| x-1 |, and hence, or
otherwise, solve the inequality 4|x|>|x—1]|.

Sketch, on separate diagrams, the graphs of y =|x|, y =|x—3} and y =|x-3|+|x +3].
Find the solution set of the equation | x —3|+|x+3|=6. (OCR)

The functions f and g are defined on the set of real numbers as follows:
f:x+>|2sinx°],  gix+>sin2x°|.
(a) (i) Make clearly labelled sketches of the graphs of y = f(x) and y = g(x) in the
interval -270 < x <270.
(ii) State the range of each function.

(b) Decide whether or not each function is periodi if so, state its period. (OCR)

Solve the inequality | x | < 4| x— 3| .

Rewrite the, function k(x) defined by k(x) =
without using the modulus in your an

for the following three cases,

Solve the equations

(@

m and c) in each of the following intervals for x.
(b) x<1 (OCR)

ofthe following functions.
(b) y=|sin3x°| (©) y =sin|3x]

Sketch the ¥ ap
(a)  y=sin3x®

Solve the following inequalities.

@ 1oy o L, © ’&
x-1 ]xl—l X




3 Exponential and logarithmic functions

This chapter investigates the function »* which appears in the equation for exponential
growth, and its inverse log, x. When you have completed it, you should

understand the idea of continuous exponential growth and decay

know the principal features of exponential functions and their graphs

know the definition and properties of logarithmic functions

be able to switch between the exponential and logarithmic forms of an equation
understand the idea and possible uses of a logarithmic scale

be familiar with logarithms to the special bases e and 10

be able to solve equations and inequalities with the unknown in the index

be able to use logarithms to identify models of the forms y =ab* and y=ax”".

3.1 Continuous exponential growth

In P1 Section 14.4 you met the idea of expopential growth gnd decay, defined by an
equation of the form u; = ar'. In gi§ equatjon_a is the jAiglal value; r is the rate of
< 1;apd—stheiumber of time-units after the

applies in %€ continuous case, so a different letter is used.) In many applications the
variable x represents time. The graph of f(x) is shown in Fig. 3.1.

£(x) 1 £(x)= ab*, £(x) 1
; b>1
N £(x)= ab*,
b<l1

Y
~

Fig.3.1 Fig.3.2
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For exponential growth b has to be greater than 1.If 0 <5 <1 the graph takes the form
shown in Fig. 3.2; for large values of x the graph gets closer to the x-axis but never reaches
it. This then represents exponential decay. Examples of this are the level of radioactivity in a
lump of uranium ore, and the concentration of an antibiotic in the blood stream.

Example 3.1.1

The population of the USA grew exponentially from the end of the War of Independence
until the Civil War. It increased from 3.9 million at the 1790 census to 31.4 million in 1860.
What would the population have been in 1990 if it had continued to grow at this rate?

If the population x years after 1790 is P million, and if the growth were eXactly
exponential, then P and x would be related by an equation of the form

P=39b",

where P=31.4 when x =70. The constant b there

1
70
314=39b",s0 b=(%) =1.030/./.

ere-gatisfies the equation

At this rate the population in 1990 would havg &
3.9x1.030...2% million, which is befWsg

o 314
exrs, the population multiplied by ETR

(since 0.5 units are left after 5715 years)

so  b=0.5"%=0999878 721.

When ¢ =100 the quantity left is b'® ~0.988 units, a reduction of 0.012 units, or 1.2%.

Exponential functions

In the equation y = ab” for exponential growth the constant a simply sets a scale on the
y-axis. The essential features of the relationship can be studied in the function

f(x)=b*, where xeR.

A function bf this form is called an exponential function, because the variable x
appears in the exponent (another word for the index).
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This definition needs some points of explanation. First, it makes sense only if b is
positive. To see this, note that, for some values of x, b* has no meaning for negative b;
for example, b? =+/b . Secondly, if b =1, b* has the constant value 1. So the
definition of an exponential function applies only if >0, b # 1. With this restriction,
the values of b* are always positive. '

However, there is no need to restrict x to
positive values. Since b° =1, the graphs of all
exponential functions contain the point (0,1).
Notice also that

Therefore if b* is greater than 1 then b™* lies
between 0 and 1. A further consequence of thi

1 X
of the graph of y=5" is y = (Z) .
These points are illustrated in Fig, Y
shows the graph of exponential fu
several values of b. !
increasing if b > 1 /4

a greater degree of accuracy, you can sandwich 7 between a pair of rational numbers
which are even closer together. : ‘

You could, if you wished, define 2" as the limit, as n tends to infinity, of a sequence
2% where u, is a sequence of numbers which tends to 7. It can be proved that this
definition gives a unique answer, and that values of 2* defined in this way obey the
rules for working with indices given in P1 Section 2.3.

Logarithmic functions

The graphs in Fig. 3.3 show that the exponential function x - b* has for its natural
domain the set of all real numbers, and the corresponding range is the positive real numbers.
The function is increasing if & > 1, and decreasing if b <1; in either case it is one—one.
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It follows that this function has an inverse whose domain is the set of positive real
numbers and whose range is all real numbers. (See P1 Section 11.6.) This inverse
function is called the logarithm to base b, and is denoted by log, .

e rerpt i et R

To draw the graph of y =log, x you can use the
general result proved in P1 Section 11.8, that the
graphs of y=f(x) and y=f"'(x) are reflections

of each other in the line’ y = x . This is illustrated y=x
in Fig. 3.4, which shows graphs of y=5b" and

y = log, x using the same axes.

The figure is drawn for b =3, and it is typical of the

graphs for any base b > 1. The definition of log,, is, y=log, x

still valid if 0 < b < 1, in which case the graphs hav
a different form; but this is not important, singe in
practice logarithms are rarely used with bak
than 1.

base b. That is:

o

1,b), (2,b?) and (—1,%), so that other points on

and (%,_—1). That is,

log,, (b) =1, 10gb(b2) =2 and ]ogb(-ll;) =—1.

These are important special cases of the following statement:

For any n,-log, b" =n.

R

This is simply an application of the general result given in P1 Section 11.6, that £™'f is
the identity function. With f:x+> b* and f 1xe log,, x, it follows that

£7'f : x > log, b” is the identity function.
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Example 3.3.1 1
Find (a) log; 81, (b) logg; 3, () log{a), (d) log, 81.
V 3
(a) Since 81=3", log;81=4. (b) 3= 81%, 50 logg, 3= %
1 -4 _1_ I . - 1 =1 -4 -
(c) gy=3",50 10g3(81)— 4, (d) 81--(1/3)4 (3) , 80 log%'81 4.

Exercise 3A RSO

1 A rumour spreads exponentially through a college. 100 people have heard it by noon, and
200 by 1 p.m. How many people have heard it

(a) by3pm, (b) by 12.30 p.m., (¢) by145pm.)?

2 An orchestra tunes to a frequency of 440, which sounds the A above middle C. Each octave
higher doubles the frequency, and each of the-32 sewpitones in the octave increases the
frequency in the same ratio.
(a) What is this ratio?

(c) Where on the scale is a pots

ind the frequency of middle C.

decreases exponentja
(a) What is its te

¢ axes, sketch the graphs of
(b) y=0.8%, () y=087".

¢ath of the following in the form y = b*.

(@) log,8=3 (b) log,81=4 (©) log;0.04=-2

(@) log,x=4 (&) log 5=t 63) logp qg=r
7 Write each of the following in the form x =log, y.

(a) 23=8 (b) 36=729 € 43=4

() a®=20 ) h=¢g ~® mt=p
8 Evaluate the following. ‘

(a) log,16 (b) log,16 © log;

@ log,1 (e) logs5 ® logy 3

(g) log,.8 (h) 1og2245 _ (i) log ﬁsﬁ
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9 Find the value of y in each of the following.

(a) logy 49=2 (b) log,y=-3 (c) log,8l=y
(@) log,y=-1 (e) log,y=25 () log,1296=4
(2 log, y=8 () log,1024=y @ log,27=-6

3.4 Properties of logarithms

It was shown in P1 Section 2.3 that expressions involving indices can be simplified by
applying a number of rules, including the multiplication and division rules and the
power-on-power rule. There are corresponding rules for logarithms, which can be
deduced from the index rules by using the equivalence

log,x=y & x=b".

These rules hold for logarithms to any base 4, so thg
simplified to log x .

x, x has been

Power rule:

nth root rule:
Multiplication rule:

Division rule:

In logarithmic form this is logx" =rn =nlogx.

In this proof n can be any reai number, although the rule is most often vsed with
integer values of n.

nth root rule .
This is the same as the power rule, since the nth root of x is x".

Multiplication rule
If logp=rand logg=s,then p=b" and g =b°,50 pg=b"b" =b"".

In logarithmic form this is ‘log(pg) =7 + s = log p + logq.

Division rule '
The proof is the same as for the multiplication rule, but with division in place of
multiplication and subtraction in place of addition.
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Example 3.4.1 » ‘
If log2=r and log3=s, express in terms of r ands (a) logl6, (b) logl8, (c)logl35.

(a) logl6=1log2* = 4log2 = 4r.

(b) log18 =log(2x3%) =log2+log3’ =log2+2log3=r+2s.

3
©) 10g13.5=10g37 =log33 —log2=3log3—log2=3s—r.

Example 342
Find the connection between log, ¢ and log. b.

) 1
log,c=x & c=b" & c£=(b")‘=b1 & b=c" o logcb=l.
x

Therefore log, b=

log, ¢’

Historically logarithms were important befa
computers were available, they provided t
table of logarithms students would
the value of log100 and dividing

ars, before calculators and
of calculating aid. With a
be root of 100 by looking up
uth ee0t rule, this gave logm ,and
able of the inverse function.

out roots direétly

(b) logpq®r? () logl00pr’

|
(e) logp—g H log—
re. pgr
7 . 10
p gr'p . 10p™r
log—= h) logZ—* log |—2 T
(g) log e (h) log 10 (1 log

2 Express as a single logarithm, simplifying where possible. (All the logarithms have base
10, so, for example, an answer of log100 simplifies to-2.)

(a) 2log5+log4 Co (b) 2log2+logl50-1log6000
(c) 3log5+5log3 (d) 2log4-—4log2
(e) 10g24'—%log9+log125 () 3log2+3log5-logl08

(8) 1logl6+}log8 " (h) log64—2log4+5log2—log2’
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3 If log3=p, log5=q and logl0 =r, express the following in terms of p, g and r. (All
the logarithms have the same unspecified base.)

(a) log2 (b) log45s (c) log~90 -
(d) log0.2 (&) log750 () log60

(g) log (h) log4.05 (i log0.15

3.5 Special bases

Although the base of the logarithm function can be any real positive number except 1, only
two bases.are in common use. One is a number denoted by e, for which the logarithm
function has a number of special properties; these are explored in the next chapter. Logarithms
to base e are denoted by ‘In’, and can be found using the [LN] key on your calculator.

only for values of x between 1 and 10.S
Section 3 4 to write

log3456 = log(3.456 X 10%

Malaysia just over2 »and the line for San Marino would be only 0.0025 mm long!

Fig. 3.5 is an alternative way of showing the data.

China
India
USA
Nigeria,
UK
Kenya

Malaysia
Zimbabwe
Mauritius

Antigua

‘San Marino

L LT T

=N ROt F SN W

_—
(=)
>
—
O —mmmmmeeo—fo-
£e
—_
o
—

100 ° 104 103

Fig.3.5
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Fig. 3.5 uses a logarithmic scale, in which a country with population P is shown by a
line of length log P cm . China now has a length of just over 9 cm , and San Marino a
length of between 4 and 5 cm. You have to understand the diagram in a different way;
an extra cm in length implies a population 10 times as large, rather than 100 million
larger. But the countries are still placed in the correct order, and the population of any
country can be found as 10" where x is the length of its line in centimetres.

Equations and inequalities
You know that log, 2 =1 and log, 4 = 2, but how can you find log, 3?

Suppose that log, 3 = x . Then from the definition,
2% =3,

So the problem is to solve an equation where the-umkagwn appears in the index.

log2" =log3.

This is often described as ‘taking
use the power rule to write this as

xlog2=1log3.

¢ d4ys, 1 unit of the isotope is reduced to 0.9174° units. How many days
does it take for the amount to fall to less than 0.1 units?

This requires solution of the inequality 0.9174 ‘< 0.1. Since 1og is an increasing
function, taking logarithms gives

10g(0.9174") <log0.1 < tlog0.9174 <logO.1.

Now beware! The value of 1og0.9174 is negative, so when you divide both sides
by log0.9174 you must change the direction of the inequality:

log0.1

287 —26.708... .
10g0.9174

The amount of iodine-131 will fall to less than 0.1 units after about 26.7 days.
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Example 3.6.2
How many terms of the geometric series 1+1.01+1 012 +1.01 +... must be taken to
give a sum greater than 1 million?

The sum of » terms of the series is given by the formula (see P1 Section 14.2)

1.01" -1
1.01-1

=100(1.01" -1).

The problem is to find the smallest value of » for which

1.01" -1
101-1

= 100(1 01" - 1) >1000 000, which gives 1.01" > 10 001.

Taking logarithms of both sides,_
log1.01" > log10 001, so nlog1.01>log1000

Since logl.01 is positive,

> log10 001
log1 01

=09256....

¢ been made with)any base b . For example, you could choose base ¢, using

The answer is the same, because logarithms to different bases are proportional to each other.

Suppose that your calculator had a [LN] key but no [LOG] key, and that you wanted to
calculate a value for logx . Then you could argue as follows.

In exponential form, y =log x becomes 107 = x.

The equation 10’ = x can be solved by taking logarithms to base e of both sides, giving

In(10”) =Inx; ~. . -

that is, >\ » \

ynl0=Inx.
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Since In10=2.302..., L =0434...,
In10 .

so  logx =0434...xInx.

This is illustrated by the graphs in
Fig.3.6. The v-values for logx are just
0.434... times the those for Inx . That *
is. you can get the logx graph by scaling
down the graph of Inx in the

v-direction by a factor of 0.434... .

This relation is true more generally. If b
and ¢ are any two different bases, then

Fig. 3.6

log, x is a constant multiple of log, x as

St

1 Solve the following equations) pswers correct to 3 significant figures.

(a) 3*=5 (c) 6% =60
(d) 52x—1:10 2 » (f) 2x+l-=3x
x 2%+ =128 o (3 =7

eY, giving your answers correct to 3 significant figures.
(b) 5*<10 (€) 735 <24

(e) 0.4* <0.0004 # 02*>25

(h) 0.8%* =4 (i 08-*=10

s of the geometric series 1+ 2+ 4 +8+... must be taken for the sum to

4 How many terms of the geometric series 2 +6+18+54 + ... must be taken for the sum to
exceed 3 million?

- 5 How many terms of the geometric series 1+ % +14 % +... must be taken for its sum to

4
differ from 2 by less than 10789

J’@ How many terms of the geometric series 2+ § + {5 + 1o + ... must be taken for its sum to

. 108
differ from its sum to infinity by less than 107°?

7 A radioactive isotope decays so that after ¢ days an amount 0.82 units remains. How
many days does it take for the amount to fall to less than 0.15 units?

@ Jacques is saving for a new car which will cost $29 000. He saves by putting $400 a month
into a savings account which gives 0.1% interest per month: After how many months will
he be able to buy his car? Assume it does not increase in price!



CHAPTER 3: EXPONENTIAL AND LOGARITHMIC FUNCTIONS 41

9 To say that a radioactive isotope has a half-life of 6 days means that 1 unit of isotope is
reduced to 1 3 unit in 6 days. So if the daily decay rate is given by r then r®=05.

(a) For th1s 1sotope find r.
(b) How long will it take for the amount to fall to 0.25 units?
(c) How long will it take for the amount to fall to 0.1 units?

10 A biological culture contains 500 000 bacteria at 12 noon on Monday. The culture
“increases by 10 % every-hour. At what time will the culture exceed 4 million bacteria?

11 A dangerous radioactive substance has a half-life of 90 years. It will be deemed safe when -
its activity is down to 0.05 of its initial value. How long will it be before it is deemed safe?

12 Finding log, 10 is equivalent to solving the equation x = log, 10, which itself is equivalent
to solving 3* =10 . Find the following logarithms by forming and solving the appropnate
equations. Give your answers corréct to 3 significapt-fig

(a) log,12
(d) log, 250
2

logl 0.04

I r;mm' SRR e )

Graphs of exponehtial growth ‘

ghit increases linearly with 7. Sdif log y is plotted against 7, the
gight line with gradient logb and intercept loga.

. The expressiomQmthe,
graph would be a3

Example 3.8.1 _
If logy =0.322-0.531¢, where logy denotes log,, y,express y in terms of 7.

Equating the right side to loga+¢logb, loga=0.322 and logb =-0.531. So,
since the logarithms are to base 10, g =10%**2 =2.10 and b=10""%*' =0.294
(both to 3 significant figures). In exponential form the equation for y is therefore

y=2.10x0.294".

An alternative way of writing this calculation is based on the property that if
logy = x then y =10%,s0 y=10'"8”, Therefore

y=10°87 = 100.32'2—0.53” 109322 & (10—0.53])1____ 210 % 012§4’-
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Example 3.8.2

An investment company claims that the price of its shares has grown exponentially over
the past six years, and supports its claim with Fig. 3.7. Is this claim justified?

Price A
®)
400 -

300

200

ponentially from 1790 to 1860.

Price 4
®

500“

200
100

504

1790

39 53 72

1800 1810 1820

9.6

1830 1840 1850 1860

129 170 232 314

If you plot these figures on a graph,
as in Fig. 3.9, it is clear that the
points lie on a smooth curve with a
steadily increasing gradient, but this
doesn’t by itself show that the
‘growth is exponential.

To approach the qhestion
scientifically, the first step is to
choose appropriate notation. For the
population, you may as well work in
millions of people, as in the table; -

Population A
(millions)
30 1

20

—T T T U T T el
1790 1800 1810 1820 1830 1840 1850 1860 Year

Fig. 39
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there is no point in cluttering the data with lots of zeros, which would in any case
give a false illusion of accuracy. So let P stand for the number of millions of
people in the population. As for the date, since you are only interested in the
period from 1790 to 1860, it is better to choose a variable ¢ to stand for the
number of years after 1790 rather than the actual year number. The theory then
being investigated is that P and ¢ are related by an equation of the form

P=ab' for 0= ¢r=<170.

To convert this into a linear equation; take logarithms of both sides of the
equation. You can use logarithms to any base you like; if you choose e, the
equation becomes

InP=Ina+¢tlnb,

in which the independent variable is ¢ and the depe t variable is InP . So
make a new table of values in terms of these v

t 0 10 20 50
mP 136 167 197 zé%\ 345

InP .

3 o~

ﬁ e

/’ E1'5

2{ /r/ l

//

50

11

(
1] T —>

N - >
0 10 20 30 40 50 60 70 t

; best fits the plotted
_ ent, it seems that the
intercept on th¥vertical axis is about 1.37; and, by using a suitable gradient triangle

Fig.3.10

1.
(shown with dotted lines), you can find that the gradient is about 5—3 =0.03.

So the line has equation
InP=137+0.03¢,

which is of the desired form InP =1Ina +¢Inb with Ina =1.37 and Inb =~ 0.03.
To find a,remember that Ina is log, a,and log, a'=137 <> a ~¢e'’. You can

calculate this using the [ e* ] key on your calculator, which gives a =3.94.
Similarly b =e%% =1.03.
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It follows that, over the period from 1790 to 1860, the growth of the population
could be described to a good degree of accuracy by the law

P=394x103".

An equation like P =3.94x1.03" is called a mathematical model. It is not an exact
equation giving the precise size of the population, but it is an equation of a simple form
which describes the growth of the population to a very good degree of accuracy. For
example, if you wanted to know the population in 1836, when ¢ = 46, you could
calculate 3.94x1.03% =153..., and assert with confidence that in that year the
population of the USA was between 15 and 15% million.

Example 3.84
A thousand people waiting at a medical centre were asked to record how long they had
to wait before they saw a doctor. Their results are summarised as follows.

N

Waiting time
(minutes)

Numberof 534 %1 1 85 6
people . )

0toS Stol0 1Qtp 15 15t0 20 \20to 30 30to 60 more than 60

to wait at least ¢ minutes can be
e~ and find the value of k.

&, ahd so on. So you can make a table of p, the proportion
fasf t minutes, for various values of ¢.

10 15 20 30 60
0665 0447 0292 0202 0091 0006

If ‘you plot these values for yourself, you will see that they appear to fit an
exponential decay graph; but to show this conclusively it is necessary to rewrite
the equation so that it can be represented by a straight line.

Nowif p= e ™ as suggested in the question, In p =—kz, so a graph of Inp
against ¢ would be a straight line through the origin with gradient —k . So make a
table of values of Inp:

t 0 5 10 15 20 30 .60
Inp 0 -041 -081 -123 ~-160 -—240 -5.12

These values are plotted in Fig. 3.11.



CHAPTER 3: EXPONENTIAL AND LOGARITHMIC FUNCTIONS 45

This example differs from Example 3.8.3 in that
you know that the graph must pass through the
origin. So draw the best line that you can through
the origin to fit the plotted points. From Fig. 3.11
the gradient of this line is about —0.082.

So the proportion who had to wait more than ¢
minutes is modelled by the equation p =e "%

3.9 Power law models

010 20 30 40 S0 60 ¢
..,

Fig. 3.11

Another type of model which can be investigated using logarithms is the power law,
where one variable is related to another by an equation of the form y = ax”. In this case,

when you take logarithms (to any base) of both sides, you get
logy = log(ax") =loga+logx" =loga+nlog

With such a law, if you plot values of logy againg
gradient n and intercept loga.

You know quite a few examples of powe

me of a sphere of radius 7 is

V= %n’r3;‘ laws of this kind also occur freqyeptly I experimental science, and in

Example 3.9.1
These figures have begfi given f

of mammal. ”
: ei\gi\w Energy expended
(calories per kg)
Rabb 2 58
Man 70 33
Horse 600 22
Elephant | 4000 13

Investigate the relation between the energy expenditure ( E calories per kg) and the

weight (W kg) of the various animals.

This is the kind of situation where a power law model, of the form E=aW" , may
be appropriate, so try plotting log E against logW . Using logarithms to base 10,

the corresponding values for the four animals are:

logW 030 1.85 278 3.60
logE 176 1.52 134 1.11
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These are plotted in Fig. 3.12. There are four points, one for each animal.

Since all the figures are statistical averages, logE
and energy expenditure can’t be very precisely 2
measured, you wouldn’t expect the points to lie o

exactly on a straight line. However, they do
suggest a trend that might be generalised to
apply to other mammals in a similar
environment. This is expressed by the equation 11 e,
~ of the line, which is approximately 03

logE=1.84-0.191logW .
This is of the form

logE =loga +nlogW

obtained by taking logarithms in the/pgwer equatio\ E =aW ", with loga =1.84
and n =-0.19. This gives a =10"{* i

approximately E =69W —0

own up by the graph, mean that
this model can do little more than shggedt an order of magnitude for the dependent

of widely differing sizes can be modelled
02 calories per kilogram.

Exercise 3D

© 0810 ¥y =0.7+1.7x,express y in terms of x.
. (d) If log;p y=0.7+2log,, x, express y interms of x.

(e) If log;, y=—0.5—5log, x,express y in terms of x. v

2 Repeat Question 1, replacing log;, in each part by In.

A

@ Population census data for the USA from 1870 to 1910 were as follows. -

Year 1870 1880 1890 1900 1910 -
Population ¢ ¢ 502 63.0 760 920
(millions) .

Investigate how well these figures can be described by an exponential model.
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4 For the model in Example 3.9.1, calculate the values given by the equation E =70W 02

for the four animals, and compare these with the numbers given in the table.

¢ @ The table shows the mean relative distance, X, of some of the planets from the Earth and
the time, T years, taken for one revolution round the sun. By drawing an appropriate graph
show that there is an approximate law of the form T = aX", stating the values of @ and n.

Mercury  Venus Earth Mars Saturn
X 039 0.72 1.00 1.52 9.54
T 024 062 1.00 1.88 29.5

oL 6 Jack takes out a fixed rate savings bond. This means he makes one payment and leaves his
money for a fixed number of years. The value of his bond, $B, is given by the formula
B = Ax" where A is the original investment and » is the number of complete years since

-he opened the account. The table gives some valy n. By plotting a suitable
graph find the initial value of Jack’s investme d the rate\pf\interest he is receiving.

5 : \4—5'/
B 982 1056 <\220 1752

7 In a spectacular expenment grow wing data were obtained, where N is
the number of cells at of the growth.

10
820 3100
At ¢ =104 cherids whlch killed off the culture. _
The #€l; i den d ¢ was thought to be modelled by N = ab', where a and

clermine how these figures confirm the supposition that the
6f this form. Find the values of @ and b, each to the nearest integer.

relationdhip

(b) If the growth had not been stopped at ¢ =10 and had continued according to your
model, how many cells would there have been after 20 minutes?

, (¢) An alternative expression for the relationship is N = me*’. Find the values of
mand k. (MEI, adapted)
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8 Itis believed that two quantities, z and d , are connected by a relationship of the form
z=kd",where k and n are constants, provided that d does not exceed some fixed (but

'ﬁnknown) value, D. An experiment produced the following data. .

d. 750 810 870 930 990 1050, 1110 1170
z - 21 2.6 32 40 438 56 59 6.1

(a) Plot the values of log,, z against log,, d . Use these points to suggest a value for D.

~(b) Itis known that: for d <D, n is a whole number. Use your graph to find the value of
n. Show also that k =~ 5x107°.

2 (c) Use your value of n and the estimate & = 5x 10~ to find the value of d for which
z2=30. (MEI, adapted)

1 Solve each of the following equationg
(a) at = 102x+] (b)

2. Solve the equation 3%* =4

’3")The function f is given by f:
definition of ! i agimilar fo

(OCR, adapted)

=2 x107* giving your answer exactly in terms of
(OCR, adapted)

(OCR, adapted)
6 Expre 10g(2«/ﬁ)—%10g0.8—10g(%0) in the form ¢ + logd where ¢ and d are rational
numbers and the logarithms are to base 10. - (OCR, adapted)

7* Prove that log paXlog bxlog, c=1,where a, b and c are positive numbers.

8 Prove that log[ﬂj + log(g—) + log(ij =0.
q r p

9 If a, b and c are positive numbers in geometric progression, show that loga, logb and
logc are in arithmetic progression.

10* If log p= q and logq r = p, prove that logq p=pq.

11 Express logz(x +2)~log, x as a single logarithm. Hence solve the equation
log, (x +2)—log, x =3. -
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12

13

14

The strength of a radioactive source is said to ‘decay exponentially’. Explain briefly what is
meant by exponential decay, and illustrate your answer by means of a sketch-graph.

After ¢ years the strength S of a particular radioactive source, in appropriate units, is given
by §=10000x 37%%!4’_State the value of S when 7 =0, and find the value of ¢ when
the source has decayed to.one-half of its initial strength, giving your answer correct to

3 significant figures. (OCR, adapted)

Differing amounts of fertiliser were applied to a number of fields of wheat of the same size.
The weight of wheat at harvest was recorded. It is believed that the relationship between
the amount of fertiliser, x kg, and the weight of wheat, y tonnes, is of the form y = kx”,
where k and #n are constants.

(@) Aplotof Iny against Inx is drawn for 8 such fields. It is found that the straight line
of best fit passes through the points (4,0} and (0,-1.6) . Find the values of & and #.

(b) Estimate how much wheat would be obtained from the use of 250 kg of fertiliser.
(MEI, adapted)

gged when a load was hung _
from it. The results are summarised in a table,(where w is the\ldad in tonnes and y is the
sag in millimetres.

by y=a+bw?, where a and b are -
=5 to find estimates of a and b, correct to
redicted by this model when the beam supports a




4.1

Differentiating exponentials and logarithms

This chapter deals with exponentials and logarithms as functions which can be
differentiated and integrated. When you have completed it, you should

understand how to find the derivative of 5” from the definition
understand the reason for selecting e as the exponential base
know the derivative and integral of e*

know the derivative of Inx, and how to obtain it

e  know the integral of l, and be able to use it for both positive and negative x
x

e  Dbe able to use the extended methods from P1 Chapter 12 to broaden the range of
functions that you can differentiate and integrate.

So the dsfinttjeh becomes

2*(2" -1 |

f’'(x)=1i
() hl—% . h

Since 2* does not involve %, you can write

h —
£/(x) = 2* lim 2% |
k20 h

This shows that f'(x) is the product of two factors: 2*, which is independent of 4, and
a limit expression which is independent of x.

The limit expression is in fact the gradient of the tangent at.the point (0,1). This is
h

because

is the gradient of the chord joining (0,1) to (h,Zh), and as & tendsto O
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this chord tends to the tangent. So
f’(x) = 2" x gradient of the tangent at (0,1) = 2* x £*(0);
since 2* is f(x), this can be written as

£(x) = £(x) x £(0).

This result confirms that the rate of growth of f(x) is proportional to its current value.

The next step is to evaluate the limiting value £’(0). You can do this by calculating
for some small values of %, and setting out the results as in Table 4.2,

h 1 0.1 0.01 0.001 0.0001
2k 1
h

1 071773 0.69556 0.69339 069317

Table 4.2

These are the gradients of chords to the right of (Q,1}, which you

greater than the gradient of the tangent. Fopchords\Xothe left yo
negative, as in Table 4.3. <¢\\

N—0.00I -0.0001

069291 069312

uld expect to be
take & to be

dlfferent for differéngvalues of the base .

For the general exponential function f(x)= 5", where 5>0 and

b # 1, the derived function is '(x) = constant x b*, where the value
of the constant, which depends on the base &, is equal to £'(0).

Example 4.1.1
Show that, for any exponential function, the graph of y = 4" bends upwards.

2
If y=5", % =f’(0)b* and gx— (£'(0))*b*. Since b1, £'(0) is not zero,

SO;(f’(Q»'Z 0. Also, forall.x, b*>0.
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2
Therefore (—i-;%}— >0 for all x, so the graph bends upwards.

If you look back to Figs. 3.1 and 3.2, you can see that £7(0) is positive for & >1 and
negative for 0 < b <1, but in either case the graph bends upwards throughout its length.

The number e i

o -1
If you carry out the limit calculation lim for values of & other than 2, you get

h—0

values for the constant £’(0) like those in Table 4.4 below, reported to 4 decimal places.
Since the values of f’(0) depend on b, they have been denoted by L(b).

b 2 3 4 5 6 8 9 10
L(b) 0.6931 10986 13863 IWMS 20794 21972 23026

L(b) for a few values of b less thj
answers and keep a record of anyt

pore effjcignt ways of calculatmg e to many decimal places.
Note thanIXey=1, and that L(b) is the symbol used for the constant f’(0) in the statement
“if f(x)=b", then f'(x)=f(0)p".’
This means that, if f(x)=e* then f’(0) =1, so
if f(x) =e",then f'(x) =¢".

It is this property that makes e* so much more important than all the other exponential
functions. It can be described as the ‘natural’ exponential function, but usually it is
called ‘the exponential function’ (to distinguish it from b* for any other value of b,
which is simply ‘an exponential function’).

The function e® is sometimes written as exp x, so that the symbol ‘exp’ strictly stands for
the function itself, rather than the output of the function. Thus, in formal function notation,

exp:x > e”.
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X

. . d
For the (natural) exponential function e*,or expx, ae" =e”.

Many calculators have a special key, often labelled [e* ], for finding values of this
function. If you want to know the numerical value of e, you can use this key with an
input of 1, so that the output is e' =e. This gives e=2.718281828... . (But do not
assume that this is a recurring decimal; e is in fact an irrational number, and the single
repetition of the digits 1828 is just a coincidence.)

Example 4.2.1
Find the equations of the tangents to the graph y =e” at the points  (a) (0,1), (b) (1,e).

(a) Since % =e¢”, the gradient at (0,1) is e’ =1.The equation of the tangent is

It is interesting that the tangent at (1,e) pa
this nicely with a graphic calculator, if you

Example 4.2.2

) d/ 2

Find a) —|e™),
@ ()

(b) e x (2x) = xe (0) e x1=¢¥*,

2+x

For (c) you couls " as e’e”. Since e’ is constant, the derivative is e*e*, or e

From ad;e" =e”* it follows tﬁat J‘ e* dx=¢”* + k. This is used in the next éxample.
Example 4.2.3
Find the area under the graph of y =¢** from x=0to x =1.
j e>* dx is of the form j g(ax +b)dx, with g(x)="e”. The indefinite integral
is therefore if(ax +b)+ k, where f(x) is the simplest integral of g(x).(See
P1 Section 16.7.) In this case, f(x)=e", so that j e dx = %ez" +k.
! 1

The area under the graph is therefore J- eFdx= [% ezx] =
0
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RN Exercise 4A

1 Differentiate each of the following functions with respect to x.

(@) &* ) e* (©) 3e* d) —4e™*
(e) e3x+4 (f) e3-2x (g) el—x (h) 3e X e?+4x
0 e G e ® & ® e
2 Find, in terms of e, the gradients of the tangents to the following curves for the gii/en
values of x. ' T :
(a) y=3e*,where x=2 (b) y=2e7",where x=-1
(¢) y=x-e**,where x=0 @ y= 06_2"_, where x=3

3 Find the equations of the tangents to the given curves for the given values of x.
(a) y=e®,where x=-1 ' (b) y=2x—e"",where x=0

(¢) y=x*+2e¥ where x=2 e ¥, where x =1n2

4 Use the chain rule to differentiate

(@) y= Dext+xtl , © y= ew)l'—x2 i

() y=2x2 +e™,

b) J. e " dx

® fe3"2xdx ) J‘el—xdx @) j3e»xe2+4"dx

(©) f 3e¥ dx (d) f —4e™** dx

8 Find ex

(a) f 12 e?* dx +(b) " f _11 e dx (©) f_(; 2e"*dy (d)/jj 2¢¥* dx

of the following definite integrals in terms of e, or give its exact value.

1n9 102 al . 9
© o dx ® J' 2y (g) J' X102 gy @) J' o*1n3 gy
In3 0 0 3

« 9 Find the area bounded by the graph of y=e>*,the x- and y-axes and the line x=2.

oo

N
10 Find J e~ * dx. Deduce the value of J e Fdx.
0 0

11 Sketch the graph of y= xe™® for x>0. Find the area contained between this graph and
the positive x-axis. ‘ '
R T T A O T A P S ST S O
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4.3 The natural logarithm

The inverse function of the (natural) expdnential function exp is the logarithmic
function log, . You know from the last chapter that this is denoted by In . It is called the
natural logarithm. ‘

y=e"=expx & x=log,y=Inyfor xeR, yeR, y>0.

In1=0, Ine=1, Ine"=n forany n.

The most important property of the natural logarithm is the derivative of In x . This can

d . . .
be deduced from the result —e* =e* in Section 4.2, but first we need a result from
coordinate geometry.

Mini-theorem If a line with gradient m (where m sflected in the line y=x,

the-gradient of the reflected line is 1
~ m

¢ property given in
gradidnt rwith4 ‘gradient triangle’
A DEF. Completing the rectangle DEFG,

P1 Section 1.9. Fig. 4.5 shows the 1
ABC. Its reflection in y = x is the trid

DGEF is a gradient triangle f GF=DE=AB=1 and
he\reflected line is — = l
m

: 1
gradient "

N
oy

Fig.45 Fig. 4.6

Now consider the graphs of y=Inx and y=e” in Fig. 4.6. Since these are graphs of inverse
functions, they are reflections of each other in the line y = x . The reflection of the tangent at
the point (p,r) on y =Inx is the tangent at the point (r,p) on-y =e*, where p=e’.

Since gx—ex =e”, the gradient of the tangent at (7, p) is " = p. It follows that the

gradient of the tangentto y=Inx at (p,r) is l
p
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Since this holds for any point (p,r) on y = In x, it follows that:

Example 4.3.1
Find the minimum value of the function f(x)=2x—1Inx.

1
The natural domain of f(x)is x>0. Since f'(x)=2-—, f'(x)=0 when x= %
x

N —

1

Also f”(x)=—5,so0 f ”(%) =4> 0. So the function has a minimum when x =
x

The minimum value is f(%) =]- ln%. Since ln% =In27'==1n2,itis simpler to

write the minimum value as 1+1In2.

Uniess you specifically need a numerical apys@r, it is bettsy to leave it as 1+ 1n2, which
is exact, than to use a calculator to convett if into decimaNoym.

Example 4.32
d 1

d) —1 +—1.

(d i n(x x)

+’b), with f(x) =1n x, so the derivative is

Find (a) %1n(3x+1), (b)

d
ote that In3x =1n3+ In x, so that —]n3x=——q—lnx=l,
dx - dx X

d 1 3
Or use the chain rule, —In %= —5 X 3xr=2,
dx x x

x2+1

1
(d) Either write ‘ln(x + —) =In = ln(x2 + 1) —Inx,so
x

d 1 1 1 2x 1
—Infx+—-|=7F—XU-—=75—-—;
dx x) x“+1 X x“+1 x

or use the chain rule directly,

d]n( +1) 1 X(l 1) x ><x2—1 x? -1

J— x+— 1= —_ = = .

dx x) 1 x2) x2+1 x? x(x2 + 1)
X

- The two methods give the answer in different forms, but they are equivalent to
each other. It doesn’t matter in which form you give your answer.
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Exercise 4B

1 Differentiate each of the following functions with respect to x.

(@ In2x () In(2x-1) (¢ In(1-2x) (d) Inx?
1. 1 2x+1
(e) 1 In— 1 h) 1
() In(a+bx) () In- (8 Inz— () InZ—
(i) 3lnx~? G) In(x(x+1)) & In(x*(x~1) O In(x*+x-2)
2 Find the equations of the tangents to the following graphs for the given values of x.
(a) y=Inx,where x=1 (b) y=In2x,where x=1}
(¢) y=In(-x), where x= ~% (d) y=In3x,where x=¢

3 Find any stationary values of the following curves and determine whether they are maxima
or minima. Sketch the curves.

(A y=x-lnx

©) y=x2—lnx2

4 Use the chain rule to differentiate
@ y=In(l+x3),

(i) f(x)=In(2-x)+In(x—6).

R N R T T e R e,

The reciprocal integral

d 1 . .
Now that you know that & Inx = —, you also know a new result about integration:
x

This is an important step forward. You may recall that in P1 Section 16.1, when giving

‘ 1

the indefiﬁlite integral J x"dx= —1 x"*! 4k, an exception had to be made for
1

the case n=—1. You can now see why: f —dx is an entirely different kind of
x

function, the natural logarithm. 7
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Example 4.4.1 ,

Find the area under the graph of y =— from
. x

x=2to x=4.

Before working out the exact answer,
notice from Fig. 4.7 that the area should
be less than the area of the trapezium
formed by joining (2,0.5) and (4,0.25)
with a chord. This areais ™

2x2%(0.5+0.25)=0.75.

The exact area is given by the integral

41 4
J —dx=[Inx]. =In4-1n2
2 X 2

Exaniple 44.2
Find the indefinite inge

Exercise 4C

¢ss than 0.75, as expected.

integral is only valid if x> %, since In(3x —1) only exists if 3x—1>0.

1 Carry out the following indefinite integrations, and state the values of x for which your

answer is valid.

o[te o[t
©) f%;dx ® ,J-1+42xdx

© [ @ |

R

2 Calculate the area under the graph of y = 1 from
X

(a) x=3tox=6,
(©) x=%t0x=1,

(b) x=4t0ox=8,
(d) x=atox=2a, a>0.

1
4x+3
4
2x—1

dx

dx
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3 Calculate the areas under the following graphs.

1 1
= f =-1t0 x=0 b) y=——fr =2to x=5
@ vy —op om x o x ® y 5o from x 0 x
© y= from x=4to x=6 @ y= © from x=4 to x=5
3x-5 T ex=17
€ y= lfrom x=-3to x=-2 3] y=2+%fromx=2to x=6
-x - x—

4 Sketch y= —i—l , and use your sketch to make a rough estimate of the area under the graph
x

between x =3 and x =5. Compare your answer with the exact answer.

5 The region under the curve with equation y = % is rotated through four right angles about
x

the x-axis to form a solid. Find the volume of the solid between x=2 and x=35.

7 Given that & = 3 and that the grayp
dr 2x+1

find y in terms of x.

9 The graphof y=

of the solig forTed

On a first readind\ofMigChapter you may prefer to skip ahead to Miscellaneous exercise 4
and come back to thisection later. '

You will have noticed that the statements

i1nx=l and fldx=lnx
dx X X

both contain the condition ‘for x > 0. In the case of the derivative the reason is
obvious, since In x is only defined for x > 0. But no such restriction applies to the
.1
function —.
* 1
This then raises the question, what is J —dx when x<07?
x

A good guess might be that it is In(—x). This has a meaning if x is negative, and you

can differentiate it as a special case of %f(ax +b) with a=-1, b=0 and f(x)=Inx.
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d 1 1
This gives — In(—x) = ——— = —, as required.
dx x

(—x)

So the full statement of the reciprocal integral is:

J‘] {lnx+k if x>0,

x In(~x)+k  if x<O0.

Notice that the possibility x = 0 is still excluded. You should expect this, as 0 is not in the

domain of the function —. Using the function | x |, the result can also be stated in the form:
x

For x#0, f—j;dx=1n|x|+k.

The function | x| is an even 74 y=In|x|
function, with a graph symmetrica ]
about the y-axis. It follow
X
’
Fig. 4.8

3 and y = —x—1 intersect where x =0 and x =1. Find the area
x—
of the region between them. -

You can check from a sketch that the curve lies above the line, so that the area is

J;(x32—(-x—l))dx=£)(xi'2+x+l)dx.

The trap which you have to avoid is writing the integral of

2 as 2In(x-2).
x-2

Over the interval 0 < x <1, x—2 is negative, so In(x —2) has no meaning.

2 -2
There are two ways of avoiding this difficulty. One is to write > as T
x-— -x

1 -
The integral of 3 is —In(2 —x), so the integral of 5 is 2In(2—x).
—x -

X
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The area is then
1
[21n(2 - x) + 122 +x]o =(2In1+1+1)-(2n2)

3
=3- 21n2.
The alternative is to use the modulus form of the integral, and to find the area as

[210]z~2]+ 12 +x], =(21n-1]+ ] +1)~(21n]-2))

_3

= E -2 ln 2.
You might think from this example that the modulus method has the edge. But it has to
be used intelligently, as the following ‘bogus’ example shows.

Example 452

1
Find the area under the graph of y =

— from x = -2 torx =+
x

False solution

41 4
L2;m=[1q]x|]_2=ln|4|—

=1ng=1n2.

You only have to draw the seevthat there is a problem here. The

—2<x<0and 0<x<4,s0it
e interval of integration contains x =0,

where L(b) is a constant whose value depends on b.

It is now possible to find this constant. As exp and In are inverse functions, the composite
function ‘exp In’ is an identity function, with domain the positive real numbers. Therefore

et =p.
Raising both sides to the power x gives
b* = (elnb)"' — exlnb’
by the power-on-power rule. This is of the form e* , where a is constant, so

%b" =%(e"l“b) =(Inb) e*® =(Ind) b*.
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Comparing this with the earlier form of the derivative, you find that
L(b)=1nb.

You can check this by using your calculator to compare the values of L(b) in Table 4.4
in Section 4.2 with the corresponding values of Inb. Notice also that Table 44 gives a
number of examples of the rules for logarithms listed in Section 3.4. For example,

L(4)=2L(2), L(6)=L2)+L(3), L(8)=3L(2),
L(9)=2L3), L(10)=L(2)+L(5).

The reason for this is now clear.

" Exercise 4D

1 Calculate the following.

-3 1
@ J_6 x+2dx

2 Calculate the value

Miscellaneous exercise 4 s

e ¢ach of the following expressions with respect to x.

) (b) In(4-3x) (¢) e* xe¥*
© In2=* ® In(3-2x)°
3—x .

2 Use a calculator to find a number a for which e* > x° forall x>a.

. 3 Find the coordinates of the points of intersection of y = 4 and 2x+y=9. Sketch both
. x

graphs for values of x such that x > 0. Calculate the area between the graphs.

4 A curve is given by the equatlon y=3 Ze* + é e2*,

(a) Evaluate a definite integral to find the area between the curve, the x-axis and the 11nes
x=0 and x =1, showing your working.

(b) Use calculus to determine whether the turning point at the point where x=0 is a
maximum or a minimum. (OCR, adapted)
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10*

11

12

13

14

Find J (2 + e_") dx. (OCR)

The equation of a curve is y = 2x2 —Inx, where x > 0. Find by differentiation the ,
x-coordinate of the stationary point on the curve, and determine whether this point is a

maximum point or a minimum point. (OCR)
1 Ty

Show that f (e*—e™)dr= (=" (OCR)
0 e

Using differentiation, find the equation of the tangent to the curve y =4 +In(x +1) at the
point where x =0. (OCR)

The equation of a curve is y = In(2x). Find the equation of the normal at the point
(% ,0), giving your answer in the form y=mx+c. (OCR)

X1 L as a single fracpo

(a) Express TRy E) + - 4

(b) Sketch y= and calc S ¢ graph between x =2 and

x=17
=3 (x=H(x=1)"

(a) ; i i x for all x.Deduce that e* =1 for. x=0.

(b) i £ 5y f y=e¢* and y=1 between 0 and X, where

@) H ionk & 9y =Inx — x, and deduce that Inx < x—1 for x>0 with

(b) Fi c iongty/value of 1nx+l, and deduce that x=1 =Inx for x>0 with
q X

lnz—lny< 1

(c) By putting x = £ Where 0 < y <z, deduce Napier’s inequality, ! <
. y . : < -y y

The diagram shows sketches of the graphs of y

y=2-¢"* and y = x. These graphs intersect r= Z

at x =a where a>0.

(a) Write down an equation satisfied by a.
(Do not attempt to solve the equation.)

(b) Write down an integral which is equal to
the area of the shaded region.

(¢) Use integration to show that the area is
equalto 1+a— %az . (OCR, adapted)

o8
=¥
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15 Find the coordinates of the three stationary points of the curve y ; et -18)

16 Draw a sketch of the curve y= e 2* ~3x. The curve crosses the x-axis at A(a,0) and the
y-axis at B(0,1). O is the origin.

(a) Write down an equation satisfied by a.

(b) Show that the tangent at A meets the y-axis at the point whose y-coordinate is

2ae7?% +3q.

2
(c) Show that g > 0, and using the results from parts (a) and (b), deduce that

6a* +3a<1. !

(d) Find, in terms of a, the area of the region bounded by the curve and the line segments
OA and OB.

(e): By comparing this area with the area of the triangle OAB, show that 3¢ +4a > 1.
Hence show that 1 \/— 5 Zca< Z (OCR, adapted)

17 Find the exact value of f el dx|
0

18 The number of bacteria presopd
experiment is denoted by N .

t hours after the beginning of an
atjon between N and ¢ is modelled by N = 100e3".

er of bacteria be 9000 ?

mber of bacteria be increasing when t =6?  (OCR)

is even.
(b) Use the chain rule and the result in Question 19 to show that, if p is odd, then

i 2 =] p_ d I3 =) P_

| i(x")=£u T =Py 1; and that, if p is even, —(x")=—£u T =Py

dx q q dx q q

i (¢) Deduce that, for all the values of n for which x" has a meaning when x is negative,

: %(x")=mc"'1 for x<0.
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Trigonometry

This chapter takes further the ideas about trigonometry introduced in unit P1. When you
have completed it, you should

e  know the definitions, properties and graphs of secant, cosecant and cotangent, including

the associated Pythagorean identities .
e  know the addition and double angle formulae for sine, cosine and tangent, and be
able to use these results for calculations, solving equations and proving identities
e  know how to éxpress asin 8+ bcos 6 in the forms Rsin{6+ o) and Rcos(6 ).

Radians or degrees

All through your work in mathematics, you have probably thought of degrees as the

natural unit for angle, but in P1 Chapter 18 a new unit,fhe radian, was introduced. This
unit is important in differentiating and integrating tyfggnometricXu
reason, a new convention about angle will be adopfed in this book

tions. For this

radians, or that it doesn’t matter whether th degrees
For example, if you see the equatipg_sin x = 0|5\ the is in radians. If you are asked
for the smallest positive solutign'Qf ¥g egquati oushduld give x = %ﬂf . Remember

the relation:

7 rad = 180°.

cos

for which it doe
units for angles.

If, however, it is important that degrees are being used, then notation such as cos A° and
sin 6° will be used. Thus one solution of the equation cos8°=-0.5is 6 =120.

This may seem complicated, but the context will usually make things clear.

Secant, cosecant and cotangent

It is occasionally useful to be able to write the functions L , ! and ! in

] cosx sinx tan x
shorter forms. These functions, called respectively the secant, cosecant and cotangent

(written and pronounced ‘sec’, ‘cosec’ and ‘cot’) are not defined when the denominators
are zero, so their domains contain holes.
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The secant and cosecant are defined by

1 .
secx = provided that cosx # 0,

Cos x

1 . .
cosec x =—— provided that sinx # 0.
sin

It is a little more complicated to define the cotangent in this way, since there are values of x

. . ) sinx 1 cosx
for which tan x is undefined. But you can use the fact that tanx = SO =

except where the denominators are zero. This can be used as the definition of cot x.

The cotangent is defined by

Cos x '
cotx = t B

1 x

provided th.

) 1
Note that cot x = —— exce]
tan x

’ ! - . ’
COos x tan x s x

y , y .

| y=cotx |

e 1 E 1 ;

5 S EON B NL
Fig.5.1 ’ Fig.5.2 Fig. 5.3
Example 5.2.1
Find the exact values of (a) sec % 7, (b)cosec %ﬂ', (c) cot (—%n).
2 .5 2 .
You need to find the values of cos57, sing7 and tan( 37r), using the symmetry

properties in P1 Section 18.3 together with the exact values in P1 Section 10.3.
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2. _ 2 = _eoslp=_1 2p—_
(a) COS5M = COS(ﬂ.’ 321)— COSz M =—»,S0 SECZTT 2.

5o e 5 N_ o1 _1 5. _ '
(b) s1n3nf51n(ﬂ g71')—sm371'-— 580 COSEC 67r—2.

(©) tan(—%n’):tan(—%ﬂ+n’)=tan%7r=\/§,so cot(—%ﬂ):L:l 3.

| B
There are new forms of Pythagoras’ theorem in trigonometry using these new
trigonometric functions. For example, if you divide every term in the identity
cos’ @ +sin”@=1by cos’ 6, you get

cos’0 sin’0 _ 1
2 2a 2
cos“@ cos“0@ cos“@

, thatis, 1+tan® @ =sec’ 6.

Similarly, if you divide every term of cos® @+ sin? @ =1 by sin” 8, you get

cos’@ sin’6 1
. - = . 3
sin?@ sin’6 sin’0

thatis, 1+ cot? @ = cosec?6.

Summarising:

1+tan® @ = sec? 0,

1+ cot? 0 = cosec?8

Example 5.2.2
Prove the identity

. two methods, pQu should generally start with the more complicated side.

Use the fotwtiNwegtod, and consider the right side divided by the left side.

You need to show that (sec8 + tan6) + 1 isequalto 1.
secO-—-tan @

1
(sec@+ tanf) + —————— = (secH + tan O)(sec § — tan H)
secO —tan 6

=sec’f—tan’0 = 1,

using the first line in the box above.

Therefore —1— =secO+tanf.
sec8 — tan @

The condition secf —tan8 # 0 is necessary, because if secO—tan@ =0 the left
side is not defined, and therefore the identity has no meaning.

to show that the result is 1. If you use one of the first
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Exercise SA i

1 Find, giving your answers to 3 decimal places,
(a) cot304°, (b) sec(—48)°, (c) cosec 62°.

2 Simplify the following.
cosx

(a) sec(%ﬂ - x) (b) — (c) - sec(—x)
_sinx
(d) 1+tan®x (e) cot(m+x) (f) cosec(m+x)
3 Find the exact values of
(a) sec % T, (b) cosec %n’, (c) cot § T, (d) cosec (— % ﬂ),
(e) cot(— % n') R ) sec 163 T, (2)- cot(— L 7r) (h) sec % .

4 Using a calculator where necessary; find the values of the following, giving any non-exact
answers correct to 3 significant figures.

(a) sin%n’ (b) sec—l-ﬂ Q5 7 (d) cosec 167
(€) cosizm 6 tanw —%:;) M) cot(~i7)

5 Giventhat sin A= % , where M =, where B is obtuse, find the exact

values of

(a) secA, (¢c) cotB, _ ‘(d) cosec B.

tan ¢ tan ¢
) 1+ tan? ¢ © sec? -1
1

(&) ——— ) {(cosec¢—1)cosecp+1
xlcosecng -1 ( Jeos )

(b) Solve the equation 3tan” ¢ —secp =1 for 0 < ¢ <27.

9 Use an algebraic method to find the solution for 0 < x < 27 of the equation
5cot x + 2cosec’x = 5.

10 Find, in exact form, all the roots of the equation 2sin? ¢ + cosec? ¢ = 3 which lie between
0 and 27.

11 Prove that cosec A+ cot A= S S provided that cosec A # cot A.

cosec A—cot

12 Prove that secf—1 =0 0 provided that tan6 0.
tan@  secf+1
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5.3 The addition formulae for sine and cosine

Suppose that you know the values of sinA, cosA, sin B and cos B. How could you
calculate the values of sin(A+ B), sin(A— B), cos(A+ B) and cos(A — B) without
using a calculator to find the angles, which, of course, would only give approximations?

One way is to find a general formula which applies to all values of A and B by starting
with the formula for cos(A — B). You may wish to skip the proofs below, and start
reading from the next set of results in the box on the next page.

InFig. 54, angles A and B are drawn from
the x-axis. The points P and Q then have
coordinates (cos A,sin A) and (cos B,sin B)
respectively.

You can write the distance PQ, or rather an
expression for PQ?, in two ways: by using the
distance formula in coordinate geometry (see P1
Section 1.1) and by using the cosine formula for
the triangle OPQ. These give

PQ? =(cosB—cos A)* + (sinB —si
SO cos® B—2cos Bcos A +cos? A +sin?

Rearrange the left side to get

But, from Pythagoras’ i My, cos? B+sin® B=1and cos® A+sin” A=1.

So, cancelling and rea

Example 53.1
Verify the formula for cqs(A —B)inthecases (a) B=A, (b) A= %71', B=

N

(a) Put B=A.

Then cos(A—A) = cos® A+sin’ A and, as cosO =1, you get Pythagoras’
theorem, cos>A+sinA=1.

(b) Put A=fzand B=}x.

Then cosA=0, sinA=1, cosB = %«/@ and sinB= % The formula then gives

cos AcosB+sin AsinB=0x % J3H1x % = % , which is consistent with

cos(A—B)=cos(%7r—%7r)=cos%7r=%.

i+ s
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If you replace B by (—B) in the formula for cos(A - B) you get
cos(A - (—B)) = cos Acos(—B) + sin Asin(—B}).

Recall that cosine is an even function (P1 Section 18.3), so cos(—B) = cas B, and that sine
is an odd function, so sin{—B) = —sin B. Writing cos(A —(—B)) as cos(A + B},
cos(A + B) = cos Acos(—B) + sin Asin(—B)
= cos Acos B ~sin Asin B.

To find a formula for sin{A + B), first recall that cos(% - 9) =sin @ (see P1 Section 104

for the equivalent statement in degrees). Using this with 6 = A+ B,
sin(A+ B) = cos(% T—(A+ B)) = cos((% - A) - B)
= cos(% T- A) cos B+ sin(% - A) sin B
=sin Acos B+cos Asin B.

You can obtain the formula for sin(A— B) in a similar wyy\ (This is Exercise 5B
Question 6.) The four formulae are true fog 2 B, so they are identities.

For all angles A and B,

#Ve these formulae, you have a quick method of simplifying expressions
such as cOs 27r—9): '
cos(% - 9) = cos(% 7r) cosf + sin(% n') sin6

=0xcosf+(—1)xsin@ =—sin0.

Example 5.3.2
Use the formulae for cos(A  B) to find exact values of cos75° and cos15°.

c0s 75° = cos(45 + 30)° = cos 45° cos 30° —sin 45°sin 30°
_1 1 1 1_1
=12xi3-1V2x ] =1(V6-2).
c0s15° = cos(45 — 30)° = cos 45° cos 30° + sin 45°sin 30°
—1 1 1 1_1
——Z\/§X7\/§+§\/§X7—Z(\/g+\/§).

Check these results for yourself with a calculator.
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Example 5.3.3

You are given that sin A = ﬁ, that sin B = 13,

exact value of tan(A+ B).

andthat0<B<%7t<A<7t.Findthe

From the Pythagoras identity, cos® A+ (§)2= 1,cos? A=1-8 =22 5o

789 T 289°
COsA = i{; As 1 gT<A<m, cos A is negative, so cOsA =— 13

Similarly, cos B+(12) =1,s0 cosB=+=> 5 As 0<B< %7:, cos B is positive,

-13°
SO cosB— . Then
5 . (_15y,, 12 _ 40-180 _ _j40
sin(A+B)= ~3+( 17)Xﬁ_ 17x13 ~ T7X13

= (=15} 5 _ 8 12 =75-96 _ 171
and COS(A+B)—( B &-HxB=TF = s

i -140,
o tan(A+B)=MA*E) _ _mﬁma _ 140
- cos(A+ B) A7><13

Example 5.3.4
Prove that sin(A+ B)+sin(A—~ B) =2sin A

Hence sin(A +

Example 5.35

Collect the terms involving sin x° on the left, and those involving cos x° on the
right, substituting the values of sin30° and cos30°:

sinx xle -2 sin x° >< =2cosx° xlx/é cos x° x%,

which can be rearranged as
(%\B— I)SinJ‘CO = (xf - )cosx

sinx°_\6* _243-1
cos x° %\@—1 N3-2°

0| —

Hence tanx° =
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!.ll
&

The addition formulae for tangents

-sin(A+ B
To find a formula for tan(A + B), use tan(A + B) = M

together with the
cos(A + B) g

idenuties for cos(A + B) and sin(A + B). Thus

sin(A + B) _ sin Acos B+ cos Asin B
cos(A+B) cosAcosB—sinAsinB’

tani A~ B)=

You can get a neater formula by dividing the top and the bottom of the fraction on the
right by cos A cos B. The numerator then becomes

sin Acos B+cos AsinB _ sin Acos B + cos Asin B

= =tan A+tan B,
cosAcosB - cosAcosB cosAcosB
and the denominator becomes
cos Acos B—sin AsinB cosAcosB sinAsinB
= - =1—tanAtanB.

cos Acos B cos Acos B/ cos-ACoNG

tay A+tan B

Therefore, putting the fraction together, thn{ A+ B) = .
1-jap Atan B

4 tan A —tan B
" 1+tanAtan B’

tan(x+y)—tanx _ 1—% Bz
1+ tan(x+ y)tanx 1+1x% 5

an((x+y)—x)=

Example 5.4.2
Find the tangent of the angle between the lines 7y =x+2 and x+y=3.

The gradients of the lines are % and -1, so if they make angles A and B with the
x-axis respectively, tan A= 1 and tan B =—1. Then

tanA—tanB %‘(—1) _%
1+tan Atan B 1+%><(—1) %

tan(A- B) = % .
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Exercise 5B

\/I/By writing 75 as 30 + 45, find the exact values of sin75° and tan 75°.

2 Find the exact values of
(a) cos105°, (b) sin105°, (c) tan105°.

S 3 Express cos(x+%7t) in terms of cosx and sinx. (s e
—
V . b) 4 Use the expansions for sin(A+ B) and cos(A + B) to simplify sin(—32~ i1 +,¢) and
cos(%n’ + ¢) . T :

H' kJS Express tan(%n’+ x) and tan_(%ﬂ—x) in terms of tanx.

v0 Use sin(A-B)= cos(%n —(A- B)) = cos((% - A) + B) to derive the fonnuié for

sin{A— B).
( A (&)- 7 Given that cos A= % and cosB= % , where A apd” B are asute, find the exact values of
(a) tanA, (b) sinB, (d) tan(A+ B).

( ,{‘ 8 Given that sin A = % and cos B= % ,where A 5 acute, find the exact

values of cos(A + B) and cot(A— B).

T

Prove that cos(A + B) — cos(A— B) =

or from replacing sin” A by 1- cos? A, giving
cos2A = cos® A—sin? A=cos? A —(1 —cos? A) =2cos? A-1.

. tan A + tan B 2tan A
Finally, the formula tan(A + B) = anArians becomes tan2A = _anT_'
1—-tanAtanB 1—tan“ A

These formulae are called the double angle formulae.

- sin2A = 2sinAcos A,

o824 =cos? A —sin? A=1-2sin? A= 2 cos? A-1,

2tan A

tan2AE—2—.
1-tan“ A
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Example 5.5.1 _
Given that cos A= % , find the exact value of cos2A.

cos2A=2cos’ A-1=2x(}) - 1=2x}~1=-].

Example 5.5.2
Given that cos A = %_, find the possible values of cos % A.
Using cos 2A‘E2'cos2 A—1, with %A written in place of A, gives
cos A =2 cos? %A—l. In this case, % =2cos? %A—l,giving 2 cos? %A = %.
2142 1a_4 /2 _41 ’
This 51mphf1es to cos” 5 A= 3,80 COS5 A= i\/; = i“§ V6.
Example 553

Solve the equation 2sin26° =sin 6°, giving
to 1 decimal place.

such that 0 < 0 << 360 correct

equired robtPare 8 =0,75.5,180,284.5,360 correct to 1 decimal

cotA—tan A=2cot2A.

Put everything in terms of tan A. Starting with the left side,

2
C(')tA—tanA—EL—tanAslﬂé
tan A tan A
2
cox| Izt Al oL Cocor2al
2tan A tan2A

Method 2  Put everything in terms of sin A and cos A. Starting with the left
side,

‘cos A _ sin A - cos’ A—sin? A cos2A

- = —— . T =2Cot2A.
sinA cosA sin A cos__é_ 5sin 2A

cotA—tan A=
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Example 5.5.5
Prove that cosecx +cotx = cot % x.

Starting with the left side, and putting everything in terms.of sines and cosines,

1 cosx 1+cosx
+ =

coseCx +Ccotx = — - =—
sinx sinx sin x
_— l+(ZCos2 %x—l) 2cos? %

sal 1 - : 1
ZSm—xcosix 25m7xcosix

2
1
cosix 1
=— Ecotix
Slni.x

2 If cosB= % , find the exact values of cos2B

By expressing sin3A as sin(2A + A), - i if3A interms of sin A.
Express cos3A in terms of cos A.
1-cosx

1+cosx

e

r valifes of A between 0 and 27 inclusive.
(b) 2c0s2A+1+sinA=0

R R R AR G e A e e S e

5.6 The form asinx+bcosx

If you draw the graph of y = sm(x +1 71:) you will see that it is the graph of y =sinx moved
by 1 g7 in the negative x-direction. Snmlarly the graph of y =sin(x + @) has been moved by
o in the negative x-direction.

If you compare the graph of y = 2sinx with that of y =sinx, you will see that the graph of
y =sinx has been stretched in the y-direction by a factor of 2. Slmllarly the graph of
y =Rsinx, where R> 0, stretches y =sinx by a factor of R.

Draw the graphs of y =3sinx+2cosx and y =sinx —4cosx, using an interval of values
for x of either 27 or 360° ,'depending on whether you are working in radians or degrees.
What you see may surprise you: it shows that both these graphs are either cosine or sine
graphs, first shifted in the x-direction, and then stretched in the y-direction. '
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These observations suggest that you can write y =3sinx+2cosx in the form

y = Rsin(x + &), where the graph y =sinx has been shifted by « in the negative
x-direction, and then stretched in the y-direction by the factor R, where R>0.But
how do you find the values of R and ?

If you equate the two expressions y =3sin x +2cos x and y = Rsin(x + &), you find that
3sinx+2cosx = Rsin xcos &+ Rcosxsinc.

Since these are to be identical, they certainly agree for x = %n and
x =0. This gives

3=Rcosa and 2=Rsinc. R
You can find R and « from these equations. Imagine a right- o

angled triangle, which you might think of as a set- square with 3
adjacent sides 2 units and 3 units, and hypotepuse
o is the angle shown in Fig. 5.5.

Therefore tang = §’ and R=+22
The equations 2 = Rsina and 35

+(x/1_35in0.58...)cosx
A/13 cos xsin0.58...

(a) Since 3sinx+2cosx=~/13 sin(x +0.58...), and the maximum and minimum
values of the.sine function are 1 and —1, the maximum and minimum values of
3sinx+2cosx are /13 and —/13 . Aad since the maximum and minimum
values of the sine function occur at l‘ﬁ ‘and %n , the relevant values of x are

givenby x+058...= —7r and x+058...= %n. Therefore the maximum V13
occurs when x = i” 0 58...=0.98, and the minimum —+/13 occurs when

x= 77r -0.58...=4.12, both correct to 2 decimal places.

(b) 3sinx+2cosx=1 & /13sin(x+058..)=1 < sin(x+0.58..)=

&y»—l
w

Using the methods of P1 Section 18.5, the'solutions (between ~7 and 7) are
x+0.58...=028... or x+0.58...=2.86...,

so x =—0.310r 2.27, correct to 2 decimal places.
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In the general case, you can write asin x+ bcosx in the form Rsin(x + o) where
R=+/a® +b? and « is given by the equations Rcosa =a and Rsina=b.
There is nothing special about the form Rsin(x + o). It is often more convenient to use

Rcos(x+a), Rsin(x—a) or Rcos(x — ). Thus, for the values of R and « in
Example 5.6.1, with 3=Rcosc and 2= Rsino,

3cosx + 2sinx = (Rcosa)cos x + (Rsin ¢} sin x = Rcos(x — ).

Always try to choose the form which produces the terms in the right order with the
correct sign. For example, write 3cosx —2sin x in the form Rcos(x + ), and
3sinx —2cos x in the form Rsin(x — o). '

Summarising all this:

If a and b are positive,
-asin x £ bcosx can be written in the fo;
acosx * bsin x can be written ipthe fo

where R=+a? +b*> and Rcds)

SRR

. Example 5.6.2
Express sin

SO Rcosa™=1 and Rsina®=4.

o 1
Therefore R=+1%+42 =+/17; with cosa® —T and sina® = J—_ , giving
tanag®=4 and @ =75.9.. 17

Then sinf° -4 cos°= «/ﬁsin(e —a)°;, where o = 75.9 -

The equation sin8°—4 cos8° =5 has no solution since if sin6°—-4cos6° =35,

5
then \/ﬁsin(e ~a)°=5,s0 sin(6 ~@)° =——>1.

W17

As there are no values for which the sine function is greater than 1, there is no
. . 5 .
solution to the equation. sin(6 —o)° = Nk and therefore no solution to the

equation sinf° —4cos6°=S5.
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Exercise 5D

1 Find the value of o between 0 and %7[ for which 3sinx + 2 cos x = V13 sin(x + o)
2 Find the value of ¢ between 0 and 90 for which 3cos x° —4sin x° = 5cos(x + ¢)°.

3 Find the value of R such that, if tan 8 =3, then 5sin@+3cos8 = Rsin(6 + B).

: 4 Find the value of R and the value of 8 between 0 and %7[ correct to 3 decimal places
such that 6cosx +sinx = Reos{x — ). .

5 Find the value of R and the value of & between 0 and %7[ in each of the following cases,
where the given expression i$ written in the given form.

(a) sinx+2cosx; Rsin(x+a) (b) sinx+2cosx; Rcos(x—a)

~(c) sinx—2cosx; Rsin(x-a) (d) 2cosx—sinx; Rcos(x+a)

6 Express 5cos8+6siné in the form Rce

i this maximum,

| (b) the minimum value of 5%
this minimum.

€n that 180 < ¢ < 270 and that tan ¢° = % , find the exact value of sec¢®. (OCR)

2 Solve the equation tan x° =3 cot x°, giving all solutions between 0 and 360 . (OCR)

3 (a) State the value of sec? x —tan® x.

(b) The angle A is such that sec A+tan A =2. Show that sec A—tan A = % , and hence
find the exact value of cos A. _ (OCR)

cos A° + 1+sin A°
1+ sin A° CosA®
(a) Prove that f{A) =2sec A°.

(b) Solve the equation f(A) =4, giving your :answers for A in the interval 0 < A < 360.
; : (OCR)

4 Let f(A)=
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5 You are given that cos30° ='ﬁ and cos45° = 1 . Determine the exact value of cos75°.
2 V2 (OCR)

6 Prove that sin(9 + % 7r) =cosf0. (OCR)

7 The angle ¢« is obtuse, and sing =

| W

(a) Find the value of cosc.

(b) Find the values".c}f sin2q and cos2a, giving your answers as fractions in their lowest
terms. : : (OCR, adapted)

8 Given that sin8° = 4sin(6 — 60)°, show that 2~/3 cos 8° = sin 8° . Hence find the value of 6.
such that 0 <8 < 180. (OCR)

9 Solve the equation sin26° — cos? 6° =0, giving values of 6 in the interval 0 < 6 < 360.
' ’ (OCR, adapted)

10 (a) Prove the identity cot % A-— tan% A=2cot 4

(b) By choosing a suitable numerical value fo tan 15° is a root of the

quadratic equation 1> +2+371-1=0. (OCR)
¥ cotx =tanjx.
(OCR)
,where R>0 and 0 < <90.
ich satisfy the equation
(OCR)

(b) Use the\pet6dof part (a) to find the smallest positive root & of the equation
12 cos x + D¢in x = 14, giving your answer correct to three decimal places. (OCR)

15 Express 2cos x° +sin x° in the form Rcos(x — d)° ,where R>0 and 0 <& <90 .Hence

(a) solve the equation 2cosx®+sinx® =1, giving all solutions between O and 360,

(b) find the exact range of values of the constant & for which the equation
2 cos x°+sin x° = k has real solutions for x. (OCR)

16 If cos'(3x+2)= %n , find the value of x.

17 (a) Express 5sinx°+12cosx° in the form Rsin(x +6)°, where R>0 and 0 <6 < 90.

(b) Hence, or otherwise, find the maximum and minimum values of f(x) where

f(x)=— 30 . State also the values of x, in the range 0 < x <360, at
Ssinx®°+12cosx®°+17

which they occur. (OCR)
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18 Express 3cosx®~ 4sin x° in the form Rcos(x +a)°, where R>0 and 0 < & <90 . Hence
(a) solve the equation 3cos x®—4sinx° = 2, giving all solutions between 0 and 360,
1

3cosx°—4sinx°+8
(OCR)

(b) find the greatest and least values, as x varies, of the expression

19 (a) Find the value of tan~'~/3 + tan_l(— 7%—)

() If x=tan™' A and y = tan"! B, find tan(A + B) in terms of x and y.
20 If A=sin"'x , where x>0,
. (a) show that cos A= V1-x2 R

(b) find expressions in terms of x for cosec A and cos2A.

21 (a) Find the equation of the straight line jgining the points A(0,1.5) and B(3,0).

C, where r is a positive number and

4° + 4 cos§° = 3. Calculate the value of 8 between 0 and 90 which satisfies this
eqiation. , (OCR)

22 Let a and b be the straight lines with equations y = m x +c; and y = m,x + ¢, where
mym, # 0. Use appropriate trigonometric formulae to prove that a and b are
perpendicular if and only if m;m, =-1. '



CHAPTER 5: TRIGONOMETRY . 81

23 The figure shows the graphs

{1} y=5co0s2x°+2
and

{2} y=cosx®
for 0= x=<180.

' AN T e '
(2) Find the coordinates of the points A \/2 y180 %
and B where the graph {1} meets the

X -axis.

{1

(b) By solving a suitable trigonometric
equation, find the x-coordinates of
the two points P and Q where the
graphs {1} and {2} intersect. Hence
find the coordinates of the points P and Q. (OCR)




6.1

Differentiating trigonometric functions

This chapter shows how to differentiate the functions sin x and cos x. When you have
completed it, you should

¢  be familiar with a number of inequalities and limits involving trigonometric
functions, and their geometrical interpretations
e  know the derivatives and indefinite integrals of sinx and cos x
e be able to differentiate a variety of trigonometric functions using the chain rule
e . be able to integrate a variety of trigonometric functions, using identities where necessary.

Some inequalities and limits
Fig. 6.1 shows a sector OAB of a circle with radis
r units and angle O radians (< %n) The tg
meets OA produced at D. Comparing argag

triangle OAB < sector OAB

$0 r2sin9<%r29<%r><rt

o —

Dividing by 572, it foll

First, sinceN@ > 0, you can divide the inequality sin8 <8 by 6 to obtain

sin@
—<1.
Z]

Secondly, you can write 8 <tan@ as 6 < im—z . Multiplying this by cos€ and dividing
cos »
by 6, both of which are positive since 0 <8 < %7: , gives

sin@
cosf<——.
.0
Putting these new inequalities together again gives, for 0 < 8 < %7: ,

cose<w<l.
7]



CHAPTER 6: DIFFERENTIATING TRIGONOMETRIC FUNCTIONS 83

This is illustrated in Fig. 6.2. £(8) (@)=1
Notice that the graphs have been
‘extended to the left to cover the £0)= sind
interval ~3x <@<37m. 6
£(8)= cost
Since cos(—0) = cos 9
sin(-0) _-sinf sind -3 jr. ©

and

(_9) - -9 - 0 » both Fig. 6.2

in 0 . . . .
cos@ and §1g_ are even functions. This shows that the inequality holds also for — 771' <0<0.

However, Fig. 6.2 obscures an important point, that % is not defined when 8 =0,

since the fraction then becomes the meaningless g But the graph does show that E%Q

approaches the limit 1 as 8 - 0.

sin@

As 050, — = 1.
0

Example 6.1.1

P
{(6,5in6) ;= ginx

0 0

3
Fig. 6.3

The inequality sinf <@ <tan@ also says something
about lengths. In Fig. 6.4, the sector in Fig. 6.1 has b
been reflected in the radius OB; C and E are the
reflections of A and D. Then AC =2rsin8,
arc ABC =r(20)=2rf,and DE =2rtan8. So the
inequality states that

chord AC < arc ABC < tangent DE. B
Note also that, in Fig. 6.4,

chord AC 2rsin 9 sin@

arc ABC ~ 2r@ 0 AN

so that the ratio of the chord to the arc tends to 1
as 0 tends to 0. This result will be needed in the next section. Fig. 6.4
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In a circular sector, as the angle at-the centre tends to O,
the ratio of the chord to the arc tends to 1.

6.2* Derivatives of sine and cosine functions

This section shows how the limits established in Section 6.1 can be used to differentiate
sines and cosines. You can if you like skip this for a first reading, and pick up the chapter at
Section 6.3.

The proof is based on the definitions of cos8 and sin@ (given in P1 Sections 10.1 and 10.2)
as the x- and y-coordinates of a point on a circle of radius 1 unit.

In P1 cos@ and sin @ were defined with @ in degrees, but the definitions work just as well
with @ in radians.

Fig. 6.5 Fig. 66

In Fig. 6.5, the point P has coordinates x = cos6 and y =sin@.If the angle is
increased by 860, x increases by 8x (which is actually a negative increase if @ is an
acute angle, as shown here) and y by 8y. The increases in x and y are represented in
the figure by the displacements PN and NQ.

Fig. 6.6 is an enlargement of the part of Fig. 6.5 around PNQ. Because the circle has
unit radius, the arc PQ has length 80 . Extend the line NP to R, parallel to the x-axis,
and let ¢ be the angle RPQ. Then

&x =PQcos¢ and O&y= PQsing.

Note that, since ¢ is an obtuse angle, these equations make dx negative and 8y positive,
as you would expect from the diagrams. If P were located in another quadrant of the circle,
the signs would be different, but the equations for 6x and 8y would stil! be correct.
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The aim is to find & and d_y’ which are defined as
do de

lim ax and lim 8_y
560 06 56-096 .

PQ chord PQ
Now .—=—7=X =CosPX ————= .
56 80 09T T ho

and —SX—QXSinq):sinq)xM.

50 50 arc PQ

The proof can be completed by considering the limits of
the two parts of these expressions separately. As 86 — 0,
the chord PQ becomes the tangent to the circle at P, and
Fig. 6.7 shows that the angle ¢ tends to 6+ %71: .Alsoit

chord PQ
arc

was shown in the last section that tends tg

Assuming (as is true) that the limit of the product is {
to the product of the two limits, it follows

Fig. 6.7

%=cos(9+%n)xl and

That is, E =
do

The relation ¢ =6 + drant 0 is in, so these results hold for all

valuesof 0 e R.

you can now treat trif§onometric functions much like other functions in the mathematical
store-cupboard, such as polynomials, power functions, exponential functions and
logarithms.

Putting the results of the last section into the usual notation, replacing 8 by x:

S ey et i

d . d .
—COSXx=-S8Inx, —SInX=COSJX. i@
dx dx &

YRt R
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Fig. 6.8 shows the graph of f(x)=sinx f(x)
for 0 < x <2z and, below it, the graphs of

f’(x)=cosx and f”(x)=—sinx. ' 7:'\'/27: x

You can see from-these that the graph of
.. . ; . .. f'(x)
f(x) is increasing when f’(x) is positive £(x) = cosx
and decreasing when f’(x) is negative.
There is a maximum at %n where cosx is W L
erfl N | —
zero, and f (7 7t) = —sm(7 7r) =-1<0.

£(x) 4

Also, the graph of f(x) is bending £7(x) = - sinx |
downwards between 0 and 7, where ’ /\ N
f”(x) = —sin x is negative. What is [ n ' m x

different in this example from other similar
diagrams (like Fig. 15.1 in P1) is that the
three graphs are simply translations of
each other parallel to the x-axis.

Fig.6.8

~Once you know the derivatives of sinx se the chain rule to find the

atd|cos x , you ca
derivatives of many other trigono {

tric fupcNons.

Example 6.3.1
Differentiate with respectto x

sin x

COS2 X

X (-sinx) =

sinx _sinx/cosx _tanx

cos? x CoS x Cos x
sin x . 1 . 2
or 7— =8§inx X 7 |=sinxsec” x
cos” x cos” x
sin x 1 sin x
or 7= — | X =secxtanx.
cos” x cosx cosx

The most usual fqrrn is the last one, and it is a result worth remembering.

d
—secx=secxtanx.
dx
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Example 6.3.2

Find i Insecx.
dx

d 1
—Insecx =——Xsecxtanx = tan x.
dx secx

In most practical applications, the independent variable for the sine and cosine functions
represents time rather than angle. Just as e* is the natural function for describing
exponential growth and decay, so sine and cosine are the natural functions for describing
periodic phenomena. They can be used to model situations as different as the trade cycle,
variation in insect populations, seasonal variation in sea temperature, rise and fall of tides (as
in P1 Example 10.1.2), motion of a piston in a car cylinder and propagation of radio waves.

Example 6.3.3 .
The height in metres of the water in a harbour is given approximately by the formula

R Y, BT
Eﬂt_fﬂ’ N, =5T..., 80

f’(x) =0 whel’sinx =0 or cosx =—1,thatis when x=0or %.

f”(x)=—-4cosx—4cos2x,s0 f7(0)=-4-4=-8 and f"(7r)=4—-4=0.There
is therefore a maximum at x =0, but the f”(x) method does not work at x =7 .
You must instead consider the sign of f’(x) below and above 7.

The factor 1+ cosx is always positive except at x =z, where it is 0; the factor
sin x is positive for 0 < x < 7 and negative for 7 <x <27 .So

f’(x) = —4sin x(1 + cos x) is negative for 0 < x < 7 and positive for 7 <x <27 .
There is therefore a minimum of f(x) at 7.

Over the whole domain there are maxima at 0, +27, 347, ...; the maximum value
is 4+1=75. There are minima at *7x, +3x, 57, ..., with minimum value
—4+1=-3.1If you have access to a graphic calculator, use it to check these results.

Notice that, although it is periodic, the graph is not a simple transformation of a sine graph.
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Exercise 6A

Use the inequalities sin@ < 6 < tan 8 for a suitable value of 6 to show that 7 lies between
3 and 24/3.

Differentiate the following with respect to x.

(a) —sinx (b) —cosx (c) sindx {d) 2cos3x

(e) sinjmx (® cos3mx (g) cos(2x~1) (h) Ssin{3x+17)
@ cos(im-5x) () -sin(jm-2x) &) -cos(im+2x) @ sin(}z(1+2x)
Differentiate the following with respect to x.

(@) sin’x (b) cos’ x (c) cos’x (d) 5sin? 1x

(e) cos*2x & sinx? (g) 7cos2x’ ) sinz(%x - ,_1;71')
@) cos’ 2zx € sin® x? (k) sin? x® + cos® x* 1) cos? %x

d ., d
Show that I cosec x = —cosec x cot , together with e secx =secxtanx,

to differentiate the following with regpg

(a) sec2x bsec (3x + %71.') (). sec(x -3 71.')
() 4sec’x cosec® 3x (h) sec? (Sx - % 7r)

908 x = —tan x : Use these and other similar results

.

to differentidtp Yihg wilhsespect to x.
0s 3x (¢) Incosec(x—7)

nsin“ x () Incos®2x

/ing with respect to x.

(b) ecosSx (C) Sesinzx

¢ inequality sin@ < @ holds for all values of 6 greater than' 0. By writing

¢0s 2(% 9) , prove that cos@>1— %92 for all values of @ except 0. Sketch graphs

afing the inequalities 1— %92 <cosf@<l.
(a) Find the equation of the tangent where x = %77: on the curve y=sinx.

(b) Find the equation of the normal where x = %n on the curve y = cos3x.

(c) Find the equation of the normal where x = %7[ on the curve y =secx.

(d) Find the equation of the tangent where x = %77: on the curve y=Insecx.

(e) Find the equation of the tangent where x = %n on the curve y =3sin’ 2x.

Find any stationary points in the interval 0 < x <27 on each of the following curves, and
find out whether they are maxima, minima or neither.

(@ y=sinx+‘cosx (b) y=x+sinx (c) y=sin2x+ZCosx

(d) y=cos2x+x (e) y=secx+cosecx (f) y=cos2x—2sinx
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10

11

12

13

14

15

16

17

18

19

20

Find %sin(a + x), first by using the chain rule, and secondly by using the addition

formula to expand sin(a + x) before differentiating. Verify that you get the same answer by
both methods.

Find % cos(% - 'x)”.'-vCheck your answer by simplifying cos(% n- x) before you

differentiate, and sin(% - 'x) after you differentiate.

Show that i(2 cos? x), —‘1(—2 sin® x) and icos 2x are all the same. Explain why.
dx . dx dx

. d . . e
Find —d;smz(x + % 7r) , and write your answer in its simplest form.

Find whether the tangent to y =cosx at x = %ﬂ' C axis above or below the origin.

1

y’——————— . Hence find an expression for
cosecx —sinx

The gross national product (GNP) of a country, P billion dollars, is given by the formula
P=1+0.02t+0.05sin 0.67, where ¢ is the time in years after the year 2000. At what rate
is the GNP changing

(a) in the year 2000, (b) in the year 20057

A tuning fork sounding A above middle C oscillates 440 times a second. The displacement
of the tip of the tuning fork is given by 0.02cos(27 x 440¢) millimetres, where ¢ is the
time in seconds after it is activated. Find

(a) the greatest speed, (b) the greatest acceleration of the tip as it oscillates.

(For the calculation of speed and acceleration, see M1 Chapter 11.)
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64 Integrating trigonometric functions

d . d : . . e
The results asm x=cosx and acos x=—sinx give you two indefinite integrals:

fcosxdxzsinx+k, fsinxdx=—cosx+k,

where x is in radians.

Be very careful to get the signs correct when you differentiate or integrate sines and
cosines. The minus sign appears when you differentiate cos x, and when you integrate
sin x. If you forget which way round the signs go, draw for yourself sketches of the sin x
and cos x graphs from 0 to %n’. You can easily see that it is the cos x graph which has
the negative gradient.

Example 6.4.1
Find the area under the graph of y = sin( v + O as far as the first point at
which the graph cuts the positivg/A\axis.

sin(2' + % n') =0 when 2x Q, 7,27, ... The first positive root is x = %n'-.

2sinAcos A=sin2A.

2cos? A=1%cos2A, 2sin? A=1-cos?2A.

Other results which are sometimes useful are

2sin Acos B = sin(A + B)+sin(A-B),
2¢cos A cos B = cos(A ~B) + cos(A + B),
2sin AsinB = cos(A ~ B) — cos(A + B).

It is easy to prove all of these formulae by starting on the right side and using the
formulae in the boxes in Sections 5.3 and 5.5.
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Example 6.4.2
Let R be the region under the graph of y =sin” x over the interval 0 < x < 7. Find
(a) the area of R, = (b) the volume of revolution formed by rotating R about the x-axis.

(a) The area is given by

T 1 1, 1A\
L sin xdx=J;)' i(l—cos2x)dx = i(x—istx)]O

=(17-0)-(0~0) =47
z 2
(b) The volume of revolution is given by f 7r(sin2 x) dx.
0

Now . (sin2 x)2 = (% (1-cos 2Jr))2 = %(1 —2¢0s 2x + cos? 2x)

5%(1—20052x+%(1+cos4x) nging 2cos’ A =1+ cos 24
3 1 1 with 2x instead of A
=g~5C082x+gCos4x.

So f”n'(sin2 x)2 dx = [n’(%x - %s'
0

The area is %n’ and the vol

Example 643"
Find (a) f sin2x co

(a) Writipg the formula for 2sin Acos B,

~3x) +sin(2x + 3x) = sin(~x) + sin 5x
=|—sinx +sin5x.
1 1

1 = -1
7(cosx—§cos5x)+k =5CO$X — 15 cosSx +k.

'

(b) None of the formulae given above can be used directly, but cos® x can be
written in other forms which can be integrated.

Method 1 cos® x = cos? xcosx = %(1 + c0os 2x) coS x

= %cosx +%cos2xcosx
= %cos x+ %(cos X+ cos 3x) using 2¢cos A cos B

= cos(A —B) +cos(A+ B
E%cosx+lcos3x. ( " ) ( )

)

Therefore f cos® xdx = %sinx + %sin 3x+k.
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Method 2 cos® x = cos® xcos x = (1 —sin? x) coS x
= oS x —sin’ x cos x.

You can integrate the first term directly. To see how to integrate sin” x cos x , look
back to Example 6.3.1(b). When cos* x was differentiated using the chain rule, a

d . . -
factor a;cosa_c = —sin x appeared in the answer. In a similar way,

3

d . . .
‘Ex—sm x =3sin® x x cos x = 3sin® x cos x.

Therefore j cos> xdx = J (cosx ~sin? x cos x)dx

=sinx—%sin3x+k.

i 3

1 xssinx—gsin X.

X3 sin,\:—isin3

Exercise 6B Eams

respectto x.

(b) sin3x (c) cos(2x+ 1)
(e) sin(l—x) ® cos(4 —% x)
(h) cos(3x - % n:) () -sinix
® [ cosxdx © j  sin2xdx
0 0
@ [ cos3rdx © [ safreiniac ® f sin{1 7 - x) dx
in in 0
1 i ) ) 2% .
(® J.b cos(1—x)dx (h) L s1n(% x+ 1) dx @) L sin % xdx

3 Integrate the following with respect to x.

(a) tan2x (b) cot5x (¢) sec3xtan3x
(d) cosec4x cotdx ) tan(% T— x) ’ ¢3) cot(% - 2x)
sin2x

(® sec(% x+1)tan(lx+1)  (h) cosec(l- 2x)cot(1-2x) (i) ol on
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©

Qg S o0 =029 [SeeL)) F
T O dy = ,ij/s(ﬂ% [+

Evaluate the following.

(a) f tan x dx b) f tan3x dx
0 0
i 37

(c) f cosec 3xcot3xdx d) f cot % xdx
in (a
1 03

(e) cosec 2xcot2xdx @ j sec % X tan % xdx
3 0.1

Integrate the following with respect to x.

(a) cos® x ®) cos? % x

© sin? 2x d) sin® x cos x

(e) sec® xtanx (write as seczx(sec xtanx)) () cosec®2x cot 2x

(g) sin3xcosdx rite as (1 ~ cos? x) sin x)

2
i) sin® x (write as (1 —cos? x) sinx)
(a) Find %sec2 x.Use sec’x=1+ta

(b) d QX d —Deduce d tan x.
dx dx

ec’xdx and fcotzxdx.

Find the area of the rog € curve y=cosx and the x-axis from x=0 to
-1
=5
Find ganerated when this area is rotated about the x-axis.
Find the\g on bounded by the curve y =1+sinx, the x-axis and the lines
x=0 and )

Find also the vdlyshe generated when this area is rotated about the x-axis.

The curves y =sinx, y = cosx .and the
x-axis enclose a region shown shaded in
the sketch.

(2) Find the area of the shaded region.

(b) Find the volume generated when this
region is rotated about the x-axis.

In the interval O < x < 7 the curve y = sin x +cosx meets the y-axis at P and the x-axis
at Q. Find the coordinates of P and Q.

Calculate the area of the region enclosed between the curve and the axes bounded by P
and Q. '

Calculate also the volume generated when this area is rotated about the x-axis.
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1

(b) Use the fact that V3 + 1)

Miscellaneous exercise 6
(a) Differentiate Insin2x with riespect to x, simplifying your answer.
(b) Find Jsin%xcos%xdx.

(c) Given that y = cos? x , find %

(d) Differentiate sin(z‘3 + 4) with respect to ¢.

(e) Find Jcos2 3xdx.

(f) Differentiate cos~/x with respect to x.

(g) Find Jsinz lxdr.

(a) Express sin® x in terms of cos2x.
(b) The region R is bounded by the p4

& ¥ =sinx between x = 0 and
ke solid formed when R is

(OCR)

(a) Use the addition formule

1
tanﬁﬂ.

sipolving surds for sin%ﬂ and

to sho_w that tan%ﬂ =2-43.
o ) and 12(2 — \/3) Use a calculator to

ect to 3 decimal places.

Vsec? x —1. Use the chain rule to find

pd %tan xfor O<x< %77.' in as'simple a form as possible.

Show that

ad R are the points on the graph of y =cosx for which x=0, x= %n’ and
x= %n’ respectively. Find the point § where the normal at @ meets the y-axis.
Compare the distances SP, SQ and SR. Use your answers to draw a sketch showing
how the curve y =cosx over the interval —%77: <x< %ﬂ' is related to the circle with

centre S and radius SQ.

By writing cos@ as cos 2(% 9) , and using the approximation sin8 = 68 when 8 is

small, show that cos@ =1— %92 when @ is small.

Since sine is an odd function, it is suggested that a better approximation for sine might
have the form sin6 ~ @ — k6> when 6 is small. By writing sin@ as sin 2(% 9) , using the

approximation cosf =1- % 6 and equating the coefficients of 62, find an appropriate
numerical value for k.

Investigate whether this approximation is in fact better, by evaluating 6 and 6 — k6*
numerically when 0 = %75 .
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7 The motion of an electric train on the straight stretch of track between two stations is given

10

-is modelled by the periodic function

by x= ll(t - ﬁsin(% t)) , where x metres is the distance covered ¢ seconds after
n .

leaving the first station. The train stops at these two stations and nowhere between them.

(a) Find the velocity, v m s~ in terms of 7. Hence find the time taken for the journey
between the two stations.

(b) Calculate the distance between the two stations. Hence find the average velocity of the
train.

(c) Find the acceleration of the train 30 seconds after leaving the first station. (OCR)

(For the calculation of velocity and acceleration, see M1 Chapter 11.)

A mobile consists of a bird with flapping

wings suspended from the ceiling by two

elastic strings. A small weight A hangs (®)
below it. A is pulled down and then

released. After ¢ seconds, the distahce,

y cm, of A below its equilibrium position A

y=15cos2t+10sinz.
(@) .
(b)

(©
(OCR)

(@)

Bcost x =fopdx +dcos2x+3.

(b) The region\g/shOwn shaded in the diagram,
is bounded“uy’the part of the curve y = cos® x
between x =0 and x = ;7 and by the x-and
y-axes. Show that the volume of the solid
formed when R is rotated completely about the

x-axisis 7. (OCR)

In this question f(x) =sinl x +cos % x.

(a) Find f'(x). ’

(b) Find the values of f(0) and £’(0).

(c) State the peridds of sin % x and cos % x.

(d) Write down another value of x (not 0) for which f(x)=£(0) and f’(x) = f'(0}).
(OCR)
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11 The diagram shows a sketch, not to scale, of part of ¥4
the graph of y = f(x), where f(x)=sinx+sin2x
and where x is measured in radians.
(a) Find, in terms of x,the x-coordinates of the o Z\_]E/-E D x
points A, B, C and D, shown in the diagram,
where the graph of f meets the positive x-axis.

(b) Show that f(zr —6) may be expressed as
sin @ —sin 20 , and show also that f(x —6)+f(x +60)=0 for all values of 8.

(c) Differentiate f(x), and hence show that the greatest value of f(x),for 0 < x =< 2rx,
occurs when

_—1++33
—5

cos x (OCR)

e



Revision exercise 1

1 You are given that the equation f(x) =0 has a solution at x = 3. Using this information, £\
write down as many solutions as you can to each of the following equations.

(@) 2f(x+5)=0 (b f(3x)=0
© [f(x)|=0 @ f(x})=0 (OCR)

2 Use the addition formulae to find an expression for cos>(A+ B) +sin?(A+ B). Verify that -
your expression reduces to 1. ‘ —

Use a similar method to find an expression for cos?(A+ B)—sin?(A + B). Verify that this
reduces to cos(2A +2B).

¢ 3 Differentiate each of the following functions with respect to x.

@ & 9 ® m(x*-1) 2

4 Solve the following equations and inequalities
@ [x-9]=16 , |x2-9|=162

(a) the area of R,
(b) the volume of the¢

. . q . de oo .
wings oscillate? ¥ind an expression for e the angular velocity, in radians per second.
t

“What is the value of 8 when the angular velocity has

(@) its greatest magnitude, (b) its smallest magnitude?
8 Find the following integrals.

@) fsin(Zx +37)dx (®) fsin2 3xdx © f}sinz 2xcos 2x dx
9 A polynomial P(x) is the product of (x3 tax® —x-— 2) and x—b.

(a) The coefficients of x* and x in P(x) are zero. Find the values of a and 5.
(b) Hence factorise P(x) completely and find the roots of the equation P(x)=0. (OCR)

10 Find the factors of the polynomial x* —x? —14x+24.
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% 11 The number of bacteria in a culture increases exponentially with time. When observation
started there were 1000 bacteria, and five hours later there were 10 000 bacteria. Find,
correct to 3 significant figures, -

(a) when there were 5000 bacteria, ‘
(b) when the number of bacteria would exceed one million,

(c) how may bacteria there would be 12 hours after the first observation.

12 (a) Let y=e>* ~* Find %.

2
(b) Find the coordinates of the stationary point on the curve y = e¥ ~6* and decide
whether it is a maximum or a minimum.

(c) Find the equation of the normal to the curve y = 3 6% gt the point where x=2.

13 (a) Find the gradient m of the line segment joining the

‘With this value of m, the line y =
meet the y-axis at C and intersect

a\ Sketclf sgparate diagrams
Sko¥jlg ABCD in the

3
~1 2
! aQ=77,A=37 ‘
(b) Use addition formulae to simplify sin(a - %n) + sin(a + %n) .
(c) Write down the coordinates of the mid-point of AC.
(d) Show that ABCD is a parallelogram. (OCR)

15 Solvethe equation 3cos2x +4sin2x = 2, for values of x between 0 and 27, giving your
answers correct to 2 decimal places.
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Differentiating products

You now know how to differentiate powers of x, and exponential, logarithmic and
trigonometric functions. This chapter shows how to differentiate some more complicated
functions made up from these four types. When you have completed it, you should

e know and be able to apply the product and quotient rules for differentiation.

The sum and product rules

If f(x) = x* +sinx, then f’(x)=2x+cosx. You know this because it was proved (in
P1 Section 6.6) that %xz =2x and (in Chapter 6) that %sin x =cos x.But the

statement also depends on another property of differentigti

Sumrule If % and v are functions of x, a

if y=u+v,then

Take a particular value\g
increases in u, v.a

- &y bu ov
& a, b s T =TT —/—.
dividing by &x 5 5y + 5

To find % , you must take the limit as &x — 0:

— = lim Q= lim (%+§)= lim %+ lim §Z =%+Q, as required.
dx &-08x - &-0\0x dx) &-00x &-08x dx dx

You might (rightly) object that the crucial assumption of the proof, that the limit of the
sum of two terms is the sum of the limits, has never been justified. This can only be an
assumption at this stage, because you don’t yet have a mathematical definition of what
is meant by a limit. But it can be justified, and for the time being you may quote the
result with confidence. You may also assume the corresponding result for the limit of
the product of two terms: this has already been assumed in earlier chapters, when
proving the chain rule and the derivatives of sinx and cosx.
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The rule for differentiating the product of two functions is rather more complicated than
the rule for sums.

Example 7.1.1 ,
Show that, if y = uv, then in general d does not equal haadV ﬂ
dx dx dx

The words ‘in general’ are put in because there might be special functions for

which equality does hold. For example, if # and v are both constant functions,

then y is also constant: % d and & are all 0,so & does equal %x d_v
dx  dx dx dx dr dx

To show that this is not always true, it is sufficient to find a counterexample. For
‘ . . d '
-example, if u = x% and v = x?,then y=x’.In this case ay =5x*, but

du dv
— X o =2x x3x% =6x>. These two expfessions.are not the same.

dx

rule,. but with y =uv.Then

u(8v) + (Su)(dv).

(S lEp

To find the correct rule, use the same notatign as for the §

. (du) .
)+ tim{ 2 im@.

Product rule If ¥ and v are functions of x,and

if y=uv,then gX=d—uv+uﬂ.
dx dx dx

Example7.12
Verify the product rule when u = x*and v=x>.

3

Using the equation in the box, the right side is 2x x x> + x% x 3x? = 2x* +3x% = 5x*,

which is the derivative of y = x2 xx% = x>,
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Example 7.1.3
Find the derivatives with respect to x of  (a) x3sinx, (b) xe¥, (c) sin® xcos® x.

(a) ad;(x3 sinx) =3x% xsinx+ x> Xcosx = 3x% sinx + x> cos x.
d/ 3 3 3 3 3 3

b) —(xe’*)=1xe”* +xx[e’* x3)=e”* +3xe”* =(1+3x)e”*.

® )= 1xe (e <3 1+39

d,. . . .
© a(sm5 xcos® x) = (5 sin x x cos x) cos® x +sin® x(3 cos? x X (—sin x))
= 5sin* xcos* x —3sin® x cos® x
=sin* xcos? x(S cos” x —3sin’ x).

du - . d
Notice that in part (c) the chain rule is used to find au and _v-

Example 7.14

d .
The product rule gives ay =sinx + apgentat a point P

(p, psin p) has gradient si to equal the gradient of OP,

which is 222

This is illustrated in Fig. 7.1. The graph
oscillates between the lines y=x and y=-x,
" touching y = x when sin|x|=1,
-and y=—x when sin| x|=-1.

Fig.7.1

Exercise 7A SRR s

1 Differentiate the following functions with respect to x by using the product rule. Verify
your answers by multiplying out the products and then differentiating.

@ (x+1)(x-1) () x*(x+2) © (x°+4)(x*+3)

@ (3x*+5x+2)(7x+5) () (¥ -2x+4)(x+2) (O x"x"



102

PURE MATHEMATICS 2 & 3

2 5

12

14

Differentiate the following with respect to x.
(a) xe* (b) x*Inx © x*(sinx+1)
(d) sinxcosx (e) xcosx ) e *sinx
Find dy when

dx
(a) y=(x2 +3)e", (b) y=x’(sinx+cosx), (c) y==xsin’x.

Find f’(x) when
@ f(x)=x*(2+¢*), ) f(x)=x%%, © f(x)=(4+3x%)Inx.

Find the value of the gradient of the following curves when x =2. Give your answers in
exact form.

@ y=xe?* (b) y=e s () y=xIn3x

Find the equations of tangents to the foflowing curvds §t the given points.

x*Inx when x=1

=x%2* when x=0

(@ y=xsinx when x=7r
() y=x+3x+1 when x =%

=x%e7*,

27N 5x% +2 (¢) sin*2xcos’5x

Nxln2x 6 e* cos(bx + %n:)

The volume, V , of a solid is given by V = x?«/ 8 —x . Use calculus to find the maximum
value of V and the value of x at which it occurs.

Find the x-coordinates of the stationary points on the curve y = x"e™, where n is a

positive integer. Determine the nature of these stationary points, distinguishing between the
cases when # is odd and when 7 is even.
. d du dv dw
Use the product rule to establish the rule, —uvw = —vw +u—w + uv —, for
dx dx drx dx

differentiating a ‘triple’ product uvw. Use the new rule to find

@) %xex sinx, ) i—xze_” cos4x.

T A B T 0 e T R S S B P e s e D R M T SOt
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7.2 Differentiating quotients

. u o .
Functions of the form — can often be written in a different form so that they can be

v
differentiated by the product rule.

Example 7.2.1 : sin x x
Differentiate with respectto x  (a) f(x) = ) gx)=

e
e’ sinx’

. | . —x
(a) Since — =e™, you can write f(x) as ™" sin x. Therefore
y d/ .. —x\ x x .
f(x)=—(e smx)=(—e )smx+e cosx =e ~(cosx —sinx).

1
(b) Method1 You can write g(x) as e* x——, s0
sinx

, d ., 1 s df 1
gix)=—e" x—+e* x—| —
dx sin x dx \sin x

using the product rule and then the chain rula,

2

_[sinx—cosx
=e’2xe x( : )
sin” x

x(sinx—cosx)
=" ———|
sin” x

- . o u .
However, it is often useful to have a separate formula for differentiating —. This can -
. 14

1 .
be found by applying the product rule to %X —, using the chain rule to differentiate o
v

This gives

d(u) d(uxl) duX1+ x( l)dv
diE_<C il P AVS-NRY I il
dr\v/ dx v dr v v/ dx




B
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This can be conveniently written as:

Quotient rule If u and v are functions of x, and

du dv
v
. Lo f(x dy - f'(x)g(x)—f(x)g’(x
In function notation, if y= Q,then A (x)g(x) 2( g€ ).
g(x) dx g(x)

. L . . . . . sinx
An important application of this rule is to differentiate tanx. Since tanx = ,
the quotient rule with u =sin x, v =cosx gives cosx

4 oy SOSXXCOS X —sin XX (—sin/?);_ees\fz}ctsin2 x 1
dx . (cosx)? cox’ cos® x’
. | N
Since is secx, you can writgathis as)
COoS X
d 2
—tan x =sec” x.
dx
You will ofter{ne isfesllt, so Yoshould remember it. You also need o recognise its

integral form:

Example 7.2.2

1z
Find J” sec?(2x —17) dx.
. _

This integral is of the form f glax +b) dx, where g(x) =sec” x.

So, using the result in P1 Section 16.7, the integral is

[3tan(2x - 4",

withvalue%tan%n—%tan(—% )=%(% 3+«/§)=%«/—§.
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Example 7.2.3
x-1
x2+3°

Find the minimum and maximum values of f(x)=

The denominator is never zero, so f(x) is defined for all real numbers.
The quotient rule with # =x—1 and v = x? +3 gives

1><(x2+3)—(x—1)><2x__.x2 +2x+3

F)= (x2 +3)2 B (x2 + 3)2
_¥-25-3) Gran-3).
(x2 + 3)2 (x2 + 3)2

So f’(x)=0 when x=-1 and x=3.

You could use the quotient rule again to find £
easier to note that {’(x) is positive when -1
when x >3. So there is a minimum at x = —

The minimum value is f(-1) = —4_2 =

2
x
Y >
- (© 1+2x?
ex
1+x3’ ® 2+l
- 2 , differentiate cotx with respectto x.
3 Differentiate with respect to x
. 2
sinx x X
(2 0% b X, © (—) .
x sin x sin x
4 Differentiate with respect to x
@ X ®) Jx—-5 © A3x+2
Jx+1’ x 2x
§ Find d_y when
dx
cos x e* +5x vl-x
a = . b = s C = .
@ vy Ix ® y o _2 ©) y N+ x
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6 Find d_y when
dx

2
Inx In{x”+4 In(3x +2
@ y=—-, () y=———( . ) © y=——( ),
X X 2x-1
7 Find the equation of the tangent at the point with coordinates (1,1) to the curve with
2 ' '
x“+3
nati = . OCR
equation y 73 ( )
ex
8 (a If f(x)= , find f'(x).
(@) If £(x) P ()

(b) Find the coordinates of the turnfing point of the curve y =f(x).

9 Find the equation of the normal to the curve y= at the point on the curve where

x(x-3)
x=2.
10 Find the turning points of the curve
. x*—3x
11 (a) If f(x)= ,find f
+1
(b) Find the valu ¥§ decreasing.
Calculéte
1
. 3x - 7 75) dx.
A

2 Giventhat y= xe > find dy .
dx
Hence find the coordinates of the stationary point on the curve y = xe %, (OCR)
3 A function f is defined by f(x)=¢"cosx (O=sx=27).

(a) Find f'(x). .
(b) State the values of x between 0 and 2z for which f'(x)<0.

(c) What does the fact that £(x) <O in this interval tell you about the shape of the
graph of y=1{(x)? : (OCR)

4 Find the gradient of the curve y = SJ? at the point where x = 7, leaving your answer
. x
in terms of 7. (OCR)
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d
5 Use appropriate rules of differentiation to find ay in each of the following cases.

2

: 10
(a) y=sin2xcosdx b)) y= fi for x>1 © y= (1 - %) (OCR)
nx

6 Use differentiation to find the coordinates of the turning point on the curve whose equation

4 .
is y= f&z. (OCR)

. sinx
7 A curve C has equation y =——, where x>0.
x

d : ’ :
Find ExX’ and hence show that the x-coordinate of any stationary point of C satisfies the

equation x =tanx. (OCR)
8 A curve has equation y= S
. - N2x?+1
(a) Show that dy = (2x2 + 1)—%
N dx ‘
(b) Hence show that the curve has no { (OCR)
9 ix
10
_ D

VE {d with AB and CD each inclined to the line BC at an angle 6.
Show that B¢ #— d cosec) and that the area of the cross-section ABCD is

2ad +d*(cdt6 - 2 cosec8).
Show that the maximum value of 2ad + a'2(cot0 —2cosecB), as @ varies, is d(2a - dx/§) .
By considering the length of BC, show that the cross-sectional area can only be made
equal to this maximum value if 2d < a3. (OCR)

11 (a) Find the value of x for which x%e™ has its maximum value, where a is a positive
constant. Denoting this by ¢, and the maximum value by M , deduce that

_ M .
xe ¥ <— if x>c.
x

Hence show that xe™ — 0 as x —> e,

(b) Use a similar method to show that x%e™® — 0 as x — .
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8.1

Solving equations numerically

This chapter is about numerical methods for solving equations when no exact method is
available. When you have completed it, you should

be able to use the sign-change rule to find approximate solutions by decimal search
know how to use a chord approximation to improve the efficiency of decimal search
be able to use an iterative method to produce a sequence which converges to a root
understand that the choice of iterative method affects whether a sequence converges
or not, and know what determines its behaviour

appreciate that it is possible to modify an iterative method to speed up convergence
e appreciate that decisions about choice of method may depend on what sort of
calculator or computer software you are using.

How you use this chapter will depend on wHarCalculatinp\aids you have available. It has
been written to emphasise the underlying mf i inciples, so that you can
follow the procedures with a simple calculator. But if yoy have a programmable or
graphic calculator, if you like to y érprograms, or if you have
access to a spreadsheet program, out some of the calculations
far more quickly.

dduced to one of these forms, then you have a method for
no simple method exists, and then you have to resort to

wNgIN{(x) takey the value O is called a root of the equation. The solution of the
equatien 1§ theAet of all the roots.

A useful w¥y of representing the solution of f(x)=0 is to draw the graph of y = f(x).
The roots are the x-coordinates of the points of the graph that lie on the x-axis.

This observation leads at once to a very useful rule for locating roots.

Sign-change rule
If the function f(x) is continuous in an interval p < x < g of its
domain, and if f(p) and f(g) have opposite signs, then f(x)=0
has at least one root between p and q.

This rule is illustrated in Fig. 8.1. The condition that f(x) is continuous means that the
graph cannot jump across the x-axis without meeting it.
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The words ‘at least one’ are
important. Fig. 8.2 shows that
there may be more than one root
between p and g.

When you have an equation

f(x) =0 to solve, it usually helps
to begin by finding the shape of the
graph of y =f(x). Suppose that
you want to solve the cubic
equation

-3x-5=0.

Writing f(x)=x>-3x-5,you
can find

y=1(x)
N o
P w) x f(p)y q x

Fig. 8.1

y=1(x) y=1(x)

/.,

Kg‘?ﬁ ’
P\/Xx /\_/Qx

Fig. 8.2

f(x)=3x% =3 =3(x+1)(x—1) and £”(x) = 6/

x =-1 and a minimum where x =1.The

It follows that f(x) has a maximum where YA y=s3 —3x—5/

coordinates of the maximum and minimum
points are (—1,-3) and (1,-7) . From this yol

can sketch the graph, as in Fig. 8.3

(t,-7)

Fig. 8.3

Continuing with the €quation x> —3x —5=0, the graph in Fig. 8.3 suggests calculating
f(2)=-3 and f(3) =13. It follows that the root is between 2 and 3.

You could now start calculating (2.1), f(2.2),... until

B(3,13)

you reach a value of x for which f(x) is positive. But

pause to ask if this strategy is sensible. Fig. 8.4 is a sketch

of the graph of f(x) between x =2 and x = 3. Since

AP =3 is about % of BQ =13, you might guess that X

is about é of the distance from P to Q. So it might be

best to begin by calculating f(2.2) = —-0.952. Since this is P .
negative, go on to calculate f(2.3) = 0.267. X 0 x

There is no need to go further. Since f(2.2) is negative A(2,-3)

and f(2.3) is positive, the root is between 2.2 and 2.3.

Fig. 8.4
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If you have access to a graphic calculator, the equivalent procedure would be to zoom in on

-the interval 2 < x < 3. You will then see that the graph cuts the x-axis between 2.2 and 2.3.

You now repeat this process to get the second decimal place. Since |f(2.2)| = 0.952 is
about 4 times | £(2.3)| = 0.267, the root is probably about % of the distance from 2.2 to
2.3, 50 begin by calculating £(2.28) = 0.012... . Since this is positive, 2.28 is too large,
so try calculating £(2.27)=—0.112... . This is negative, so the root is between 2.27 and
2.28.

With a graphic calculator you would zoom in on the interval 22 < x < 2.3, and see that
the graph cuts the x-axis between 2.27 and 2.28.

To make sure you know what to do, continue the calculation for yourself to the third
decimal place. You will find that f(2.279) is negative, and you know that £(2.280) is
positive, so the root is between 2.279 and 2.280.

This process is called decimal search.

What you are finding by this method are thd d s¢quences: one sequence of

numbers above the root
ag=3, a,=23, a,=2.)

and one sequence of nupbs

Solve the equation xe* =1,

Begin by investigating the equation graphically, using the idea that a root of an
equation f(x) = g(x) is the x-coordinate of a point of intersection of the graphs of
y=1(x) and y = g(x). Fig. 8.5 shows four differerit ways of doing this, based on
the equation as stated and the three rearrangements

, x=e ¥, x=-Inx.
All the graphs'%how that there is just one root, but the third graph is probably the

most informative. The tangentto y =e™ at (0,1) has gradient —1,and so meets
y=x at. (%,%) - This shows that the root is slightly greater than 0.5.
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y
YA
74 y=1x y=x
y=1 N\
5 y=e™* '

X X X \ X

y=xe™ y=-Inx
Fig.8.5

To use the sign-change method you need to write the equation as f(x) =0. There
dre again several possibilities:

xe*-1=0, e*-—=0, x—¢

difference which equation you use. B
form whose calculation involves the feRe
take f(x)=x+Inx.

0.56 and 0.57, and | (0.56)| is between 2 and 3 times
|£(0.57)/. This sdggests that the root is between 2 and % of the distance from

3
0.56 to 0.57, which is about 0.567. So calculate

£(0.567) = -0.000 39... (0.567 is too small),
£(0.568) = 0.002 36... .

The root therefore lies betweenVO‘.567_ and 0.568.

At each stage the first step is to decide the next x-value at which to begin looking for the
root; this corresponds in Fig. 8.4 to estimating where the chord AB cuts the x-axis. .
There is no point in doing this calculation very accurately; its only purpose is to decide
where to begin the next step of the search, and for that you only need to work to 1
significant figure. : o



112 PURE MATHEMATICS 2 & 3

24

Exercise 8A &

1 Show that the equation 2x> =3x2 =2x+5=0 has a root between —1.5 and —1.
2 The equation e * —x+2 =0 has one root, & . Find an integer N such that N<a<N+1.

3 Given f(x)=3x+13—-¢*, evaluate f(3) and f(4), correct to 3 significant figures. Explain
the significance of the answers in relation to the equation 3x+ 7 =e”.

4 For each of parts (a) to (f),
(i) use the sign-change rule to determine the integer N such that the equation
f(x)=0 has aroot in the interval N<x <N +1;

(ii) use decimal search to find each root correct to 2 decimal places.

(@) f(x)=x"-5x+6 ®) fxX)=x+Vx*+1-7 () f(x)=e"—§
X
(d) f(x)=1000—e" Inx ) )= -12-x (f) f(x)=x"+x"-1999

X, X,
0 o | 9 057114 18 0.56712
1 10 0.564 88 19 0.56716
2 0.367 88 11 056843 | 20 0.56714
3 0.692 20 12 056641 | 21 0.56715
4 0.500 47 13 056756 2 0.56714
5 0.606 24 14 056691 | 23 0.567 14
6 0.545 40 15 056728 | - 24 0.567 14
7 0.579 61 16 0.567 07 '
8 0.560 12 17 0.56719

Table 8.6

From r =22 onwards it seems that the values correct to 5 decimal places are all
0.567 14 . This is especially convincing in this example, since you can see that the terms
are alternately below and above 0.567 14 ; so once you have two successive terms with
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this value, the same value will continue indefinitely. (You met a similar sequence in P1
Section 14.3. The sum sequence for a geometric series with common ratio —0.2 had
terms alternately above and below 0.8333...))

Notice also that the limit towards which these terms are converging appears to be the
same (to the accuracy available) as the root of the equation x =e™ found in

Example 8.2.1. The sequence illustrates a process called iteration, which can often be
used to solve equations of the form x = F(x).

If the sequence given by the inductive definition x,,,; = F(x, ), with some initial
value x,,converges to a limit /, then [ is a root of the equation x = F(x).

x,,; tends to [ as r — o, and the right side F(x,) te (To be sure of this, the
function F(x) must be continuous.)

So [ =F(/); that is, [ is a root of x = F(x).

x3>=3x+5, or

This is of the form x = 3 1d the root by iteration, using a
sequence defined by

r x,
0 2 4 227862 8 227902
1 2.22398 5 227894 9 227902
2 226837 6 227900
3 2.276 97 7 227902

Table 8.7

This suggests that the limit is 2.279 02, but this time you cannot be quite sure. Since the
terms get steadily larger, rather than being alternately too large and too small, it is just
possible that if you go on longer there might be another change in the final digit. So for
a final check go back to the sign-change method. Writing f(x) = x® —=3x -5, calculate
£(2.279015)=—0.000 047 ... and £(2.279 025) = 0.000 078 ... This shows that the
root is indeed 2.279 02 correct to 5 decimal places.
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At each step of this iteration you have to use the key sequence [x, 3,+,5,=, 3/— ] o get
from one term to the next. If you have a calculator with an [ANS] key, or if you set the
process up as a small computer program or a spreadsheet, you can get the answer much
more quickly.

8.4 [Iterations which go wrong

There is more than one way of rearranging an equation f(x)=0 as x = F(x). For
example, x* =3x~5=0 could be written as

_.3 _1(,3
3x=x"-5, or x—g(x —5).
But if you perform the iteration

Xo4l =%(x,3 -—5), with xy =2,

the first few terms are

2,1,-133333,-245679,—6.609 J

The terms ar€ alternately above and below the root, as they were in Example 8.3.1; but
they get further away from it each time until you eventually get a term which is outside
the domain of Inx.

So if you have an equation f(x) =0, and rearrange it as x = F(x), then the sequence
x,,1 = F(x,) may or may not converge to a limit. If it does, then the limit is a root of the
equation. If not, you should try rearranging the equation another way.

Exercise 8B

1 For each of parts (a) to (c), find three possible rearrangements of the equation f(x)=0 into
the form x = F(x).
@ f(x)=x"—5x+6 ) f(x)=e*=> © f(x)=x5+x>-1999
x
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Each of parts (a) to (c) defines a sequence by an iteration of the form x,,, = F(x, ).

(i) Rearrange the equation x = F(x) into the form f(x)=0, where f is a polynomial
function.

(ii) Use the iteration, with the given initial approximation x;, to find the terms of the
sequence Xy, Xx;,... as faras x;.

(iii) Describe the behaviour of the sequence.

(iv) If the sequence converges, investigate whether x5 is an approximate root of f(x)=0.

_ 2
@ x=0,x, =Nx7-6 (b) xo=3,x,+1=(i—x'—)

X
© xo=7,%,,=3/500+ 2
x?'

Show that the equation % +x-19=0 canbe arrange

r

19 ; a and that
x

atQ the form x =3

the equation has a root ¢ between x =1 and x

Use an iteration based on this arrangement, with fnitial approxjmation x, =2, to find the

values of x;,x,,...,xs. Investigate whether th

e of the positive integer N such that the equation 12— x—Inx =0

has a root\y gach that N<a < N+1.

(b) Define the sequence x,,x;,... of approximations to ¢ iteratively by x, =N +%,
x4 =12-Inx,.
Find the number of steps required before two consecutive terms of this sequence are

the same when rounded to 4 significant figures. Show that this common value is equal
to « to this degree of accuracy.

Sketch the graphs of y =x and y = cos x, and state the number of roots of the equation
X =cosx.

Use a suitable iteration and starting point to find the positive root of the equation x = cos x,
giving your answer correct to 3 decimal places.

Show that the iteration x =cos™ x starting from x =0 does not converge.
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Choosing convergent iterations

The rest of this chapter is about how to rearrange an equation to ensure that the iterative
sequence converges. You may if you like omit it and go on to Miscellaneous exercise 8.

The solution of x = F(x) can be répresented graphically by the intersection of the graph
of y=F(x) with the line y = x.Fig. 8.8 shows this for the equations in the last two
sections, each with two alternative forms.

(a) xe* =1 () x> ~3x-5=0
3_
() x=e™* (i) x=—Inx () x=33x+5 (ii) x=-x3—5
y y y y4
. x x3 =5
y=e y=—Inx y= 3
y=3Bx75
y=x y=x

he gradient of the graph of y =F(x) ator

converges quite fast, taking only 7 steps to reach the root correct to 5 decimal places.
The terms get steadily larger, approaching the root from below.

In (b)(ii) the gradient is positive and numerically large (about 5). The sequence does not
. converge, and the terms get steadily smaller. '

This discussion points to the following conclusions, which are generally true. You can
test them for yourself using the sequences which you produced in Exercise 8B.
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If the equation x = F(x) has a root, then a sequence defined by x,,, = F(x,)
with a starting value close to the root will converge to the root if the gradient
of the graph of y=F(x) at and around the root is not too large (roughly
between —1 and 1). . :

The smaller the modulus of the gradient, the fewer steps will be needed to
reach the root to a given accuracy.

If the gradient is negative, the terms will be alternately above and below the
root; if it 1s positive, the terms will approach the root steadily from one side.

% ,%:,: W"irigav“%"ffs\ﬁv »yg, E’ i ‘:A s
There is one further point to notice about these examples. The pairs of functions used for
F(x) are in fact inverses.

(@) x > [ +/— ][ exp]— has output e™*,

[ +/- ][ In ]« x (read from right to lef :

(b) x—>[><3]—>[+5]—>[§/_]—> has output 3/BA
“[+3]e[-5][() [exna

The graph of y = x* —3x —1 is shown in r4
Fig. 8.9. It is in fact the graph in Fig. 8.3
translated by +4 in the y-direction. You can
see that it cuts the x-axis in three places:
between —2 and —1, —1 and O0,and 1 and 2.

y=x3—3x—1

You could use iterations based on a \ *
rearrangement x = F(x), where F(x) is either
% (x3 - 1) or 3/3x +1. These are illustrated in
Fig. 8.10; again, they are inverse functions.
To get a small gradient at the intersection,
you should use F(x)=3/3x +1 for the first
and last of the roots, and F(x) = %(x3 - 1)
for the middle root.

Fig.89
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Fig. 8.10

You can check for yourself that:

X,41 = 33x, +1 with x, = -2 reachey tffe root —1.

X4 = %(x,3 —1) with xo =0 reache} the root —0.3

Al in 11 steps,
§73 in 4 steps,

94/1in 6 steps.

The next example shows a trick whick ¥ow.Cag use to reduce the number of steps needed to
reach the root, or even to HCE ergent Meration from one which does not converge.

For each of the
both sides, and
gradient.

(b) x=—-Inx, addanextraterm kx to

% ™. You saw earlier that near the root the graph of e™*

—0.5,50 kx+e™ has a gradient of about k—0.5. To
,choose k =0.5. Then the equation becomes
£05x+e*, or x= %(x+2e“").

3 x’) with x, =1 reaches the root 0.567 14, correct

to 5 decimal places, in 4 steps. (In Example 8.3.1 it took 22 steps of the iteration
X,,; =€ to achieve the same accuracy.)

The iteration x,.,, =1 (x, +2e

(b) Write kx+ x = kx —In x. Near the root the graph of —Inx has a gradient of
about —2,s0 kx —Inx has a gradient of about k —2. Choose k =2, so that the
equation becomes

3x=2x—Inx, or x=%(2x—lnx).

The iteration x,,, = %(2}5 —Inx,) with x, =1 reaches the root in 6 steps.
(You saw in Seetion 8.4 that the iteration x,,; = —Inx, does not even converge.)
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Exercise 8C*

In parts (a) to (e), sketch the graph of y = F(x), and hence decide whether the iteration
x,41 =F(x,), with initial approximation x,, is suitable for finding the root of the equation
x =F(x) near to x = x,.

Where the process leads to a convergent sequence of approximations to the required root,
find this root. Where the process is unsuitable, find F*(x) and use it to find the root.

* In parts (a) and (b) give your answers correct to 3 decimal places; in parts {(c) to () give

your answers cotrect to 4 decimal places.

X _
@ F@)==-1, %=1 (b) Fx)=5-¢e*, x,=0
(€) F(x)=jtanx, x,=1 @) F(x)=30-%x°, x5=-2

(e) F(x)=2sinx, x0=%7t

In each of parts (a) to (d) find a constant %k for
kx4 + %, =kx, +F(x,)

is a better form than x,,; =F(x,) to us

In each case, find this root correct to 4

(a) F(X)=2—51nx_, Xy =

¢Xists a root x = ¢ of the equation x*—6x+3=0 such that 2< o <3.
Use decimal search to find this root correct to 2 decimal places.

Show that the equation 2x— 1n(x2 + 2) =0 has a root in the interval 0.3<x <04 .Use
decimal search to find an interval of width 0.001 in which this root lies.

The equation e* =50+2x—1 has two positive real roots. Use decimal search to find the
larger root correct to 1 decimal place.

(a) On the same diagram, sketch the graphs of y=2"" and y=x2.

(b) One of the points of intersection of these graphs has a positive x-coordinate. Find this
x-coordinate correct to 2 decimal places and give a brief indication of your method.
(OCR)
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7 (a) On a single diagram, sketch the graphs of y =tanx® and y =4cosx°®—3 for
0 =< x < 180. Deduce the number of roots of the equation f(x)=0 which exist for
0 < x <180, where f(x)=23+tanx°—4cosx°.

(b) By evaluating f(x) for suitably chosen values of x, show that a root of the equation
f(x) =0 occurs at x =28 (correct to the nearest integer).

8 Show that there is a root o of the equation 2sin x° — cos x°+1=0 such that
230 < & < 240. Use a decimal search method to determine this root to the nearest 0.1.

9 The points A and B have coordinates (0,—2) and (-30,0) respectively.
(a) Find an equation of the line which passes through A and B.
The function f is defined by f(x)=1+tanx°, 90 < x<90.
(b) Explain why there is just one point where the line in (a) meets the graph of y = f(x).

(c) Use an appropriate method to find the value of the integer N such that the value of the
x-coordinate of the point where the grdph-o (x) meets the line of part (a)
(OCR, adapted)

10

e/turning point on the curve with

11 The region, R, of the plane encldgsa \ e axes, the curve y =e” +4 and the line x =2
has area A . Find, corpé
portion of R betwes

that this root has the required degree of accuracy?

(c) Deduce the value, to 2 decimal places, of one of the foots of the equation e* —3x=0.
14 (a) Show that the equation x3-3x2=1=0 has aroot o between: x=3and x=4.

(b) The iterative formula x,,; =3+ — is used to calculate a sequence of approximations
r
to this root. Taking x; =3 as an initial approximation to &, determine the values of

X;,X,,x3 and x, correct to 5 decimal places. State the value of ¢ to 3 decimal places
and justify this degree of accuracy.
15* (a) Show that the equation x +Inx—4 =0 has aroot « in the interval 2 < x <3.
X,

(b) Find which of the two iterative forms x,,; = e*™ and X, =4-Inx,

is more likely to give a convergent sequence of approximations to ¢, giving a reason
for your answer. Use your chosen form to determine o correct to 2 decimal places.
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16” (a) Find the positive integer N such that the equation (# —1)In 4 = In(9¢) has a solution
p q
t=r inthe interval N<t<N+1.

(b) Write down two possible rearrangements of this equation in the form 7 = F(z) and
t=F'(¢). Show which of these two arrangements is more suitable for using
iteratively to determine an approximation to 7 to 3 decimal places, and find such an
approximation.

17" (2) The equation x = F(x) has a single root ¢ . Find by trial the integer N such that
N<a<N+l1. v
(b) By adding a term kx to both sides of x = F(x), where k is a suitably chosen integer,
determine @ correct to 4 decimal places.

18" (a) Find the coordinates of the points of intersection of the graphs with equations
p

y=x and y = g(x), where g(x)= é
X

(b)

©
@

19* (a)

(b)
(©)

by, such that by —a, =10 and gy < < b, .

¢re m=1(ay +by). Determine whether a, <a <m or m<o < b.

f two numbers, a; and b,,suchthat b, —a, =5 and g, <a <b,.

(d) Use a metheg/similar to part (c) to find two numbers, a, and b,, such that
by—a,=25and a, <a<b,.

(e) Continuing this way, find two sequences, a, and b, , such that b, —a, =10x27" and
a, <o <b,. Go on until you find two numbers of the sequence which enable you to

write down the value of ¢ correct to 1 decimal place. (This is called the ‘bisection
method’.)

20 Given the one-one function F(x), explain why roots of the equation F(x)=F~}(x) are
also roots of the equation x = F(x).

Use this to solve the following equations, giving your answers correct to 5 decimal places.

(@ x*-1=3+x, (b) {5e* =In(10x). ‘
R R O A B R S T A T e A R A R T R A s R e O A e e e R R R A A
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The trapezium rule

This chapter is about approximating to integrals. When you have completed it, you
should

e be able to use the trapezium rule to estimate the value of a definite integral
e be ableto use a sketch, in some cases, to determine whether the trapezium rule
approximation is an overestimate or an underestimate.

The need for approximation

There are times when it is not possible to evaluate a definite integral directly, using the
standard method,

[ iwa=nwE =10 1@,

where I(x) is the simplest function for whi¢h

1
Two examples which you cannot infeXte\with yourknowledge so far are j l——zdx
0o l+x

1
andf 1+x° dx. You
0

-

gthod for approximating to the integrals.

b
dtimate for the integral | f(x)dx.
a

=¥

Fig. 9.1 Fig.9.2

The area of the shaded trapezium is given by
area of trapezium = 5 X (sum of parallel sides) x (distance between them),

1
so  area of .trapezium = % x (f(a)+ (b)) x (b-a).
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b
f £(x) dx = 1 (b~ a)(f(a) + £(5)) .
This is the simplest form of the trapezium rule.

Example 9.2.1 -
Use the simplest form of the trapezium rule to find estimates for j ) dx and

1 0o l+x
j\/1+x3dx.
0

1
1 ! 1 1 1
jo 1+x2 dx=7(1—0)(W+1—+—17)=7xlx(1+7)=075.

X (V2 +1)=121.

=1
2

The trapezium rule: general form

If you said that the simple form of the trapezium rate, especially

over a large interval on the x-axis, you wo

You can improve the accuracy by dividing the\lrs i a-from a to b into several
smaller ones, and then using the trgpezium rule\oi\ interval. The amount of work
sounds horrendous but, with goofl ihegatie ¥sabion, it is not too bad.

y
intervals, each of width y=1(x)
Call the x-coordinate o
interval x,, so" %y = 3
X=Xt K= R wnd 39 o unti fl@)=yof »| 3| aut| |pn =£(b)
Xp-1 = X0

a=xy x X XX, =b  x

b

“To shorten the's

Yo =f(x0), 1 =  d soon, as in Fig. 9.3,

, / Fig.9.3
Then, using the simple form of the trapezium rule on

each interval of width & in turn, you find that

\ .
f f(x)dx = L h(yo +y1)+ LB +3,) + 3 (¥, +33) +ooo+ L h(y, s + 3,)
a

Do+ M +N+M+ M+ Y3+t Yy + Vpit + Yuo1 +Yn)

h
h{(yo +90)F 200 Y5 o V)

NI'— NI'—‘

“The trapezium rule with n intervals is sometimes called the trapezium rule with n +1

ordinates. (The term ‘ordinate’ means y-coordinate.)
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R B R ST R Ay

The trapezium rule with n intervals states that
b ) ) . b
f yax =2 h{(yo +y,)+ 2y + o +-..+ y,)}, where h=
a
Example 9.3.1

1
. . . . 1 ..
Use the trapezium rule with 5 intervals to estimate j 2 dx , giving your answer
correct to 3 decimal places. ' 0 itx

The values of y, in Table 9.4 are given correct to 5 decimal places.

n X, Yn S Weight Total
0 1
xX1= 1.5
X2= 633732
7.83732

\($3 732. Thus the 5-interval approximation correct to
lades is 0.784. '

7 dx is %ﬂ' , which correct to 3 decimal places is

0.785, so you can see that the 5-interval version of the trapezium rule is a considerable
improvement on the 1-interval version in Example 9.2.1.

How you organise the table to give the value of {(y, +y,)+2(3 + ¥, ++..+ ¥,_1)} isup
to you, and may well depend on the kind of software or calculator that you have. It is
important, however, that you make clear how you reach your answer.

Accuracy of the trapezium rule

It is not easy with the mathematics that you know at present to give a quantitative
approach to the possible error involved with the trapezium rule.

However, in simple situations you can see whether the trapezium rule answer is too
large or too small. If a graph is bending downwards over the whole interval from a to
b, as in Fig. 9.5, then you can be certain that the trapezium rule will give you an
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underestimate of the true area. If on the other hand, a graph is bending upwards over the
whole interval from a to b, asin Fig. 9.6, then you can be certain that the trapezium
rule will give you an overestimate of the true area.

y

Fig. 9.5 ' Fig. 9.6

However, if the graph sometimes bends upwards and sometimes downwards over the
interval from a to b, you cannot be sure whether your approxjmation to the integral is
an overestimate or an underestimate.

1 Use the simplest case of the trapezium is,N\infe to estimate the values of

.4
(a) Lx/l+xdx,

2 Use the trapezium rule

3
te the value ofj N1+ x2 dx.
0

3 Use the trapezium at is, 2 intervals) to estimate the value of

using the trap€zium rule with 4 intervals.

' (c) Evaluate the integral exactly and compare your answer with those found in parts (a)
and (b).

¢ 5 The diagram shows the graph of y = %
x

Use the trapezium rule with 6 intervals to
find an approximation to the area of the
shaded region, and explain why the
trapezium rule overestimates the true
value.
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i
6 Use the trapezium rule with 5 intervals to estimate the value of f (% x+ 1) dx.
0
" Draw the graph of y = 1% x% +1 and explain why the trapezium rule gives an overestimate
of the true value of the integral.

7 Draw the graph of y = x> +8 and use it to explain why use of the trapezium rule with

2
4 intervals will give the exact value of J (x3+8)dx.
-2

2
8 Find an approximation to J vx?+4xdx by using the trapezium rule with 4 intervals.
1

4 2
9 Find an approximation to X dx by using the trapezium rule with 8 intervals.
0 2*

10 The diagram shows part of a circle with j
centre at the origin. The curve has

equation y =~25-x2.

(a) Use the trapezium rule wj
find an approximation to\hg 2
shaded region.

(OCR)

2 The diagram shows the region R bounded by
the curve y =+/1+ x3, the axes and the line
x = 2. Use the trapezium rule with 4 intervals
to obtain an approximation for the area of R,
showing your working and giving your
answer to a suitable degree of accuracy.
Explain, with the aid of a sketch, whether the

approximation is an overestimate or an
underestimate. (OCR)
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3 Use the trapezium rule with subdivisions at x =3 and x =5 to obtain an approximation to

7 .3
J‘ . dx, giving your answer correct to 3 places of decimals. (OCR)
1 X

0.5 _
4 Use the trapezium rule with 5 intervals to estimate the value of J V1+x2 dx, showing
0
your working. Give your answer correct to 2 decimal places. (OCR)

S The diagram shows the region R bounded by Y
the axes, the curve y =(x?+1) % and the
line x =1. Use the trapezium rule, with
ordinates at x =0, x=% and x=1,to
estimate the value of

1 _3 .
f (x2+1) 2 dx,

0

giving your answer correct to 2 significant
figures. (OCR)

The diagram shows a sketch‘q

-0.5 05x
(OCR)

7 A certain function f is continuous and is such that
f(20)=15, f(2.5)=22, f(3.0)=31, f(3.5)=28, f(4.0)=27.

4
Use the trapezium rule to find an approximation to f f(x)dx.
2

8 The speeds of an athlete on a training run were recorded at 30-second intervals:

Time afterstart(s) 0 30 60 90 120 150 180 210 240
Speed (ms™!) 30 46 48 51 54 52 49 46 38

The area under a speed—time graph represents the distance travelled. Use the trapezium rule
to estimate the distance covered by the athlete, correct to the nearest 10 metres.
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9

10

11

12

At atime ¢ minutes after the start of a journey, the speed of a car travelling along a main
road is v kmh™!. The table gives values of v every minute on the 10-minute journey.

t 0 1 2 3 4 5 6 7 8 9 10
v 0 31 46 42 54 57 73 70 68 48 O

Use the trapezium rule to estimate of the length of the 10-minute journey in kilometres. '

A river is 18 metres wide in a certain region and its depth, d metres, at a point x metres

from one side is given by the formula d = %#x(lS -x)18+x). '

(a) Produce a table showing the depths (correct to 3 decimal places where necessary) at
x=0,3,6,9,12,15and 18.

(b) Use the trapezium rule to estimate the cross-sectional area of the river in this region.

(c) Given that, in this region, the river is flowing at a uniform speed of 100 metres per

minute, estimate the number of cubi

The diagram shows the curve y=4"*
Taking subdivisions at x =0.25, 0.5, 0\J
find an approximation to the s

The left dia
The shadedx
sh i

,. ss-section of a straight concrete drainage channel, as
The units involved are metres.

-0.5 05 x

(a) Use the trapezium rule with 4 intervals to estimate the area of the shaded region.
(b) Estimate the volume of concrete in a 20-metre length of channel.
(c) Estimate the volume of water in the 20-metre length of channel when it is full.

(d) Of the estimates in parts (b) and (c), which is an overestimate and which is an
underestimate?

ater passing per minute. (OCR) .
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13

14

64
The integral Vxdx is denoted by 1.
36

(a) Find the exact value of 1.

(b) Use the trapezium rule with 2 intervals to find an estimate for I, giving your answer
in terms of /2.

149

Use your two answers to deduce that ~2 = 105-

It is given that x — 2 is a factor of f(x), where f(x)=2x3 —7x2 + x + a. Find the value of
a and factorise f(x) completely.

Sketch the graph of y =£(x). (You do not need to find the coordlnates of the stationary
points.)

Use the trapezium rule, with ordinates at x =—1, x =0, x =1 and x =2 to find an

2
approximation to f f(x)dx.
-1

Find the exact value of the integral and show that
error by about 11%.

e trapexiuiy rule gives a value that is in
(OCR)

{(b) Find the trapezium rule approximations to this 1ntegra1 using 1,2, 4 and 8 intervals.
Call these 4;, A,, A, and Aq.

(c) For each of your answers in part (b), calculate the error E;, where

1
E,-=J 1% dx — A, for i=1,2,4 and 8.
0

(d) Look at your results for part (c), and guess the relationship between the error E, and
the number n of intervals taken.

(¢) How many intervals would you need to approximate to the integral to within 10757

R T e N e 0 s A i
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10 Parametric equations

This chapter is about a method of describing curves using parameters. When you have

completed it, you should

e know how to describe a curve using a parameter

e be able, in simple cases, to convert from a parametric equation of a curve to the

cartesian equation of the curve
‘e« be able to use parametric methods to establish properties of curves.

10.1 Introduction

Imagine a person P going round on a turntable, centre
the origin O and radius 1 unit, at a constant speed (see
Fig. 10.1). Suppose that P starts at the x-axi
moves anticlockwise in such a way that the A

P(xy)

>

the centre ¢ seconds after starting is ¢ radia

Where is P after ¢ seconds? You cA
Fig. 10.] that the coordinates of P a

X =cost, y=sin

x=cost
y=sint

Fig. 10.2 shows ¥
first revolution

a r-valgeorresponding to the time at which the
person isat thaf pbint. However, for each additional
sr¢ will be another ¢-value associated
with each point.

Example 10.1.1
Find the z-value of the starting point, the first time that P returns to it.

Fig. 102

The starting point is (1,0). Since x =cos?, y =sint, you find that 1=cost and
0 =sint. These equations are simultaneously satisfied by ¢t =0,+ 27,1 4x,....

The smallest positive solution is ¢ =2x.
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The equations x =cost,y =sin? are an example of parametric equations, and the
variable ¢ is an example of a parameter. In this case the variable ¢ represents time, but
in other cases it may not, as you will see in Example 10.1.2.

If you have a graphic calculator, you may be able to use it to draw curves from
parametric equations. Put the calculator into parametric mode. You then have to enter
the parametric equations into the calculator, and you may have to give an interval of
values of ¢. For example, if you gave an interval of 0 to x for ¢ in Example 10.1.1, you
would get only the upper semicircle of the path. If you use the trace key, the calculator
will also give you the z-value for any point.

Recall that the curve looks like a circle only if you use the same scale on both axes.
You could also plot the curve using a spreadsheet with graph-plotting facilities.

Here are other examples of curves with parametric equations.

Example 10.12
A curve has parametric equations x = 12, y =2t . Skef for} values of ¢ from
-3to 3.

Draw up a table of values, Table 10.3.

\>1 2 3
9

1 4
2 4
y
6 x=12
y= 2t t=3
44
T=2
24 fr=1
The idea that a point is defined by the value of 13 7 T x
its parameter is an important one. Thus, for the 21 N\¢=-t
curve x =12, y =2t you can talk about the t=-2
point ¢ = -2, which means the point (4,—4). -4
t=-3
The curve looks like a parabola on its side, and 67
you will, in the next section, be able to prove Fig. 104

that it is a parabola.
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Example 10.1.3
A curve has parametric equations x =sint, y =sin2t¢, for values of ¢ from 0 to 27.

Plot the curve, and indicate the points corresponding to values of ¢ which are multiples
of —é-ﬂ' .

Draw up a table of values, Table 10.5.

t 0 gm gm gm im 3xm

x 0 05 086 1 086 05

y 0 0866 086 0 —0866 —0.866

t w In 4n 3n 3x Un o

x 0 -05 —0866 _-1 -086 -05 0
0 0866 0868 X086 <0866 0

ble 10.5

x=sint
y = sin 2t

curves in Fig{ 10.4 and Fig. 10.6, cannot be described by such an equation, because none
of them have just one value of y for each value of x.

It is time to give a definition of a parameter.

§ If x=1(r) and y = g(r), where f and g are functions of a variable ¢ defined
% for some domain of values of ¢, then the equations x =f(z) and y = g(z) are
called parametric equations, and the variable ¢ is a parameter.

eSS R
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102" From parametric to cartesian equations

A curve that is described paramétrically can sometimes also be described by a cartesian
equation, by eliminating the parameter between the two parametric equations.

For example, in Example 10.1.2 the curve is given parametrically by x = £, y=2t.In
2
this case, you can write ¢ = %y, so that x = (% y) = %yz , which you can rewrite as

y? = 4x.The parameter ¢ has been eliminated between the two equations x = %,

2«

y=2t.You can see from Fig. 10.4 that x =1 y? is simply y = 1 x* ‘on its side’.
g 7Y Py

In general:

Example 102.1
A curve is given parametrically by the equ

’

‘curve’ is a straight line and find its gradien

From the first equation

This is the equatio:

Example 10.2.2
Let E be the cyeve

y 4 X =acosf
y=bsint
a
b
and sinz = = XThen, using coszt+sin2t=1, :
; 5 5 s . | a , a X
(—) + (;) =1. This is the equation of the
a
ellipse shown in Fig. 10.7.If a and b are
equal, it is a circle of radius a. Fig. 107
Exercise 10A

1 Find the coordinates of the point on the curve x = 5¢%, y =10z
(a) when t=6, (b) when t=-1.
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2 Find the coordinates of the point on the curve x =1- %, y=1+-~

(a) when t=3,

1
t

(b) when r=-1.

3 The parametric equations of a curve are x =2cost, y=2sint,for 0 <t <27z.What is the
value of ¢ at the point (0,2)?

4 Acurveisgivenby x=>5cost, y=2sint for 0 =<t <2x. Find the value of ¢ at the point

(-24.+3).

5 Sketch the curve given by x=t2,y=% for t>0.

6 Sketch the curve given by x =3cost,y=2sint for 0 =<t <2rx.

7 Sketch the graph of x =3%,y=6¢ for ~4<t< 4.

8 Sketch the locus given by x = cos? ¢,y =sin’s for 0<t<27.

(@ x=t2,y=%

10" Find cartesian equations for cu

(@) x=cos’t, y=sin2t

araeiic equations.

=3t ,p ¢c) x=2cost,y=2sint

pEtPiC equations.

b) x=cos3t,y=sin3t

(@ x=3%y=2¢

cle with centre (p,q) and radius r are
inate the parameter ¢ to obtain the cartesian equation of

"The key observation is that for a point P with parameter ¢ on the curve, the coordinates
(x,y) of P are both functions of ¢, so as ¢ changes, x and y also change.

If a curve is given parametrically by equations
for x and y in terms of a parameter ¢, then

b _d /&

dex dt

dr’

You can now use the result in the box, but if you don’t need the proof, skip to Example 10.3.1.

To establish the result, suppose that the value of ¢ is increased by 6¢; then x increases

by &x and y by 8y.
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Sy _ dy /ox

Then, provided that dx =0,
P & ol &

As 6t — 0,both 6x — 0 and 8y — 0,s0 lim 6——1 &
8 —0 dx 8:—»08x

dy /dx . Oy . Ox
Th = —
erefore, assuming that 1[1_11)10 (St St) (altlglo 5 ) / (Bltl—ynlo StJ’

dy Sy Sy . (Sy 5x] ( ) Sy]/( , 5x] dy /dx
—=lim == lim==1 . 1
dx axlglo ox 820 ox = 5130 ot/ ot alzlgh ot aﬂﬂ% 5t) dr/ de”
dy dy dx

de/ dr

Therefore

Notice that, just as the chain rule for differentiation is easy to remember because of
‘cancelling’, so is this rule. However, you should remember that this is no more than a
helpful feature of the notation, and cancellation has no mpeaning~¥q this context.

Example 103.1
Use parametric differentiation to find the gradient a 2 y=2r.
Y gana ¥ 2t,50 —= 1
dt dt 3
Example 10.3.2

Find the equation of the normg
x=r ,¥y=

1 _
D3
aioh of the normal is y —4 =3(x - (-8)) or y=3x+28.

Fig. 10.8 showsA sketch of the curve and the normal; remember that the normal
will look perpendicular to the curve only if the scales on both axes are the same.

Y =43
(5 A ot
3
y=3x+28 24
1
_— — — —

9 8 -7-6-5-4-3-2-101 23 456 7 8 9%
Fig. 108

At the origin, where ¢ =0, the curve has a cusp. As ¢ increases, the point moves
along the curve from left to right, but at the cusp it comes to a stop and starts to
move back upwards.
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The gradient is not defined when £ = 0, because the tangent at the origin is the
y-axis. :

Exercise 10B

Find jx—y in terms of ¢ for the following curves.

(@ x=y=2 (b) x=sint,y=cost
(c) x=2cost, y=3sint (d x=t3+t,y=t2—t
Find the gradients of the tangents to the following curves, at the specified values of ¢.

(@) x=3f%,y=6rwhent=0.5 ®) x=2,y=t> whent=2

(©) x=1—;,y=l+%whent=2 (d) x=t2,y=%whent=3

¢s, at the specified values of ¢.
(a) x=5t2,y=10t whent=3 cosz't,yzsinztwhen t=%n:
(©) x=cos3t,y=sin3twhe t2+2, =¢t-2whent=4

3

Show that the equation of the t € x=3cost,y=2sint whent =37 is

3y=2x+6+2.

(b) x=5cost,y=3sint whent=11x

ations of the normals to these curves at the specified values.

t2,y=10twhent=3 (b) x=cost,y=sintwhent=~§-n:

(a) Find the equafion of the normal to the hy‘perbola x=4t,y= 4 at the point
(8,2). t

(b) Find the coordinates of the point where this normal crosses the curve again.

(2) Find the equation of the normal to the parabola x = 3t2_, y = 6¢ at the point where
t=-2.
(b) Find the coordinates of the point where this normal crosses the curve again.

e TR T T T T R T TR T T L T e LT Y T

* Proving properties of curves

Parameters are a powerful tool for proving properties about curves. Here are two
examples which show a general method.
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Example 10.4.1

.A parabola is given by x = at?, y =2at. The tangent at a point P on the parabola meets the

x-axis at T. Prove that PT s bisected by the tangent at the vertex of the parabola.

You may wonder why the parabola in Fig. 10.9 is on 7 x=ar’
: . L . . . y = 2at
its side. This is just a convention. Mathematicians

usually express the parabola parametrically as
x=at?,y=2at rather than x =2at, y=at’. In this

case, the vertex is still the point where the axis of T/
symmetry meels the parabola, which is the origin, and
the tangent at the vertex is the y -axis.

Let P be the point on the parabola, shown in
Fig. 10.9, with coordinates (at2 ,2at). Since
. & _dy/dx_2a 1

de dt/ dt 2at t.

Fig. 109

the gradient at P is 1 The equation of the tange
: v

& y=0,50 x =—at* and T'is the

ut + 0)) , which is (0,ar). Since the

the point (0,at) lies on it. Therefore PT

Let P be the puinion the curve, shown
in Fig. 10.10, with parameter ¢. P has
coordinates '(a cos® t,a sin® t).

To find the gradient at P, calculate
dy _dy /dx _3asin’tcost _sint
dx dt/ dt —3acos’tsint cost

. . sint
The gradient at P is ———.
cost

The equation of the tangent at P is

.3 sint 3
y—asin t=—'—(x—acos t).
cost

Fig. 10.10
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This can be simplified to
ycost+xsint = asin®tcost +asinzcos® ¢
=asinzcos t(sin2 t+ c<_)32 t)
=asintcos?.

The points A and B have coordinates (acos?,0) and (0,asinz). The length AB is

J(0~acost)’ +(asint —0)? =a?cos’ r +asin*r =a.

The length AB is therefore constant.

The curve x=acos’ ¢,y = asin’¢ is called an astroid. If you think of the tangent as a
ladder of length a sliding down the ‘wall and floor’ made by the y-axis and the x-axis,
then the ladder always touches the astroid.

at’,y=2at.If P isany point on the parabola,
® P onto the axis of symmetry. Let G be the
ys§s the axis of symmetry.

SP=PQ=QT=ST=ar’+a.
af angle OPT is equal to angle SPT.

thevhormal to the parabola at P, show that angle MPN is equal to angle NPS. -

4 P, (@, Rand S are four points on the hyperbola x =ct, y= E with parameters p, q, r

and s respectively. Prove that, if the chord PQ is perpendlcular to the chord RS, then
pgrs=—1.
5 Let P be a point on the ellipse with parametric equations x =5cost, y =3sinz for .
( 0=<17<2m,and let F and G be the points (—4,0) and (4,0) respectively. Prove that
i (@) FP=5+4cost, (b)y FP+PG=10.
Let the normal at P make angles @ and ¢ with FP and GP respectively. Prove that
(c) tan@=%sint, d) =9¢.
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. . 1 .
Let H be the curve with parametric equations x=¢, y = > and let P be a pointon H.Let

the tangent at P meet the x-axis at T, and let O be the origin. Prove that OP = PT .

For the curve H in Question 6, let § be the point («/_ 2,2 ) Let N be the pomt on the
tangent to H at P such that SN is perpendicular to PN .

(a) Show that the coordinates of N satisfy the equations >y + x =2t and
y—t’x= «/5(1 —tz)'.

(b) If you square and add the equations in part (a), show that you obtain x2+y?=2,
Interpret this result geometrically.

Let P and Q be the points with parameters ¢ and ¢4 7 on the curve, called a cardioid,
with parametric equations x =2 cos?—cos2¢, y=2sinz —sin2¢. Let A be the point (1,0).
Prove that

(a) the gradient of AP is tant, ig a straight line,

(c) the length of the line segment PQ is constz

Miscellape

The parametric equations of a curve are
all values such that 0 =z =

(b) Show that the tangen x¢ at Ahas gradient —2 and find the equation of
q
: where g and b are integers. (OCR)

Express 2 ’ gfice show that the gradient at any point of the curve is less
than§ (OCR)

. . 1 1
ned/by the parametric equations: x=t—;, y=t+;, t#0.

A curve is de¢

o L . d .
(a) Use parametric differentiation to determine ay as a function of the parameter .

(b) Show that the equation of the normal to the curve at the point where ¢ =2 may
' be written as 3y +5x =15.

(c) Determine the cartesian equation of the curve. ' (OCR)
A curve is defined parametrically by x=¢> +1,y = 241,
‘(a) Find Gy in terms of z. '

dx

(b) Find the equation of the normal to this curve at the point where ¢ =1. (OCR)
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5 A curve is defined by the parametric equations x =sinz, y = v/3 cos?.

. dy . . .
(a) Determine ay in terms of ¢ for points on the curve where ¢ is not an odd

multiple of 37 .

(b) Find an equation for the tangent to the curve at the point where ¢t = ¢ 7.

NON| ==

(c) Show that all points on the curve satisfy the equation x* + % y* =1. (OCR)

t L

6 The pafametric equations of acurve are x=t+e " ,y=1—~e", where ¢ takes all real

values. Express gx—y in terms of ¢, and hence find the value of ¢ for which the gradient

of the curve is 1, giving your answer in logarithmic form. - (OCR)

7 A curve is defined by the parametric equations x = 3sint, y=2cost.

(a) Show that the cartesian equation of the enrves 4x% +9y? = 36.

(b) Determine an equation of the no
t = o where sina =0.6 and cos(

(c) Find the cartesian coordinates of the normal in part (b) meets
the curve again. (OCR)
8 A curve is defined parametrically t<mby x=2(1+cost),y=4sin’¢.
' b the curve at the point where ¢ = %n’.
he curve in simplified form. (OCR)

Weck your sketches with a graphic calculator, if you have one.
(b) x=sint,y=cos2t

(d) x=sint, y=cos3t

&) x=cos2t,'y=cos3t

(g) x=%In2¢y=sin3t (h) x=sin2¢, y=cos3t

10™ A curve is defined parametrically by x =%, y =¢*> where ¢ is real.
(a) Describe the curve.

~ (b) Eliminate the parameter to find the cartesian equation of the curve. Describe the
curve resulting from the cartesian equation.

(c) Reconcile whaf you find with the resuit in the box in Section 10.2.




11 Curves defined implicitly

This chapter shows how to find gradients of curves which are described by implicit
equations. When you have completed it, you should

e o . recognise the form of the equation of a circle
e understand the nature of implicit equations, and be able to differentiate them.

11.1 The equation of a circle

You have met the cartesian equations of many curves in this course, but it may seem
surprising that these have not included the simplest curve of all, a circle. It will be useful
to know this as an example of the type of equation discussed in this chapter.

point which lies on it, and not by any points which
expresses the fact that it consists of all points whic

fixed distance (the radius) from a fixed poin
P(xy)

distance CP is

the circle is Fig. 11.1

When the centre is (0,0), the equation is x? + y* =

ke e o T

Example 11.1.1
Find the equation of the circle with centre (1,2) and radius 3.

Using the formula, the equation is (x —1)% +(y— 2)2 =9.
You can also multiply out the brackets to get
x2—2x+1+y2--4y+4 =9, whichis x2+y*-2x-4y-4=0.

Either of the forms (x —1)% +(y — 2)2 =9 and x2 +y* —2x -4y -4 =0 is usually
acceptable.
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11.2 Equations of curves

Example 11.1.1 shows that the circle has an equation of the form x> + y2 +ax+by+c=0,
where a, b and ¢ are constants. The next example reverses the argument, and shows how
you can find the centre and radius when you know the values of a, b and c.

Example 11.1.2
Find the centre and radius of the circle x* + y—2x+4y-7=0.

Writing the equation as (x2 —2x)+(y? +4y)="7, completing the squares inside
the brackets and compensating the right side gives

(x2=2x+1)+ (32 +4y+4)=T+1+4,
that is,
(x-1)% +(y+2)* =12.

This equation expresses the property that the square of the distance of (x,y) from
(1,-2) is equal to 12.It is therefore the, ionof a circle with centre (1,-2) and
radius 12.

€in geometry, the x- and y-coordinates have equal status.
hme scales in both directions, otherwise circles will not look circular

emphasise Wat x and y are equal partners. These are implicit equations which define
the relation between x and y.

Sometimes you can put such equations into the y = f(x) form: for example, you can

write 3x-2y+6=0 as y=%x+3.

However, the circle (x — 1)2 +(y —2)2 =9 has two values of y for each x between —2

and 4,givenby y=2++/9—(x—- 1)%. So the equation of the circle cannot be written as
an equation of the form y = f(x).

Similarly, the curve in Fig. 11.2, whose equation is
x3+y3+x2—y=0,

cannot be put into either of the forms y = f(x) or x =f(y).
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If you take a particular value for x, it gives a cubic

equation for y, and if you take a particular value Y _r

for y, it gives a cubic equation for x.. For some KN

values of y there are three values of x, and for \\/

some values of x there are three values of y, so the

equation cannot be expressed in function form, as A

y=1(x) oras x =1(y).

T . T T ;
You can easily find a few features of the curve from B
the equation:
o The equation is satisfied by x =0, y =0, so the
~curve contains the origin. ﬂ

o The curve cuts the x-axis, y =0, where '
X +x*=0s0 x=0or —1. Fig. 11.2
e The curve cuts the y-axis, x =0, where y* —y =0
so y=-1,00r1.

11.3 Finding gradients from implicit equatidys

he ed'Was to take two points
qnu to find the gradient of the chord
+8x,y +8y), you can write

apply, but the algebr21s different because you don’t have an equation in the form
y =f(x). The coordinates therefore have to be substituted into the implicit equation,
giving (for this example) the two equations

x3+y3+x2_y=0’ EquationP
and  (x+8x)° +(y+8y)> +(x+8x)2 = (y+8y) =0. Equation Q
Using the binomial theorem, the terms of Equation Q can be expanded to give

(x° + 3x7(82) + 33(82)" + (80)°) + (»° + 35°(By) + 35(®y)” + (&)°)
+ (xz + 2x(8x) + (Sx)z) ~(y+8y)=0.
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To make this look less complicated, rearrange the terms according to the degree to
which 8x and 8y appear, as

degree 0 degree 1
(x3 +y +x2- y) + (3x2(8x) +3y2(8y) + 2x(8x) —Sy)
degiee 2 . deé\ree 3

+ (3x(3)2 + 35(&)" + @07) + (607 + &)’ =o.

The first group of terms is just the left side of Equation P, so it is zero. Since you want to

find the gradient of the chord, gX , rewrite the other groups to show this fraction:
X

2 3y
0)+ (3x2 +3y? S +2x— Q)8}:+ 3x+ 3y(§2) +1[(8x)% +| 1+ (Q) (8x)* =0.
ox ox ox ox

second, which is an application of the chain rule:

i(y3)=%(y3)><§f=3y2jx—y-_

This is an example of a general rule:

To find % from an implicit equation, differentiate each

term with respect to x, using the chain rule to differentiate

any function f(y) as f’(y)%.
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For the curve in Fig. 11.2, you can find the gradient by rearranging the differentiated
. oy dy
ation as (3x* +2x)=(1-3y%)-=,
equlnas(x x)( y)dxso
dy _ 3x% +2x
dx  1-3y*

- . . d .
It is interesting to notice that ay =0 when x=0 or x= —%. Fig. 11.2 shows that

each of these values of x corresponds to three points on the curve: x =0 at (0,1), (0,0)
and (0,~1),andx = —% where y* -y = —% . This is a cubic equation whose roots can
be found by numerical methods of the kind described in Chapter 8; they are 0.92, 0.15
and -1.07, correct to 2 decimal places.

Since equations in implicit form treat the x- and y-coordinates equally, you might also

want to find gx—,which is 1/92
dy dx

dr  1-3y2

dy_3x2+2x'

dx d
The proof that — =1 / & is given in P3 Sed{id
dy dx

en E =0, which is when
dy

. ) .. d .
then stitched up a@ginf, ¥ou have a definition of ay at every point of the curve except at

A and B, which are the points where the gradient of the tangent is not defined.

This process makes it possible to justify the rule in the box on page 144. Although the
algebraic expression for y in terms of x is not known, the implicit equation defines y
in terms of x on each piece of the curve; and when this y is substituted, the equation
becomes an identity which is true for all relevant values of x. Any identity in x can be
differentiated to give another identity. This produces an equation in which each term

is differentiated with respect to x, as described by the rule.
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Example 11.3.1

‘Show that (1,2) is on the circle x> +y? —6x+2 y—3=0, and find the gradient there.

Substituting x =1, y=2 in the left side of the equation gives 1+4—-6+4 -3,
which is equal to 0.

Method 1  Differentiating term by term with respect to x gives

dy dy

dy d
2x+2ya—6+2——0 0, thatis x+ya%—3+a=0.
dy dy dy -
Setting x =1, 2 gives 1+2—=—-3+—==0,s50 — =% at this point.
g y=2¢ " dx =3 p

Method 2  Using the method of Example 11.1.2, the equation can be written as
(x-3)% +(y +1)* =13. The centre of the circle is (3,-1), so the gradient of the

driddient of the tangent at (1,2)

Example 11.3.2

Find an expression

NI —
p—
e

Example 11.3.3

Sketch the graph of cosx +cosy =, and find the equation

of the tangent at the point ( m, L 7r) %,,J (
Fig. 11.3 shows the part of the graph for which the
values of both of x and y are between —7 and 7.
Since cosy<1 cosx = —l,so —%ns X< —32~7r

Similarly ——7r sSysj% i

Because cos is an even function, the graph is
symmetrical about both axes; and because
interchanging x and y does not alter the equation,
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the graph is also symmetrical about y = x, and hence about y = —x. Also, because
the function cos has period 27, this shape is repeated over the whole plane at
intervals of 27 in both x- and y-directions.

Differentiating the equation gives

—sinx+(—siny)§2=0, so 9=—S%ﬁ-
- dx dx siny
A 1 1 tl'l d. . 1 _ 2 h . fﬂl .
t(iﬂ,gﬂ) e gradient is —m——ﬁ,sot e equation of the tangent is
2

oiedient of the tangent at the
ethod 2 of Example 11.3.1,

1 Each of the following equations represents a ci
given point (i) by finding the coordinates of thf

(@ x*+y2=25 (-3,4
() x*+y* +4x-6y=24 (4,2)
© x*+y*-6x+8y=0
— (d x*+y*-2x-4y=0

Consider the oy with equation x? +4y? =1.
(a) Find the coordinates of th(; points where the curve cuts the coordinate axes.
(b) Find the interval of possible values of x and y for points on the curve.

(c) Show that the curve is symmetrical about both the x- and y-axes.

d
(d) Differentiate the equation with respect to x, and show that 2~ 0 when x=0.
Interpret this geometrically.

(e) Repeat part (d) with the roles of x and y reversed.
() Use your results to sketch the curve.

6 Repeat Question 5, using the curve with equation x% —y% = 1. If there are parts of the
question which have no answer, or are impossible, say why that is so.
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7 Consider the curve y* = (x—1)%.
(a) Find the coordinates of the points where the curve crosses the axes.
(b) Are there any values which either x or y cannot take?

(c) Differentiate the equation y® =(x-1)? to find an expression for the gradient in
terms of x and y. Find the gradient of the curve where it crosses the y-axis.

(d) What happens to the gradient as x gets close to 17

(e) By making the substitution x =1+ X, and examining the resulting equation
between y and X, show that the curve is symmetrical about the line x =1.

(f) Sketch the curve. If you can, use a graphic calculator to check your results.

8 Use methods similar to those of Question 5 to sketch the curve x* + y* =1. On the same
diagram, sketch the curve x*+ y2 =1.

9 (a)
(b)

(©)
10 (a) Show thatif (a,b) lies o

(b) Differentiate x°A
gradient for pega

11.4 Implicit equations including products

The implicit equations in Section 11.3 contained terms in x and terms in y, but there were .
no terms which involved both x and y. These more complicated terms can be differentiated
using the product or quotient rule, sometimes in conjunction with the chain rule.

Example 114.1
Find the derivatives with respect to x of

(a) ysinx, (b) y’Inx, (c) exzy, (d) cosZ.
y

-(a) By the product rule,

d . d . d . dy .
—-—ysmx=—y><smx+y><.—smx=—smx+ycosx.
dx dx dx dx
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3

d 3 d 3 3 d 2 dy y
b)) —y hx=—y" XIhnx+y xX—Ihx=3y"—Inx+—.
® dxy dxy Y dx x=2y dx X

(c) Use the chain rule followed by the product rule.

d x2y xzy d 2 xzy( Zdy)
—e*V=e"TX—x"y=¢ 2xy+x°-~— |
w”? Y &

dx

d X . 1><y—xxd— xd—y—y x
(d) —cos—=-sin—x 3 dr _ de sin—.

& y y y y y

Example 11.4.2
Find the gradient of x?y* = 72 at the point (3,2).

Two methods are given. The first is direct. The second begins by taking logarithms;
this makes expressions involving products of poye Steg to handle.

Method 1 Differentiating with respect to

d
2xy3 + x2(3y2 ay) =0.

At (3,2), 2x3%x8+9x3x%

Example 11.4.3
The equation x* — 6xy + 25y% =16 represents an ellipse with its centre at the origin.
What ranges of values of x and y would you need in order to plot the whole of the
curve on a computer screen?

"~ Method1 The problem is equivalent to finding the points where the tangent to
the curve is parallel to one of the axes.

Differentiating gives

d d d
2x—6(1xy+xxay)+50yay=0, that is (x—3y)+(25y—3x)ay=0.

The tangent is parallel to the x-axis when gx—y =0, which is when x =3y.
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Substituting this into the equation of the ellipse gives

(3y)* ~6(3y)y+25y* =16, 16y* =16, y=—torl.

The tangents are therefore parallel to the x-axis at (-3,-1) and (3,1).

dx d
The tangent is parallel to the y-axis when dr =0.Since — =1 / & , this occurs
dy dy dx

when 25y = 3x. Substituting y = % x gives

: x2—6x(735—x)+25(-23—5x)2=16, %x2=16, x=-5o0r5.
|

The points of contact are (—5,—%) and (5 ,%)

To fit the curve on the screen you need
S<xy<5and -1=sy=1.Thisis

y
illustrated in Fig. 11.4.
Method 2  The equation can be %
written as a quadratic in x:
x* —6yx +(25y% -16) = Fig. 11.4

Exercise 11B

1 Find the derivatives with respect to x of

@ xy, ® »?, © *%2, @ %
2 Find the derivatives with respect to x of
@ x, (®) sin(x?y), © In(xy), (d) e,

3 Differentiate the implicit equations of the following curves to find the gradients at the point
(3.4). '

() xy=12 (b) 4x*-xy-y*=8
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4 Find the gradient of each of the following curves at the point given.

(a) xsiny=3 (l,én) () ye*=xy+y* (0,1)

(¢) In(x+y)=-x (0,1) (d) cos(xy)= % (1,%77:)
5 Find the equation of the tangent to the curve x> —2xy+ 2y =5 at the point (1,2).
6 Find the equation of the normal to the curve 2xy? — x2y> =1 at the point (1,1).

7 Find the points on the curve 4x2 + 2xy—3y? =39 at which the tangent is parallel to one of
the axes.

8 (a) Show that the curve x> + y> =3xy is symmetrical about the line y = x, and find the
gradient of the curve at the point other than the origin for which y = x.

(b) Show that close to the origin, if y is very small compared with x, then the curve is

(c)

hy x+y =k, where

show that % < 1,s0

Miscellaneous exercise 11

1 Find the equation of the normal at the point (2,1) on the curve x> +xy + y3 =11, giving
your answer in the form ax+by+c¢=0. (OCR)

2 A curve has implicit equation x* —2xy+4y? =12,
(a) Find an expression for % in terms of y and x. Hence determine the coordinates

of the points where the tangents to the curve are parallel to the x-axis.
(b) Find the equation of the normal to the curve at the point (2\/3 ,\/3) . (OCR)

3 A curve has equation ¥ +3xy+2x% = 9. Obtain the equation of the normal at the point
(2,-1). "(OCR)
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4

5*

6

7*

A curve is defined implicitly by the equation 4y — x> +2x%y = 4x.

(a) Use implicit differentiation to find % .

(b) Find the coordinates of the turning points on the curve. (OCR, adapted)
P ‘

Show that the tangent to the ellipse — + > =1 at the point P(acos6,bsin0) has
a b

equation bxcos@+aysin€ =ab.

(a) The tangent to the ellipse at P meets the x-axis at Q and the y-axis at R. The
mid-point of QR is M. Find a cartesian equation for the locus of M as @ varies.

(b) The tangent to the ellipse at P meets the line x =a at 7. The originis at O and A
is the point (—a,0). Prove that OT is parallel to AP. (OCR)

hqw by differentiation that the maximum
§ OK x + 2y = 0 with the curve. Find the
(OCR)

The equation of a curve is x+4xy+5y° =9-
and minimum values of y occur at the ipfep
maximum and minimum values of y.

The curve C, whose equation i

that & =— (OCR)
dx




R_evision exercise 2

1 Use a numerical method to find all the roots of the cubic equation x> —2x% —2x+2=0,
giving your answers correct to 2 decimal places.

2 The region R, bounded by the curve

y=2x+ Lz’ the x-axis and the lines
X

x =1 and x =k is shaded in the figure.

(a) Use integration to calculate the area of
the region R when k=2.

For a different value of &, the area of R is
10 square units.

(b) Show that & satisfies the equation
K -10k-1=0 , and use a numerical
method to find the value of k correct
to 3 significant figures.

3 Differentiate the following with respect

possible.
X
@ x*Inx — d xe*
xZe* +1
4 Aregion Risbo hwwe with equation y =64 — x*  the positive
x-axis and the positl € trapezium rule with 4 intervals to approximate to
the area g
5 A chQrdof a circle whigh subfends an angle of € at the centre cuts off a segment equal in

area to g Of the wholg dircle.

Use a numexgical method to find the value of @ correct to 3 significant figures.

ally that there is a number ¢ between 7 and %n such that the tangent to
y=sinx at (a,sin o) passes through the origin. Show that ¢ is the smallest positive root
of the equation x = tan x . '

Use a numerical method to find an approximate value for ¢, correct to 4 decimal places.

7 (a) Use the trapezium rule with 6 ordinates to calculate an approximation to

1
j V4 — x? dx. Give your answer to 4 decimal places.
0

(b) The graph of y =v4 ~ x? is a semicircle. Sketch the graph, and hence calculate the
area exactly.

(c) Find to 1 decimal place the percentage error of your answer in part (a).
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8

10

11

12

13

16

A curve has parametric equations x = 3t> +2¢, y = 2t +3¢. Find the coordinates of the
point where the tangent has gradient %.
Find the gradient at the point (2,1) on the curve with equation x> —2xy + y* =5,
Find the equation of the tangent at the point P with parameter ¢ to the curve with
. . c . oo
parametric equations x =ct, y = < where c is a constant. Show that, if this tangent meets

the x- and y-axes at X and Y, then P is the mid-point of XY .
A curve is defined parametrically by x = V3tan 8,y =+3cosf, 0<O<n.
(a) Find 9y in terms of 6.

dx

(b) Find the equation of the tangent to the curve at the point where 8 = %77: . (OCR)

Find the coordinates of the points at whichAfie tafipent to the curve with equation

Differentiate each of the following wi
sin2x
(a) e*(2+3x) © —%
tan2x . e¥ sin2x
(d) (e O —
x 4x

The curve C has parainetric equation x =cost, y=cos2t for 0=t=<~.
d
(a) Find the interval of values of ¢ for which ay is negative.

(b) Find the equation of the normal to C at the point for which ¢t =T .

(c) Find an equation satisfied by T if the normal passes through the point with
coordinates (1,1).

(d) By putting cosT =X, find a cubic equation satisfied by X, and write down one
solution for X, and hence for T.

(e) Find the other values of T, correct to 2 decimal places.



Practice examination 1 for P2

Time 1 hour 15 minutes

Answer all the questions.
The use of an electronic calculator is expected, where appropriate.

1

2

Solve the equation | x —2|=|3-2x|. [4]

(i)  Show that the equation x?—3x-10=0 has aroot between x =2 and x =3. [2]

(i) Find an approximation, correct to 2 decimal places, to this root using an iteration
based on the equation in the form '

x=0Bx+ 10)13

and starting with x; = 3. (31

nitants, is denoted by f(x).
is divided by x+ 2 the
[6]

The cubic polynomial x*+x% + Ax+ B, wherf 4 and B are c}
When f(x) is divided by x -1 the remainder i3 4\and when f]
remainder is 10. Prove that x + 3 is a £actd

(2)

Calculate the value of

, simplified as far as possible. [4]

pals of equal width, to estimate the value of

(3]

ray be written in the form 2sin x(3 cos? x —1) . [4]

(ii) Hence shoWw that the value of y at any stationary point on the curve is either O

or ii. [4]

33

The amount, g units, of radioactivity present in a substance at time # seconds is given by the
equation
g=10 e
Calculate
(i) the amount of radioactivity present when ¢ =5, [1]

(ii) the value of # when the amount of radioactivity has halved from its value when
t=0, (4]

(iii) the rate of decrease in the amount of radioactivity when ¢ =5, 4]
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7 @)
(ii)

(if)

(iv)

Sketch the graphs of y =tan@ and y =sec@,in each case for 06 < % z.

Prove that
1

secO —tand = Bt ond’
Deduce from parts (i) and (ii) that

O<secf—tan@ =<1,
for values of 8 such that 0<0 < % 7. Explain your reasoning clearly.

Solve the equation

1

secB—tanB:i,

for 0<@<in.

(2]

{2

(31

(4]



Practice examination 2 for P2

Time 1 hour 15 minutes
Answer all the questions.
The use of an electronic calculator is expected, where appropriate.

1 Find the quotient and remainder when 2x> + x2 + 3x+1 is divided by X +x+2. [4]

2 (i) Solve the inequality
|3-x]|<2. 2]

(ii) Hence solve the inequality
|3-2"|<2,

expressing your answer in terms of logari

3
e diagram shows the graph of Ing against In p. The graph
jasses through the points A(1.61,2.82) and B(3.22,3.62) . Find the
[6]
&7
4 (a) By first expressing sin? 2x in terms of cos4x, find f sin? 2x dx. [4]
0

(b) Find JEI (sin x + cos x)? dx. [4]
0



e e

158 PURE MATHEMATICS 2 & 3

0 x
The diagram shows the graph of y =e™. The point P has coordinates (a,e'“) ,and the
lines PM and PN are parallel to the axes.

a
(i) Find J e *dx interms of a.
0

(2]

The area of the rectangle OMPN is ore fuarter of the\arka under the curve y =e™ from

x=0to x=a.
(ii) Show that e® =4g+1.
(i)

(3]

Use the iteration

(3]

(3]
(3]
[3]

The parametric equations of a curve are

x=20+cosf, y=0+sin8,

where 0< 0= 2rm.

. . dy .

(i) Find 3, 0 terms of 6. [2]

(i) Show that, at points on the curve where the gradient is 3, the parameter 6 satisfies
an equation of the form

5sin(6+ ) =2,
where the value of « is to be stated. [4]
(iii) Solve the equation in part (ii) to find the two possible values of 6. [4]



Unit P3

The subject content of unit P2 is a subset of the subject content of unit P3.
This part of the book (pages 159-304) contains the subject content of unit P3
that is not common with unit P2. It is required for unit P3 but not for unit P2.






12 Vectors: lines in two and three dimensions

This chapter shows how to use vectors to describe lines in three dimensions. When you have
completed it, you should

e  know the form of the vector equation of a line »
e be able to solve problems involving intersecting, parallel and skew lines
e be able to find the distance of a point from a line.

12.1 Vector equation of a line in two dimensions

Fig. 12.1 shows a line through a point A in the
direction of a non-zero vector p. If R is any

point on the line, the displacement vector zﬁ isa
multiple of p, so

r=0R=0A+AR=a+1p,

how vector equations can be used as an alternative to the

cartesian equag h you are familiar.

To illustrate alternatiys/fechniques the first is solved by using vectors in column form,
and the second by using the basic unit vectors.

Example 12.1.1
"Find a vector equation for the line through (2,—1) with gradient % , and deduce its
cartesian equation.

The position vector of the point (2,—1) is (_21) . There are many vectors with
gradient %, but the simplest is the vector which goes 4 units across the grid and

4 .
3 units up, that is (3) . So an equation of the line is

()0
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If R has coordinates (x,Y), the position vector r is (;) This can be written
(x) _ ( 2+4¢ )
y ~1+3¢)°
This is equivalent to the two equations
x=2+4t, y=-1+3t,
which you will recognise as parametric equations for the line.
The cartesian equation is found by eliminating ¢:
3x—4y=3(2+4t)-4(-1+31)=10.
You can check that 3x — 4y =10 has gradient % and contains the point (2,-1).
Example 12.1.2

Find a vector equation for the line through
cartesian equation.

8 the y-axis, and deduce its

A vector parallel to the y-axigis j, andithe positiop/ vector of (3,1) is 3i+j,s0a

vector equation of the line i
r=03i+j)+1j.

Writing r as xi

pimon to the pairs of lines
3 1 3 4 1 -6
and r= (_2)+ t(4), (b) r= (1)+s(_2)an__d r= (2)+ t( 3 )
Notice that different Iétters are used for the variable scalars on the two lines.

(a) Position vectors of points on the two lines can be written as
r= 1+s and r= 3+1¢
“\2+s T\—2+4t)
If these are the same point they have the same position vectors, so

1+s=3+¢t and 2+s=-2+4¢,
thatis s—¢r=2 and s-4r=-4.

This is a pair of simultaneous equations for s and ¢, with solution s=4, t=2.
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Substituting these values into the equation of one of the lines gives r = (g) So
the point common to the two lines has coordinates (5,6).

(b) You can check for yourself that the procedure used in (a) leads to the equations

3+4s=1-6r and 1-2s5=2+3t,
thatis 2s+3tr=-1 and 2s+3r=-1.

The two equations are the same! So there is really only one equation to solve,
which has infinitely many solutions in s and ¢. If you take any value for s, say
5 =7, and calculate the corresponding value ¢ = -5, then you have a solution of
both vector equations. You can easily check that s =7, t = -5 gives the position

( 31
vector

_13) in both lines. (Try some other pairs of values for yourself.)

You can see that in (b) the direction vectors of the

lines are (_42) = 2(_21) and (_36) = —3(_21) . This ’_%\\\ {_ ( 4 J

Radi-N
N~

~
means that the lines have the same direction, so
they are either parallel or the same line. Also the N

/1\

(1,

position vectors of the given points on the

we (1) o) (1)-(o)- ()

\| /7

N
w
N~

joining these points is also in the@agQedi

in Fig. 12.2. Fig.12.2

The general result derk

A multiple of q . If in addition b—a isa
d are the same; otherwise the lines are parallel.

v
This shows that linesdo not have unique vector equations. Two equations may represent the
same line even though the vectors a and b, and the vectors p and q, are different.

Example 12.14
Show that the lines with vector equations r = 2i — 3j+ s(~i + 3j) and r = 4i +£(2i - 6)
are parallel, and find a vector equation for the parallel line through (1,1).

The direction vectors of the two lines are —i+3j and 2i—6j.

As 2i-6j=-2(-i+3j), 2i- 6 is a scalar multiple of —i +3j, so the lines are in
the same direction. But 4i —(2i — 3j) = 2i + 3j is not a multiple of —i+3j, so the
lines are not the same. The lines are therefore parallel.

The position vector of (1,1) is i+ j, so an equation for the parallel line through
(1,1) is ¥ =i+ j+ s(—i+3j). Or, alternatively, you could use r =i+ j+#(2i - 6j).
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Example 12.1.5
Find a vector equation for the line with cartesian equation 2x +5y =1 and use it to find
where the line meets the circle with equation x* + y* =10.

The gradient of the line is —%, so the directidn vector could be taken as (-—SZJ .

A point on the line is (-2,1), with position vector [—12] . So a possible vector
ton is 1 = -2 + 5
egua fonis r=| YL
Writing r as (;) , this equation becomes (;) = (_lzJ + t[_szJ , giving .
x=-2+5t,y=1-2¢.

Substituting these values for x and y into the equation x? + y2 =10 gives-
~24t~-5=0,o0r

gives the points with

(b) (4,1), (—23) (c) (5,7), parallel to the x-axis

) (a,b), ((1)) ® (cosa,sina), (_ sin a)

cosa

2 Find vector equations for lines with the following cartesian equations.
(@ x=2 b)) x+3y=7 () 2x-5y=3

3 Find the coordinates of the points common to the following pairs of lines, if any.

@ (G =Gl o (0 G) S
0 e B} =(0)(3) @ (G} () (3)
O =% (D) o (o) ()5
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4 Write down in parametric form the coordinates of any point on the line through (2,~1) in

the direction * 1 + 3j. Use these to ﬁnd the point whcre thls line intersects the line
5y-6x=1.

X - 2
5 Find the coordinates of the point where the line with vector equation r =[ ) + t[ )

intersects the line with cartesian equation 2x+y="7.

e 6 Which of the following.points lie on the lin;: joining (2,0)-to (4,3)?

(@ (8.9) () (12,13) © (-4.-1) @ (-6-12) (@ (31.2)
7 Find vector equations for the linés joining the following pairs of points.

@ (3.7, (5.4 ®) (2,3), (2,8) © (-12), 5,-1)

@ (-3,-4),(5.8) @ (-2,7), (47 ® (13),(-4,-2)

8 A quadrilateral ABCD has vertices A(4,-1), B(-3,2

(a) Find vector equations for the diagonals, A
intersection.

~8,-5) and D(4,-5).

(b) Find the points of intersection of BA prody
produced and DA produced.

endicular to each other. Is this still true

if b is zero but ¢ is not,

12 Find a vector equation for the line joining the points (—1,1) and (4,11). Use this to write
parametric equations for any point on the line. Hence find the coordinates of the points
where the line meets the parabola y = x2.

13 Find the coordinates of the points where the line through (=5,—1) in the direction (Z)
meets the circle x2 +y% =65. '

12.2 Vector equation of a line in three dimensions

Everything that you have learnt about the vector equation of a line in two dimensions
carries over into three dimensions in an obvious way. However there are two important
differences between two dimensions and three dimensions.
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e The idea of the gradient of a line does not carry over into three dimensions. However,
you can still use a vector to describe the direction of a line. This is one of the main
reasons why vectors are especially useful in three dimensions. '

o In three dimensions lines which are not parallel may or may not meet. Non-parallel lines
which do not meet are said to be skew. (Imagine two vapour trails made by aeroplanes
flying at different heights in different directions.)

The following examples show some of the situations which can occur when working
with lines in three dimensions.

Example 12.2.1
Points A and B have coordinates (-5,3,4) and (-2,9,1). The line AB meets the
xy-plane at C . Find the coordinates of C.

The displacement vector ﬁ is

fe. A vector equation for the

1 Points on the lines can be written as si+(1+2s)j+(-1+ s)k and
' (1+18)i+7j+(~4 + tu)k. If these are the same point, then

s=1+¢, 1+25=7, and —-l+s=—-4+tm.

The first two equations give s =3 and ¢ = 2. Putting these values into the third
equation gives —1+3=~4+2u,so u=3.

You can easily check that, with these values, both equations give r =3i+ 7] + 2Kk, so the
point of intersection has coordinates (3,7,2).
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Example 1223
Determine whether the points with coordinates (5,1,—6) and (-7,5,9) lie on the line
joining A(1,2,-1) to B(-3,3,4). |

A vector in the direction of the line is

e HIU
S AB=b-a=|3|-| 2 |=] 1]
4 -1 5
1 -4 x 1 —4
The equation of the line is r=[2]+t[ 1 },whichis (y]=[2]+t{ 1 ]
-1 5 b4 -1 5

To find whether (5,1,—6) lies on this line, substitute x =5, y=1and z=-6 to
get the vector equation

5 1 -4
1 1=]2 !+t 1}, whichis
-6 -1 5

4

As | —1 | is a multiple of
-5 .

(5,1,-6) lieson AB.

ytQs0lve the vector equation
-4 -7 1 -8
()11 =] 5112 1= 31
L5 9 -1 10

1 ], this vector equation has no solution, so

3] 4
(2,4,4) to (3,3,5), and find the cosine of the angle between the lines.

Example 122.4 1 2
Prove that the straight line with equation r=| 2 |+¢| —1 | meets the line joining

3 2 1
The line joining (2,4,4) and (3,3,5) has direction {3]—{ ]= {—1], so it has

2 1 5 4 1
equation r=|4 |+s/ -1|.
. 4 1

To prove that the lines intersect, you have to show that there is a point on one line
which is the same as a point on the other. Suppose that the lines meet when the
parameter of the first line is ¢ and the parameter of the second line is s. Then
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1 2 2 1 2t—-s=1
2 |+ -1]=14|+s]-1{; thatis, —t+s=2>.
-3 4 4 1 dt—s5=17

Sets of three equations in two unknowns may not always have a solution. If there
is a solution, the equations are said to be consistent.

These equations are consistent, with solution 7 =3 and s = 5. Hence the lines
intersect. (The point of intersection is (7,—1,9).)

The angle between the lines is the angle between their direction vectors. Calling
this angle € and using the scalar product (see P1 Section 13.8),

RIEHEIE

cos@, giving cosf = =

3 4
(¢) (2,-11), (-1| (d) (3,0,2), |2
11 3

(1,2,2), (2,-2,2) ) (3,1,4), (—1,2?3)

traight lines represent the same straight line as each other?

3 2
(b) r=|3|+t|-1
4 2

+6k+7(-2i+ j—2k) (d) r=i+4j+2k+¢(-2i+j-2k)
(e) ragA+5j+¢(2i-j+2k) () r=—i+5j+1(-2i+j-2K)

4 Find whether or not the point (~3,1,5) lies on each of the following lines.

1 -2 0 1 1 -4
(@ r=|3|+: —1] (b) r=|1|+t/0 (c) r=[—2 +1 —3]
1 2 2 3 4 -1

5 Determine whether each of the following sets of points lies on a straight line.
(@ (1,2,-1, (2,4,-3), (4,8,-7) ) (5,2,-3), (-1,6,-11), (3,-2,4)

6 Investigate whether or not it is possible to find numbers s and ¢ which satisfy the
following vector equations.

R o BB -
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10

11

Find the point of intersection, if any, of each of the following pairs of lines.
1 -2 0 1 1 -1 1 2
(@ r=|3(+s|-1], r=|-2+¢]-1 M) r={-1(+s] 2, r=| 3 |+¢|-8
1 2 8 1 2 -1 -1 5

If p=2i-j+3k,q=5i+2jand r =4i+ j+k,find a set of numbers f, g and & such

that fp+ gq+ hr = 0. What does this tell you about the translations represented by p, q

and r?

A and B are points _\)avith coordinates (2,1,4) and (5,—5,—2). Find the coordinates of the
_)

point C such that AC =2 AB.

Four points A, B, C and D with position vectors a, b, ¢ and d are vertices of a
tetrahedron. The mid-points of BC, CA, AB, AD, BD, CD are denoted by P, Q, R,
U, V, W.Find the position vectors of the mid-points of PU, QV and RW .

‘What do you notice about the answer? State your ¢eficlusion

as a geometrical theorem.

If E and F are two _p)oints \gth position vectoys £ and f , fing the position vector of the
point H such that EFf =3 EF .

With the notation of Question 10, expzé

£1d-d the position vectors of
such that DH:HG =3:1.

12.3 The distance from a point to a line

If a point does not lie on a line, it is natural to ask how far from the line it is.

Before embarking on examples, it is worth noting that in the vector equation of a line

r=a-+rp

the vector p-can be any vector in the direction of the line. In the case when p is a unit
vector u, the equation becomes r = a + fu. In this case, | t[ is the distance along the
line from A to the point with parameter ¢.
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Example 12.3.1
Let A'be the point with position vector i —j+ k. A line / through A is given by the

vector equation r —1—J+k+t( i+ 3j-—_k)

(a) Verify that 1 3 i+2j J -3 2k is a unit vector.

(b) Show that l 1ntersects the line m with equation r =~3i+ 6k + s(2i + j— 3k). Call
this point of intersection B.

(c) Find the distance AB.

: - 22 2% _ [1,.4.,4_ 1s,2: 29
€:)) 1+3J——k‘ \f— +(§) +(—3) =q4gtgty=lsozi+3j-Fkisa
unit vector.

(b) If the point with parameter ¢ on [ coincides with the point with parameter s
on m,then

wiro
L3
~—
1}

i-j+k+e(li+dj-

giving (1+32)i+(-1+21)j+(1-

leading to the equations

WY W Wl

By addingAhe i can see that they have the solution s =3,
' thdt this solution satisfies the first equation.

gtent, the lines intersect.

f A is r-l—,]+k+t( 3j 3k) which shows that the
akes the value O at the point A.

You could have found the coordinates of the point of intersection of I and m as
(3,3,-3), and then found the distance of (3,3,-3) from A using the formula for the
distance between two points.

If the parameter of the point of intersection had been negative, then you would have
taken the modulus of the parameter to find the distance. So, if the parameter had been
—6, taking the modulus would have given the distance as 6.

Finding the perpendicular distance of a point from a line is a little more complicated.
Here are two examples to show the method. The first is in.two dimensions, the second
in three.



CHAPTER 12: VECTORS: LINES IN TWO AND THREE DIMENSIONS 171

Example 1232
Find the distance of the point Q with coordinates (3,1) from the line [ through the
, 5 .
origin with vector equation 1 = t[i%)
13

Let the perpendicular from Q to the line
I meetit at N, so youneed to find QN
(see Fig. 12.3).

5 Q@3
Notice that [};’J is a unit vector, and _
13
denote it by u. Let 8 be the angle
between OQ and [.
In the right-angled triangle OQN , you can find k€Jengthsof OQ and ON, and

then calculate the length QN by using Pythagdra

00 =v3+1% =4/10.

12_21
13 " 13°

_10_129 _ 961
=10 169 ~ 169°

In three dimensidgs\te
through the origin.

principle is the same. In the next example the line does not pass

‘Example 12.3.3 B
Find the distance of the point Q with coordinates (1,2,3) from the straight line with
equation r =3i+4j~2k +¢(i—2j+2Kk).

Let A be the point (3,4,-2),and N be the foot
of the perpendicular from Q to the line.

Focus on the triangle ANQ (see Fig. 124). p=i-2j+2k
- A(34-2) 0(123)

AQ=q-a=(i+2j+3k)~(3i+4j-2K)

=—-2i-2j+ 5k. 0
. Fig. 124
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So

AQ? =|-2i-2j+ 5k |*=(=2)* +(=2)* + 5% = 33.

The length of the vector p=i-2j+ 2k is y12 +(~2)? + 22 =3, so the unit

vector in the direction of p is u= § i- —] +2 5k.

Then AN = AQcos@ = AQx1x cos@ ={q—

AN =(q-a).u
={(-2i-2j+5k) ( 3_]+ k)

=(—2)x%+(—2)>§(—%)+5x%

=—z424 2

2,410
3334'

’
a).u,so

So ON? = AQ* - AN? =33-16 =17 [giving ON X 17.

The required distance is V17

5 Find a\eCtor equation of the line / containing the points (1,3,1) and (1,-3,~1) . Find the
perpendicular distance of the point with coordinates (2,—1,1) from /.

Miscellaneous exercise 12

3 2

1 4
1 Two lines have equations r={ 3 {+A{ -2 [ and r =| 8 |+ | —3 |. Show that the lines
2 1 7 -1 '
intersect, and find the position vector of the point of intersection. (OCR)

2 (a) Finda vector equation for the line joining (1,1) and (5,-1).

(b) Another line has the vector equation r =
the two lines. -

G) + th . Find the point of intersection of
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3 A tunnel is to be excavated through a hill. In order to define position, coordinates (x,y,z)
are taken relative to an origin O such that x is the distance east from O, y is the distance
north and z is the vertical distance upwards, with one unit equal to 100 m. The tunnel

1
starts at point A(2,3,5) and runs ina straight line in the direction | 1
-0.5
(a) Write down the equation of the tunnel in the form r =u+ At.
; 4 7
(b) An old tunnel through the hill has equation r =| 1 |+ g{ 15 |. Show that the point P on
2) \0
the new tunnel where x = 7% is directly above a point @ in the old tunnel. Find the
vertical separation PQ of the tunnels at this point. (MEI)
—sin) ., .
4 cosar ) , giving
5 trol tower ¢ minutes after

2 5 m 2
afons r=| -3 [+A|1|and r=| 2 |+puf 1
1 2 5 -1

1 3
(i) Determine the vector I;é ,and show that l P_é l =2/11.
(ii) Verify that I;é is perpendicular to both /; and /,.
(iii) Show that P lies on /; and find the value of m for which Q lies on [,. Write
down the shortest distance between /; and [, in this case.
(b) Find the size of the acute angle between the lines /, and [,, giving your answer correct
to the nearest 0.1°. ‘

(c) Determine the value of m, different from the value you found in part (a), for which L
and [, intersect. . ] ' (OCR)
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7

An aeroplane climbs so that its position relative to the airport control tower ¢ minutes after

{1 4
take-off is given by the vector r =| 2 |[+¢| 5 [, the units being kilometres. The
0 0.6

x-and y-axes point towards the east and the north respectively.
(a) Find the position of the aeroplane when it reaches its cruising height of 9 km.

(b) With reference to (x, y) coordinates on the ground, the coastline has equation
x +3y =140 . How high is the aircraft flying as it crosses the coast?

(c) Calculate the speed of the aeroplane over the ground in kilometres per hour, and the
bearing on which it is flying.

(d) Calculate the speed of the aeroplane through the air, and the angle to the horizontal at
which it is climbing.

The line / has vector equation r = 2i + s(i 3§+ 4k).

(a) {heti dquation T =k +#(i + j+ k) and

(b) 3 poi Whith are exactly 5\/1—0 units from the

{c) t gf the Point on I which is closest to the point with
(OCR)
aneously from different airports. As they climb, their
position§\gelgtive #0 an air trgffig’ control centre ¢ minutes later are given by the vectors

13 6

26 |+t| -3 |, the units being kilometres. Find the

0 0.6

he point on the ground over which both aeroplanes pass. Find also the
eights, and the difference in the times, when they pass over that point.

10
¢ line of an underground railway tunnel follows a line given by r =¢| 8 | for
~1
0 =< ¢ = 40, the units being metres. The centre line of another tunnel at present stops at the
200 5
point with position vector | 100 | and it is proposed to extend this in a direction | 7 |. The
=25 u

constant u has to be chosen so that, at the point where one tunnel passes over the other,
there is at least 15 metres difference in depth between the centre lines of the two tunnels.
What restriction does this impose on the value of u?

Another requirement is that the tunnel must not be inclined at more than 5° to the
horizontal. What values of u satisfy both requirements?




13 Vectors: planes in three dimensions

This chapter uses vectors to investigate the geometry of planes. When you have completed it,
you should

e  be able to find the equation of a plane

* be able to find out whether or not a given line intersects a given plane

e be able to find the line of intersection of two planes, the angle between two planes, and
the angle between a line and a plane

e be able to find the distance of a point from a plane.

13.1 The cartesian equation of a line in two dimensions

Although this chapter is about planes it is helpful to begin by looking at the equation of
a line in two dimensions in another way.

In two dimensions, you can describe the direction ¢f & line by a single number, its

Example 13.1.1
Find the cartesian equatioy

vector ( ! j .
m

Method

x+my=1(+2m.

l
Look at the left side of this equation. The line perpendicular to the vector (m) has an
equation of the form: it + my = k where k is a constant. This suggests method 2.
71 . .
Method 2 It m= km] be the perpendicular to the line,

and a be the position vector of (1,2). Let r be the position
vector of any other point on the line. See Fig. 13.1.

Then r —a is a vector in the direction of the line, and is
therefore perpendicular to n.

Therefore (r—a),n=0,or r.n=a.n.
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Ifn= (’;), r= (;) and a= G) , then the equation r ,n =a ,n becomes

(x).(ljz(l)-(l),thatis Ix+my=I1+2m.
y) \m 2)\m '

Method 2 suggests what is generally the best way to find the cartesian equation of a plane.

13.2 The cartesian equation of a plane

What is a plane? Of course you know the answer to this — it is a flat surface. But this, on
its own, will not help you to find its equation. You need to find a way to express the fact
that the plane is a flat surface in a mathematical way.

One possibility is to use a property in three dimensions similar to that used in the
previous section for a straight line in two dimensions.

is at eady pint a line perpendicular to
drpendiculars are in the same

On any smooth surface (such as a sphere) the
the surface. The special property of a plang i that these p
direction at every point.

A vector in this direction is called ¥

Fig. 132 shows a plane at three

points. The normal to 3 is normal to
a plane, any multip Iso normal to the
plane.
Fig.13.2
Every vector 1 -
is this preperty thateix o find the equation of the

positiqnector gf g/ point on the plane. Let r be the position
vector oRany, &th€r point on the plane, as in Fig. 13.3.

Then r—a is a vector parallel to the plane, and is therefore
perpendicular to n. Therefore (r—a).n=0,0r r.n=a.n.

This equation, r .n=a .n, is one form of the equation of a
plane.

Points of a plane through A and perpendicular to the normal

vector n have position vectors r which satisfy r .n=a .n.
This is called the normal equation of the plane.
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X p
If you write r=| y | and n=| g |, the equation r ,n=a n becomes
Z r

px+qgy+rz=a.n.

This is the cartesian form of the equation of a plane. Notice that the right side is a
constant, and the coefficients on the left side are the components of the normal vector.
Thus, you can write down the equation of the plane directly if you know a vector normal
to it and you know a point on it.

Note that in two dimensions the direction of A
the line or by a vector perpendicular to it.

yuel\bxa vector perpendicular (normal) to it, but

by a vector along the line, bt # - perpendicular (normal) to it; the
gCtors paxa

there are many differe
determine it.

Example 1 4
Find the of the plane through the point (1,2,3) with normal | 5 |.
6

The constant Mag'to be chosen so that the plane passes through (1,2,3).

The constant is therefore 4 X1+5x2+6x3=32,
so the equation is 4x+ 5y +6z=32.

x) (4 1) (4
Method 2  Using the equation r.n=a . n gives | y |-| 5i=[2 |-/ 5.
z)\6 3) 16

Thisis 4x+5y+6z=1x4+2x5+3%x6,
which is 4x+5y+6z7=32.
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Example 13.2.2 1 2
Find the coordinates of the point of intersection of the line r={ 0 [+¢| 1 | with the
plane 3x+2y+4z=11. 1 -3

x 1 2

Rewriting the line in the form [y] = (O] + t[ 1 ] and taking components yields
z 1 -3

the equations x =142¢, y=0+1 and z =1-3¢. Substituting these into the

equation of the plane gives

3(1+2¢)+2t+4(1-3t)=11, whichgives ¢t=-~1.

So the line meets the plane at the point with parameter —1, namely (-1,-1,4).

Example 13.2.3 3 1
Find whether or not the lines (a) r = () r=| 2 |+12 2],
lie in the plane 2x—y—z =1. -3 0

X

g for x, y and z in the equation of the plane gives
341 —-(2+20)-(-3) =1,
which simplifies to 6+ 27 ~2-2t+3=1,0r 7=1.

No value of ¢ can make 7 =1, so there are no values of ¢ for which the
coordinates of the points of the line satisfy the equation of the plane. The line
therefore does not meet the plane.

[ 4\ 1 2

!
In Example 13.2.3 the directions of both lines, LBJ and 2 , are perpendicular fo | -1 |,
5 ~1

the normal fo the plane 2x~y-z=1, So 3 and’ ,2 are both parallel to the plane.
5 0

In part (a) the point (1,2,-1) lies in the plane, so the line lies in the plane. In part (b) the

point (3,2,-3) does not lie in the plane, so the line is parallel to the plane.
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Exercise 13A

1 Find the cartesian equation of the plane through (1,1,1) normal to the vector 5i —8j+ 4k.

2 Find the cartesian equation of the plane through (2,—1,1) normal to the vector 2i— j—k.

3 Find the_c)oordinates of two points A and B on the plane 2x + 3y +4z =4. Verify that the
vector AB is perpendicular to the normal to the plane.

4 Verify that the line with equation r=2i+4j+Kk + t(—4i + 4j— 5k) lies wholly in the plane
with equation 3x —2y+4z=2.

5 Find the equation of the plane through (1,2,—1) parallel to the plane Sx+ y+7z=20.
6 Find the equation of the line through (4,2,—1) perpendicular to the plane 3x+4y—z=1.

7 Verify that the plane with equation x—2y+2z =6 ispasa

el to the plane with equation

r.| -2 |=4.Find the perpendicular distance fyom the origin¥p ¥ach plane, and hence find
5 :

Example 133.1
(a) Find the position vg

This meets Yeplate x +2y—2z=9 where (1+1¢)+2(1+2¢)—2(1-2¢) =9, that
is where 9¢ = 8{or t=%.

The position vector of A is i+j+k+g(i+2j—2k)=%i+%j—%k.

(b) The coordinates of the point A are (% ,% - %) You could find the distance

of A from (1,1,1) by using the distance formula.

But there is a quicker way.

The length of the vector from (1,1,1) to the plane is % of the length of the vector
i+2j—2k,whichis /12 +22 +(-2)* =3.

So the perpendicular distance is %x 3= %.
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Example 13.3.2
Find the acute angle between the line
r=i+3j+5k+¢(2i+4j+k) and the plane x—y+z=0.

As shown in Fig. 13 4, take n to be a vector normal to
the plane, and p a vector along the line. You can find
the angle @ from the scalar product n.p, and the angle
between the line and the plane is then %7‘[ -0. Fig. 134

The line has direction vector 2i+ 4j+ k . The normal to the plane is i—j+k. So
the angle 6 between them is given by

(2i+4j+k) (i-j+k)=|2i+4j+k|x|i-j+k]|x cos8, thatis

1 1
cosf=——F—===——7=.
V2143 37

There is a problem. As cos@ is negatives g
The relation between p and n is corrg
" Fig. 13.5. The required angle is 6 — ;

Take tife origin at the centre of the
base, and the x- and y-axes parallel
to CB and AB, asin Fig. 13.6. Then
the coordinates of A, B, C and V
are respectively (2,-1,0), (2,1,0),
(-2,1,0) and (0,0,3).

The normal vector p to the face VAB

is in the direction of the perpendicular
from O to VM , where M is the mid-

point of AB with coordinates
(2,0,0).

AL
(2,-1,0)
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By symmetry, p has no y-component, and it is perpendicular to

5 0 2 -2 3
MV =0|-{0|=| O {,s0o pcanbetakenas | 0.
3 0 3 2

Similarly the normal vector q to the face VBC has no x-component and is

N 0 0
perpendicular to NV =| —1|,sotake q=|3|.
3 1

Let the angle between p and q be 6°. Then

30 3) (0
0 31fcos8°=[0]|-] 3|,
2 1 2/ \1
-0
N

2 2
S0 ¢08sf°=———=—— and O0=79.9
V13410 /130 .

Example 1334
Find the cartesian equd

If you subtract the third eqhation from the first, you get 2b+ 2¢ =0, giving ¢ =-b.
This reduces the equations to

a+ b=d,
2a+3b=d. /

You can now solve for @ and b in terms of d, giving a =2d and b =—d . Using
¢ =—b means that ¢ =d, so the equation ax + by + cz = d becomes

2dx—dy+dz=d.
Note that if d =0,then a =b=c =0, which is not allowed. So d # 0 and you
can divide by d to give 2x —y + z =1 as the equation of the plane.
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r 1 0
Method 2 Let | g | be normal-to the plane. As b—a=| -3 | and c-a=| -2 | are
r -5 -2
vectors parallel to the plane, they are perpendicular to the normal, so both scalar
1 D {0 (p
products | =3 |.| g | and | =2 || g | are zero. Therefore
-5/ \r =2 \r
p—3g-5r=0 s p—3gq-5r=0
—-2g-2r=0]’ g+ r=0]"

This is a pair of simultaneous equations in three unknowns. The best that can be
. done is to say that

p—3q=5r}

g=-r

| and to solve for p and g in terms of /r

Substituting g =—r in the first equatip ipf-3(=r) =5r, giving p=2r.

pY (2r
Thus | g ROUNA) mme for all 7, except r =0. Since you
r r

- need only one ng

13.4 Finding a comimon perpendicular
In Example 13.3.4 you had to find a vector which was perpendicular to both of two
given vectors. This situation occurs quite frequently when you tackle problems
concerned with lines and planes.

l )4
' Suppose that the vectors | m | and | g | are both non-zero and non-parallel,
n r
x
and that | y | is perpendicular to both of them.
b4
l X p)(x
+my+nz=0
Then the scalar products | m |+| ¥y |=| g |-| ¥y |=0, b +my +nz _0}.
w2 - \z px+ qy+rz=

This is a set of two equations in three unknowns.
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mr —ngq
You can verify by substitution that | np—ir | (and any multiple of it) is a solution.
lg—mp
IY(x 1Y (mr—-ngq
midy|={ml| np=1Ir |=Imr —Ing+ mnp—mir+nlg—nmp=0,and
n)\z n )\ lg—mp
p)fx p\) (mr—ng
qgl|yl|=|q|| np=1Ir |=pmr—png+qgnp—qlr+rig—rmp=0.
r)\z r)\lg—mp
! p l p
This is true for all vectors | m | and | ¢ |.It is also true that, provided | m | and | g | are
n r n r
mr —ng
non-zero and non-parallel, | ap—Ir | cannot be zerg/
lg—mp

igr as the vector
=arer1f e original vectors are

allel vectors, then | np—Ir
lg—mp

To find the first cdq}forent of the common perpendicular, start Y (P mr —ng
by blocking out the first components of the given vectors, as my rqg

shown in Fig. 13.8. Then take the products of the remaining n r

éomponents as indicated by the arrows, and subtract them, Fig. 13.8
getting mr —ng.

To get the second component, block out the second components ! »

of the given vectors, as shown in Fig. 13.9. Then take the
products of the remaining components indicated by the arrows,
and subtract them, getting np —Ir .

apg| | -ir

¥
~

Fig. 139
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Finally, get the third component by blocking out the third ) p
components of the given vectors, as shown in Fig. 13.10. Then m g
take the products of the remaining components indicated by the n 7 Iq—mp
arrows, and subtract them, getting lg—mp.
' Fig. 13.10
In each component, note carefully which is the positive term, and
which the negative.
Example 13.4.1 1 7
Find a common perpendicularto | 2 | and | 8 |.
' 3 9
Using the formula in the box on page 183, a common perpendicular is
2x9-3x8 -6
3x7-1x9 |=| 12 .
1x8—-2x7 -6
_ -1
Since any multiple of this vector is aJs¢ perpendiculyr Yo both vectors, | 2 | is
a simpler common perpendicular. -1
To check that you have a correct ans¥ker e sedlar product of your vector with
each of the original vectors. As (—1)\xY 2+(-1)x3=-1+4-3=0 and
1 7
is perpendicular to both | 2 | and | 8 |.
3 9

—2 | are vectors parallel to the plane, the normal is perpendiéula:
-2
to both &t them. So, using the result in the box on page 183,
(-3)x(-2)-(-5)x(-2)) (6-10Y) (-4
(-5)x0-1x(~2) =l 0+2 |=| 2
1x(-2)-(-3)x0 -2+0 -2

is in the direction of the ﬁormal.

Notice that the components of this vector have the common factor 2, and that

4 2 2
2 |=-2|-1|.So the simpler vector | 1 | is also normal to the plane.
-2 1 ) 1

Therefore the equation is 2x —y + z =k ; and since (1,2,1) lies on the plane, the
equation is 2x-y+z=2x1-2+1=1,whichis 2x—y+z=1.
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Example 1343
The line ! passes through A(3,—4,+6) and has direction vector p =-2i+5j+k . Find
the equation of the plane through the origin O which contains /.

Let n be a normal to the plane. Then, as [ lies in the plane, n is perpendicular to p.

The line OA, with direction vector 3i—4j— 6k, also lies in the plane, so it is also
perpendicular to n.

So n is perpendicular to —2i+ 5j+k and 3i—4j— 6k. Using the result in the
box, a common perpendicular is

(5%(=6) 1% (~4))i+(1x3-(-2)x (~6)) j+ ((-2)x (-4) ~ 5% 3) k.
=(~30+4)i+(3-12) j+ (8 -15k =-26i - 9j - 7k.

8 7

2 1
(@) {—3]and| -2 (¢c) {Ojand| O
1 1 2

2 In each parpfirmtve i to both of the given vectors. )
) 5k and (i +2j—3k) (¢) (i+j)and(i-j)

lar to both i+2j—k and 3i— j+ k. Hence find the cartesian
equation o drallel to both i+2j—k and 3i— j+ k which passes through the
point (2,0,-
, -1 0
4 Find a vector perpendicular toboth | 1 | and | 1
0 -1 -1 0
Hence find the cartesian equation of the plane parallel to both 1 |and | 1 | which
passes through the point (1,-1,-3). L0 -1

5 Find the cartesian equations of the planes through the given points.
(@ (1,0,0),(0,0,0),(0,1,0) () (1,~1,0),(0,1,-1),(-1,0,1)
© (1,2,3),(2,-1,2),(3,1,-1) d) (4,-1,2),(0,0,3),(-1,2,0)

6 Find the coordinates of the foot of the perpendicular from the point (2,-3,6) to the plane
2x -3y +62=0. Hence find the perpendicular distance of the point from the plane.
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7 Find the perpendicuiar distance of the point (3,1,—2) from the plane 2x +y—2z=8.
8 Find the equation of the plane through (1,2,-1) parallel to the plane 5x+y+7z=20.
9 Find the equation of the line through (4,2,~1) perpendicular to the plane 3x+4y—-z=1.

10 A cave has a planar roof passing through the points (0,0,-19),(5,0,—20) and (0,5,-22).
A tunnel is being bored through the rock from the point (0,3,4) in the direction
—i+2j—20k. Find the angle between the tunnel and the cave roof in degrees, correct to

the nearest degree.
11 Find whether or not the four points (1,5,4), (2,0,3),(3,-5,0) and (0,10,6) lie in a plane.

f 12 Find a vector equation of the line of intersection of the planes x +3y—6z=2 and
2x+ 7y—3z=7.(Hint: put z =0 to find a point on the line of intersection.)

parallel to the line of intersection of

13 Find a vector equation of the line throug}
the planes 3x -2y =6 and 4x+2z=

14 Find the equation of the plane througt

~1,3) which is parallel to the line
joining (1,1,1) to (2,3,5). -

carfesian equation of the plane containing 4 and 4, is 4y+3z=~1.

Miscellaneous exercise 13

Find the cartesian equation of the plane through (1,3,-7), (2,-5,-3) and (-5,7,2).

— 2

2 Two planes are defined by the equations x+2y+z=4 and 2x -3y =6.
(a) Find the acute angle between them.

(b) Find a vector equation of their line of intersection.
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w

7 B -

7

10

3 2
Two planes with vector equations r,| 1 |=2 and r,| 5 |=15 intersect in the line L.
1 -1

(a) Find a direction for the line L.

(b) Show that the point (1,2,—3) lies in both planes, and write down a vector equation for
the line L. (OCR)

Find the perpendicular distance of the point (p,q,r) from the plane ax +by+cz=d.

Find the equation of the plane through (1,2,—4) perpendicular to the line joining (3,1,—1)
to (1,4,7).

Prove that the planes 2x —3y+2z=4, x+4y—z=7 and 3x — 10y +3z =1 meet in a line.

" The straight line L, with vector equation r = a + b cuts the plane 2x —3y+z =6 atright
angles, at the point (5,1,—1).

(a) Explain why suitable choices for a and b fvgfild be a +j—kand b=2i-3j+k.

(b) (i) Find the angle between the dige
nearest degree.
(ii) Verify that L, cuts the plane 3y¥%.z = 6 at the point (-1.2,-3.6,-2.4).
(iii) Prove that L; and ] ;

€ or the obtuse angle between /; and /.
r n'=2i+2j—k is perpendicular to both / and I,.
faxl equation for the plane containing /; and /,. (OCR)

Find the cartesia eciuation of the plane which passes through the point (3,—4,1) and which
|

is parallel to the plane containing the point (1,2,~1) and the line r =¢| 1

1

The line /; passes through the point A, whose position vector is i— j— 5k, and is parallel
to the vector i— j—4k. The line [, passes through the point B, whose position vector is
2i - 9j - 14Kk, and is parallel to the vector 2i+ 5j+ 6k . The point P on [; and the point Q
on [, are such that PQ is perpendicular to both [; and [,.

{a) Find the length of PQ.

(b) Find a vector perpendicular to the plane IT which contains PQ and [,.

(c) Find the perpendiculér distance from A to IT. (OCR)

2 e A R N S AR
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14 The binomial expansion

The binomial theorem tells you how to expand (1+ x)” when n is a positive integer.
This chapter extends this result to all rational values of n. When you have completed it,
you should

e beable to expand (1+ x)” in ascending powers of x

e  know that the expansion is valid for | x|<1

o understand how to use expansions to find approximations

e  know how to extend the method to expand powers of more general expressions.

Generalising the binomial theorem
You learnt in P1 Chapter 9 how to expand

>

1X2X3X4x5%6

and all the coefficients which follow it are zero. But this only happens when 7 is a
positive integer. For example, if n = 4% the coefficients of x*, x> and x° are

Lonlynlayrl  alyalynlyglyl .11111(_1

4ix3ix2lxil  alxslxalxilxl alx3lxalxilxIx(-1)

s 2 and 2
I1x2x3x4 I1x2x3%x4x5 IXx2X3X4x5%x6

Whichever coefficient you consider, you never get a factor of 0. So, if # is not a
positive integer, the expansion never stops.

The case n =-1
You know from P1 Section 14.3 that the sum to infinity of the geometric series

T+r+r2+r 4. is %,PTOVidedthat |r!<1.
-r
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Replacing r by —x now gives

=1+x) " =l-x+xt -5 +....

1
1—(=x)
Now try using Equation A with n=-1. This gives

Q+x)" =1+ ﬂx + 1(=2) x+ (=1(=2)(=3) 4.
1 1x2 1x2x%x3

which simplifies to
Q+x) Tt =l-x+x2 =% +... .

So far so good: Equation A works when n=-1.

The case n=1

If 1+ x)% can be expanded in the form A+ Bx+ Cx’
A,B,C,D,... so that

then you want to find

(A+BJ\¢+sz+Dx3+...)2 =14+x.

This needs to be true for x =0, so A?=1.8
this means that A=1.

€ positive square root,

Then

(1+Bx+Cx?+ 24D’ +..)(1+ Bx+ Cx* + Dx* +...)
B)x+(C+B*+C)x”
+(D+BC+CB+D)x*+...

=1+(2B)x+(2C + B?)x* +(2D+2BC)x* + ...
So l+x=14 +B%)x? + (2D +2BC)x’ + ...
Since this is an identi

, you can equate coefficients of each power of x in turn:

2B=1, so B=

]

D=

2C+B*=0, so C=—%,

2D+2BC=0, so D=

&l

2,1.3 2 _
x4 kx +) =1+x,and

ool —

So it appears that (1 + % x—

l+x)i=1+1x-1x2+
( 2578

w

X +....

=
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Using Equation A with n = % gives

tenp sk 3R HEHED
1 1x2 1x2x3
=1+%x—§x +% +....

So Equation A seems to work when n = % , at least for the first few terms.

The general case
In fact Equation A works for all rational powers of #, positive or negative. There is,
however, an important restriction. You will remember, from P1 Section 14.3, that the series

1 . s .
1+r+r2+7r> +... only converges to - if | 7| <1. A similar condition applies to the
—-r

binomial expansion of (1+ x)" for any value of » which is not a positive integer.

Binomial expansion
integer, and |x|<1,

formula for (1+x)",

(2, D) 2, (A 5, CABA) o,
1 1x2 1x2x%x3 1x2x3%x4 :

£1-2x+3x%—4x> +5x* +....

The required expansion is 1—2x + 3x% —4x% + 5x*.

Example 14.1.2 ,
Find the expansion of (1+ 3x)? in ascending powers of x up to and including the term
in x*. For what values of x is the expansion valid?

Putting n = % in the formula for (1+ x)", and writing 3x in place of x,

T )+<3)<1>(3 D

272 27,3

—1+ )<:+8 ~T6* +.

The required expansion is 1+ %x + 28—7x2 - %f
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The expansion (1+ x)" is valid for | x| <1, so this expansion is valid for |3x|<1,

that is for | x| < 1.

You should notice one other point. When 7 is a positive integer, the coefficient

- —(r— !
rln=1)...(n= (= 1)) can be written more concisely using factorials, as G
IxX2X...xr ri(n—r)

You can’t use this notation when # is not a positive integer, since ! is only defined

when n is a positive integer or zero. However, r is always an integer, so you can still if
nn—1)...(n—(r-1)
r! '

you like write the coefficient as

14.2 Approximations

One use of binomial expansions is to find numerical approximations to square roots,
: he power \xz | is very
or\all intents and
e ¢xpansion is a very

close approximation to (1+ x)".

Example 14.2.1 1
Find the expansion of (1-2x)7 in ascendin@\powerdof x up to and including the term

would give x = —%, since this is not nearly small
s x5, ... to be neglected. The trick is to find a value of

So put x =0.01 in the expansion. This gives

0982 =1-001-1x0012 - 1x001>-...,
0 0.7+2 =1-0.01-0.000 05— 0.000 000 5 = 0.989 949 5.

Therefore 5+/2 =0.989 949 5, giving 2 ~1.414 214.

143 Expanding other expressions

The binomial series can also be used to expand powers of expressions more complicated
than 1+ x or 1+ax.If you can rewrite an expression as Y(1+ Z)" where Y and Z are
expressions involving x, then you can expand (1+ Z)" , substitute the appropriate
expression for Z in the result and then multiply through by the expression for Y .
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Example 143.1

ol

Find the binomial expansion of (4 —3x? ) up to and including the term in x*.

4 —3x? is not of the required form, but you can write it as 4(1 - %xz)T So, using
the factor rule for indices,

1 .
Therefore (4 - 3x2)2 = 2(’1 - %xz) =2- %xz - %x“ +... and the required

expansion is 2 — %xz - 6%x4.

Example 14.3.2
Expand 5 St x

(32) (=1)(=2)(-3)
1x2 ()’ + 1x2x3 ) ...

A =1 3= Bl G-

(x—xz)) —1+%(x—x2)+%(x2—2x3+ .)+%(x3+...)+.
=1+%x—%x2—%x3+..

onrre U (IS R
=1 5,.5,2_15.3 1,2 1.3 )
—2(5+2x 7% g X T txtaxT—gx
=1 Tye_3,2_1.3 )
—2(5+2x 7x g Xt
-5,7,.3,2_17.3
—2+4x gx T +
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The required expansion is % + % x-3 x-Mi3

If an algebraic expression has a denominator which factorises, like

5+x  S5+x
2-x-x* (2+x)(1-x)

there is a simpler way of expanding it, by first splitting it into partial fractions. This technique
is explained in Chapter 15.

Exercise 14

1 Expand the following in ascending powers of x up to and including the term in x2.

@ (+x)7° () A+x)7° © (a-x* @ (1-x7°

2 Find the expansion of the following in ascending p

" in x°.

(@ (1+4x)™ ) (1-2x)7° (

of x up to and including the term

@ (1+1x)7

3 Find the coefficient of x* in the expa

@ (-2 ®) (+2x)™ @ (1-4x)7
-6 _ _ n
© (1-3x) ® Qrax)* 1-bx)~* @) (-cx)
4 Find the expansion of ¢ ng n.aseegding powers of x up to and including the
term in x°.
(@ (+x) @ (-x

5 Find the expansi

4 3x) © (1-6x)} @ (1-4x)7F

x> in the expansions of the following.
(b) (1-5x)7% © (1+3x) @ (1-4x)*

© -7 ® (1442 (@ Q+ax) ® (1-bx)y ¥

7 Show that, for small x, ./1+ zlfx =1+ %;x - T%gxz. Deduce the first three terms in the
expansions of the following.

(@ 1-ix () 1+ix? (©) Vad+x (d) 36+9x

8 Show that —13—2 =1+3x+ %}xz + —222 x> and state the interval of values of x for which

(1 —5X
2
the expansion is valid. Deduce the first four terms in the expansions of the following.
4 1
PRV ®) —=
(2-3x)
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13

9 Find the first four terms in the expansion of each of the following in ascending powers of
x. State the interval of values of x for which each expansion is valid.

@ =& ooy © mm O o
) 1+2x? f V8-16x ) i—z— ) 2

1 4x 12
i) ——— )] & 41+8 O ——
O Gy O T ; ()

10 Expand +/1+8x in ascending powers of x up to and including the term in x°. By giviﬁéa
suitable value to x, find an approximation for ~1.08 . Deduce approximations for

(@ 108, (b) 3.

11 Expand N +4x in ascending powers of 2
(a) By putting x =0.01, determine anfagproximatiot\fo 3130.
(b) By putting x =-0.000 25, dete dan approximatlon for /999 .

12
(1-2x)*"
(1+x)*

N1+2x

&<pansion in ascending powers of x of . State the
p gP T—ax. _

14

involving x* and higher powers may be ignored and that

= bx? +cx’ , find the values of a, b and c.
a +bsg\/<f+ 3x)

16 Find the expansionof in ascending powers of x up to and including the term

1- (x +x? )
in x*. By substitution of a suitable value of x, find the approximation, correct to 12

decimal places, of L .
0.998 999

17 Find the first three terms in the expansion in ascending powers of x of
8 1+2x

_—, b)) ————.
@ (2+x—x2)2 ® (1—x+2x2)3

18 Given that the expansion of (1+ax)" is 1-2x+ %xz +kx? +..., find the value of k.
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10

11

12

Miscellaneous exercise 14

Find the series expansion of (1+ 2x)% up to and including the term in % , simplifying the

coefficients. (OCR)

Expand (1- 4x)% as a series of ascending powers of x, where | x| < 1 up to and including
the term in x°, expressing the coefficients in their simplest form. (OCR)

Expand (1+2x)~ as a series of ascending powers of x,where | x|<3,uptoand

including the term in x>, expressing the coefficients in their simplest form. (OCR)

Expand - as a series in ascending powers of x, up to and including the term in
(1+2x?)

%8 , giving the coefficients in their simplest form. : (OCR)

. L
Obtain the first three terms in the expansion, in ascendingpowers of x, of (4 + x)2. State

the set of values of x for which the expansion is (OCR)
If x is small compared with a, expand powers of z up to and
o
including the term in —. (OCR)
a
Given that | x| <1, expand , Mg
including the term in xZ. ) isdmall, then (2-x)V1+x=a+ bx?, where the
(OCR)

+..., where the values of a and b are to be stated.

(OCR) "\

des’of x for which the expansion is valid. (OCR)

Write down the fifst four terms of the series expansion in ascending powers of x of
1
(1=x)3, simplifying the coefficients. By taking x = 0.1, use your answer to show

3 15641 »
that /900 ~ Sor (OCR)

Give the binomial expansion,for small x, of (1+ x)% up to and including the term in x?,

and simplify the coefficients. By putting x = % in your expression, show that

475 _ 8317
17 ~ 3596 - (OCR)-
6
2+(1+%x)

Expand

273 in ascending powers of x up to and including the term in x7.
X

(OCR)
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13

14

15

16

17

19

1
2
Show that 26(1 - —2%) =n+/3, where 7 is an integer whose value is to be found. Given

that | x| <1, expand (1- x)% as a series of ascending powers of x, up to and including the
term in x?, simplifying the coefficients. By using the first two terms of the expansion of

is
26 (1 - 2%)2 , obtain an approximate value for /3 in the form £ ,where p and g are
q

integers. (OCR)

Show that, for small values of x, (1+ x)% =1+ %x - é x2. Sketch on the same axes (with
. 1
the aid of a graphic calculator if possible) the graphs of y=(1+x)3, y=1+ %x and

y=1+ % x— %xz .
Compare the graphs for values of x such that
(@ -3<x<3, by -1<xx<l, () -02<x<0.2.

Show that the expansion of (1+4x)72 i
state the set of values of x for which
of x,the graphs of y=(1+4x)2, y

ate coefficients of powers of x to
find the values of A, B, S e thefirst four terms of the expansions in

Given that 1 AR Cx? + Dy + Ex* +.. ) , equate coefficients of powers
of x to fipd of,C,Dand E .Hence
(a) find ¥ o correct to 16 decimal places;

=1-3x+2x%+9x> —27x* for small

G where | x| <1, in ascending powers of x up to and including the term in
- X

x> Yoﬁ should simplify the coefficients. By putting x = 107 in your expansion, find

—1—2 correct to twelve decimai places. (OCR)
0.9999

Expand (1+ x)_% in ascending powers of x as far as the term in x2, simplifying the
1
i
coefficients. Prove that %(1 + %) =5 and, using your expansion of (1+ x)_‘*l with

x= % , find an approximate value for 5 , giving five places of decimals in your answer.
(OCR)
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1
20 Write down and simplify the series expansion of —=—, where | x|< 1, up to and
plify p N | x| p

including the term in x°. Show that using just these terms of the series with x = 0.4 gives

a value for ﬁ which differs from the true value by less than 0.7%. By replacing x by

0.2
1
2. . . .
z“ in your series and then integrating, show that J ——=dz =0.1987.
' o V1+z?
(OCR, adapted)

21" Show that the coefficient of x" in the series expansion of . (1+2x)2 is (<1)"(n+1)2".

1. 2n)!
22" Show that the coefficient of x" in the series expansion of (1—x s 22(n (n)')z .
n!
. . . . . 1+2x
23 Find the first three terms in the expansion in ascendingpowers of x of .By
- X
putting x =0.02 in your expansion, find an appre 13
24 Find the first five terms in the series expansio ge the expansion to find an

0.1

approximation to j

132 dx. infegral exactly, find an
-02 x

approximation for In2.

3+4x+x°
ascending powers of x of 2TEXTY Hence

3 1
1+7x

The diagram shows the graph of
y=3-52x? and part of the graph of
1

(-2 (14302)
Use your expansion to find an

approximation to the area of the region
shaded in the diagram.




15 Rational functions

This chapter is about rational functions, which are fractions in which the numerator and
the denominator are both polynomials. When you have completed the chapter, you should

be able to simplify rational functions by cancelling
be able to add, subtract, multiply and divide rational functions
be able to split simple rational functions into their partial fractions

expansions.

15.1 Simplifying rational functions

In Chapter 1 you saw that in many ways polynorfiials behaye like integers. Similarly
rational functions (also called ‘algebraic fracfiofis’) have wayy properties in common
with ordinary fractions. For example, just aq ypu can cancel alfraction like % toget 2,
you can cancel a rational function, but it is a\litle more complicated. Since you cancel

% in your head, it is worth lookingtQ 3¢

10 _2x5 2
15 3x5 3’

x—2 .
. A fraction bar acts

merator and denominator of

x—.
(x=2) .
must be thought of as -————. Since x—2 and 2x—1 have
(2x-1)
, no cancellation is possible.
Example 15.1.1
. x-2 2x-3 3x2 —8x+4
Simplif a s b) ———, Cc) ————.
plity () 2x—4 ()6x2—x—12 © 6x% —Tx+2
x-2 x-2 1
S IS N
2x—-4  2(x-2) 2
2x-3  (2x-3) 1

b = = :
® T (2x-3)(3x+4) 3x+4
32 -8x+4  (x-2)(3x-2)  x-2

© 6x*-7x+2 (2x-1)(3x-2) 2x-1

be able to use partial fractions to integrate some rational functions and-to find binomial
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You cannot cancel the last answer any further. If you have factorised fully, you can only
cancel factors if they are exactly the same, or if one is the negative of the other. For
example, you could cancel 2x—3 as ~(3-2x) =-1.

o 3-2x 3-2x

You can check these simplifications by putting x equal to a particular value, say x =0
(provided your chosen value of x does not make the denominator equal to 0). In part (a),

putting x =0 in the original expression gives i L which is the same as the simplified
-3

version. In part (b), the original becomes 12 and the answer becomes . In part (c),

the original is % 5 =2 and the answeris =3 =2.

15.2 Adding and subtracting rational functions

In cancelling and simplifying rational functions, you worked in the same way as in

In arithmetic, to calculate 1 1 5
(LCM) of 15 and 20. You can easﬂy see th
you would factorise the denominators,

117 11 7

15 20 3><5 2><2

from which you can work ¢ x3x5=60.Now

11 7 _11x4 -21_23
15 20 15x4 60 60
Example 1
Express as\\ing ir their simplest forms  (a) 1.2 (b) 3 __6
P AN P x 3 x+2 2x-1

(a) The LOMNQY A and 3 is 3x. S0 - 2-1X3_2xx_ 3 2x_3-2x

x 3 3x 3x  3x 3x 3x

(b) The LCM of x+2 and 2x —1 is (x+2)(2x —1). Subtracting in the usual way,

3. 6 32x-1)  6(x+2)
x+2 2x-1 (x+2)2x-1) (x+2)(2x-1)
6x-3-6x—12 -15

T xt2)2x-1)  (x+2)2x-1)
Notice the sign change which gives —6x —12 in the second step of part (b).

Don't forget to check mentally by substituting a numerical value for x which makes the
calculations easy. Try x =1 for part (a) and x =0 for part (b).
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Example 15.2.2
31x-8 14

2x2+3x—2—x+2

Express as a single fraction in its lowest terms.

The first step, as before, is to find the LCM. The solution goes:

31x-8 14 31x-8 14 31x-8-14(2x-1)
222 +3x-2 x+2 (@x-1)(x+2) x+2  (2x-1)(x+2)
31x-8-28x+14 3x+6
T T @x-)(x+2)  (@x-1)(x+2)
3(x +2) 3

T (2r1)(x+2) 2x-1

153 Multiplying and dividing rational functions

»ad division of rational

depse that

20 3) 20 4 20 4
—X—x=—X— & lxr=—x-—
320

3 15 3 15
20 4
xX=—x—,
3 15
miethod for dividing by fractions in arithmetic (‘turn it upside down
hich you may have used before. Then

X =—.
3 15 3 3x5 9

c a a c
I eral,if a, b, d d are int ,and x=—+—,then —x=—.
n general, if a ¢ an re integers, and x R en bx p
b b b
Multiplying by the inverse of E, which is 2, gives Zx2yx=2x% & x=2x<.
b a a b a d a d

Example 153.1
Simplif: tﬁe rational functions  (a) Z>< X —2x (b) =2 . a

y x x=2 x*—4x+3 2x*~7x+3’

2_ — p—
@ %Xx 2x=gxx(x 2)=2x(x 2)=2
x x-2 x x-2 x(x—2)
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x=2 x x-2  2x*—7x+3
®) = D = X -
x“—4x+3 2x°=-T7x+3 x“—4x+3 X
o x=2 2x-1)(x-3)
_(x—l)(x—3) X
_(x=2)2x-1)
T x(x-1)
Exercise 15A
Simplify
4x-8 9x+6
9 b b
‘(a) 2 (b) 3 ©)
6 (2x+6)2x—-4) :
d , —_—
@ etz © 4 @
Simplify
@ 5x+15, ®) x+1 | )
x+3 3
3x-7
d 3 k]
@ ®
Simplify
2 ) .
() ﬂﬁ ©
x+1
) .
+5x—=6
@ = ®
Simp)
(a) ©
(x+D)(x+3) (x+2)?
d - Pl - ’
(@ 5 3 &) 2 7 ®
Simplify
2 3 1 2
_+_1 b UL
@ x 4 _ ®) 2x+x ©
) x+3+x—4, © 3x—1_x+1, @
2x X x 2
Simplify
4 5 3
__+_, b b
@ x+1 x+3 -() x—2+2x+1 )
7 2 4 5
d - + R
@ x—=3 x+1 © 2x+3 3x+1 @

2

X

Crx’ax

2x+5
5+2x°
2x2 - 6x+10
3x2 ~9x+15

6x° +4x
4x? +2x°
8x2 —6x—20
245x-3x% "

x+2 x+1
3 4

2(x+3)
5

3x+4-

5 2.

4x 3x’

x+1 x+1
X x

4 2
x+3 x+4’
6 2

2x+1 5x-3
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7 Simplify
5 2 6 3 3x 5x
a - s b -, C _
@ 3x-1 2{\:+1 ®) 4x+1 2x © x+2 x+1
8x X x+1 x+2 2x+1 x-5
d - R e + R -~ .
@ 2x-1 x+2 ©) x+2 x+1 ® x+4 x-2
8 Simplify
2x+3 2 5x 1
(a) + ) ® 5——+—70,
{(x+D{(x+3) x+3 x“+x-2 x+2
5 x+2 8 4
c) ——+ . d - ,
© x=3 x*-3x @ x2~4 x-2
13-3x 4 11x+27 3
g) —V———t—, - .
©) ¥t -2x-3 x+1 ® 2x2 +11x-6 x+6
9 Simplify
4x+6 3x-12 3x
(@) X , ,
x—4 2x+3 x-2
© Jc2+9x+20>< 3 xf+3x+2 x> +5x+6
x+3 - x+4’ Xt +ax+4 xP+2x+1’
4x+12  x?+2x+1 4xr-9 9x?-12x+4
@) X =3 O —S—x= .
2x+2 x Ox“—4 4x°-12x+9
10 Simplify

1

12

13

14

(a)

(a)

X 3x
b + ,
®) 5-2x 2x-5
. 5x-1 1
(d) B .

2x2+x—3 2x2+7x+6’
—2x2+7x—6; 7x—x2_~—10

15x

O 2 10x-3" 5+19x—4x*’

Given that (x+2)f(x)

Given that P(x) = S and Q(x)=——
x+4 ;

=2 x+c¢ x2+2x-

(x+3)(x2 - x—6)

, find the values of the constants a, band c.

=1, find f(x) in its simplest form.

2
x=3

(@) find 2P(x)+3Q(x) in simplified form,
(b) find R(x), where R(x)+4Q(x)=3P(x).

Simplify
2

5 4 7x-10

(b)

+
3322 +2x X3

6x2 +11x~6"

2x+1—3;r-1_6x2+%c"f—'—1'
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15.4 Partial fractions with simple denominators

Sometimes you need to reverse the process of adding or subtracting rational functions.

For example, instead of adding .3 and

to get —————, you might need
21 2 O a2 T e
to find the fractions which, when added together, give J‘ﬁ_ .
(2x-1)(x-2)

This process is called splitting into partial fractions. Suppose you need to calculate

7x-8
f(Zx—l)(x—Z)dx'

You cannot do this as it stands. However, if you rewrite the integrand using partial -
fractions, you can integrate it, as follows:

R (el

=%1n| 2x—1|+2In|x

In this case, to split s start by supposing that you can

write it in the form

Tx-8-
(2x-1)(x-2
where the ideptitysip Qe ot the two sides are equal for all values of x for
which they/Age inSy; Rere, all Yaldes except x=% and x =2, where the

From this poiyg fwo methods you can use.

Equating coefficieuts method
Expressing the right side as a single fraction,
7x-8  _ A(x-2)+B(2x—1)
2x-1)(x-2)  (2x-1)(x-2)

Multiplying both sides of the identity by (2x—1)(x-2),
7x—-8= A(x-2)+ B(2x-1).
You can now find A and B by the method of equating coefficients (Section 1.3).

Equating coefficients of x': 7= A+2B
Equating coefficients of x*: -8=-24- B.

Solving these two equations simultaneously gives A=3, B=2.
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Substitution method
To find A, multiply both sides of the identity
2x —1 to obtain

Tx—8 __ A + B
(x-1)(x-2) 2x-1 x-2

by

— 2x —
Tx 85A+B x 1'
x=2 x=2
T g -2
Putting x =1 gives A=2—=-2=3
g x=5 gives A=1% 5=3.
3772 3
7x-8 -2
Similarly, to find B, multiply the identity by x—2 to get T4l +B.
2x -1 2x -1
7x2-8 6
Putti =2 gi B= ===2.
ing x gives x3-1_3
7x -8 3

By either method = .
Y 2r-1)x-2) 2x-1
There are three important points tq

rstrriple value of x. For example,
&, and —3 —1=—4 for the right.
and x =2 are chosen because they

e  Always check your answer by 1§

€ been more complicated. Try it and see!
& Deginning of the example, the values x = % and

ind A, since there is no need to exclude x = % in the identity

2x— _
*~1 Byt the partial fraction form —A—+ 5= *=8

x=2 2x=1 x-2 (2x-1D(x-2)

néaning when x =% (or when x=2).

An expression of the form __@+b can be split

(px+q)(rx+s)
B

into partial fractions of the form +:

px+q rx+s
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Example 154.1
. 13x-6 . . .
Split ——— into partial fractions.
3x° —2x
Rewrite izx—_ﬁ— in the form —>X=%_ ,and then put 13:-6 A, B
3x* -2x x(3x=2) x(3x-2) x 3x-2

Using the equating coefficients method, 136 _ AGx-2)+ B , 50

x(3x-2 x(3x-2
A(Bx-2)+Bx=13x-6. ( ) ( )

Equating coefficients of x' :  3A+B =13,
Equating coefficients of x0 : —-2A =-6,

Solving these two equations simultaneously gives A=3, B=4.

Therefore 13x-6 Ei+ 4 .
x(3x-2) x 3x-2

Example 15.4.2
12x

(x+D(2x+3)(x-3)

Split into partial frac

Put 12x
D2+ 3)(x

Ex(D+3)(-D-3) 1x(-4)

Putt

Similarly, tiplying by 2x+ 3 and putting x = —%, you get B=-8;
multiplying by — 3 and putting x =3 gives C=1.

12x _3 8 1
(x+D2x+3)(x-3)  x+1 2x+3 x-3°

Therefore

If you try to use the equating coefficients method in this example, you get three
simultaneous equations, with three unknowns, to solve. In this case, the substitution
method is easier.
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Example 154.3

4
Calculate the value of f —1— dx.
) X{(x~5)

Write

in partial fraction form, as =

1
x(x-5)

4

1 x(x=35)

Therefore f

1)-(-im1+1m4)

$lnl+¢Iinl-1in4

" Exercise 15B
1 Sowing into partial fractions.
O s O aned O oo @ e
2 Splii the following into partial fractions.
@ o O e © SR @

3 Split into partial fractions
35-5x ®) - 8x? © 15x% —28x-72
(x+2)(x-1)(x-3)’ (x+D(x=-1(x+3)’ TRt -2x?-24x

(@)
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4 Find
Tx-1. 4
7 b ———dx ’
® [y o [7
15x+ 35 j x—8
, d —dx
© j2x +5x @ 6x2 —x—1
5 Evaluate the following, expressing each answer in a form involving a single logarithm.
10 3
‘ 2x+5 ' 3x+5
(a) o dx (b) —
2 (x=1)}x+6) o (x+1D(x+2)
4x-18
(@) j
4x° +4x~ 3
6 Split __2-x into partial fractions and hence find the binomial expansion of
1+ x)1-2x) '
2-x

——————— up to and including the term in
(+x)(-2x) T &

7 Split ————1
P 8x2 +6x+1

S 16l up to and including the te

expansion is valid.

You will have nosiced jof the examples of the last section that when the denominator has
two factors there arefwo partial fractions, with unknowns A and B. When the
denominator has three factors, there are three fractions, with unknowns A, B and C.
The equating coefficients method shows why, since you can find two unknowns by .
equatmg coefﬁ01ents of x° and x', and three unknowns by equating coefficients of x°
x'and x?

3x2 +6x+2 . .
So you would expect ———————— to split into three fractions. Two of these must be

4 (2x+3)(x+1)

and 5 - The third fraction is ——. So write
2x+3 (x+1) x+1

3x+6x+2 _ A B C
Qx+3)(x+1)? 2x+3 (x+1)?7 x+1
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3x° +6x+2 _ L BRx+3) C(2x+3)
(x+1)* (x+1)° x+1

Then multiplying the identity by 2x+ 3 gives

(3] o2 _Fooer_ )

2 2 =_—1Z=”1'
SRS S

You might next try multiplying the identity by x +1, which gives

Putting x = ——% gives A=

3x2+6x+2 =A(x+1)+ B
Q2x+3)(x+1) 2x+3  x+1

But you cannot put x = —1 because neither side of the identity is defined for x =—1.
However, you can multiply the original identity by (x +1)* to get

35" +6x+2 _ A(x+1)°
2x+3  2x+3

+B+C(x

2
Putting x = -1 now gives B= 3X (Al) +

=-1.
(-1
3x2+6x+2
us ——— . =
(2x+3)(x+1)
Here are two w irst USEs substitution and the second uses algebra.

€nient value to give x, but putting x =0 in the original

Y S B2+—C—,or%=%A+B+C.Usingthe
2x0+3 (0+17 0+1 '

= -1, which you know, leadsto C=2.

6 -1 -1 2
=: + + .
Qx+3f(x+17? 2x+3 (x+1)* x+1
Algebraic method
3x2 4+ 6x42 -1 -1 C

= + + as
(2x+3)(x+1)*  2x+3 (x+1)° x+1

C _ 3x*+6x+2 1 1 3% +6x+2+(x+1)2+2x+3
X1 2xr 3D 2243 a2 Gxa e’
3?4+ 6x+2+x%+2x+1+2x+3 4x?+10x+6
- (2x+3)(x+1)? N (2x+3)(x+1)32

_2Qx+3(x+1)_ 2
T 2x+3)(x+1)? x+1
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'+6x+2 _ -1 . -1 2
Cx+3)(x+1D? 2x+3 (x+1)? x+1

Therefore C =2, as before, and

The key to finding partial fractions is to start with the correct form involving A, B and
C . If you do not have that form, you will not be able to find the partial fractions.

ax’ +bx+c¢

An expression of the form > can be split into partial

(px+q)rx +5)

B C
+ 5+ .
px+q (rx+s) rx+s

fractions of the form

Example 15.5.1
x2~7x-6
x*(x-3)

Express in partial fractions.

+ B(x—3)+C;putting,x=3

2
Thus X Xm0 3 Tx 65%
x*(x-3) «x

Example 1552
2
Express ——+—j£— in partial fractions, and hence find the binomial expansion of
o (1-2x)°(2+x)
9+ 4x> N .3 ,
——————— up to and including the term in x”. State the values of x for which the
(1-2x)"(2+x)
-expansion is valid. /
2
Write 9+4x - A B C

+ + .
(1-2x)*(2+x) (1-2x) 1-2x 2+x
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2 2
*4x EA+B(1—2X)+—CM)—.
+x 2+ x

Multiplying both sides by (1 2x)? gives 2
Putting x =1 leadsto A=4.

2
9+4x° _ A(2+2x) . B(2+x)+

Multiplying both sides by 2+ x gives = . C.
pyine y & (1-2x)* (1-2x)> 1-2x
Putting x =-2 leadsto C=1.
: 2
Therefore 9+421x = 4 >+ B + L .
(1-2x)°(2+x) (1-2x)° 1-2x 2+x
Using the algebraic method as on pége 208,
B 9+4x 4 1 9+44x7-4(2+x)-(1-2x)°
1-2x (1-2%0)%2+x) (1-2x)% 2+x (1-2x)%2+x)

_9+4x’~8—4x—1+4x-4x’ 0 —o
- (1-2x)%(2+ x) <2x)%(2+x)

9+ 4x? 4

Thus 5 = 3
(1-2x)°(2+x) (1-2%)

+(2+x)7\

2By 2, FDENA) 3
(2x) + 11 2m) +j

...)=4+16x+48x2+128x3+...,

12, CDE2)(3) 1,y
2 ) 1x2x3 (7x) +
T-dxalx? L

The¥xe

41-2x0)7+ 2+ 0"
1

=4+16x +48x% +128x° + ..+ S —Ex+ix? L+

=2+@x+ﬁx2+

2047 _3
2% 8 x

1€ +...,

so the required expansion is % + % x+ %—5 X%+ Z(l)%z x>

The expansion of (1-2x)2 is valid when | 2x| <1, that is when | x| < %
The expansion of (1 + % x)_1 is valid when \ %x ‘ <1, that is when | x|<2.

For the final result to hold you require both | x| <1 and | x| <2, thatis |x[<1.
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Exercise 15C
1. Split into partial fractions
4 6x* +11x -8
a P E——— 3 b -_— A Py
@) (x—1)(x - 3)? ®) (x+2)%*(x-1)
6 8—-Tx
C R T T 9 d G )
© x> —4x? +4x @ 2x° +3x% -1
2 Find
6x2+27x+25 97x+35
@ | T, ®) J - ;
(x+2)*(x+1) (2x-3)5x+2)
3 Show that J S22 gx=101n3,
x“(x+4)

3
4 Find the exact value of J Hxtlh)
2 2x —-3x“+1

15.6 Partial fracti € aderiomhinator includes a quadratic factor
ax+b ax’ +bx+c

ered so far, and , includes
' (Prra)rmrs)  (pr+afrx+s)

4x+ .
as x—26 , where the quadratic factor x4+ 9 in the
(x- 1)(x + 9)

denominator does not factorise.

rational expression

In this case, you would certainly expect to write

4x+6 A something

(x—l)(x2+9)=x—1+ x2+9

But what is the ‘something’?

Begin with the easy bit, and use the substitution method to find A. -
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Multiply by x—1, and put x =1 in the subsequent identity.

4x+6 A+ (something)(x —1)

with x =1 gives A=1.
x2+9 x2+9 g

4x+6 1 something
(x=D(x*+9) x-1  x*+9 °

1]

Therefore

You can now find the ‘something’ by the algebraic method, since

something _~ 4x+6 _ 1 =4x+6—(x2+9)
x2+9 ‘(x—l)(x2+9) x-1" (x-—l)(x2+9)
_ -x2+4x-3 =—(x—1)(x—3)=—x+3l
*(x—l)(x2+9)_(x—1)(x2+9)_x2+9'

So the ‘something’ has the form Bx +C. A

An expression of the form ( - and s have the same
pEY .
Bx+C

sign, can be split into partial frg o s + .

coefficieqtsNgfjfd B and C . This is a mixture of the substitution method and the
equating cosfficients method.

Example 15.6.1 shows these three techniques. Use whichever technique you find easiest.

The ‘substitution and algebraic’ method used above has the advantage that it is self-
checking. If the fraction just before the final result does not cancel, you have made a
mistake. If it cancels, there is probably no mistake.

The equating coefficients method is in many ways the most straightforward, but
involves solving three equations for A, B and C.

Example 15.6.1

5x~-6 . . .
) into partial fractions.

Split ——F——~
P )4
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Substitution and algebraic method
. 5x—6 A Bx+C
Write > = +— .
(x+2)(x*+4) x+2 £’ +4

55-6_ , (Br+C)x+2)

,and put x =—2. Then

Multiply by x+2 to get =A
pyay B s x> +4
~2) —
§¥'§=A,SO A=-2.
(-2)"+4
- — 5x—6—(=2)(x*+4
They BE+C__ 526 2 (-2)( )

xt+4 =(x+2)(3c2+4)_‘x+2= (x+2)(?€2+4)

C2x%+5x+2  (x+2)(2x+1)  2x+1

=(x+2)(x2+4) (x+2)(x2+4)= x*+4°

So

5x-6 2 +2x+1 \
(x+2)(x*+4) x+2 x*+4

Equating coefficients method

5x-6 A - Bx+

Write x 3 = + z
(x+2)(x +4) x+2 x

Multiply by (x + 2)(x2 +4

which you can write a

+4)+(Bx+C)(x+2),

; _ -2 +2x+1
(x+2)(x2+4) x+2 x*+4’

Substitution and equating coefficients method
Follow the argument in the substitution and algebraic method to get A=-2.

5x—6 _ =2 Bx+C
(x+2)(x2+4)_x+2 " x244

the numerators gives 5x —6= —2(3:2 + 4) +(Bx+C)(x+2),

Then, combining the fractions in and equating

which you can write as

5x-6=(-2+B)x?+(2B+C)x—-8+2C.
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Equating the coefficients of x2 gives -2+ B=0,s0 B=2.
Equating the coefficients of x° gives ~6=-8+2C,so C=1.
Checking the x-coefficient: on the left side 5; on the right 2B+ C=2%x2+1=35.

5x-6 -2  2x+1
Therefore 5 = +— .
(x+2)(x +4) x+2 x“+4

Notlce that in the substltutlon and equating coefficients’ method the coefficients of x?

and x° are used to get the values of B and C. This is because they give the simplest
equations. You will usually find that the highest and lowest powers give the simplest
equations in these situations. However, you should be aware that equating the

coefficients of x° has the same result as putting x = 0; you get no extra information.

Example 15.6.2

1+x . .
2) in ascending powerg g

(I_r the term in x~.
- x)\l+x

Expand

1+x A Bx+C
1-x 1+x*°

Using the substitution and algekga¥

a x(1-x)
Q- x)(l + x2)

X

1+x%°

1+ 1
Therefore X = + i 5.
(l—x)(l+x) 1-x 1+4=x

Use the binomial theorem on ) -in the form

¢! —x)(1+x

1+x

—(1_ —1v 2\~1
———(l—x)(l+x2)—(1' x) +x(l+x)
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This gives
(1—x)'1+x(l+x2)—x= C )( x) + C 1)( 2)( )2
(—1)(—2)(—3) (-1)(=2)(-3)(-4)
T T Ix2x3 (_x)3 kg
S N (=D)(=2)(=3)(-4)(-5) (=) +
, 1x2x3%x4%5

+ x(1+(--T1)x2 +%(x2)2 +)

=1+x+x2+x3+x4+x5+...+x(l—x2+x4—...)

=1+2x+x2+xt +2x° +....

The required expansion is 1+ 2x + x2 + x* + 2x°.

Example 15.6.3
Use partial fractions to differentiate

xt+x

Putting ———— i
g (x- 4)(x_2 +4

= Ix (x—4) 2+ (D x(x?+4) " x2x
B 1 3 2x
G- (x2+4)

RSN  Exercise 15D IS

1 Express each of the following in partial fractions.

2 4x 4-x 2x2+x-2
@ (x- l)(x2 + l) ® (x+ 1)(x2 + 4) (©) (x+ 3)(x2 + 4)
2x2+11x-8 x2-3x+14 , 3+17x?
@ (2x-3)(x*+1) © (3x +2)(x*+16) ® (1+4x)(4+x7)
6—5x x2+18 . 17 -25x
® 1+ 2x)(4 + x2) ®) x(x2 + 9) @ (x+ 4)(2x2 + 7)
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2 Expand the following expressions in ascending powers of x as far as the term in X2
1-2x—x? x* —8x 75— 2x-3x2

@ ———— b) © —F =
) 1+ x)(1+x?) ®) 2x+1)(x* +4) (1+3x)(25+ x%)
3 Use partial fractions to differentiate the following functions with respect to x.
3x2-2x-1 3x° +4 x*~4x
@) —— O © ———
(x+2)(x*+1) x(x*+4) (x+4)(x* +16)

S P

15.7 Improper fractions

So far all the rational functions you have seen have been “proper’ fractions. That is, the
degree of the numerator has been less than the degree of the denominator.

x-3x+5

Rational functions such as ————— and/4;
(x+1)(x-2) /

grapd in its present form, but it is

eXpression as j (6+—6—1)dx. You get
x —_—

e graph of y = % , although you can see immediately that

es through the origin, other features are much clearer in the form

You may find it helpful to think about an analogy between improper fractions in arithmetic
and improper fractions in algebra. Sometimes in arithmetic it is more useful to think of the
number % in that form; at other times it is better in the form 4%. The same is true in
algebra, and you need to be able to change from one form to the other .

In Section 1.4, you learned how to divide one polynomial by another polynomial to get a
quotient and a remainder.

For example, when you divide the polynomial a(x) by the polynomial b(x) you will get
a quotient q(x) and a remainder r(x) defined by

a(x) = b(x)q(x) + 1(x)

where the degree of the remainder r(x) is less than the degree of the divisor b(x).
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If you divide this equation by b{x), you get

2 _ba+r)_ o xx)
RS R e

Therefore, if you divide x* —3x+5 by (x+1)(x~2) to get a number A and a
remainder of the form Px+ Q, it is equivalent to saying that

x2-3x+5= A(x+1)(x—2)+ Px+Q

x*=3x+5 _ Px+Q

(x+1)(x-2) (x+1)(x-2)

This form will be called divided out form.

An analogous statement in arithmetic is 25 divided by 6 is 4 with remainder 1, that is,
25=4x6+1,or 2=4+1=41.

the degree of the

Example 15.7.1
2x* +4x-3

pllt m into parual fragtions.
X X —

2
Multiplying by x-+1 gives 22473 2 Az +1)+ B+ CEFD
2x-3 2x-3
— 2 — —
Putting x = -1 gives 2x(EL) +4x (1) 3=B,s0 B=1.
2x(~1)—3
2
Multiplying instead by 2x— 3 gives 2"—4531‘—35 aex-3)+2Z=3 ¢
X
2
2x(3) +4x(3)-3
Putting x=%gives (2) 3 (2) =C,s0 C=3,
341
2x% +4x-3 1 3

Therefore =A+ + .
(x+1)(2x-3) x+1 2x-3
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You can now substitute any other value of x to find A. The simplestis x=0,

: 1 3
hich gi =A+-+—,50 A=1.
which gives ] 1T 3 SO

x (=3)

2x*+4x-3 1 3
=1+ + .
(x+1)(2x -3) x+1 2x-3

Therefore

Method 2  If you divide out first, you start with the form
2% +4x-3 _ Px+Q
(x+D(2x-3) = (x+1)(2x-3)

the coefficients of x> gives A=1.

. Multiplying by (x +1){(2x — 3) and equating

s 2x2+4x-—3=+ Px+Q 2x°+4x-3 _ Px+Q
(x+D(2x-3)  (x+D(2x-3)"" (x+1)(2x-3)  (x+DQ2x-3)

Th

Simplifying the left side,

5x
(x+1D(2x-3)’

2x? +4x-3—(x+1)(2x~3)
(x+D(2x-3)

2x% +4x-3 1 3
=1+ + i
(x+1)(2x-3) x+1 2x-3

4x> +10x% +8x—1= A2Qx +1)*(x + 2) +(Px* + Qx +R)
gives 4 =4A,50 A=1.Then

Px* +Qx+RE(4x3 +10x? +8x—1)——(4x3 +12x2 +9x+2)

=-2x%-x-3.

2x2-x-3
So x—zx____ has to be put into the form B =+ ¢ + D .
(2x+1)(x+2) (2x+1)?* 2x+1 x+2
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—2x2i—x—3_B(x+2)+C(x+2)
x+1)%  (2x+1)*  2x+1

Multiplying by x + 2 gives + D, and putting

8-(-2)-3
-x =-2 gives ( 2) =D,so D=-1.
(-3)
2 2
2x2-x- 2
Multiplying instead by (2x +1)° gives Z—xx—353+C(2x+1)—(—x+—1l—,and
x+2 x+2
2 .
2L () _3 :
putting xz—% gives ( 2)1 ( 2) =B,so B=-2.
—5+2
2x2-x-3 2 C 1

- + - .
Qx+1)*(x+2) (2x+1)? 2x+1 x+2

c 2x*-x-3 2 1
= 5 + 5+
2x+1 (2x+1)*(x+2) (2x+1) Y,

_2x2—x =3+ 2(x+2) + (2x[+[)?

B 2x+1)3(x+2)
_2x - x =34+ 25+ AN + A

(2x+1)%(x

Then

@ 0 = ©

X x+1 x—-1

x2+1 6x2-22x+18 24x% +67x+11
@ x2-1 © (2x-3)(x-2) ® (2x+35)(3x+1)

2 Express each of the following in partial fractions.

3 3 3 2
x” -1 x +2x+1 x+3x“+x-14
@ —5—— ®) ———= B () B e
x(x+1) x(x +1) (x+4)(x +1)
@ 2x3 +6x2-3x-2 © 6x>+x+10 ® -4x3 +16x* +15x-50
(x=2)(x+2)* (x=2)(x+2)(2x~1) x(4x%-25)
3 3 2 3 2
x’+2x+1 x°=2x“+3x+6 o 12x7 -20x°+31x—49
(&) h) ———— ®

“x(x+1)(x-1) 222+ x) (4x2 +9)(x—1)
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Miscellaneous exercise 15

4
1 Express —————— in partial fractions. OCR
PSS o3+ P " OCR)
2 Express _ 2 in partial fractions (OCR)
e -+ P '
2
3 Express ﬁ%— in partial fractions. (OCR)
x(x-1)
-1 .
4 Express ———————— in partial fractions. (OCR)
(x+2)*(3x-1)
5 Find f 1 dx. (OCR)
x(x+1)

3+2x . . .
6 Express in partial fractions
e i) P

. x
7 Find fmdx (OCR)

nding powers of x up to and including the term in x.

‘A B o4
oform —+— + ——1 ,where A, B and C are constants. Hence
x x° x-

(OCR)

302 45x-2  4x’ +13x%+4x-12
4x-3 2x(x+3)-Q2-x)1+x)

x-21 3 4
12 Simplif - + X
P 76 343 1.3

8x> ~12x%—18x+15 .

13 Express - in partial fractions.
P (4x* - 9)(2x-3) P
14 Express in partial fractions
x—x+3 7x2-2x+5
@ == ® —
x(2x* +3) (x~1)(3x% +2)
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15 Express ————— in partial fractions. Hence find the exact value of
2x+1)}x-1)
3
3
———— dx, giving your answer as a single logarithm. . OCR
L Zx+Dx=1) giving y gle log (OCR)
16 Express ————— in partial fractions. Hence find the exact value of
(x+3)4-x)
2
1
—————dx, giving your answer as a single logarithm. OCR
Jo G+3)(@-2) giving y gle tog: ( )
17 Express f(x) = 23;2 in partial fractions and hence, or otherwise, obtain f(x) as a
—-3x+x -
series of ascending powers of x, giving the first four non-zero terms of this expansion.
State the set of values of x for which this expansion is valid. (OCR)

18 Express — >
PSS 2 D)1 -2%)

in partial fractions and hépgese sthexwise, obtain the first three

values of x for which the expansion is xalid. (OCR)

18-4x-x> A
(4-3x)(1+x)?

19 Given that
de=IIn2+3. (OCR)

B C
+ + =,
2—-x 1+x (1+x)

where the

> 15-13x+4x2
21 Ci A 2
, (=2 (@-=)

in partial fractions. Hence evaluate dx giving

the exact value in terms of logarithms. (OCR)
- 1
22 Split —/——————— into partial fractions.
P x* —13x% +36 P
2
23" Let f(x)=——x~ﬂ—2. Express f(x) in the form A + B + ¢ > where A, B
1+x)(1-x) I+x 1-x (1-x)

and C are constants. The expansion of f(x),in asceﬂding powers of x,is
cotex +c2x2 +c3x3 +...+c¢x" +... .Find ¢, ¢, ¢, and show that ¢; =11.Express c,
in terms of 7. (OCR)
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24 Ttis given that g(x) = 2x-1)(x+2)(x-3).

(a) Express g(x) in the form Afc3 +Bx* +Cx+D, giving the values of the constants
A, B, C and D.

(b) Find the value of the constant a, given that x + 3 is a factor of g(x)+ax.

(c) Express x(——i in partial fractions. (OCR)
glx

25 The diagram shows part of the graph of

3
y= Vx(x-3)
by the curve and the lines y =0, x =4 and
x =6. Find the volume of the solid formed
when the shaded region is rotated through
four right angles about the x-axis.

. The shaded region is bounded

26 (a) Find the valuesof A, B and C ff

2 _
y= x—zz,the x-axis and the
(x-2)

Jd by the curve with equation y = and the lines x =4

2
(x=1)(x-3)

1

. . 3
A the area of R is ln7—4

alflate the volume of the solid formed when R is rotated through 27 radians
about the x-axis. (OCR)

L
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Complex numbers :

In this chapter the concept of number is extended so that all numbers have square roots.
When you have completed it, you should

e understand that new number systems can be created, provided that the definitions are
algebraically consistent

e  appreciate that complex number algebra excludes inequalities

+ be able to do calculations with complex numbers

e know the meaning of conjugate complex numbers, and that non-real roots of equations
with real coefficients occur in conjugate pairs

e  know how to represent complex numbers as translations or as points

e  know the meaning of modulus, and be able to use 1t algebralcally

you also make up the
(—a)x(=b)=+(ab).

number. It turns s a( this can be done very simply, by introducing just one new
number, usually denXed by i, whose square is —1. If you also require that this number
combines with the real numbers by the usual rules of algebra, this creates a whole new
system of numbers.

Notice first that you don’t need a separate symbol for the square root of —2, since the
rules of algebra require that N=2 =~/2 x /=1, s0 that /=2 is just /2.

Since you must be able to combine i with all the real numbers, the complex numbers
must include all the products bi where b is any real number. They must also include all
the sums a+bi, where a is any real number.
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The complex numbers consist of numbers of the form a+ bi, where
a and b are real numbers and 1% =-1.

Complex numbers of the form a+01i are called real numbers;
complex numbers of the form O+ &1 are called imaginary numbers.

In a general complex number a+ bi, a is called the real part and
b the imaginary part. This is written Re(a + bi) =a,Im(a+ bi)=b.

Some people prefer to use j rather than i for the square root of ~1. Also, some books
define the imaginary part of a+bi as bi ratherthan b.

Two questions need to be asked before going further: is algebra with complex numbers
consistent, and are complex numbers useful? Fhe wgs are ‘yes, but ... * and ‘yes,

ac>bc.Soif a>0 and a >0, theR\ax tha > (0. What about the number
i?7Isi>0o0ri<0?

H) & 0<-i & -i>0,
and (-i)2 >0, giving —1>0.

Operations with complex numbers

It is remarkable, and not at all obvious, that when you add, subtract, multiply or divide
two complex numbers a + bi and ¢+ d i, the result is another complex number.

Addition and subtraction By the usnal rules of algebra,
(a+bi)t(c+di)=a+bitctdi=atc+bitdi=(atc)+(btd)i.

Since a, b,.c, d are real numbers, so are a £ ¢ and b+ d. The expression at the end of
the line therefore has the form p+ g1 where p and ¢ are real.
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Uniqueness If a+bi=0,then a=-bi,so that at= (—bi)2 =—b%.Now a and b are
real, so that @* =0 and —b? < 0. They can only be equal if a* = 0 and b*> =0. That s, -
a=0 and b=0.So if a complex number is zero, both its real and imaginary parts are zero.

Combining this with the rule for subtraction shows that
(a+bi)=(c+di) & (a+bi)—(c+di)=0 & (a-c)+(b—-d)i=0
< a-c=0 and b-d=0
< a=c and b=d.

That is:

If two complex numbers are equal, their real parts
are equal and their imaginary parts are equal.

Multiplication By the usual rules for multiplying/ ofit bracketd

(a+bi)x(c+di)=ac+a(di)+(bi)c+(biNd) = ac + adil+fpci+bdi*

=(ac—bd)+ (ad

Since a, b, ¢, d are real numbers, so are a
therefore of the form the form

d ad + bc . The product is
real.

An important special case j

And if ¢ =0, you can simplify the expression by multiplying numerator and
denominator by 1:

a+bi _a+bi_ (a+bi)i ai+bi’
0+di di (di)i di®
_ai-b_-b (ai) b a.

=———i

d d

-d

-d  -d
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+bi

a
In the general case -

p the trick is to multiply numerator and denominator by ¢ ~di,
c+di

and to use the result just proved, that (¢ +di)(c —di)=c? +d*.

a+bi_(a+bi)(c-di) _(ac+bd)+(—ad+bc)i_ac+bd_*(lac—ad)i
c+di (c+di)c—di) c?+4? et a? \et+at)”

In every case the result has the form p + ¢i where p and ¢ are real numbers. The only
exception is when ¢? +d* =0, and since ¢ and d are both real this can only occur if ¢
; and d are both 0, so that ¢+di=0+0i=0. With complex numbers, as with real
| numbers, you cannot divide by zero.

: . . +bhi . .
! Do not try to remember the formulae for (a +bi)(c+d1i) and 279 in this section.

c+di

As long as you understand the method, it is simple to apply it when you need it.

1 i the form a+b1, where @ and b are
real numbers. ' ’
(@ p+q © pq @) (p+q)p-9)
- ] © p’ -4 @ (p+q)’ & (p-q)’
2 Ifr=3+i following in the form a +bi, where a and b are

(©) 2r+s (@) r+si
@® - m 2
S r
® o =t
1+1 s

/and solve them.

Compare your answer with that given by dividing 1+3i by 2 +1i using the method
described in the text.

! 4 Evaluate the following.
(2 Re(3+4i) (b) Im(4-3i) (¢) Re(2+i)?

(@ Im(3-i)* &) Rel—l; 63) Iml
] +1 1

5 If s=a+biand t=c+di are complex numbers, which of the following are always true?
(@ Res+Rer=Re(s+¢) (b) Re3s=3Res (¢) Re(is)=Ims

(d) Im(is)=Res (e) ResxRet=Re(st) 6 —=Im=-
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163 Solving equations

Now that a+bi is recognised as a number in its own right, there is no need to go on
writing it out in full. You can use a single letter, such as s (or any other letter you like,
except i), to represent it. If you write s =a+ b1, it is understood that s is a complex
number and that a and & are real numbers.

Just as x is often used to stand for a general real number, it is conventional to use z for
‘a general complex number, and to write z=x+ yi, where x and y are real numbers.
When you see z as the unknown in an equation, you know that there is a possibility that
at least some of the roots may be complex numbers. (But if you see some other letter,
don’t assume that the solution is not complex.)

Example 16.3.1
Solve the quadratic equation 22 +47+13=0.

Method 1 In the usual notation a=1, b=4 and so that

—b+-dac-b*i

, both complex numbers.
2a

If the roots are complex numbers, then they have the form x *+ yi with the same real parts
but opposite imaginary parts. Pairs of numbers like this are called conjugate complex

numbers. If x + yi is written as z, then x — yi is denoted by z* (which is read as ‘z-star’).

Complex numbers z = x + yi, z¥ = x — yi are conjugate complex numbers.

Their sum z + z* = 2x and product zz* = x% +y? are real numbers, and

their difference z —z* =2yi is an imaginary number.

If a quadratic equation with real coefficients has two complex roots, these
roots are conjugate.




228 PURE MATHEMATICS 3

Conjugate complex numbers have some important properties. Suppose, for example, that
s=a+bi and r = c+d1i are two complex numbers, so that s* =g—bi and t* =c—di.
Using the results in the last section and replacing b by ~ b and d by —d, you get

stt=(atc)+(xd)i and s**r¥=(axc)-(bxd)i;
st=(ac—-bd)+(ad +bc)i and  s*t*=(ac —bd)-(ad +bc)i;
_ac+bd+(bc—ad)i s* _ac+bd—(bc—ad)i

al d
-= an
t ct+d? t* cr+d?

You can see that the outcomes in each case are conjugate pairs. That is:

If s and ¢ are complex numbers, then

(steyf=s* £1¥,

(st)* = s*t*,

s*

_t*

If in the second of these rules you se
() =)
that is (z3)* =

and ¢ equal to z,you get(zz)* = z*z*, that is
g follows that (zzz)* = (ZZ)*Z* =(z¥)’z*,

d n is a positive

n)* =a(z*)" )

gt you have a polynomial of degree n,

n

-1
pz)=a,Z" +a,12" +... v, vaz+ay,

whose coefficients a,, a,_, ..., a,, a; and g, are all real numbers. Then p(z*) is the
sum of n+1 terms of the form a,(z*)", which by the statement in the box you can
write as (a,zr)* . So each term is the conjugate of the corresponding term in p(z). Since
the sum of conjugate numbers is the conjugate of the sum, it follows that p(z*) is the
conjugate of p(z).

It is only a short step from this last statement to an important result about equations of
the form p(z) =0. Suppose that z = s is a non-real root of this equation. Then p(s)=0,
so p(s*)=(p(s))* = 0* =0, which means that z = s * is also a root of the equation.

You saw an example of this result in Example 16.3.1 for a quadratic equation. You can
now see that this was a special case of a far more general result, for polynomial
equations of any degree.
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If p(z) is a polynomial with real coefficients, then p(z*) = (p(z))*.

If s is a non-real root of the equation p(z) =0,then s* is also a root;

that is, the non-real roots of the equation p(z) =0 occur as conjugate pairs.

Example 16.3.2
Show that (1+i)* =—4. Hence find all the roots of the equation z* +4=0.
A+1)? =1+2i+i’ =1+2i-1=2i,s0 (1+i)* = (2i)* = 4i® = 4.
This shows that 1+1i is a root of the equation z* +4 =0, so another root must be 1~i.

You can deduce that z—1—i and z—(1—1i) = z—1+i are both factors of z* +4.

Now (z—1-i)(z- 1+1) (z-1?-i*=7*-2z+ 2 This means that z* +4 must
be the product of z*> —2z+2 and another quadyd By the usual method
(see Section 1.4), you can find that

z4+45(22—2z+2)(22+2z+2).

There are two conjug i : i i, —1+i, -1-1.

With hindsight, and a ity\you might spot that if z* + 4 is written as
(24 +47% + 4) —472 = n this is the difference of two squares, with

factors (Zz +

the factor thedue
Try z=1: p(1)=0,s0 p(z) = (z—1)q(z) , where q(z)=z* +z°> - 5z* =7z +10.
Try z=1 again: q(1) =0, 0 q(z) = (z~1)1(z), where r(z) =z> +2z% =3z -10.
Try z=1 again:b r1)#0.Sotry z=2: 1(2)=0, so r(z)=(z—2)(z2 +4z+5).
Completing the square, 72 +4z+5=(z+2)% +1=(z+2—i)(z+2+i).

Thus p(z) = (z—1)*(z—2)(z+2—i)(z + 2 +1), and the roots are 1 (a repeated root,
counted twice), 2 and the conjugate complex pair -2 *i.



230 PURE MATHEMATICS 3

Exercise 16B

1-If p=3+4i, g=1-1 and r =-2+31i, solve the following equations for the complex

number z.
(@ p+z=94 () 2r+3z=p © gqz=r (d pz+g=r
2 Solve these pairs of simultaneous equations for the complex numbers z and w.
@ (Q+iz+@-iw=3+4i ® 5:-GB+iw=7~1i
iz+(B+ijw=-1+5i (2-1)z+2iw=-1+i

3 Solve the following quadratic equations, giving answers in the form a + bi, where a and
b are real numbers.

@ z2+9=0 ®) 2 +47+5=0 () 22-62+25=0 (d) 27%+27+13=0

4 Write down the conjugates of

(@ 1+7i, (b) -2+i, d 3i.

For each of these complex numbers z finG

@ z+z*, i) =.
z

S Write the following polynomig ;
(@ z°+25 S 4z +12z+13 (@) z*-16
(€ z*-822-9 @ 22-32%+z+5 () z*~2"-2z+2

164 Geometrical representations

There are two ways of thinking geometrically about positive and negative numbers: as
translations of a line or as points on a line.

A business which loses $500 in April and then gains $1200 in May has over the two
months a net gain of $700. You could write this as (-500) + (+1200) = (+700), and
represent it by a diagram like Fig. 16.1. It makes . .

o difference whether it stated with s bank e300 reeamGmO)
account in credit or with an overdraft; the ’
diagram merely shows by how much the bank

balance changes. ‘ Fig. 16.1

May (+1200)
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end end end
April . March May
T T T T T T T T T T t T T T T T T
Debit o Credit
Fig. 1622

If in fact the business had an overdraft of $300 at the beginning of April, there would
be an overdraft of $800 at the end of April, and a credit balance of $400 at the end of
May. You could represent the bank balance by a diagram like Fig. 16.2, in which each
number is associated with a point on the line and overdrafts are treated as negative.
Similarly there are two ways of imﬁii';a‘y
representing complex numbers, but A s
now you need a plane rather than a
line. The number s = a+bi can be
shown either as a translation of the
plane, a units in the x-direction
and b in the y-direction (see o = Tl

" Fig. 16.3), or as the point § with
coordinates (a,b) (Fig. 16.4).

d diagram, named after John-
and mathematician. The axes are

CI\S 3
Robert Argand (1768-1822),a Parisian boo ce
i g contain all the points

often called the real axis and theAfraginary a
representing real numbers angdmnagihars
conjugate pairs a + bi argfeflections\ie

Example 16 4.1
Show in an Argand diag
(@ z*+4=0

x 141 x —2+i

repeated
0 0 ? 2

Fig. 165 Fig. 16.6 : -

You have seen diagrams like Fig. 16.3 and Fig. 16.4 before. Complex numbers are
represented just like vectors in two dimensions.
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16.5 The modu

You can refresh your memory of adding vectors from P1 Sections 13.2 to 13.5. The
equivalent operation with complex numbers is illustrated in Figs. 16.7 and 16.8.

t=c+di

s+t=(a+c)+(b+d)i

Oﬁ‘:
Fig. 16.7 Fig. 16.8

Complex numbers, as translations, are added by a triangle rule; in an Argand diagram
you use a parallelogram rule.

For subtraction, it is enough tonote that z=t—s & s+z=r. This is shown
geometrically in Figs. 16.9 and 16.10.

In Fig. 16.3 Y€ distance covered by the translation s = a+ bi is Va* + b* .Inan
Argand diagram (Fig. 16.4) this is the distance of the point S from O. This is called the
modulus of s, and is denoted by |s|.

You have, of course, met this notation before for the modulus of a real number. But there

is no danger of confusion; if s is the real number a+01i,then |s| is Va® +0% = Va? |
which is | a| as defined for the real number a (see Section 2.7). So the modulus of a
complex number is just a generalisation of the modulus you have used previously.

But beware! If s is complex, then | s| does not equal \/:v7 .

In fact, you have met the expression a® + b* already, as (a+bi)a~bi),or ss*. So the
correct generalisation of |a|= Ja? is |s]=+/ss* . (Notice that, if a is real, then a*=a,
so that @* = aa*. Thus the rule |s|=+/ss* holds whether s is real or complex.)
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If s is a complex number,

You can use the modulus and an Argand diagram to link complex numbers with
coordinate geometry. For example, in Fig. 16.11,if s=a+biand t=c+di,then

distance ST =|t—s| =4J(t = 5)(t —5)*
=y((c~a)+(d-b)i)((c —a) - (d -b)i)
=v(c-a)? +(d-b)*,

which is the familiar expression for the distance between-thepaints (a,b) and (c,d).

Example 16.5.1
In an Argand diagram, points § and T represent
4 and 2i respectively (see Fig. 16.12). Idept
the points P such that PS < PT.

Let P represent a complex number

Then PS < PT

Fig. 16.12

7* —4) <(z-2i)(z* +2i)
2z* ~4z7-4z7* +16 <zz* +2iz - 2iz* +4
4(z+z2%)+2i(z~z*) > 12.
You can put into cartesian form by using the relations z + z* =2x and
z—z*=2yi.Then
PS<PT < 8Bx+2i(2yi)>12
o 8x—-4y>12 & 2x-y>3.

The line 2x — y =3 is the perpendicular bisector of ST, which cuts the axes at
(% ,O) and (0;—3); as complex numbers, these are the points % and —3i. Youcan
check that these points are equidistant from the points 4 and 21i; that is,
|%—4‘=|%—2iTand |-3i-4|=]-3i-2il.

In examples like this, try to keep the algebra in complex number form as long as you
can, before introducing x and y.
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Example 16.5.2

In an Argand diagram the point S represents 3 (see
Fig. 16.13). Show that the points P such that

OP = 28P lie on a circle.

If P representsz,

OP=25P & |z|=2|z-3]
|2 =4z-3)
zz* = 4(z - 3)(z* -3*)
2z* = 4(z—3)(z* -3)
2z* = 4(zz* -3z -32* +9)
3zz* -127-12z* +36 =0
¥ —dz—4z*% + v

(A A A

You can now untangle this by a me!
for quadratics. Notice that

|z—4 = (z-4)(z*

The first two of these are easy to prove algebraically:

st = (st)(sty* = (st)(s* %) = (ss* )(er*) = s P

=(X-GXE

and the results follow by taking the square roots.

N

t

Fig.16.13

Figs. 16.7 and 16.9 show that the inequalities for the sum and difference are equivalent
to the geometrical theorem that the sum of two sides of a triangie is greater than the
third side. They are called triangle inequalities, but are not so easy to prove

algebraically. (See Exercise 16C Questions 10 and 12.)
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Example 16.5.3
S and T are the points representing —4 and 4 I

in an Argand diagram. A point P moves so that - 1/1‘47 ;4
SP+TP =10 (see Fig. 16.14). Prove that 3<< OP <5, 3

If P represents z,then LS 0 T/
SP+TP =|z+4|+|z—4],so that z satisfies '
l z+4 l + | z-4 | =10. T I

Then Fig. 16.14

OP=|z|=|1((z+4)+(z-4)|

< (z+4]+|z—4)) (using |s+|<|s]+]|t)

Nj—= o=

x10=35.

Also, ([z+4|+[z—4|)2 =100 and (z+4)5 ; adding these gives

(z+4|+1z=4]) +(z+4]|-|z-4)]
2| z+ 4 +2]z—4) =100,
(z+4)(z* +4* )+ (z - 4)(z* -

allest xalue of 3 when |z +4|=|z—4/, that is when
SP =TP, at the endlg e minpf gfis. -

Exercise 16C

grams, (ii) Argand diagrams to represent the following

@ (3+i)+(-M42i)=(2+3i) ) (1+4i)—(3i)=(1+i)

2 Draw Argand diagrams to illustrate the following properties of complex numbers.
(a) z+z*=2Rez (b) z—z*=2ilmz ©) (s+ey=s%+r*

(d) Rezs|z | <Rez+Imz (e) (kz)*=kz*,where k is a real number

3 Draw Argand diagrams showing the roots of the following equations.
(@ z*-1=0 b) 22+1=0 () z2°+67+20=0
d) z*+422+422-9=0 (e) Z*+22+5.2+4z+4=0

4 Represent the roots of the equation z* =22 +7-1=0 in an Argand diagram, and show that
they all have the same modulus.
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5 Identify in an Argand diagram the points cotresponding to the following equations.

@ |z|=5 (b) Rez=3 © z+7*=6
@ z-z*=2i @ |z-2[=2 ® |z-4|=]z|
© |z+2i|=|z+4] (h) |z+4]=3|z] @ 1+Rez=|z-1|

6 Identify in an Argand diagram the points corresponding to the following inequalities.
@ |z|>2 ® {z-3i|<1 © |z+ll<|z-i] (@ |z-3|>2]|z]

7 P isapoint in an Argand diagram corresponding to a complex number z, and
|z—5|+|z+5|=26.Prove that 12 < OP < 13, and illustrate this result.

8 Pisapointin an Argand diagram corresponding to a complex number z Which satisfies
the equation |4+ z|~[4—z|= 6. Prove that |4+ z|* —|4 — z|* = 48, and deduce that
Rez = 3. Draw a diagram to illustrate this result. B

=|z |">.

0, where a is a positive real

Zn

Show that, if z is a complex number and #"15 a psgitive integer,

¢dl number, and s¢* —s*¢ is an imaginary number.
)2—(st*—s*t)2=(2(st|)2. v

~|s+ e[ =2|st|=(sr% +5%1).

s|+)t].

¢/esults to deduce that |s+1|<

16.6 Equations with complex coefficients

Complex numbers were introduced so that all real numbers should have square roots.
But do complex numbers themselves have square roots?

Example 16.6.1

Find the square roots of (a) 8i, (b) 3—4i.
The problem s to find real numbers @ and b such that (a+ bi)* is equal to
() 8i and (b) 3—4i. To do this, note that (a+bi)” =(a* ~b*)+2abi and
remember that, for two complex numbers to be equal, their real and imaginary
parts must be equal.
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(a) If (a+bi)2 =8i, then a® —'bz =0 and 2ab =8 . Therefore b = E ,and so
: a

2
a® —[ﬂ) =0,or a* =16. Since a is real, this implies that a® =4,a=%2.
a

Ifa=2, b=ﬂ=2;if a=-2, b=-2.S0 8i has two square roots, 2 +21i and
a
-2-21.

(b) If (a+bi)2 =3—4i,then a® —b* =3 and 2ab = —4. Therefore b:—z,and
a

2\2
s0 a’ —(——) =3,o0r a*-3a°-4=0.
a

This is a quadratic equation in a*, which can be solved by factorising the left side
to give (a2 - 4)(a2 + 1) =0. Since ¢ isreal, a? cannot equal —1; but for a’® =4,
a==%2. -

Ifa=2, b=—2=—1;if a=-2,b=1.503
a .

and -2 +i.

for a* will always have two roots, one of
and hence two square roots.

written as +(a+b1i).
the other ‘negative’, becgsg

(443 2 y(4+3)7 —4x(2-1)x (14 3)

2(2-)
~(4430) 27 +24i-4x(1+7i)

2(2-1)
_—(4+31)£43-4i
- 2(2~-1)

= ﬁ% {using Example 16.6.1(b))
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_2-4i o —6-2i
T 2(2-1) 2(2-1i)
-1-2i -3-i
= or

2-i 2-1

(1-20)@4)  (B-i)(2+)
(2—i)(2+i) (2»—-i)(2+i)

=51 -5-5i
or

s 5

=—-i or —-1-1i.

Method 2 You can often reduce the work by first making the coefficient of z*

real. Multiplying thrdugh by (2 -i)* =2 +i, the equation becomes
(2+i)(2-1)z” +(2+i)4 + 3i)z + (21 + 31) =0,

522 +(5+10i)z +(-5+5i) =
22 +(1+2i)z+(-1+i)=0.

—1+1i then gives

date complex numbers. The property in Section 16.3 that the roots occur in
conjugate pairs holds only for equations whose coefficients are real.

The fact that, with complex numbers, every quadratic equation has two roots is a
particular case of a more general result: :

Every polynomial equation of degree n has » roots. .

You need to understand that for this to be true, repeated roots have to count more than
once. If the polynomial p(z) has a factor (z~s)* with k > 1, then in the equation

p(z) =0 the root z = s has to count as k roots. For exélmple, the equation of degree 5
in Example 16.3.3 has oqu 4 different roots (1, 2, —2+1i and -2 —1) but the repeated

root 1 counts twice because (z —1)* is a factor of p(z).



CHAPTER 16; COMPLEX NUMBERS 239

This remarkable result is one of the main reasons that complex numbers are important.
Unfortunately the proof is too difficult to give here.

Exercise 16D

1 Find the square roots of

(@ -2i, (b) —3+4i, () 5+12i, (d) 8-6i.
2 Solve the following quadratic equations.

@ z2+z+(1-i)=0 by 2 +(1-i)z+(-6+2i)=0

©) z*+4z+(4+2i)=0 @ (1+i)2%+2iz+4i=0

() (2-1)2+B+i)z-5=0

3 Find the fourth roots of
(a) -64, (b) 7+241.

Show your answers on an Argand diagram.

4 If (x+yi)’ =8i, where x and y are 1 c sl olther x=0 or x=+~/3 .
Hence find all the cube roots of 8i.S

51If (x+‘yi)3 =2-2i, where
x(x2 _3y2)=y( 2

Show that these equati which x =y, and hence find one cube root

of 2-2i.
Find the quadratic i isfi he other cube roots of 221, and solve it.
Show all the '

1 Given that'g Spaplex number such that z +3z* =12 +81i,find z. (OCR)

2 Given that 3i i root of the equation 373572 +277-45=0 , find the other two roots.

(OCR)

.3 Two of the roots of a cubic equation, in which all the coefficients are real, are 2 and
1+ 3i. State the third root and find the cubic equation. (OCR)

4 Ttis given that 3—i is a root of the quadratic equation z2 — (a+ bi)z +4(1+3i) =0, where
a and b are real. In either order,
(a) find the values of @ and b,
(b) find the other root of the quadratic equation, given that it is of the form ki, where k is
real. (OCR)

5 Find the roots of the equation z° =21-201. (OCR)
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6 Verify that (3—2i)* =5-12i.Find the two roots of the equation (z—i)* =5-12i.
(OCR)

7 You are given the complex number w =1—1. Express w?, w® and w* in the form a +b1i.
(a) Given that w* 3w + pw2 +gw+8=0, where p and g are real numbers, find the
values of p and g.

(b) Write down two roots of the equation 24 +32% + pz* +gz+8=0,where p and g are
the real numbers found in part (a), and hence solve the equation completely. .
(MEI, adapted)

8 Two complex' numbers, z and w, satisfy the inequalities |z —3—2i|=< 2 and
|w—7-5i|=<1.By drawing an Argand diagram, find the least possible value of |z — w]|.
(OCR)

9 A sequence of complex numbers z;, 2,, 23, ... is defined by z; =1-21i and

2,2 + 22, +5n°
2n
and z, in terms of z,. Suggest a conjf

for n=1. Showha and find similar expressions for zs.

il =
e of z, » and test whether your

conjecture is correct when n = 3. (MEI, adapted)

using the substitution method for partial fractions with simple denominators, and finally
combining the two complex fractions. '

A AR

R T R A R e o R ey




17 Complex numbers in polar form-

17.1 Modulus and argument

New insights about complex numbers come by expressing them in polar coordinate
form. When you have completed this chapter, you should

know the meaning of the argument of a complex number

be able to multiply and divide complex numbers in modulus-argument form
know how to represent multiplication and division geometrically

be able to solve geometrical problems involving angles using complex numbers
be able to write square roots in modulus-argument form

know that complex numbers can be written as exponentials.

If s and ¢ are complex numbers, the sum s+¢ can be’§ oxetrically by the

Argand diagram.

To do this, the clue is to describe points in
Argand diagram in a new way. Instead of

distance OP and the angle

- L

OP makes with the x-a3 A y
radians). These quanti 0 x ' %
6, as shown in Fig. 17
the polar coordhrate Fig. 17.1
If P reprp ber 7 in the Argand diagram, then r is the same as

defined if z=0.

You can see from Fig. 17.1 that x = cos8 and y =rsin6 . These equations still hold if
0 is obtuse or negative, because of the way in which the definitions of cosine and sine
were extended in P1 Chapter 10. So you can write

=x+yi=rcos@+(rsinB)i=r(cosO +isin0).

AR

The coinplex number z (#0) can be written in modulus-argument form

as z=r(cos@+isin@), where r = I Z I >0 is the'modulus and 8 =arg z,
with —. < @ < &, is the argument.
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Example 17.1.1
Write in modulus-argument form
(@ i, () ~2, (¢) 2+i, @) -1-i.

‘ The points are plotted in the Argand 251 i
| ' diagram in Fig. 17.2. Comparing this
T with Fig. 17.1, you can see that the

line v in the direction of the imaginary axis.

| values of r and @ for the four points are: -2 10 i

@ r=1,0=3m BT
i b) r=2,0=m; Fig. 172
(@ r=+5,0=n-tan 7=2677...;

@ r=+2,0=-2x.

So; in modulus-argument form, the corip helg are:

(a) 1(c0s%7c+ isin%n:);
(b) 2(cosm+isinz);
©) V5(c0s2.677...+isin2.6Y
e —
6ify 7
v
u
z—6i A

e real axis. (Points on the other half of
i d third quadrant, have argz = —%77: )
| ) 1 i
| 3} = %n:,the translation from 3 to z makes an 8 4% 3 -
angleN\¢7 with the real axis; so the point z lies on the half-
; Fig.17.3

These two half-lines meet at z=3+3i, so arg(z—6i)=arg(3-3i). The
! translation 3 -—3i is at an angle %75 with the real axis in the clockwise sense, so

that arg(z—6i)=-%7.

Exercise 17A

1 Show these numbers on an Argand diagram, and write them in the form a + bi. Where
appropriate leave surds in your answers, or give answers correct to 2 decimal places.

(a) 2(cos % T +isin % 7t) (b) 10(co§ % T +1isin % 77:) ©) 5(cos(— % 75) + isin(f % n))
(d) 3(cosm+isinm) (e) 10(cos2+isin2} H cos(-3)+isin(-3)
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12

10

11

Write these complex numbers in modulus-argument form. Where appropriate express the
argument as a rational multiple of 7, otherwise give the modulus and argument correct to 2
decimal places,

@) 1+2i (b) 3-4i () -5+6i d -7-8i
e 1 ®H 2i (® -3 (h) —4i
@ V2-+2i G -1++3i

Show in an Argand diagram the sets of points satisfying the following equations.

(a) argz=1ir (b) _a:gz=—%7r (c) argz=nm
@) arg(z-2)=in (e) arg(2z-1)=0 O arg(z+i)=7n
(g) arg(z—1-2i)= % (h) arg(z+1-i)=-%zx

Show in an Argand diagram the sets of points satisfying the following inequalities. Use a
solid line to show boundary points which are included, and a dotted line for boundary
points which are not included.

(@) O<argz<inm

(c) %7:<arg(z—1)s %7:

arg(z+1) = Z” arg(z - 3)‘1”
(d) arg(z+21)=67r arg(z—2i)=-1x
%3] argz—ﬁn’ arg(z—-2- 21)=1—27r

(©) arg(z-3)=-3x
(e) arg(z—-2-3i)5

Use an Argand didgran in the a+bi, the complex number(s) satisfying the
(2) arg ®) argz-3)=37, [z|=5

@ arg(z-2)=37,]z+2|=3

If a:g(z =

If a:g(% - ‘_z) what is arg(3z—1)?

If a:g(z—1)=%7r and a:g(z—i):

§ 7 » what is a:gz”
If arg(z+1) = 177: and aIg(z 1)— 2 7, what is a:gz”

If arg(z+i)=0 and a:g(z—i):—zn",what is |z|?

If a:g(z—2)=%7r and |z|=2, whatis argz?
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17.2 Multiplication and division

Suppose that s has modulus p and argument ¢ ,and ¢ has modulus g and argument 3.
Then

st = p(cos o +isin &) X g(cos B +isin f3)
= pq(cosacosﬁ+isinacos/3+icosasin/3+i2 sin asin,B)

= pq((cos crcos B —sinarsin B) +i(sin & cos  + cos ¢ sin B)).

The expressions inside the brackets are cos(e + f8) and sin(ct + 8) (see Section 5.3).
Therefore :

st = pg(cos(a + B) +isin(c + B)).

Therefore pg (which is positive, since p>0 and g > 0) is the modulus of sz.It may
also be true that o+ f3 is the argument of sz; but if addition takes a + 8 outside the
interval —m < 0 < &, then you must adjust o

Example 17.2.1
Show s=—/3+1 and 7 =~/2Z +~/21 as pojn
modulus-argument form, and put (hex into\he

You will recognise in Fig. 17\
angles of %7[ and =

T 1] a
| : H
a7t
_ 13
. —ﬁ7t>7t,the
¢t must be adjusted to %7[—275:—%”.

—/have modulus m and argument 7 . Since tw = s, equating moduli

gives gm = p, so that m=£=%=l.TheargumentoftWis ﬁ+y=%n’+y,

which (adjusted by 27 if necessary) must equal %n: . In this case no adjustmént is

needed, since %n: - %n: = T7§ 7 lies inside the interval -z <0< 7.
_ _11 canf 11 L D
So st—4(cos( ﬁ7r)+1sm( 1—27r)) and t—cosl—2n:+1smﬁ7t.
The corresponding points are shown on an Eald
Argand diagram in Fig. 17.5. P2

You will notice that, since complex numbers are s .
multiplied by multiplying the moduli and adding e 4
the arguments, they are divided by dividing the

moduli and subtracting the arguments. ' : Fig. 175
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The rules for multiplication and division in modulus-argument form are
|st|=|s||t|, arg(st) = arg s + argt + k(27),

> =@, arg(;)=args—argt+k(2ﬂ),

where in each case the number k (=—1,0 or 1) is chosen to ensure that
the argument lies in the interval ~-z <@ <.

It would be a good idea to get used to these rules by working through some of the
questions at the beginning of Exercise 17B before going on to the next example.

Example 17.2.2 .
If z has modulus 1 and argument 8, where 0 <8 yodulus and argument

of (@ z+l, () z-1, (¢) 2.
. z+1

Since z=cos8+1sinb,
Z+1=cos@ +1isin

and z-—1=cos6+A

This.suggests that |z +1|= 2008%9 and arg(z+1)= %9.

To be sure, you need to check that 2 cos % 6> 0 and that -7 < %9 < 1. Since you
are given that 0 <@ <, so that 0 < %9 < %77.'-, these inequalities are satisfied.
() z-1=—(1-cosB)+isin@=—2sin’ 16+2isin]Ocosl

=2sin 1 6(-sin}@+icos ).

To get this into the standard modulus—argumen_t form, notice that .
—sin%9+icos—%-9 can be written as (cos%9+isin%9)x i.
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Since i has modulus 1 and argument %7:,

(cos%G + isin%G) Xi= (cos%e + isin%O)(cos%ﬂ + iﬂsin%n:)
=(cos(26 +17)+isin(16 +1x)),
)

z-1=2sin}6(cos(3 6+ L 7)+isin(}0+1x)).

You again need to check that 2sin%9 >0 and that —7 < %9 + %77: < 7z . Since
0 <8 < &, these inequalities are certainly satisfied. It follows that

|z—1|=23in%9 and a:g(z—l);%;”.%g_

(c) The rules for division give

z-1 _|z_1|_2sin%9_
z+11 |z+1 2005%9

-

z-1
and arg| — |=arg(z—-1
g(z+1) vg( )

translation .ﬁ represents z +1. Since
the triangles OAP and OBP are
isosceles, it is easy to see that the arguments of z+1 and z—1 are %0 and

%7! + %9 respectively. The argument of 2=t is the angle you have to turn

through to get from A_ﬁ to lﬁ,that is %77: anticlockwise, or +%77:.

Also the moduli of z+1 and z—1 are the lengths AP and BP . From the triangle
ABP ,in which AB=2 and angle BAP=16,. :

AP=200$%9 and BP=2sin%9.
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1

Exercise 17B
If s= 2(008%7[&' isi_n%n), t= cos%n+ isin%n and u= 4(cos(—g7z)+isin(—gn)) , write
the following in modulus-argument form. ' :
@s o2 © & @ su
s
t
© = ® - ® @ W
. 2 . 2s
(1) st‘u : G t— k) s* @ se*
u
u* 2
(m) £s* m — © - ® -
t t s
4i s
@ — n —
u u

If s= 3(cos%7z + iéin%n) and if s%t = 18(cos(— 7

argument form.

d n)), express ¢ in modulus-

2 2

If s=coszm+isingz andt=cos%7z fgand diagram
@ s, ®) st,
@ s, ©

and t = 2(cos%7r+isin%7r).

_ _ (1++3 i)4- _
Write 1++/3i and 1—-1i in modulus-argument form. Hence express —— in the form
a+bi. (1-1)
By converting into and out of modulus-argument form, evaluate the following with the aid
of a calculator. Use the binomial theorem to check your answers.
@ (1+2i) b (3i-2)° © G-

Show in an Argand diagram the points representing the complex numbers i, —i and V3.
Hence write down the values of

. : V3 +i 2i
@ arg(v3-i), ) ag(¥3+i), (@ arg=— @ g

L]
-1
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\X/ 9 A and B are points in an Argand diagram representing the complex numbers 1 and 1.

P is a point on the circle havmg AB as a diameter. If P represents the complex number z,

find the value of arg— if Pisin
—i .
(a) the first quadrant (b) the second quadrant, (c)_ the fourth quadrant.

317r
z412

10 Identify the set of points in an Argand diagram for which arg

11 If A and B represent complex numbers ¢ and b in an Argand diagram, identify the set of
points for which arg% =7.

12 Identify the set of points in an Argand diagram for which arg—_'_—1 %
Z+1

.

13 Find the modulus and argument of 1+itan@ in the cases’

@ 0<6<im, (b) sw<O<m, m<6<3m, (@ 3mw<6<2m.

of 1 —z in the cases

e Y e e o T e e

length is\p Yrfes the length of AT and whose
direction makés an angle o with the direction of AT : Fig. 17.7
in the anticlockwise sense.

A transformation of a plane which multiplies lengths
of vectors by a scale factor of p and rotates them
through an angle « is called a spiral enlargement.

If corﬁplex numbers are represented by translations of a-
_ plane, multiplication by a complex number s hds the effect
of a spiral enlargement of scale factor |s| and angle args.
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Example 173.1 W
Fig. 17.8 shows an Argand diagram in which A and T are
the points 1+i and 4 —i. W is a point such that

AW =2AT and angle TAW = %ﬂ' . Find the number A i

represented by W . : N
The translation A_Y)" is (4—i)—(1+i)=3-2i.The T
translation A_ﬁ’ is obtained.from this by a spiral Fig. 17.8

enlargement of scale factor 2" and angle %71.’ ,that is
by multiplication by 2(cos % 7 +isin %ﬂ) = 2(% + % V3 i) =1++/3i. 50 A_u)’ is
(3-2i)(1+~3i)=3+2v3+(3v3-2)i.

The point W is therefore (1+i)+(3+2v3 +(3v3-2)i) = 4+2:3+ (33 - 1)1.
Example 1732

ABC is a triangle. Fig. 17.9 shows three similar trian
external to ABC . Prove that the centroids of tHe tri

es ABCand UVW coincide.

The centroid of a triangle, the point where
- the medians intersect, was defined i
P1 Example 13.5.2. There it was give
point with position vector %(a +b+c¢)

e Argand diagram is that you now have a way of dealing with
the similar triangles. Suppose that multiplication by a number s gives the spiral

enlargement that transforms C_BZ into 67)] . Then the same spiral enlargement

transforms A_Z” into /W ,and BA into B_W)’. So,if U, V and W correspond to
complrex numbers #, v and w, you can write

u—-c=s(b-c), v—a=s(c-a) and w-b=s(a-b).
If you add these three equations, you get

-c)+(v-a)+(w-b)=s((b-c)+(c—a)+(a-b))=0,
so u+v+w=a+b+c.

“Therefore %(u +v+w)= %(a +b+c).Thatis, ABC and UVW have the same
centroid.
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At the beginning of this section spiral
enlargements were described in terms of general
translations, and this is how they are used in these
examples. But if you take the point A as the
origin, you can also use them in an Argand
diagram. Fig. 17.10 shows s, ¢t and w = st .
represented by points §, T-and W. Also shown is T N
the point U representing the number 1. Then ) :
multiplication by s gives a spiral enlargement
which transforms 07‘ to OW; it also transforms

O_L)I to 0_.)5‘, since s = s x 1. Therefore the
triangles OTW and QUS are similar. - ' o U

Fig. 17.10
In an Argand diagram, the triangles formgd by the
points representing O, ¢, st and 0,.1 m
This gives you a geometrical me
when you know the points s and

2 presentmg 1+3i. Find the complex numbers
such that OB =2 x OA and angle AOB=x.

reflection of C in the line AB. Fmd the complex number which is represented by D.
5 A pomt S represents the complex number s ‘in an Argand diagram. Draw dlagrams to
show how to construct the points which represent
@ s ® s, © 1.
s .
6 Points S and T represent the complex numbers s and ¢ in an Argand diagram. Draw a -

. . . s
diagram to show how to construct the point which represents —.
. it :

7 A snail starts at the origin of an Argand diagram and walks along the real axis for an hour,
covering a distance of 8 metres. At the end of each hour it changes its direction by 1 i
anticlockwise; and in each hour it walks half as fat as it did in the previous hour. Find
where it is

(a) after 4 hours, (b) after 8 hours, (c) eventually.
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8 Repeat Question 7 if the change of direction is through %7: and it walks —‘% times as far as
in the previous hour. 2

9" A and B are two points on a computer screen. A program produces a trace on the screen to
execute the following algorithm.
Step 1 Start at any point P on the screen. .
Step 2 From the current po;i.tion rotate through a quarter circle about A.
Step 3 From the current position rotate through a quarter circle about B.
. Step 4 Repeat Step 2. '
Step 5 Repeat Step 3, and stop.
Show that the trace ends where it began.

10" A, B, C and D are four points on a computer screen. A program selects a point P on the
screen at random and then produces a trace by rotating successively through a right angle

pckwise round the triangle.
f A, B and C represent

. Show that the position of M doesn’t
elated to the points A and B.

the order A, B, C and U, V, W, then you go round both triangles in the same sense J)
Prove that the converse result is also true. Hence show that a triangle is equilateral if and
only if a2 +b>+c?=bc+ca+ab.

17 4 Square roots of complex numbers

Section 16.6 gave a method of finding square roots of complex numbers in the form
a+bi.You can also use a method based on modulus-argument form.

A special case of the rule for mult1p1y1ng two complex numbers is that, if
s = p(coso +isine), then s* = p*(cos2a +isin2q). That is, to square a complex
number, you square the modulus and double the argument (adjusting by 27 if

necessary).
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It follows that, to find a square root, you take the s
square root of the modulus and halve the argument.
That is, Js

p
x/—=J;(cos%a+isin%a). ¥y
This is illustrated on an Argand diagram in Fig. 17.11.

oI~
S

This gives only one of the two square roots. Since the

two square roots of s are of the form *+/s, the two p
square roots are symmetrically placed around the Wr
origin in the Argand diagram. So the other root also

has modulus \/;, and has argument %a * 7, where Fig. 17.11
the + or — sign is chosen so that the argument is

between —7 and 7.

Example 17 4.1

Find the square rod —4i  (see Example 16.6.1).

ent %7: . So its square roots have modulus

77 and %‘7: -T= —-%7:. In cartesian form, these are

and 2«5(——12* —:'/%i),

and -2-21i.

4i has modulus 3> +(~4)” =5 and argument ~tan™' 4 =-09272952... .
The square roots therefore have modulus /5 and arguments —0.463 647 6... and
—0.4636476...+ 7. In cartesian form, these are 2—1 and ~2 +1i.

17.5 The exponential form

The rule that, when you multiply two numbers, you add the arguments may have reminded
you of a similar rule for logarithms, that log mn =logm +logn . There is a reason for this;
the arguments of complex numbers and logarithms can both be thought of as indices.

To show this, let z =cos0 +isinf . You can differentiate this with respect to 8 to get

Ee—z—sin0+icos9.
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It is easy to see that the right side of this is i(cos0 + isin8), which is iz. So you can
describe the relation between z and 6 by the equation

—=iz.

de

Can you think of a function which, when differentiated, gives you i times what you
started with?

If the 'multiplier were a real number a, rather than ‘i, then the answer is simple. You know
. . Lo d

that this is the property of the exponential function: if y =e*, then ay =age™ =ay.But

this is not the complete answer. It is proved in Section 19.4 that the most general function

d .
such that ay = gy has the form y = Ke®, where K is an arbitrary constant.

Coming bacl_( to the complex number problem, this spgge ; cos@ +isinf has
the form Ke®® for some value of K.

which is the usual myMiplication rule for indices. This suggests that it would be a good
idea to define ¢”' as cosy+isiny.Then many of the properties of the exponential
function that you know already, such as the multiplication rule and the rule for
differentiation, would still hold.

Most people who use complex numbers prefer the compact notation e”’ to the rather
clumsy form cosy+isiny that you have used so far in this chapter. For instance, in
Example 17.2.2 you could write z as ¢?' and z+1 as (2 cos%@) e?l,
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Before stating this as a definition, it is worthwhile going one stage further, and defining

™" ag ¢* xe”'. You then have:

If z=x+yi, the exponential function e is defined by

e’ =e*(cosy+isiny).

Thus {ez I =e”,and arge’ = y+k(27),
where k is chosen so that —7 < arge® < 7.

A special case of this, with x =0 and y = 7, leads to a famous equation which connects

five of the most important numbers in mathematics:

ethot o find

4
7

@ e™, ) e,
(e) e1+i , (f) e—1+i ,

< 5§ Find the square roots of

2 “n:
(@ e, (by e, -
yi —yi

. . .. el—e
6 If y is real, simplify m.

7 Prove that;if s=a+bi, then
(a) (es)2 = eZs, (b) (es)3 = eSs,

sreise 17D

the square roots of the following complex

) 9(cos3n—isindr) © -2i

4
) 5-12i

(b) the fourth roots of 8v3i—8.

In an Argand diagram, plot the complex numbers

() 2¢7, (d e,
(& e

© (es)—l =;3"’.

8 Use the definition of e? to prove that, if s=a+ bi and t =c+di, then ¢° xe' =’
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"y . . d
9 Use the definition of e® to prove that, if s=a-+bi,then ae” =se™.

10 If z=cos@+isin@, find the modulus and argument of ¢* in terms of 6.

11 If z=¢%, show that z+1=e2" (ef‘“ - e‘%‘“) . Deduce the result of Example 17.2.2(a).

Use a similar method to prove the result of Exémple 17.2.2(b).

Miscellaneous exercise 17

1 Giventhat z=tano +i,where O <ot <l7r,and w=4(cosi7r+isini7r),ﬁnd in their

? 2 10 10
simplest forms

T2
@ |z, ®) |zw|, (c) argz, @ arg;- (OCR)
2 Giventhat (5+12i)z=63+16i,find |z| and argzsE is answer in radians correct
to 3 significant figures. Given also that w = 3(cg

; (b) arg(zw). (OCR)

x-pfimber z.On a single diagram,
illustrate the set of possible positions of R ach of the cases '

(@ |z-3i|=<3, T
Given that z satisfies bt d (&), Tind the\greatest possible value of |z|. (OCR)

(b) thg '7 D e ¢ (OCR)

5 Giventl 2 —3i|, show on an Argand diagram the locus of the point which.
represents . yotr diagram, show that there is no value of z satisfying both
|z-5|=]z-3%{and argz = ;7. , ' " (OCR)

.6 A complex number z satisfies the inequality l 7+2-2+3i , < 2. Describe, in geometrical
terms, with the aid of a sketch, the corresponding region in an Argand diagram. Find

(a) the least possible value of |z],

(b) the greatest pos_siblé value of argz. _ - -(OCR)-

7 The quadratic equation z” +6z+ 34 =0 has complex roots ¢ and 3.
(a) Find the roots, in the form a + b1i.

(b) Find the modulus and argument of each root, and illustrate the two roots on an Argand
diagram.

() Find la-Bl. ' ~ (MED -
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8

10

11

The complex numbers & and f are given by a4 =2-jiand = —J6+42i.
a

(2) . Show that ¢ =2+21i and that |a|=| |.Find argo and arg 8.

(b) Find the modulus and argument of af . [llustrate the complex numbers &,  and of
on an Argand diagram.

(c) Describe the locus of points in the Argand diagram representing complex numbers z
for which |z —ar| =]z — B|. Draw this locus on your diagram.

(d) Show that z=a+ f8 satisfies |z~ o |=|z~ B|. Mark the point representing & + 8 on
your diagram, and find the exact value of arg(a + f3). (MED)

(a) Given that @ =-1+21i, express a? and ¢ in the form a+ bi.Hence show that « is
a root of the cubic equation z> +7z% +15z+25 =0 . Find the other two roots.

(b) TIlustrate the three roots of the cubic equation on an Argand diagram, and find the
modulus and argument of each root.

(c) L isthe locus of points in the Argapd diagrai rypresenting complex numbers z for
which l z+ %l = % Show that all ubic equation lie on L and draw
the locus L on your diagram. (MED

—7r+isinl7r) and

Complex numbers o and 8 {o} 5 '

B= 4«[2_(cos%n+isin%7r).
(@) Qe

(MEI)

You are given that ¢ =1++/31 is a root of the cubic equation 37> — 47> +8z+48=0.
(a) Write down another complex root f3, and hence solve the cubic equation.

(b) Find the modulus and argument of each of the complex numbers ¢, 3, off and z
Tllustrate these four complex numbers on an Argand diagram. B

(c) Describe the locus of points in the Argand diagram representing the complex numbers
z for which |z—a|= /3 . Sketch this locus on your diagram.

(d) Express 26+a

in the form a+ bi, where a and b are real numbers. (MEI)
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12" The fixed points A and B represent the complex numbers a and b in an Argand diagram
with origin O. :
(a) The variable point P represents the complex number z,and A is a real variable.
Describe the locus of P in relationto A and B in the following cases, illustrating
your loci in separate diagrams.

i) z-a=Ab (i) z—-a=Az-b) (i) z—a=1iA(z-b)
(b) By writing a =|a|e'® and b=|b|e', show that | Im(ab)|=2A, where A is the area
of triangle OAB.

13" A function f has the set of complex numbers for its domain and range. It has the property
that, for any two complex numbers z and w, |f(z) - f(w)|=|z —w|. Explain why
(1) — £f(0) must be non-zero.
f(z)-£(0)
(1) -1(0)
plus the additional properties g(0)=0 and g(1) =
for w, that | g(z)| =|z| and | g(z)-1]| =]z -1].
show that, for each z, g(z) must equal either j

The function g is defined by g(z) = . Show that g has the same property as f,

making two suitable choices
+yiand g{z)=u+vi,

MNaterptet your answer geometrically.
(OCR)



18 Integration

This chapter is about two methods of integration, one derived from the chain rule for
differentiation, and the other derived from the rule for differentiating a product. When
you have completed it, you should

o understand and be able to find integrals using both direct and reverse substitution

e  be able to find new limits of integration when a definite integral is evaluated by
substitution

£'(x)

f(x)

e know and be able to apply the method of integration by parts.

e recognise the form j dx, and be able to write down the integral at sight

18.1 Direct substitution

None of the methods of integration descripef

Jx+1x/;dx'

d bk used to find

gM\variable, integrals like this can be put into

2

From this ySu can integrate to find / in terms of u, as

I=2Inlu+1|+k.

The solution to the original equation is then found by replacin_g u by \/; , so that
I=2In(Vx+1)+k.

(You do not need the modulus sign, since /x +1 is always positive.)

You can easily check by differentiation that this integral is correct.

This method is called integration by substitution. It is the equivalent for integrals of
the chain rule for differentiation.
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In general, to find 1 = J. f(x)dx, the equation % =f(x) is changed by writing x as some

function s(u). Then (;ﬂ =f(x)x ;ﬂ =g(u) x (;E, where g(u) = f(s(x)). If you can find
u 7 du u

J- g(u)x %’S du, then you can find the original integral by replacing « by s™(x).
u

If x=s(u) and g(u)=1f(s(x)), then J. f(x)dx is equal to J.g(u) x;ﬂdu, with u
u
replaced by s™'(x).
Do not try to memorise this as a formal statement; what is important is to learn how to use
the method. Notice how the notation helps; although the dx and du in the integrals
have no meaning in themselves, the replacement of dx in the first integral by dx du in

the second makes the method easy to apply.

Example 18.1.1
Find J-l In x dx using the substitution x =e¢*.
x

The difficulty lies in the logarithm fa (ch is remmoved by using the

substitution x = e (that is c*, and the integral becomes

Example 18
6x
Find | ——
V2x+1

The awkward bit of the integral is the expression v2x +1.If 2x +1 is written as
u?, then /2x+1 is equal to u . The equation 2x+1= u? is equivalent to

dx 6x
1,2 1 — 1

=su" —5.This gives —=52u)=u.So

=2 2 18 du 2( 2 f2x+1

dx becomes

1,2 1
meuduzj(3u2—3)du=u3—3u+k.

u

You want this in terms of x, so substituting +2x +1 for u gives

6x
V2x+1

dx = (V22 +1) ~342x 1 +k.
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It is quite acceptable to leave the answer in this form, but it would be neater to

note that (V2x + 1)3 =2x+1)v2x+1,s0

6x
—dx=2x+DV2x+1-3vV2x+1+k
V2x+1 ( )

=2x+1-3)V2x+1+k=2(x—-1)W2x+1+k.

Since this is quite a complicated piece of algebra, it is worth checking it by using the

product rule to differentiate Z(x —1)v2x +1, and showing that the result is \/§6x—1 .
x

The method used in this example is sometimes described as ‘substituting u = 2x +1’
and sometimes as ‘substituting x = %(u2 - 1) . In the course of the calculation you use

the relation both ways round, so either description is equally appropriate.

The next example requires you to find a suitab

titsgion for yourself.

Example 18.1.3
Find f 4—x? dx.

You need a substitution for x '} 4-x* simplifies to an exact square. A

udu=f4coszudu=f2(l+cos2u)du
=2u+sin2u+k.

griginal integral, note that sinu = % x, 80 that 2u = 25in—1(% x). But

ratheNthan using this form in the second term, it is simpler to expand sin2u as

2sinucosu , which is x X % 4—x* . Therefore

f\/4—x2 dx=25in_l(%x)+%x\/4—x2 +k.

Notice one further detail. The reference in the general statement (near the top of page 259)
to the inverse function s™ should alert you to the need for the substitution function s to be
one—one. This is arranged in the usual way, by restricting the domain of s.

In the introductory example on page 258, for x = u? to have an inverse you can restrict
u to be non-negative. This justifies writing /x as u (since'by definition ~/x = 0)
when the variable was changed from x to #, and then replacing u by ~x (rather than
—/x) at the final stage.
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In Example 18.1.3, the domain of u is restricted to the interval — % T<sus %717, so that

the substitution function x = 2sinu has inverse u =sin™! (% x), with sin”! defined as in

P1 Section 18.4. Over this interval cosu = 0, which justifies taking 2cosu to be the
positive square root of 4 — x%.

Exercise 18A

In Questions 3 and 5 you are required to find the substitution for yourself.

1 Use the given substitutions to find the following integrals.

1 X 1
= —_— 3 4 =
(a) fx—Z«/}dx X=u ) J(3x+4)2u x+4=u

(c) Jéin(—%ﬂ —%x) dx

©) J €
l1+e

(2 f3xx/x+2dx

o) f Lo
xlnx

2 Use a substitution of t

(©) Jx\/Zx—ldx

@ -J2xx+3dx

ind the following integrals.

(b) f\/16—9x2dx (c)f L.

2+e”"
@ [ H [—rdr

e —x —_—

© f 2-+x

4 (a) Usethe sﬁbstitution x = tan ¥ to show that fl%dx =tan' x+k.
+x
(b) Use the substitution x = Inu to find JTCTM .
. +e

5" For the following integrals, use a substitution to produce an integrand which is a rational
function of u, then use partial fractions to complete the integration.

1 1
® [oie ® | )

T R T A R TR
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182 Definite integrals

The most difficult part in Example 18.1.3 was not the integration, but getting the result
back from an expression in u to an expression in x. If you have a definite integral to
find, this last step is not necessary. Instead you can use the substitution equation to
change the interval of integration from values of x to values of .

b q dx
If x = s(u), then f () dx = f o) x  a,
a )4 du

where g(u) = f(s(x)),and p=s"'(a), g=s7'(b).

Once again, it is more important to be able to use the result than to remember it in this
form.

Example 18.2.1
1

Find J V4 -x? dx,
0 .

(a) using the substitution x =2sinu«,
(b) by relating it to an area.

¢ form of the integral in terms of u, and

(a) Follow Example 18.1.3 as Xa
~ in"!(}x0)=0 and sin({x1)={ 7.

’ ol 1 1
+SIH§7Z—§7Z+7\/§.

2
integral sHerefore represents the area of &7 3
the region under the upper semicircle
from x=0 to x =1, shown shaded in 0 1

Fig. 18.1. This region consists of a sector
with angle %n and a triangle with base 1

and height /3 . The value of the integral is therefore

Ix2x(im)+ixixB=ir+143.
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Example 18.2.2

1
Find =tanu.
0

The substitution x = tanu makes 1+ x? =1+ tan? u = sec u (see Section 5.2). Also

=sec? u (see Section7.2), tan ' 0=0 and tan'1= 7t Therefore
u

-
]

1 1 %ﬂ' 1 2 1. 1
dx = xsec” udu = ldu=[u]l" =57
01+x2 0 secZu 0 4

Exercise 18B

In Questions 3 and 4 you are required to find the substitution for yourself.

x=5+u

x=2tanu

X =sinu

#6n x = sin® u to calculate J — dx.
—-x

3" Use trigonometric substitutions to evaluate the following infinite and improper integrals.

3
< 1 : 1 ° 1
———dx b dx —dx
@ 0 x2+4 ®) L V9 — 2 © J;m 9x% +4

1 e w
1 1 1
(@ j —dx © J' —dx ® J ——dx
oy/x(1—x) . (1+x2); 1 xvx? =1
4" Evaluate the following infinite integrals by using suitable substitutions.

1 | | _Lg?
| b dx —— d 2 dx
@ L x(lnx)3 & ) m2e’ -1 © _[1 x(x+ dx @ .[ ¥
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5* Use a substitution, followed by a change of letter in the integrand, to show that, if >0,
2

0 X .
-— . © 2
J e 20 dx=0'J e ?* dx.

2
. . . a . §
6" Use the substitution x = —, where a > 0, to show that
u

[t [
()(\12+x2 cat+xt

b1 n
7* Use a substitution to prove that J xsin x dx =_j (7 — x)sin x dx. Hence show that
0 0 -

n n
f xsinxdx = -:}-n'f sinx dx, and evaluate this.
0

0

18.3 Reverse substitution

1If y=+1+1nx, then the chain rul

integral form,

—. So, turning this into
x

" 1 -1
. fx/l+lnx X

which can be*worked out as
f—j:du:2ﬁ+k=2«/l+lnx+k.
u

This seems to be a different form of integration by substitution, in which you can

already see the derivative % as part of the integrand.

. 1 1
To describe it in general terms, write ——=——= as f(x), u=1+1Inx as r(x) and —= as
’ Ty =1 ®ed

g(u), so f{x)= g(r(x)).and %': l You then get:
x
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If u=r(x),and if g(r(x))="f(x),then ff(x) x 3—: dx is equal to f g(u)du,

with u replaced by. r(x}.
You can check that this is in effect the same as the statement in Section 18.1, with f and
g, x and u interchanged, and r written in place of s. But the method of applying

it is different, because you need to begin by identifying the derivative ﬁ as a factor
in the integrand.

As before, do not memorise the general statement, but learn to use the method by
studying some examples. '

Example 18.3.1
Find J 21+ 2% dx.

Begin by noticing that the derivative of 1+ x7/ig gha,if the integral is

written as

[ i a

then it can be changed into the form

Example 1832
1r

Find fz cos* x sin x dx.
0

. N . . odu
If the integrand is written as —cos* x x (—sin x), then the second factor is I with
U=Ccosx,

i i
2 . 2 du
J cos4xsmxdx=J —cos* xx —dx
0 0 dx

0 1,519 1
=L—u du=—[§u ]1=3'
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Notice that the Iimits of integration change from 0, %n’ to 1, O at the step where the

l
4 0
E di . . .
integral changes from f ~cos* xx Zdx tof —u*du. Since cosx is decreasing over
1

the interval 0 < x < 777: the limits for u appear in reversed order.

Example 18.3.3
Fi dJcosx smxdx

sin x + cos x

Write this as f—,-—-l——x(cosx—sinx)dx.lf u = sin x + cos x , this is
sinx + cos x
1 du 1
_— ——d.x which is —du=lnlul+k.
sinx+cosx dx u

cos x —sinx .
So f—_———dx =1nlsmx+cox i
sinx + cos x

In this last example the integral has the fory

1is f(x) with f(x)=e* +e™*, 50 the value of the integral is

f(x)
’ 2
= 1n(e+1)— In2 = ln[e “).
e 1 2e

Exercise 18C

In Questions 2, 5 and 6 you are required to find the substitution for yourself.

1 Use the given substitutions to find the following integrals.
(@) f2x(x2+1)3dx u=xt+1 (b) Jx 4+ x? dx

(c) J sin’ x cos x dx u=sinx (d) ftan3 xsec® xdx

3

2
(&) ———f? dx u=1-x* ® jcos3 2xsin2xdx

¢re f(x)=sinx+cosx. This

u=4+x’
w=tanx
u=cos2x
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2* Find the following integrals by using-suitable substitutions.

(a) fx(l—xz)sdx b) Jx 3-2x%dx

© f?(s 3°)° dx @ J LA,

c x45-3x

) V1+x3

(e) jsec“ xtan xdx ® fsin3 4xcos4xdx

3 Without carrying out a substitution, write down the following indefinite integrals.
2
cos x X
b dx txdx
@ J.1+smx ® J‘1+x3 © fcox
63) ftan 3xdx

4 Evaluate each of the following integrals, giving ¢I 1R an exact form.

Ly

) 7 - sin2x
L &5 — o l1+cos2x
5" Evaluate each of the following integraly, v} answer’In an exact form.

1z
__cosx . 2
(¢ sin xcos” x dx
@ f w/1+3smx © fo
3
® f 2xvV1+x% dx
0

1
571

(i) f sec’ xtan xdx
0

18.4 Integration by parts

Another method of integration depends on the product rule for differentiation. For
example, from

d . .
—(xsinx)=sinx+ xcosx
you can deduce that

xsinx=fsinxdx+fxcosxdx=—cosx+k+fxcosxdx.
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You can rearrange this to give the new result

fxcosxdx=xsinx+cosx—k.

But if you were asked to find f xcosxdx, you would not immediately guess that the

answer comes from differentiating xsin x . You can overcome this by applying the same
argument to the general product rule.

From 4 (wv)= a u d you can deduce that
dx dx dx

uv=f£‘—'%dx+ ud—vdx.
dx dx

If you can find one of the integrals on the right ation tells you the other. It can

be rearranged to give the rule:

Integration by parts
dv

For example, if

such that ﬂ 2
dx

here has a tant +k..:'lt is not difficult to see that the two forms are equivalent.

Example 18.4.1
Find J.xe3‘dx.
Take u = x and find v such that d =e* . The simplest function for v is %es" .The
rule gives dx
J‘ xe™ dx=x><%e3" —J. lx%ek dx

=1
3

=g(Bx-1e* +k.

xe>* ———;e3" +k
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The next example applies the method to a definite integral. The rule then takes the form:

Example 18.42
8

Find j xInxdx.
2

If you write u = x, you need v to satisfy % = In x . But although Section 4.3
gave the derivative of Inx, its integral is not yet known. (See Example 18.4.3.)

When this occurs, try writing the product the othgx-waysqund. Take u =1n x, and

find a v such that Q=x,whichis v=gx
dx

. ,
j xlnxd.x=[1nx><%x2 )
2 2

You wouldn’t at first expect to use integration by parts for this, since it doesn’t appear to
be a product. But taking » as # =1nx and dv =1, so that v = x, the rule gives
jlnxd.x =1nxxx—jlxxd.x= xlnx—jldx
x

=xlnx-x+k.

The integral of Inx is an important result. You need not remember the answer, but you
should remember how to get it.

The next example concerns two integrals which are used in probability.
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Example 18.4.4

Find j xe™* dx and f x%e™ dx, where q is positive.
0 0

Begin by finding the integrals from 0 to s, and then consider their limits as s — oo .

ax

I — For both integrals take d_ e, sov= —le‘
dx a

O R

s

plete the evaluation of j x%e™ dx.
0

dd to know the limits of €%, se™ and s’ as

Exercise 18D

1 Use integration by parts to integrate the following functions with respectto x.
(@) xsinx (b) 3xe* © (x+4)*

2 Use integration by parts to integrate the following functions with respect to x.

(@) xe¥ (b) xcosdx ©) xIn2x
3 Find

(@) J x3 In3xdx, (b) Jxez"“dx, © Janxdx.
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4 Find the exact values of

e 1%.3 e
(a) fxlnxdx, ®) fz xsin} xdx, © f "lnxde (n>0).
1 0 1

5 Prove that sz sinxdx = —x* cos x + 2j xcos xdx. Hence, by using integration by parts a

second time, find f x? sinxdx. Use a similar method to integrate the following functions

with respect to x.

(@ x%e¥ : (b) xzcos%x

6 Find the area bounded by the curve y=xe™, the x-axis and the lines x =0 and x=2.
Find also the volume of the solid of revolution obtained by rotating this region about the x-
axis.

this region about the x-axis.
8 Find
(4
(a) j e* cosxdx,
0
9 Find
(@) f e *sinxd
0

Draw diagys

Miscellaneous exercise 18

In Questions 3 aw ~‘o d afe required to find the substitution for yourself.

, 2
1 By using the substitution u = 2x —~ 1, or otherwise, find JEZ—LDE dx. (OCR)
2
2 Use integration by parts to find the value of f xInxdx. (OCR)
1
3* Find f 21 dx. (OCR)
4x°+9
1
4" By using a suitable substitution, or otherwise, evaluate f x(1-x)° dx. (OCR)
0

1

5 Use ihtegration by parts to determine fs xe? dx. (OCR)
0
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6 Use the given substitution and then use integration by parts to complete the integration.
(a) J‘cos_1 xdx x=cosu (b) J-tan‘1 xdx x=tanu (c) J-(lnx)2 dx x=e
1

7 Use the substitution x =sin« to find J sin”! x dx.
0

8 Find J‘x;“dx , by means of the substitution u = e”, followed by another
e +4e

substitution, or otherwise. (OCR, adapted)
. 6x
9 Find | ———dx. (OCR)
1+3x
3
10 Calculate the exact value of f 1+x ~dx. (OCR)
ol+x

sin® xsin2x dx, giving your

(OCR)

11 By using the substitution # =sinx,or g

answer in terms of x.

1
e, Aind j«—dx, giving your
1++/x (OCR)

@ substitution of the form ax + b =u, and (ii) by
Walent.

© xv2x+3.
62 1
———dx=2-2-2. (OCR)
e x+Inx
1 3
—4+x2toshowthat‘[ X de=1{16~73). (OCR)
Rrrechltas

tution = 3x—1 to express J-x(3x —1)*dx as an integral in terms of u.

Hence, or otherwise, find J- x(3x—1)* dx, giving your answer in terms of x. (OCR)

1 1
1 i
17 Show, by means of the substitution x =tan @, that J —dx =j cos’0d6.
0

1 ! 0 (x2 + 1)
Hence find the exact value of | —— dx.
2
ol X + 1)
18 Find
@ jx(l +x) dx, ®) jx(3x ~1)*dx, © fx(ax +b)2 dx.
1.
19 Evaluate f xe ¥ dx, showing all your working. (OCR)
0
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20

21

22

23

25

. ) n
Showing your working clearly, use integration by parts to evaluate J 4x sin%xdx. (OCR)
0

By using the substitution #=3x+1, or ¥/
otherwise, show that
1
x
— = dx=2ml2-3%.
J oBx+1? P 12 R
The diagram shows the finite region R in
the first quadrant which is bounded by the

o %
curve y= ;i ,the x-axis and the line 1 *
X

+1
x =1. Find the volume of the solid formed when R is rotated completely about the
x-axis, giving your answer in terms of 7 and In2. (OCR)

Use integration by parts to determine f 3xvJx— ] (OCR)

Use the trapezium rule with subdivisions at x £ 3 and x =5 tQ optain an approximation to

7 .3
j 7 dx , giving your answer corr,
] 1+x

(OCR)

y= (x2 + 1)_% an

integral

is denoted b

(a) Use theWape rule, with ordinates
at x=0, 7 and x =1, to estimate
the value of 7, giving your answer
correct to 2 significant figures.

(b) Use the substitution x =tan®8 to show that I = %«/E .

(c) By using the trapezium rule, with the same ordinates as in part (a), or otherwise,
estimate the volume of the solid formed when R is rotated completely about the
x-axis, giving your answer correct to 3 significant figures.

(d) Find the exact value of the volume in part (c), and compare your answers to
parts (c) and (d). : (OCR, adapted)

in
Use integration by parts to determine the exact value of Jz 3xsin2x dx. (OCR)
0
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26" The figure shows part of a cycloid, given by J
the parametric equations

x=a(t—sin¢), y=a(l —cost) /
for 0= r< 2x. Show that, if A denotes the =0 t=2ﬂ;

region between the cycloid and the x-axis as
far as the value of x with parameter ¢, then

% =y % Deduce that the total area of the region enclosed between this arch of the
. v o
cycloid and the x-axis is J y @ dr. Calculate this area in terms of a.
0

Use a similar method to find the volume of the solid of revolution formed when this region
is rotated about the x-axis.

27" The figure shows part of a tractrix, given by
parametric equations’

x =cln(sect +tant)—csinz, y =

cos* tsin? £ = %(1 — cos 4t), and deduce that the area enclosed by

1
2T
the astroid isjequal to a2J. %(1 — cos 4¢)dt. Evaluate this area.
‘ 0

2 __A + B + Cx
(x-D*(x?+1) x-1 (x-1% x*+1°

ﬁnd the values of the constants A, B and C.

3
2 .
(b) Show that J —57 3 ~9r=a+bln2,where g and b are constants whose
2 (x-1)*(x2 +1)
values you should find. (OCR)

2
2% +3x2+28 . ,
) dx giving your answer in exact form.

30 Calculate —
(x+2)(x +4

1

N R R R T R T D B s S R




19 Differential equations

. . . . . dy dy dy f(x)
This chapter is about differential equations of the form —= = f(x), - =f(y) or — .
o) g dr  gy)

When you have completed it, you should

¢ . be able to find general solutions of these equations, or particular solutions satisfying
given initial conditions d dx

e know the relation connecting the derivatives o4 and —, and understand its
significance dx dy

e be able to formulate differential equations as models, and interpret the solutions.

19.1 Forming and solving equations
want to find a relation
ate Of change of one

x P =
A directly to give
Fig. 19.1

Y4 k=2
The modulus sign is not needed, since x >0. . k=1
: | pi
The equation y =Inx +k is called the general /‘ k=0
_ ’ k=-1
solution of the differential equation Y 1 for
dx x k
k

/ — %=
x>0.1It can be represented by a family of 1/ =-3
graphs, or solution curves, one for each value of 1

k. Fig. 19.2 shows just a few typical graphs, but ]

there are in fact infinitely many graphs with the T

property described.
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A differential equation often originates from a scientific law or hypothesis. The equation
is then called a mathematical model of the real-world situation.

Example 19.1.2 : _
A rodent has mass 30 grams at birth. It reaches maturity in 3 months. The rate of growth

is modelled by the differential equation (ji—r:l =120(r —3)*, where m grams is the mass of
the rodent ¢ months after birth. Find the mass of the rodent when fully grown.

The differential equation has general solution
m=40(r-3)° +k.

However, only one equation from this family of solutions is right for this problem. It
is given that, when ¢ =0 (at birth), m =30. So k must satisfy the equation

650 k=1110.

ahit of daylight they receive. If ¢ is the time in years
ar, the length of effective daylight is given by the formula

dh_ ¢(12 - 4 cos2ri),
dt

but ¢, the constant of proportionality, is not known. Nor can it be found directly
from the data. However, integration gives ‘

h =c(12t—%sin2n’t)+k.

The initial condition is that £ =123.0 when =0, so

123.0 = ¢(0 ~0) + k, giving k =123.0. Therefore

k =c(12t—%sin27tt)+ 123.0.
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After 55 days the value of ¢ is 25 -0.150..., and it is given that at this time

365
h=128.0. S0

128.0 =c[12>< 0.150... —%sin(an 0.150...))+ 123.0
=c¢(1.80...~0.51...) +123.0, which gives c = 3.87....

The longest day occurs when ¢ = % , and then

h=387...x(6-0)+123.0 =146, correct to 3 signiﬁéant figures.

According to the botanist’s hypothesis, the height of the plant on the longest day
will be 146 cm.

This last example is typical of many applications of differential equations. Often the
form of a hypothetical law is known, but the values of thesumerical constants are not.
But once the differential equation has been solved, expg tal Yata can be used to find
values for the constants.

. dx .
(f) smta—=cost+sm2t,for0<t<7r
;¢

) %‘;— =6(sin2t —cos3t),v=0 when =0
2ydy
© (1-t )d—t=2t,y=0whent=0,for —1<t<1

3 Find the solution curves of the following differential equations which pass through the
given points.
dy x- dy

1 1 :
a) — =——,through (1,0),forx >0 b) — =—+, through (4,0),forx >0
(a) 22 gh (1,0) X )] ar Jx gh (4,0) x

c) +'l)ﬁl—di = x — 1, through the origin, for x > —1
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4 In starting from rest, the driver of an electric car depresses the throttle gradually. If the
speed of the car after ¢ seconds is v m s7!, the acceleration % (in metre-second units) is
given by 0.2¢. How long does it take for the car to reach a speed of 20 ms™?

5 The solution curve for a differential equation of the form % =x- % for x >0, passes
through the points (1,0) and (2,0). Find the value of y when x =3.

6 A point'moves on the x-axis so that its coordinate at time ¢ satisfies the differential

equation % =5+ acos 2t for some value of a. It is observed that x =3 when =0, and

.

W =

x=0 when ¢t = %7: . Find the value of g, and the value of x when ¢ =

7 The normal to a curve at a point P cuts the y-axisat T,and N is the foot of the
perpendicular from P to the y-axis. If, for 2 is always 1 unit below N, find the
equation of the curve.

8 Water is leaking slowly out of a tank. The depth of the water after ¢ hours is # metres, and

these variables are related by a éi e form ﬂdh; =—ge Y, Initially the

is controlled by the 10-year sunspot cycle, so that its rate of growth at

s is k(l + %cos % nt) units per year.
b) and (c) are true, so that its rate of growth is k(l— % cos Znt)(l + %cos%m)
units per year.

The size of the organism at time # =0 is A units. For each model, find an expression for
the size of the organism at time ¢ years. Do they all give the same value for the size of the
organism after 10 years?

19.2 Independent and dependent variables

In many applications there is little doubt which of two variables to regard as the
independent variable (often denoted by x), and which as the dependent variable (y).
But when a function is one-one, so that an inverse function exists, there are occasions
when you can choose to treat either variable as the independent variable.
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~ For example, you could record the progress of a journey either by noting the distance
you have gone at certain fixed times, or by noting the time when you pass certain fixed
landmarks. If x denotes the distance from the start and ¢ the time, then the rate of

change would be either % (the speed) or % (which would be measured in a unit such

as minutes per kilometre).

What is the connection between % and %x_ ? The notation suggests that
3
& fdy
dy dx’

and this is in fact correct.

Fig. 19.3 shows the graph of a relation connecting
variables x and y, and triangles showing the
increases 8x and &y when you move from P to
Q. If you are thinking of y as a function of x,
then you would draw the triangle PNQ, and the

gradient of the chord PQ would be % .

Fig. 193
a function of y, you would draw the triangl
PMQ, and the gradient of PQ
The product of the grag ich clearly equals 1.
Now let Q tend+e that aid Jy tend to 0. Then 8_y tends tod—y and 8_x
ox dx Sy

tends to ction 12.5) that the limit of a product is the product
of the limi

9 9 el | xtim{ &) = tim| Zx & | = tim1 =1,

dx dy Sy ox Oy
Example 19.2.1
Verify that 9x9=1 when y=x3.

de dy
— .3 dy _ 2 . . _ .3 _ %
If y=x’,then a—3x . You can also write the relation y=x" as x =y3,so

dr ;-2 _3(3vi_1.2_ 1
d—y-zya-i(") =3 =32
Therefore Qx9=3x2><L2=1.
dx dy 3x
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19.3 Switching variables in differential equations

In all the differential equations in Section 19.1 the derivative was given as a formula
involving the independent variable, which was x in Example 19.1.1 and ¢ in
Examples 19.1.2 and 19.1.3.

Often, however, the derivative is known in terms of the dependent variable. When this
. dy dx ) . Lo
occurs, you can use the relation ay X oo 1 to turn the differential equation into a form
v y

which you know how to solve. That is,

d dx 1 1
ay=f(y) = E___@ o x=JR;dy.

Example 193.1
A hot-air balloon can reach a maximum height of
height decreases as it climbs, according to th

km, and the rate at which it gains

lift-off. How long does the

ompleted in either of two ways.

he indefinite integral is

1
20-16h

dh = —Ilgln(20—16h) +k.

(Notice that 20 — 16k is always positive when 0 < h < 1.) Since f is measured
from the instant of lift-off, =0 when ¢ = 0. The particular solution with this
initial condition must therefore satisfy

0=-%In20+k, so k=In20.

The equation connecting the variables k and ¢ is therefore

20 5
1 1 _ 1 : 1_1
t ———161n(20—-16h)+ﬁln20 ——161n(20—16h) ——lsln(5_4h).

5
_ _1 _1 ~
When h—l,t—lsln( )—161n5~0.10.

5-4
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Method 2  Since only the time at /=1 is required, you need not find the
general equation connecting 4 and ¢. Instead, you can find the time as a definite
integral, from A=0 to A=1:

1
1 = 1 1 1
J;) 20-16hA dh = [—1—6 In(20 - 16h)]0 = —1—6'(1114 —1n20)

_ 1 aY_ 14 f1V_ 1 N
= —E ln(%) = "'1—6—111(3) = ElnS == 010.
The balloon takes 0.1 hours, or 6 minutes, to reach a height of 1 km.

Example 1932

When a ball is dropped from the roof of a tall building, the greatest speed that it can
reach (called the terminal speed) is . One model for its speed v when it has fallen a
distance x is given by the differential equation

dv u?-v?
—=c

dx %

, where c is a positive consta

Find an expression for v in terms of x.

No units are given, but the constants
and x are measured.

. . .
Since — is given in
dx

2

¢ lgss than u,so0 u“ — v? > 0. The second factor has the form

u? —v2 . 1t can therefore be integrated using the result in

Section 18.3)\
1

X = ——ln(u2 - vz) +k.
2¢

The ball is not moving at the instant when it is dropped, so v=0 when x=0.
This initial condition gives an equation for k:

2
O=—%ln(u2)+k, s0 k=1“2:.

The equation connecting v and x is therefore

1 1 2
x=z(lnu2—-ln(u2—v2))=5£1n[ 2“ 2].
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You must now turn this equation round to get v in terms of x:

2
u
2cx=1In ,

u2 -V
u2 ___(u2 _v2)62cx’
v2e20x — u2(62qx __1)’

vi= u2(1 —e"zcx).

. . . . -2
Therefore, since v > 0, the required expression is v =uvl—e™“ .

Example 19.3.3
A steel ball is heated to a temperature of 700
of powdered ice. The temperature of the ba
models are suggested for the temperature,

(a) the rate of cooling is proportiog
(b) the rate of cooling is proportiong

aT a

Since \¥’= 700 when ¢t =0, 0=—lln700+k,so k=lln700.
a a

The equation connecting T and ¢ is therefore

t=—1—(1n700—1nT)=11n7—02.
a a T

The value of a can be found from the fact that T =500 when ¢t =30:

3()_—_1111@, which gives a=M=0-0112-
a 500 .30

(b) For this model

ar =-bT'?, s0 & = —lT_l'z, and t = 1 7792 4 1.
dr dr b 0.2b
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From the initial condition, that 7 =700 when =0,

0=2700"2+k, so 1= é(T‘O-2 -7007%%).
b b

From the other boundary condition, that 7 = 500 when ¢ =30,

_5007°% 70072

30 = %(500—0'2 - 700'0-2), so b ~0.00313.

Fig. 19.4 shows the two models to be
compared, whose equations are

1 700
In—, and
00112 T

(77°% =7007°2).

(a) t=

(b) ¢

~0.00313

That is,
(@) T=700e*°"* and

1
® T= .
(0.000 626t +0.270)°

The key feature oke
a quantity is proport

poOpéntial growth or decay is that the rate of increase or decrease of
ofial to its current value. Denoting the quantity by Q, this is

expressed mathematically by the differential equation Z—? =a@, where ¢ stands for the

time and a is a constant. The sign of 4 is positive for exponential growth, and negative
for exponential decay.

You can solve this equation by writing 4 = 1 and integrating:
dQ aQ

[ Lgot
t—fanQ—aln|Q|+k.
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Suppose that Q has the value Q, when t=0.Then 0= l111[ O ‘+ k, so that
a

Lol 2\
_alleI aln\Qol, $0 lQol

Now Q must have the same sign as Q. In the equation Edé = LQ the value Q=0 has to
a

has no meaning. So if a solution begins at a value 0, >0, Q

ax0 . . . 0

remains positive; and if a solution begins at a value @, <0, Q remains negative. So —

be excluded, since

is always positive, and you can replace | = | in the above equation by E

It follows that:

Ifd—Q

= aQ, where a is a non-zero cgng

and Q= Q, when t =0, they

that it is worthwhile learning this result.
down the solution without going through

er a is positive or negative. The equation
1 .
(ea) = Qpb’, which has the form of the

and to Iook it its features in relation to the original dlfferentlal equatlon

1 Find general solutions of the following differential equations, expressing the dependent
variable as a function of the independent variable.

dy 2 dx

a —= b =tan ,for——n:< < 7: c) —=4x

(2) o7 b — y y © 3

) %=-l—,forz>0 (e) E=cosecx,for0<_x<n’ ) u2%=a,foru>0
dt z dr dx

2 Solve the following differential equations with the given initial conditions.

(a) dEx;=—2x,x=3whent=0 (b) %=u3,u=lwhent=0
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3 Find the solution curves of the following differential equations which pass through the
given points. Suggest any restrictions which should be placed on the values of x.

@ Z=y+y? through 0.1 () 2=, through (2,0

4 A girl lives 500 metres from school. She sets out walking at 2 m s™', but when she has
walked a distance of x metres her speed has dropped to (2 - ﬁ x) m s~ . How long does

she take to get to school?

5 A boy is eating a 250 gram burger. When he has eaten a mass m grams, his rate of
consumption is 100 — ﬁ m? grams per minute. How long does he take to finish his meal?

6 A sculler is rowing a 2 kilometre course. She starts rowing at 5 m s, but gradually tires,
so that when she has rowed x metres her speed has dropped to 5¢~00001% m 57! How long
will she take to complete the course?

7 A tree is planted as a seedling of negligible heigh of increase in its height, in

metres per year, is given by the formula 0.2
metres, ¢ years after it is planted.

(a) Explain why the height of the treg’/Ch < ghres.
(b)

19.5 Differential equations with separable variables

All the differential equations you have met so far in this chapter have had & expressed

as functions of either x or y, but not of both. Another common type of equation has the
form
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This can be solved by reversing the process described in Section 11.3. Such an equation
is said to have separable variables, because it can be rearranged to get just y on the
left side and just x on the right. This process is called ‘separating the variables’.

Multiplying by g(y) gives

dy
—=1(x),
g) g =)
and this is the kind of equation you get when you differentiate an implicit equation. If
you can find functions G(y) and F(x) such that G’(y) = g(y) and F'(x)=f(x), then the
equation can be written as ‘

G'(y)g% =F/(x).

. d . . ' .
The term on the left is — G(y) , SO you can ingeg th respect to x to obtain the

implicit equation

G(y) = F(x)+ k.

This last step is based on

Example 19.8
The gradient of the tene aClypoint P of a curve is equal to the square of the

12

2
) . Therefore y and x satisfy the differential equation
X

' 1d 1
The variables can be separated by dividing by y?, which gives —23}) ==.
y x
Integrating with respect to x gives the general solution L = L +k.
y x

This can be written as
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It is interesting to see what happens when you take
different values of k. All the solution curves in Y

Fig. 19.5 have the property described above. But /
you have to exclude the origin, since the property
has no meaning if P coincides with O.

Notice that all the curves have positive gradients at
all points. This is expected, since at each point P X
the gradient is the square of the gradient of OP.

Notice also that if you draw a line y = mx through
the origin (m # 0 or 1), it will cut a lot of the /
curves. At every point P of intersection the

gradient of OP is m, so the gradient of the curve

will be m?. So the tangents to the curves at the Fig.19.5

points where the line cuts them are all paralle].

Example 19.5.2

For the differential equation %

(a) Substituting x =1, y=2 in this equation gives In2 = %ln 2+k,s0 the

required solution has k = %ln 2,and is
In|y|= %ln(x2 +1)+%1n2.
This equation can be written without logarithms, as | y | = &2(x2 + 1) .

In this form the equation represents not one, but two solution curves, with
equations y == Z(x2 + 1) . Since the square root on the right is positive, the curve

which passes through (1,2) has the equation with the positive sign,
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(b) You already have one form of the general solution in the equation found above,
but you should try to rearrange it in a simpler form. For the particular solution through
(1,2), the constant %k came out as a logarithm. Similarly, in the general solution it
helps to write the arbitrary constant k as In A, where A is a positive number. Then

Inly|= %ln(x2 + 1) +1n A,
which can be written without logarithms as

ly|=AVx® +1.

Now || is positive, and so is AVx® +1.But y might be negative, so

y=tAVx? +1.

Finally, instead of writing the constant as +A
it as ¢, where ¢ can be positive or neg

y=ch2 +1.

There are a number of points to nq

where A is positive, it is easier to write

e Although when 1ntegrat1ng you
ln(x +1) because

s Mnyd the equation for the general solution, it is
ant in the form +1n A, rather than +%.

d
Check this defution for yourself by finding 2 and showing that it does satisfy the
differential equation for any value of c.

Example 19.5.3

For a certain period of about 12 years, the rate of growth of a country’s gross national
product (GNP) is predicted to vary between +5% and —1% . This variation is modelled
by the formula (2 +3 cos%t)%, where ¢ is the time in years. Find a formula for the GNP
during the 12-year period.

Denote the GNP after ¢ years by P.The rate of growth 4 is given as a
percentage of its current value, so de

P _ 2+3cos%rp
dr 100



CHAPTER 19: DIFFERENTIAL EQUATIONS : 289

The variables can be separated by dividing by P:
1dP 2+3cost

Pdt 100
Integrating,
2t+6sinLt
InpP=——=
100

(Note that the GNP is always positive, so by definition P >0.)
If P has the value F, when t=0,then

InR=0+k%,
and the equation can be written

2t+65in%t

In +InF), or

atisfies’the differential equation & =—2 _and
dx  x(x+1)

2-y

5 Find the equations of the curves which satisfy the given differential equations and pass
through the given points.

dy _ 3y dy 3y
a) <=2 2,4 b) ZL=-22 2,4
(@) o (2,4) () dx - 2x (2,4)
© dy _sinx (an) @ dy _tanx (171:0)
dx cosy 3™ dr tany 3

. dv . . . .
6 Solve the equation v o =—w’x, where o is a constant. Find the particular solution for

which v=0 when x=a.
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7 Find the general solution of the equations

2x(y* +1
(a) Q=—(yz——), ®) d—y=tanxcoty.
dx y(x + 1) dx
8 Find the equations of the curves which satisfy the following differential equations and pass
through the given points.
dy _y(y-1) dy 1
a) —="—=~ 1,2 b) — =cotxcot =r,0
@ == (1,2) ®) — y (37,0
dy __1+y* 3 dy
) —=——""—< 5,2 (d) —=ytanx 0,2
© - ) (3.2) =Y (0,2)
9 Find the general solution of the differential equations
dy _ 2 dy dy dy
44+ x—<L=y°, b) ¢! —~—-1=Inx, c) ycosx—==2—y-=,
@ x50 (b) i © y ™ Y

adient of the line joining the origin to

2
d =— IOI; , Wwhere R metres is the radius of the
X

1

expres ion for v? in terms of V, x and R, and show that, according to this model,
2o aft is to be able to escape from the earth, then V2 = 20R.

waesm  Miscellaneous exercise 19 B R
1 Find the solution of the differential equation xg =2x? + 7x + 3 for which y =10 when
_ dx
x=1. (OCR)

2 In a chemical reaction, the amount z grams of a substance after ¢ hours is modelled by the

differential equation % =0.005(20 ~ z)*. Initially z = 0. Find an expression for ¢ in terms

of z,and show that t =15 when z=12. (OCR)
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The gradient of a curve is given by % =3x% —8x+5. The curve passes through the point

(0,3) . Find the equation of the curve. Find the coordinates of the two stationary points.
State, with a reason, the nature of each stationary point. (MEI)

The area of a circle of radius » metres is A m2.

(a) Find d— and write down an expression, in terms of r, for i
s dA

. iy . dA 2 .
(b) The area increases with time ¢ seconds in such a way that e = W . Find an
expression, in terms of r and ¢, for %
. . . dA 2 . . .
ifferential equation — = —— ,
(c) Solve the differential equation & (t+1)3 to obtain A in terms of ¢, given that

A=0when t=0.

(d) Show that, when r=1, % =0.081 correct tp ificaqt figures. (OCR)
~dt

the amount of drug

present in the body. The constant of proportionglity is denoted fy k. At time ¢ the quantity

of drug in the body is x. Write down M equatiemi pélating x and ¢, and show

that the general solution is x = Ae™ , WhRMe X_is an arbitrary constant.

g 6 0 a quantity Q of the drug is
administered. When ¢ = QM in thé body is Qo , where « is a constant

When ¢ =1 and ag r dose Q is administered. Show that the amount
of drug in the bod
If the drug intervals for an indefinite period, and if the greatest

amount, 6Lt g that the beflycan tolerate is T, show that Q should not exceed
(OCR, adapted)

modelle ¢ differential equation & =1.4r —4 for values of ¢ up to 10.

Interpret the term ‘ —4° on the right side of the equation. Solve the differential
equation, given that x =8 when =0,
(b) An alternative model gives the differential equation %x; =1.4¢-0.5x for the same

values of . Verify that x = 13.6e™"> + 2.8;— 5.6 satisfies this differential
equation. Verify also that when # = 0 this function takes the value 8. (OCR)
(a) Two quantities x and y are related to each other by the differential equation

y ay =—16x. Solve this equation to get an implicit equation of the solution curve

for which y=0 when x=0.1.
(b) Sketch your solution curve from part (a), showing the values of x and y at which
the curve cuts the coordinate axes. : (OCR)
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8 Attime r=0 there are 8000 fish in a lake. At time ¢ days the birth-rate of fish is equal to
one-fiftieth of the number N of fish present. Fish are taken from the lake at the rate of 100

per day. Modelling N as a continuous variable, show that 50 ;ﬂ =N-5000.
{

Solve the differential equation to find N in terms of ¢. Find the time taken for the
population of fish in the lake to increase to 11 000.

When the population of fish has reached 11000, it is decided to increase the number of
fish taken from the lake from 100 per day to F' per day. Write down, in terms of 7', the

new differential equation satisfied by N . Show that if 7> 220, then %——N <0 when
t

N =11000. For this range of values of F, give a reason why the population of fish in the
lake continues to decrease. (OCR)

9 A metal rod is 60 cm long and is heated at one end. The temperature at a point on the rod at

distance x cm from the heated end is denoted °C. At a point halfway along

the rod, T =290 and d—T=—6,
dx

same value at all points o ]
hence determine the temperatyt difference between the ends of the rod.

(b)

Pential equation and hence show that, in this
\re along the rod is predicted to vary from 380 °C to
(OCR)

& The charging rate is modelled by % =k(Q—q), where q is
t

¢ty (measured in ampere-hours) at time ¢ (measured in hours), Q is
arge the battery can store and k£ is a constant of proportionality. The

Solve the differential equation to find g in terms of . Sketch the graph of the
solution.

(b) It is noticed that the charging rate halves every 40 minutes. Show that k = %ln 2.

(c) Charging is always stopped when ¢ =0.95Q.If T is the time until charging is
21n(20(1- 1))

stopped, show that 7 = ) for 04< A<095. (MEID)
n
. . . . . dy x()’z + 1) . .
11 Find the general solution of the differential equation o = —(—1)— , expressing y in terms
x— .
_of x. Y (OCR, adapted)

d :
12 Solve the differential equation ay = xye™, given that y=1 when x=0.
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13

14

15

16

The rate at which the water level in a cylindrical barrel goes down is modelled by the

equation %’f = —+/h, where h is the height in metres of the level above the tap and # is

2
the time in minutes. When ¢ =0, & =1. Show by integration that » = (1 - % t) . How long
does it take for the water flow to stop?

An alternative model would be to use a sine function, such as # =1-sinkz. Find the value
of k which gives the same time before the water flow stops as the previous model. Show

that this model satisfies the differential equation j—h =—kV2h-H?, (OCR, adapted)
t

A tropical island is being set up as a nature reserve. Initially there are 100 nesting pairs
of fancy terns on the island. In the first year this increases by 8. In one theory being
tested, the number N of nesting pairs after ¢ years is assumed to satisfy the differential

N(500 - N).

. dN
equation o 5000

(a) Show that, according to this model, the rate easenf NV is 8 per year when
N =100 . Find the rate of increase when 300 and Whan N =450 . Describe
what happens as N approaches 500, and {interpret your ahsjer.

(b) Use your answers to part (a) to s
for which N =100 when t=0.

Obtain the general solution of the d

the 3oIbion curve/ of the differential equation

ial equation, and the solution for which

and will first exceed 300. . (OCR)

1- £) where p is the population at time
m

3 g a
She decides thaY'the model needs to be refined. She proposes a model EI;) = kp(l _(ﬂ) ]
m

and investigates suitable values of o . Her observations lead her to the conclusion that the
maximum growth rate occurs when the population is 70% of its maximum. Show that

(e +1)0.7% =1, and that an approximate solution of this equation is & = 5. Express the
time that it will take the population to reach 54 000 according to this model as a definite
integral, and use the trapezium rule to find this time approximately. (MEI, adapted)

Obtain the general solution of the differential equation y% tan2x =1-y>.

(OCR, adapted)



294 PURE MATHEMATICS 3

2

17 Find the general solution of the differential equation % = %—- in the region x>2.

x‘—x-
Find also the particular solution which satisfies y=1 when x=35. (OCR)
. . . . . dy sin?x . . '
18 Find the solution of the differential equation Fi which also satisfies y =1 when

x=0. Y (OCR)

19 Solve the differential equation % =Zerty
Y

when x=0.

,in the form f(y) = g(x), given that y=0

20 To control the pests inside a large greenhouse, 600 ladybirds were introduced. After ¢ days
there are P ladybirds in the greenhouse. In a simple model, P is assumed to be a

continuous variable satisfying the differential equation I = kP, where k is a constant.

Solve the differential equation, with initial condition P =600 when r =0, to express P in
terms of k and ¢.

Observations of the number of ladybir e nearest hundred) were made as

follows:

0 150 0
P 600 1200 &&

i hat k =~ 0.00462 .-Show that this is not

-

create a model to represent the relationship between s and ¢, where £ s is the amount
which had been raised at time ¢ hours after the start of the sale. In the model s and ¢ were
taken to be continuous variables. The organiser assumed that the rate of raising money
varied directly as the time remaining and inversely as the amount already raised. Show

that, for this model, %;E = ki_—t, where k is a constant. Solve the differential equation,
s 2 Y
and show that the solution can be written in the.form 1'0":)02 + @ 3;) =1.Hence

(a) find the amount raised during the first hour of the sale,
(b) find the rate of raising money one hour after the start of the sale. (OCR)
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22

23

A biologist studying fluctuations in the size of a particular population decides to investigate

a model for which % = kP coskt, where P is the size of the population at time # days and

k is a positive constant.
(a) Giventhat P=F, when t=0,express Pintermsof k, ¢ and F,.

(b) Find the ratio of the maximum size of the population to the minimum size. (OCR)

For x>0 and 0<y< %ﬂ? , the variables y and x are connected by the differential
equation Q = ln_x, and y= éﬂ? when x=e.

dx coty
Find the value of y when x =1, giving your answer to 3 significant figures. Use the
differential equation to show that this value of y is a stationary value, and determine its
nature. MED)

e S R T




Revision exercise 3

1 Express

) in partial fractions. (MEI, adapted)

1
r(r+2
6(x~2)

2 Find the factors of x> +8, and hence split —3 P into partial fractions.
X"+

L6(x-2)
0 x3+

Find the values of ¢ and b.

Show that

dx =alnb, where a is a negative integer and b is a positive integer.

How do you interpret the fact that the value of the integral is negative?

3 Find

in iz
(a) cot* xdx, (b)
i
4 Find the complex numbers w
(@ (+)z=1+3i

() 22 +4z+13=0

(1-i)z+{1+i)w=2,
@ {(1+3i)z—(4+i)w=3i

(iii) 6=7, (v) 6=-3m,
(vi)) ~37<0<0, (vii) ~T<B<—37.

(b) Repeat part (a) for the curves given by Rel =a and Im'l =b.
z z

7 (a) Write x*~1land x> +1 as products of real factors.
(b) Write z> ~1 and z° +1 as products of complex factors.

(c) Solve the equations x%-1=0, x*+1=0 and x'* -1=0 in real numbers, and
illustrate your answers with graphs of y = x4-1, y= x®+1and y= x2-1.

(d) Solve the equations z° —1=0, z° +1=0 and z'> —1=0 in complex numbers, and
illustrate your answers using Argand diagrams.

8 Write down the first five terms in the expansion of (1+ 2x)%. Show that, when
1
differentiated, the result is zero plus the first four terms in the expansion of (1+2x)72.

Investigate similarly the effect of differentiation on the terms of (1+ 3x)% and (1+x).
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9 Determine whether or not the point (1,2,—1) lies on the line passing through (3,1,2) and
(5,0,5).

10 A, B and C are points in an Argand diagram representing the complex numbers —1+ 01,
1+0i and 0+1i respectively, and P is the point representing the complex number z (with
- -
Im(z) > 0). The displacements AP and BP make angles ¢ and B with the x-axis, and
the angle APB= %77:.
(a) Show that arg(z—1)—arg(z+1)=1z.

z+1 z-1
*

(b) Show that =cos2a +isin 20 and write down a similar expression for

Z 7% -1

(z=1)(z* +1)
(z* = 1)(z+1)
(d) Show that the equation in part (c) can be written as (z — i)(z* + i) =2 and deduce that
|z-i|=+2.
(e) State in words what geometrical property ig€sta
parts (a) to (d).

(¢) Show that =1 and deduce that zz* + i(z —z*) =1.

> DX combining the results of

11 Find the following integrals.

(a) J sin(2x + % 7z:) dx c) J sin? 2x cos2x dx

ugh (1,4,2) and (-2,3,3), and find

12 Find a vector equation of thg
i the’line with vector equation

dscending powers of x up to.and including the term

1x3 1x3x5

——+——-———— .. as a binomial series of the form
4 4x8 4x8x12 :

T4 4x8 4x8x12

2 1
15 Find the vector equation of the straight line parallel to r =| 1 |+s|—1 | through the
point (2,-1,4). 3 1

16 A straight line has vector equation r = G) + t(i) Find its cartesian equation.

17 1+ ax+bx?* are the first three terms of a binomial expansion for (1+ cx)". Write two
equations involving n and ¢, and hence express n and ¢ in terms of ¢ and b.

Prove that the next term of the expansion is —32 (4b - az)x3.
a
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18 By squaring both sides of the expansion (1+x)™ =1-x+x* —x%+..., obtain the

expansion of (1+x)2. Thenuse (1+x)2(1+x)™" = (1+ x)™ to obtain the expansion of
1+x)72.

19 (a) Find the area of the region enclosed by the curve with equation y =tanx,the x-axis
and the lines x =0 and x=%7r.

(b) Find the volume generated when this area is rotated about the x-axis.

20 Express as the sum of partial fractions. Hence express

_ 1____ ——————— as the
1+ x)(3-x) (1+x)*(3-x)*

sum of partial fractions.

A region is bounded by parts of the x- and y-axes, the curve y = and the

1
1+x)(3-x)
line x = 2. Find the area of the region, and the volume of the solid of revolution formed by
rotating it about the x-axis. (OCR)

in
21 (a) Use the substitution y = %n ~Xtp ’ cos? y dy.
0
i n
(b) Show that f cos® ydy = cos? x dx.
0 0
i
(c) Find J. (si sin? xdx = %n.
0

22 p ist is /g e population of the island of A. In the model, the
Nhe #f3 e ¢ is P. The birth rate is 10 births per 1000 population per

kateOne assumption about the population of A that is required for this model to
be valid.

(d) If the population is to double in 100 years, find the value of m.
(e) Explain why the population cannot double in less than 69 years. (OCR)

23 A model for the way in which a population of animals in a closed environment varies with
time is given, for P> % , by %—I: = %(BP2 - P) sint, where P is the size of the population in
3P-1

P

thousands at time ¢. Given that P = % when ¢t =0, show that In

1
3_ e%(l—cost) :

=1(1-cost).

Rearrange this equation to show that P =

Calculate the smallest positive value of ¢ for which P =1, and find the two values between
which the number of animals in the population oscillates. (MEI, adapted)
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24 Two small insects A and B are crawling on the walls of a room, with A starting from the
ceiling. The floor is horizontal and forms the xy-plane, and the z-axis is vertically
upwards. Relative to the origin O, the position vectors of the insects at time ¢ seconds

- . . 1. 4 1 e e .
(0=r<10) are OA =i+3j+(4 1)k, OB =(1r+1)i-3j+ 2k, where the unit of
distance is the metre.

(a) Write down the height of the room.
(b) Show that the insects move in such a way that angle BOA =90°.

(c) For each insect, write down a vector to represent its displacement between ¢ =0 and
t =10, and show that these displacements are perpendicular to each other.

. . - s .
(d) Write down expressions for the vector AB and for |AB |, and hence find the
minimum distance between the insects, correct to 3 significant figures. (OCR)

25 (a) Differentiate xv2—x with respectto x.
(b) Find fxv2 —xdx

(i) by using the substitution 2—-x =u,

26

meets IT at B. Find
(a) the length of
(b) the perpendi
figures.

(b) find the position vector of B.

The plane IT pegs€s through A and is parallel to both / and the vector —2i+2j+k . The
point QO on AB is such that AQ = }IQB. Find, correct to 2 decimal places, the
perpendicular distance from Q to IT. (OCR)

28 The plane 7 has equation r.(2i —3j+ 6k)=0,and P and Q are the points with position‘

vectors 7i+6j+ 5k and i+ 3j—k respectively. Find the position vector of the point in
which the line passing through P and Q meets the plane 7.

Find, in the form ax + by + cz = d , the equation of the plane which contains the line PQ
and which is perpendicular to 7. (OCR)

—lo—xz—— ,the x-axis and the
(x+ 4)(x + 4)

lines with equations x =0 and x =2 is rotated through 27 radians about the x-axis.

29 The region bounded by the curve with equation y =

Calculate the volume of the solid of revolution formed.



Practice examination 1 for P3

Time 1 hour 45 minutes

Answer all the questions.
The use of an electronic calculator is expected, where appropriate.

.. . COSs x . .. .
By writing cot x in the form ———, show that the result of differentiating cot x with
. sin x
respect to x is — cosec? x. . (4]

The variables x and y are related by the equation 2” = 3'™*. _
Show that the graph of y against x is a straight line, and state the values of the gradient and
(4]

the intercept on the y-axis.

The cubic polynomial f(x) = x* +3x? herd\z and b are constants, has a factor
x+1. The remainder when f(x) is d{vided by x + 2\is\the same as the remainder when

f(x) is divided by x —2. Find,this refpaipder. [6]
(51
(21
the acufeangle between the planes, [3]
the coOrdinates of two points on the line of intersection, /, of the planes, 2]
(iii) \th¥ g¢quation of /, giving your answer in the form r =a +tb. 2]
The angle 6° satisfies the equation tan26° =sin6°.
(i) Show that either sin@° =0 or 2c0s0° =2 cos?6°-1. [5]
(ii) Hence find the smallest positive value of . ' [31
. 2x+1 . . .
(i) Express ——————5—— In partial fractions. [4]
(x— 2)(x + 1)
(ii) Hence show that
2x+1
ad dr=-3In2. [4]

o (x— 2)(x2 + 1)
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10

(a) Find fxlnxdx. (31

1 _ sec’ x

(b) Show that

: = , and hence evaluate
sinxcosx tanx

1

37 1
f ———dx. (5]

1y Sinxcos x

The parametric equations of a curve are
x=t2—et, y=tt—e%.

(i)  Find the equation of the tangent to the curve at the point where ¢ =0. [5]
The curve cuts the y-axis at the point A.
(ii) Show that the value of ¢ at A lies between 0 and 1. [2]

® (4]
(ii) anan Argamddiagram. 4]
(iii) R |6z —1|=13, and show the locus

(4]



Practice examination 2 for P3

\

Time 1 hour 45 minutes

Answer all the questions.
The use of an electronic calculator is expected, where appropriate.

1 Solve the inequality 2x 3™ < 5x 1072, (4]
2 (i) Use the trapezium rule, with three intervals each of width % 7, to estimate the value
of
{3]
[2]
[2]
[3]

[5]
huotient and remainder when 4x? is divided by 2x +1. (4]
the/binomial series to show that, when x is small,
1
~1-x+kx*,
V1+2x
where the value of the constant % is to be stated. (31

6 (i) Show that the equation 2sec8° —tan6° = 3 can be expressed in the form
Rcos(8 —a)° =2, where the values of R and o (with 0 <o < 90) are to be stated.
[4]
(ii)) Hence solve the equation 2sec 8° —tan8° = 3, giving all values of 8 such that
0<86 <360. (4]
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7 (i) Show that the substitution y =e™ transforms the integral

2 -
| J;) = dx to Lmdy. [4]
(i) Hence, or otherwise, evaluate
W2 g
J, e g
(i) Find the modulus and argument of the complex number 2 + 243i. [2]

(i) Hence, or otherwise, find the two square roots of 2+ 23 1, giving your answers in
the form a+ib. [3]

(iii) Find the exact solutions of the equation

iz2-242z-2v3=0,

giving your answers in the form a +ib. [4]
Water is flowing @ e bottom of a conical container whose axis is

vertical. At time £)\h&dey w2t in the container is x and the volume of the water
in the contajnerj

rate at
® [2]
(i)

where A is a positive constant. [2]
(i) Find the general solution of the differential equation in part (ii). ' [3]

(iv) Given that x =4 when ¢ =0 and that x =1 when r =1, find the value of t when
x=0. (4]
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10 The lines 1, and I, have equations )
3 L 0y (1

r={5+s| 2 and r=|2|+¢ -1

1 —4) 4 5
respectively.

(1)  Show that [, and I, intersecf;'gnd find the position vector of the point of
intersection.

3

(4]

The plane p passes through the point with position vector | 5 | and is perpendicular to /;.

1
(i) Find the equation of p, giving your answer in the form ax+by +cz=d.
_(iii) Find the position vector of the point of intersection of I, and p.

(iv) Find the acute angle between [, andp

(3]
(3]
(3]



Answers to P2&3

1 Polynomials

Exercise 1A (page 5)

1 (a)

(d)

2 (a)
(b)
©
@

©

3 (a)
®)
©
@
(e)

4 (a)

()

(c)
(d)
5 @
(b)

©)
(e
(&)
@
7 @
(©)
(e)
(@

3 () 1 () 4
0 e 1 ) 0
4x*+7x+6

552 +3x2-6x-3

8x* =303 +7x% —3x +1
257 +2x* = 5x% +3
—x*—2x%-5x+4
2x7+x-8

30 +7x% —8x+9

2xt =P+ T +3x-3 -

2x% - 2x* —6x3 +5x2 41
—x3-6x2+9x+2

2x° 3% 4+9x-2 .
323 —7x2+16x-13
x3—4x2+7x—11,
3x% —8x2 +17x-17
6x*—7x-3
P4 -Tx+2

2% +5x2 —3x-9
125 -13x2 +9x -2

20,-21 () -16,13
-17,-1 () 5,11
5,-6 gy -11,8

4,1 by 2,-3
2,1 @ 3,-2
1,2 " 2,-3
2,3 M) 2,-1

Exercise 1B (page 8)

1 (a)
©
(e

2 (a)

©
(e

x=3 (b) x+17
3x+11 (d) 7x-3
x-3 " Tx-2

1,-5,22 (b) 1,8,—11
3,-4,0 (d) 3,-1,-4

4,1,4 ® 7,18

3 (@ 1,-3,52
(¢ L,1,-1,3
@ 2,7,-1,0

4 (@) 2,-3,4,-1,-2
© 3,1,-1,2,0

'Exercisé,lC (page 12)
1 (a) x-2,-4 (b)
©).2x+7,13 ()
(e). 2x-1,-1 (f)
2 (@) x*-3,7
x2+2x+15,71

(b) 1,-2,4,22
(d 4,1,-3,11
 3,0,-5,10
(b) 4,1,0,-2,3
@ 1,-2,5,-3,2

x+1,-7
x+2,3
x,0

R 6x+22,-71
SR W0x+ 77,315

© 2x-6,9x" +4x+11

(d) 3x*+2x-5,30
5 (b 13

o 0 1 A W
|
(v}

5,-3
10 4,-3
1 2,1
12 5,3

©) 50 (d) -355

© 3 ©®7F @0 02

Exercise 1D (page 15)
1 @ (+Dx-2)(x+3) -3,-1,2
(b) (x-1(x=3)x+1) -1,1,3
) (x-D(x-5)x+3) -3,1,5

@ (x+1)*(x-5)

-5

(e) (x=2)(x+2)(x+3) -3,-2,2

LB Cx+DE-1)x

+4) —4,-1.1

@ Gx-Dx-2)x+2) -2,1.2

) (x+1)(2x-1)3x+2)

1
)

1,-

wie

@ (x-1)(x*+3x-1) 1,%(1\/*3—3)

—
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2 @ (x=-3)(x-D(x+1)(x+2) -2,-1,1,3
® (x-2}x+D(x+2)(x+3) -3,-2,-1,2
(©) (x=-3)x-D(x+2)2x+1) -2,-11,3

2
3

@ (x+Dx-2)2x+D(Bx+2) -1,-2,-

€ (x—-11(x+1) -1,1

) (x-2)%(2x+1)? _%,2
3 (@) (x-2)(x*+2x+4)

() (x+2)(x* -2x+4)

©) (x—a)(x2 +ax+a2)

(d) (x+a)(x2 —ax+a2)

(e (x—a)(x+ a)(x2 + az)

6] (x+a)(x4 —ax® +a’x* —a3x+a4)
4 (b) »n must be odd;

xn—l _

ax" 2+’ = v a™!

Miscellaneous exercise 1 (page 16)
a=-3,b=1
1
3x+4, 2x+3

-1,4_3

)

N AR W N e
Q
Il
1
s
S
I
|
—_
]

@ 2

®) 242.-+2

(x=3)(x* +x+2);

x2+2x+2,9
14 (a) 84,0; x—2 is not a factor of p(x), but
x+2 is.
by -2,-13,1
15 (a) -15
(b) (x+2)(x—5)(x+w/§)(x—w/§)
(c) x<—w/§,—2<x<w/§,x>5
16 A(~3,0), B(v3,0); (x-2)(x+1)*

@@ 2
(b) They touch at (-1,-2).

17 (b) 6x—4

@ 1,1-v2,14v2

2 The modulus function

Exercise 2A (page 23)
3 (@ 2<x<4 b 21sx=<-19
(¢) 14995=< x=<1.5005
d) -125=x=275
4 @) |x-15/<05 @) |x-1]<2
(©) |x+3.65/<015 (d) |x-285]<055
5 |a+b|<|a|+|bl; |a+b|=]|a|-|b}|

Exercise 2B (page 28)
1 (@) 3,-7 ‘(b) 8,-6 (¢) 0,3

@ 3,-32 (o) 4.3 " -2,%

3

(g -2,-8 (h) -4,15
2 (a) B<x<-l (b) x<—2o0rx>8
Ssx=<-2 (d) x$—3% orx=2
x<_—%orx>% ® x<—3orx>2%
\<x<3 t)y x=<0
l=sx<1 (b)) x=1 () x=-1
£=1 b)) x=0 () O0=sx=1

True (b) False

Miscellaneous exercise 2 (page 28)

1
x<7

3 and -2 respectively

—10<x<%

1
‘j"l
x<l1

) O P | 1
3533 X<—30rx>3

Any value of x suchthat -3<x=<3

(@ () 0sf(x)=s2, -1sgkx)=<1

(b) f(x) is periodic, with period 180; g(x) is
not periodic.

W N A AW N

9 x<24 or x>4

10 () 2x-1 (b) 7 (c) 1-2x
11 (a) -2, % (b) No solution
12 (a) 8 (b) -3

13 (a) y=3x-1 (b) y=1-x
15 (a) x<lorx>1—§-_

b) x<—§or—l<x<lorx>§
() x<3orx>3

5 3

3 Exponential and
logarithmic functions

Exercise 3A (page34) .
1 (a) 800. (b) 141 (c) 336
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2 (a) 1.059 (b) 262 (c) between D and D# Exercise 3D (page 46)
3 (@ 455°C  (b) 13.6 minutes 1 (1) y=251x398  (b) y=102x0.001*
4 (@ 542 (b) 542 (©) y=501x50.1* (d) y=501x
6 (2 8=2 (b) 81=3* @ y=2316
(c) 004=57 d x=7° x°
JE— . 4
, Ee; g‘lx . Efb)) e 2 (a) y=149x1.82°
a = log, = log, _ 5 —x
© -3=log, & “ (@ 8=1log. 20 (b) y=163x10°%20.1
() 9=log,g () n=log, p (©) y=201x547"
8 @ 4 ) 2 ) =2 @ y=201x? © y= 0.6?7
@ 0 © 1 ® -3 x
® 7 0 3 ® 7 3 p=39.7x1.022" gives p=39.7,494,613,
9 (@ 7 ) é (c) 4 76.3,94.8. The exponential model does not fit so
@ © 442 ® 6 well in this period.
" €
e o 4 61,30,19,13
(&) 555 (h) -10 6y} 3\@
Exercise 3B (page 36) £850, interest at 7.5%
1 (a) logp+logg+logr ) 3.15x10° (c) 3, In2
(b) logp+2logg+3logr 050 and 1170
() 2+logp+Slogr c) 843
@ Z(logp—2logg—logr)
(¢) logp+logg—2logr ous exercise 3 (page 48)
() —(logp+logg+logr) 1 ®) 5a
(@ logp—7logr loga-2 2
(h) logp+logg+7logr—1
N ,
i) 5(1+1010gp—10gq+1 xse*—1, xeR
2@ 2 & -1 © 2 log?2
® 3 ® T8
3@ r-q log3~5
@ -q 11 log, 2,2
® q-p-p BT
Exercise 3C (pag 12 10000, 451
1 (@) 146 © 1.14 13 (a) 0.202,04 (b) 1.84 tonnes
d) 1.22 ® 1.7 14 (a) 15.3,2.7;39.6 mm (or 39.3 mm if you use
(g 221 - (i) -0.202 the exact values a= 4—36 , b= %)
2 (a) x>189 (b) x<143 (c) x<-168 (b 12.5,1.46
d) x>997 () x>854 () x<-2 (c) Both models give a reasonable fit, but (b) is
@ x==2 ) x<-561 (i) x=377 ' slightly better.
3 37 . ..
4 14 4 Differentiating
5 28 exponentials and
logarithms
6 7
7 9.56 _ Exercise 4A (page 54)
8 71 1 @ 3e* ®) —e © 6e*
lz (a) 0.891 (b) 12 days (c) 199 days ) 16e~+ e 33 ) e
9.49 am. Tuesda e . . 3
Y (g -¢ (h) 12e>** (1) 3%
11 389 years _ g 1 1 &
12 (a) 1.79 (b) 2.37 (c) 0.486 @ -—xe? X ¢ m me
@y -797 (e) 1.04 ® 232
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2 (@) 32 (b) 2e ©) -1 6 2y=2-x
@ =2 7 x56; ——+-1 @ x>6 (b) Non
X ; —+—— X one
3 (@ ey=x+2 x-2 x-6
®) y=3x-1 ,

(© y=(4+4e")x-(4+6e*)
(d) 4y=-2x+1+2In2

4 (a) 2e"2”+‘(2x +1) (b) —15e‘x(e"x + 1)4 (ii) There are no points in the domain.
4
© -x(1-x )-%e e Exercise 4C (page 58)
1 (@ y=glnx+k, x>0
5 3% ® y=in(x-D+k x>1

© y=-In(l-x)+k, x<1

6 (a) No stationary points ) =%1n(4x+3)+k, x>—%

() (h2,2In2-2), maximum
(©) (0,1), minimum; (i 1,2+¢™ ), maximum ) y=-=2In(1-2x)+k, x< %

7 @ le¥+k (b) - +k (O y=2In(l+2x)+k, x>-3

3
@) y=-2In(-1-2x)+k, x<-1

3 2x —4x .
(©) 37 +k (d e +k N =2In(2r-1)+£, x>1
€ 1 +k (D -3e7F+k 2 (0 W2 () m2 (d) In2
@ —e™+k () %e3+4x+k 2 (b) 3In3 (c) 2mi?
) S5e—-7
In e) In2 8+In5
8 (a) 4(e*-e?) (b) el (©) e -e 4e-7 © ®
© 4 2ind
(d) el0-gt @ 6 25
5 7rln7
6 37ln3
7 y=%ln(—;-(2x+1))
8 y=2In(4x-3)+2
9 2rxIn2
Exercise 4D (page 62)
o 2 1 @ —-Ind - (b)r—-%ln3 (©) 3In5-In4
c - ' .
-z @ n=2 o -mi  ® 2-In2
n — . .2
_ 3 x 2 In7, -5 ‘
® 37 ® 5 %0 3 2%1n2,3*In3,10*1n10,~(1) In2
.. .6 1 1 2 1
O =2 O 4 0 Miscellaneous exercise 4 (page 62)
1 1 . ' -3
1 _ . 3x }
@ 1t z12 1 (a)_3x_4 (b) T (©) 3e
2 @ y=2x-In2-1 @ - @ -t @ 0
(b) y=2x-1 3—x 2-x 3-2x
©) y=_—3x—-ln3—_'1 2 Eg,13
(d) ey=x+eln3 3 (%,8),(4,1); 15%_121!12
3 (a) 1, minimum
(b) 1-In2, minimum 4 (@ %e-ge?-5  (b) Minimum
(¢) 1, minimum x
(d) 1, minimum 5 2x-e+k
3x? 2x° 3x2+4 6 x=21,minimum
4 (a b z
@ 1+x3 ®) 2+xt © x3+4x
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8 y=x+4
9 y=-lx+7
2
10 ( — (b) 32
11 (3,0)
13 @ -1  (®1
14 (@) 2-¢“=a () | (2-e-x)dx
' 0
15 (-3.™),(0.1),(3.™)
16 (@ e-3a=0
1 3 2/']_-2
@ 3-29 -3¢
17 le
18 (@ 300 (b) 1.22x108
Trigonometry
Exercise 5A (page 68)
1 (a) -0675 (b) 1494 (¢) 1.133
2 (a) cosecx (b) cotx (c) secx
(d) sec®x (e) cotx 16y ’
3@ V2 (v
@ -2 ©
(& 0 (h)
4 (a) 0951 (b)
@ 2
(g -104
5 (a) g
@ 33
6 *443, +
7 (a) [tan¢|
(d) |sing| AN
8 (a) 3sec’@-sec60-3 (b) 072, 7, 5.56
9 ‘1.11, 2.82, 425, 596
10 lnininininln
Exercise 5B (page 73)
1 ;‘f(\/3+ﬁ), 2+43
2 @ 3(vV2-+6). () HV6++2)
© -2-43
3 %cosx—% 3sinx
4 —cos¢, —sing

x/§+tanx 1+x/§tanx
1-3tanx’ tanx—A/3

T@ 3 L ©%F @Y

8

_63 _33

65° 56

Exercise 5C (page 75)
1

2
3
4
5
7
8
9

10

7
8

1B, 445, -a43

1 1

3. 27 14

sin3A = 3sinA —4sin> A
cos3A=4cos’ A~ 3cosA

H wio

* 72

V2-1,V2-1

@ © (b) 47,399,544

€ 0,087,227, 7,401, 541, 2%

' 0465

(@ 5,111 ) 5, 0464
©) 5,111 (@ 5, 0464
61 cos(8 — 0.876)

(@) /61 when 68=0.876

(b) —~/61 when 6=4018

10sin(x +36.9)° (@l (b)o
0.87 or 345, correct to 2 decimal places

Miscellaneous exercise 5 (page 78)

L-2- IS BV B S

ek
wn & W N

b
NN

® -3

60,120, 240,300

@ 1 (b) %

(b) 60,300

Hio-a)

@ -¢ o -% %

739

26.6, 90, 206.6, 270

2sin(6 +60)°; 90, 330

(@) 2cos(x+60)° (b) 0,60, 180, 240, 360
(a) 15cos(x—0.644) (b) 0276
J5cos(x—26.6)°

(@) 90,323.1 (b) —V5<k=+5

-0.5 '

(@) 13sin{x+674)°

(b) 7.5 when x=202.6, 1 when x=22.6
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18 Scos(x+53.1)°  (a) 13.3,2404 @

o L
(e)
19 @ ln ® 22
1 2 =%y 9
20 (b) ~, 1~2x
X

21 (a) x+2y=3
(b) 5sin(6+63.4)
. (©) (2sin6°2c0s6°), 744
23 (2) (56.8,0), (123.2,0)
(b) 53.1, 120; (53.1,0.6), (120,£0.5)

2 85T =
e e e

6 Differentiating
trigonometric functions

Exercise 6A (page 88) ©
2 (a) ~—cosx (b) sinx

y=x+ % In2- %75
y=3

%n,ﬁ), maximum; (%n,—ﬁ) , minimum
7:,7:) , heither

0,2) , maximum; (71: ,—2) , minimum

1 1 : .
.3 3 +E”) , maximum;

Sl

_1 3 ini .
=3 3+127c),mm1mum,

Sl BIE Blw

1 13 : .
T 3 +En') , maximum;

_

7:,—% 3+%n),minimum

n,ZwE) , minimum,;

ey e, e, o —

Sl— Bl A=

n ,—2\5 ) , maximum

_(©) 4cosdx (d) —6sin3x -
© %ncos%nx (f) —3msin3mx 7:,—3),mm1mum; (Ezz,i),mammum;
.. 13 .

(g) —2sin(2x—1) (h) 15005(3x + %n’) n,l) , minimuin; (?7[,5) , maximum
@) Scos5x G) 2cos(%7z:— 4+x), —sinasinx +cosacosx
(k) 2cos2x ) -rmsinzx sin(%zz:~x); —sinx, —cosx '

3@ 251nx;:os,? () 12 As 2cos2x—1=1-2sin2'x=0052x,they all
() —3cos”xsinx « differ by only aconstant, and therefore have the

(e) —8cos®2xsin2x
(g) —42x%sin2x>

same derivative.
13 cos2x

5

(h) 14 Above,at y=cos3m+57m~0443
® . cos+/x ~sinx 1 1
. 15 (a ¢y ——cos—
® @® 24/x ®) 2~/cos x (©) ¥ x
19) —COS%X sin%x 16 The curve bends downwards when y >0, and
4 (a) ~3cosec3xcot3x upwards when y<0; y =sin(nx+a).
DA * 1 .2 :
© ) cot(3x s ﬂ) 17 Itsin’x Sl? % =sec® x+tan? xsecx
(d) COs™ x S o
) 5 19 (a) Growing'at 50 million doliars per year
(e) 8sec” xtanx (f) —3cosec’xcotx (b) Falling at 9.7 million dollars per year
(g) —12cosec*3xcot3x 4 2
20 (&) 553 mms (b) 153 ms

() 10sec?(5x—Lz)tan(5x - 1)
5 (a)=:2cot2x (b) ~3tan3x

(c) —cotx (d) 4tandx 1 @
(e) 2cotx (f) —6tan2x ©
6 (@) cosxes™* (b) —3sin3xe®*
B sin?x (C)
(c) 10sinxcosxe
8 () 2y—x=x/——%n' (&)
®) 3y=+2(x-3-1x) _ ()

— 1
© V2y+x=2+izx

Exercise 6B (page 92)

%sin2x+k (b) —%cos3x+k
Lsin@x+1)+k (@ —Lcos@x—1)+k
cos(l—-x)+k ® —25in(4—%’x)+k
—2co_s(%x+%n’)+k

%sin(Bx—%n')Jrk @A) 2cos%x+k
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2 @ 1 ®) 332 © 3
@ -3\2 @ +3-1) ® 0
(g) sinl (h) 2cosl-2cosd (i) 4

3 (& jlnsec2x+k (b) llnsinSx+k
(0 3sec3x+k  (d) —fcosecdx+k
(e) 1ncos(%7r—x)+k
() -pinsin(}z—2x)+k
(@ 2sec(px+1)+k (h) Lcosec(1-2x)+k
() gsec2x+k

4 (a) 1In2 () §In2
© (1-+2) @ In2

(e) %(cosec%—cosecl)

(©)  4(sec0.075—sec0.025)

@ (x+3sin2x)+k (0) L(x+sinx)+k
©
Q]
®
(h)
@
() LisindyZ
(@

(c) tanx+k, 0a
(d —cotx+k,
1.2

1; Z” :
8 m+2, 27(8+37)

9 (@ 2-V2 (b in(z-2)
10 (0,1),(%71',0); 1++2; %ﬂ(37[+2)

(x-Jsin4x)+k () Lsin®x
sec® x +k ‘

cosx—%cos7x'+k

W= N W= R

cos® x—cosx+k

—2—C

—cosx+ 3

Miscellaneous exercise 6 (page 94)
1 (a) 2cot2x

b

©

(@)

(e)
1 .~
® —ﬁsm\/x

1, 3.2
(€3] 5 X Zsmjx+k

B .
- (cos2x +2cos x)+k
—2cos xsinx

3¢ cos(t3 +4)

1 1
7x+ﬁsm6x+k

11

(a) %(1 —cos2x)

@ 12(v3-1), %

(c) 3.106, 3215

Seczxtaﬂx 2 2
—F——=—==8€C" X, S€C X ;
vsec? x—1 L,

(0,-0.404); 1.404,1.360,1.622

& ; better, values are 0.5236 and 0.4997
approximating to 0.5.

v= 11(1 — cos[£ tD , 90 seconds
45

1

(@)

(b)
(©)

990 metres, 11 ms”
0.665ms™

sinix (b)) L1

5COS5 X — 3

2
4r,6m
Any integer multiple of 127

W=

2 4
(a) §7::,71:,371:,271:

Revision exercise 1

(page 97)
1@ 2 ®1 () 3 (d 3 /
3@ 36 () 2
x° -1

4 (a) -7,25 ®b) -5,5

(¢©) -7Tsx<25 (d) -5<x<5

1.6 1 1 12 1

5 (a) 3¢ —5 b) e —z7
6 ~/37cos(x+0.165...); 0.441, —0.771
7 39 240cos600r @) 0 (b) 04
8 (a) —%cos(2x"+’%n:)+k

(b) 2x-sinbx+k

(©) %sin32x+k
9 (a) 2,2

(b) (x+2)(x+1)(x—1)(x-—2);—2,—1,1,2
10 (x+4)(x-2)x-3)
11 (a) -At 3.49 hours’ (b) After 15 hours

(¢) 2.51x10°
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12 (a) (6x - 6)e3x2_6‘ (b) (1,6_3) , minimum
(c) x+6y=8 )
13 (@) e-1 (b) j(e—(e—Dln(e—1)

4 (b) sina () (opsina)
15 1.04,3.03,4.18,6.17
Differentiating products

Exercise 7A (page 101)

1 (@) 2x (b) 3x%+4x
(¢) 5x*+9x*+8x (d) 63x +100x +39
(e) 3x? ® (m+n)x™!

2 @ (x+l)e” (b) x(2Inx+1)
(¢) 3x%(sin x+1)+x>cos x
(d) cos®x—sin’x (e) cosx—xsinx
) e *(cosx—sinx)

3 (a) (x2 +2x+3)e‘
(®) 2x(sinx+cosx)+x2(cos x—sinx)
(¢) sin®x+2xsinxcosx

4 (a) 4x +(2x+x2 )e" b)

©) 6xlnx+i+3x
x

8sin’ 2xcd2xcos® 5x

—15sin* 2.xcos2 SxsinSx

3
@ 12(4x+1) tn3x+ EEFD
X

© 1n2x+_2
2x
9 sin2+2cos2
10 x+2y=1
11 (1,-3.3)
12 V=3518,x=64

13 When 7 1is even, there is a maximum at x=n,
and a minimum at x =0 . When 7 is odd, there is
amaximum at x =n;if n>1, there is also a
point of inflexion at x=0.

(f) —e“(asinbx +bcosbx)

14 (a) (sinx+xsinx+ xcosx)e”
(b) (2xcos 4x-3x%cosdx—4x?sin 4x)e'3‘

Exercise 7B (page 105)

1O oy © B5
o i o S
O foap ©

2 —cosec’x

3 (a) xcosxz—sinx ®)

X sin’ x

sinx—xcosx

2x(sin x - xcos x)

sin® x
x+2 10-x
- b
(x+1)7 ® e
_ 3x+4
4x2\3x+2
2xSinx +cosx 3¢* -10—5xe”
5 - b
R
_;1_._
(1+x)3(1-x)
1-lnx 2 ln(x2+4)
6@ x? ®) x2+4_ x?
© 3 _2In(3x+2)
(Bx+2)2x-1) (2x-1)?
7 4y=x+3
(2x-1)¢* .
8 —_— b) [1,1e?
@ Gy @ (14
9 14y=8x-37
10 (2o2-1).21+42)), (-2(1++2)-2+2-1))
o x2+2x-3

b) 3<sx<-1, -l<x=1
12 @ 2 (b) %

Miscellaneous exercise 7 (page 106)
x+6

1 (a) 3x?sinx + x> cosx b) ————~
2(x+3)2

2 (1- 3x)e_3x ; (% ,a_I; e'l)
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3 (@) e*(cosx-—sinx) (b) 21{7; <x< %,; 3 1.6198,1.8781,1.6932,1.8208,1.7304,1.7933;
(c) The gradient is negative for these values converging
‘ of x. 4 (b) 0.7895; it is converging to another root.
4 _Lz 5 x,,, =3e™ +2 with x, =2 converges to 2.27
T in 11 steps; :
5 (a) 2cos2xcos4x—4sin2xsindx e 42
- 9 w41 = ——— with x, =2 converges t0-2.27
®) 3x(21n x2 1) © _2(1 x ) X,
(Inx) 3 in 3 steps
6 (3.42) 6 @ 9
X COS X —Sin x (b) 5 steps; x, and x5 are the same to
S 4 significant figures; 9.725
2x 7 Oneroot; x,,, =cosx, with x, = i—ﬂ: converges
11 (@ - to 0.739
a
Exercise 8C (page 119)

Solving equations
numerically

Exercise 8A (page 112)
2 2

3 1.91,-29.6; as the graph is continuous there is a

least one root in the interval 3<x <4.

4 (@ (G -2 () -171
) @ 2 (i) 2.63
© @ 1 (i) 1.33
@ G 6 (i) 6.30
e @ -8 (i) -7.8
O o 4 (ii)

() x=5eF; x=In5-Inx; x=+5xe”"

© x=’§/1999—x3;x=%/1999—x5;x=3\/1297i91
X

2 (@ () f(x)=x"-x"+6=0 (i) -1.1769,

-1.2227, -12338, -1.2367, —1.2375

(iii) Converging to a root

(iv) x, is an approximate root of f(x)=0
®) () f(x)=x*-x>-34x*+289=0

(i) 7:1111, 22.283, 463.11, 214 440,

4.598x10® (i) Diverging

2

3

No‘spn\ergence; F™'(x) = -—,1.303
x+1

Noconyefgence; F™'(x) = %ln(S -x),0.501

érgence; F7'(x) = tan™' (2x),

Noconvergence; F™'(x)=-%300-10x,
—2.6237

Converges to 1:8955

5,1.179 (b) —-13,6.730
10,~1.896  (d) —3.485,12.87

(a)
©

Miscellaneous exercise 8 (page 119)

1

o e AN R W

- 10

(© () f(x)=x*-500x-10=0 (i) 7.9446,

79437, 79437, 79437, 79437
(iii) Converging to a root -
(iv) x5 is an approximate root of f(x)=0

11
12

5,13  (a) There exists a root between x =1
and x=2. (b) 13

2

2.15 -
0.381<x<0.382
50

(b) 0.77

(a) Two roots
233.1

(@) x+15y+30=0

(b) One graph is increasing from —eo to oo, and
the other is decreasing in -90 < x <90.
Hence there is a point of intersection, and
only one.

(©) -35

2.13

1210

6.72
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13

14

15

16

17
18

19

20

The trapezium rule

"Exercise 9 (page 125

o 0 A U AW

10

(a) 1,1.389. There could be an even number of
roots in the interval.
(b) 0.3100r 0.756 (¢) 0.620r1.51

(b) 3.11111, 3.10332, 3.10384, 3.10380;
3.104

(b) The second, as its derivative is numerically
less than 1 between x=2 and x=3; 2.93

@ 3 () Fr)= 1+1“(9’) F(r)= 54 or

vice versa; ¢ = F(t), 3.486

(@ -5 (b) k=—-63, a=-4.4188
@ (£V5,£45)

(c) The function g is self-inverse.
(d) 2236068
(b) 30,40 (c) 30,35 (d) 325,35
(&) a, =30, 30,325, 33.75, 34.375,
34.375,34.531 25, 34.609 375,
34.648 437 5,34.667 968 75
b, =40, 35, 35, 35, 35, 34.6875, 34.6875,
34.6875, 34.6875, 34.6875
o =34.7 correctto 1 d.p.

(a) 132472 (b) 0.11183,3.57715

(@ 212 (@
573 °
3.09

2.86
3.14

(a) 1940 (b) Underestimates (c) 6.25x
(d) 3.10 :

Miscellaneous exercise 9 (page 126)

1
2
3
4
5
6
7
8
9

10.6

3.28; overestimate
1.701

0.52

0.70

(a) 141

51

1140

8.15km

10 (a) 0,1.708,2.309,2.598,2.582,2.141,0
(b) 340m? (c) 3400m?

11 055

12 (@ 0.62m2 (b) 124m® (¢) 39m’
(d) (b) overestimate, (c) underestimate

13 @ 3P (b) 98+7042

14 a=10, (x+1)(x—2)(2x-5); 16; 18

15 0535,05; T=2h—1+1h7;

_1

h=2x373,0r1.39

16 (a) % (b)

D S S I
© —§~2 % 354

311 43
8’32’1

=
o0

@ E, = —6—17 (e) 409, or more
143

dnetric equations

sd 10A (page 133)
(180,60)  (b) (5,-10)
(34 ® (20

9 @ yY== (b y=12x

(©) x*+y*=4

10 (a) x;&-y:zl,forOsxsl
b xP+y*=1 »
(©) x+y=2,excluding (1,1)
@ 4x*=27y"

Exercise 10B (page 136)
2
1 (a) v (b) —tant
2t-1

3
—zcot? d) ——
© -z @ 3% +1

(a) 2 (b) % © -1 @) -3
@@ -3 M1 © V3 (@ -8
(@) % ®) 3y=x-1

x+y=1+7m

(@) 3y=x+9 &) 5y=33x-30
(@ 3x+y=165 (b) y=-J3x

@ y=4x-30 (b) (-},-32)

10 (& y=2x~36 (b) (27,18)

& 90 NN W

Exercise 10C (page 138)

7 (b) The point N always lies on the circle with
centre at the origin and radius V2.
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Miscellaneous exercise 10 (page 139) 7 @ (10),(0,)) (b) y<0O
1 () in (b) 2x+y=2+2 © 20x-1)
32 3
2 6cost y
21 (d) The modulus of the gradient becomes very
3 — P-xt=4 large.
(@ 211 © y-x nge
B oy
4 () 322—t1 (®) 2x+y=6 9 ) g =e
v (c) Both x and y are less than In2.
5 (@ —Btant (b) x+y=2 ) ) )
] 10 (a) The curve is symmetrical about the y-axis.
6 ——, In2 b) Yo% when x is positive 2 is
e -1 ()d.x 3yz,W(tx plledx
7 () y=2x-2 (o) (0,-2) negative, and vice versa.
8 (@ 2x+y=9 (b) y=4x—x* (¢) Maximum
10 (a) The half-line of gradient 1 through (0,0) for 11 (0,0), (-1,0); 0, 1
which x=0 _ and 1 at (0,0), (0,1) and (0,2)
(b) y=x; the straight line of gradient 1 through ectivaly -
00)
(c) Each point of the curve given by the age 150)

parametric equations lies on the curve given
by the cartesian equation, but the reverse is

() ¥+ ZW%
not necessarily true, as this example shows

. _ 25[!-
2 d_y () Zxy-x dx
11 Curves defined rm —7
implicitly
Exercise 11A (page 147) ®) (2xy+x2 %)cos(xzy)
1@ 3 ®6 © 3 -5
’ ’ § (©) 1,1dy (@) (y+xiy—+ﬂ)e"y*’
2 x ydx dx dx
3 3@ -3 2
4 4@ -IB3®o © -2 @-ir
5 5 3y=x+5
6 x=1
dy R i 7 (3’1)3 (_35—1)
(d) 2x+8y5x—=0,the gradient is zero where 8 @ -1 ®) %

the graph cuts the y-axis.

() (0,0), where there are two branches, one

(&) . L2 2 1
parallel to each axis; (23?23), (23 ,23)

2,\1;E + 8y =0; the tangent is vertical where

Y
the graph cuts the x-axis.

6 (a) (£L0) 9 (a) (x2 +yz)2 20s0 x> -y* =0
(b) x=1lor x<-1; y can take any value. ®) (t%«/g,i%«/i), (£1,0)
(d) 2x- 2yEjl =0; x is never zero, so the

Miscellaneous exercise 11 (page 151)

gradient is never zero. 1 5x-13y+3=0

(e) 2,\19 — 2y =0; the tangent is vertical where x—y
dy 2 @ —X,22),(-2-2)
the graph cuts the x-axis. s x—4y

(b) 2x-y=33
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3 3x-Ty=13 16 (a) 157r<t$7r:
4 (2 2+x—3xy b (2.0, (_1’%) (b) x+4ycosT =cosT +4cosT cos2T
2+x (©) 1+3cosT =4cosT cos2T
5 (@ a v _, @) 8X°-7X-1=0; X=1,T=0
PLAR (e) 1.72,2.59

6 3, maximum; —3, minimum . . .
Practice examinations

74 for P2
(a) _1—.
1-8y°

-]

Practice examination 1 (page 155)

. dYy. . 5
(c) 1;since d—x% is zero at the origin, but L1, 3

2 (i) 261
positive close to the origin, the curve has a
point of inflexion there of the same 4 @ I3 (@217
3 6 (1) 9.51units (i) 69.3

orientation as y=x". .
}_I. (iii) 0.0951 units per second

- Revision exercise 2 o ‘ " 74 :
.(page 152) y=tang] | | y=secg/ !
1 -1.17,0.69,2.48 : i
2 (@ 31 (b) 321 ' ;
3 @ 2xlnx+x (b 1_231”
e*{1-2xe" —3 :9
o S |
(xzex+1) - (iv) 0.644
4 255 Practice examination 2 (page 157)
5 274 1 2x-1,3
6 4.4934 2 (@) l1<x<5 Qi) 0<y<>
7 (a) In2
8 (3 3 75,05
1 1 1
o s 4@ Lr-LiVs ) iz+
10 Py+rx=2 5 l-e™ (iii) 2.3
11 (2) -sinfcos™@ (b) 3x+8y=I5 6 () 2x(x+1)e¥ (i) 1—122x
. _4 . 4 X
12 (4-2), (-4.2); (245,-25), (-2¢5.445) L
' inx+2 - W ET
13 (2) e™(7+6x) () -ZEAETICOSE nE
X . l+cos@ . “14
2(cos2x —sin2x) . 2xsec’ 2x —tan2x 70 2 _sind (i) tan™3=~0927
©) e (@ 7

iii) 1.80,5.77
(e) e *(sinx— xsinx+xcosx) @) 18

e”*(xsin2x + xcos2x — xsin x)
2x°

e (x1)’

(1+ xz)z

15 () 3x+2y=5 (b) (8%,—10)

®

14 (a)



Answers to P3

12 Vectors: lines in two
. and three dimensions

Since vector equations are not unique, other correct
answers are sometimes possible.

Exercise 12A (page 164)

2 1
1 (@ r=(_3)+t(2),y=2x—7
®) r =(‘D+t(—23),2x+3y =11
©) r=(§)+t((l)),y=7
d r= t(_zl),x+2y =0
(e) r=(zl)+t(?),x=a
® r=(C?Sa)+t(_5ina),xcosa+ysina=1

2 (a r=

3 @ (73) (& (8-5) 0 co
(d) (4.76,3.68)
(e) The lines coincjde

E - N7 T -
—~
n
-
—_
o,
hod
_
o
~

@ r= [_72)+t

8 (a) r=(_41)+s ,r=(;3)+t

® (135.-5).(4.11%)

9 (a) Yes (b) Yes
(c) Meaningless, since 0 has no direction

e=(o)+(3)
0 (3 e=(5)+(T)s 0

11 (2,0)

@

12 r=(_11)+t@; x=-1+1,y=1+2s;

(=11, (3.9)

13 (1,8),(-7,—4)
Exercise 12B (page 168)

1 0 0
1 (@ r=|2(+¢|1 (b) r=t}0
3 2 1
2 3 3 4
(©) r— —1 +t -1 (d) r=|0|+¢|-2
1 1 2 3
1 : 1 1
+1|0 ®) r=|2|+t|-4
2 2 0

yall represent the same straight line.
The point lies on line () only.
et (a) lies on a straight line, but set (b) does not.

6 (a 2,-3 (b) 3,1 - (c) Nosolution
7 (@ (-3,,5) () (3,-5.4)
8 Any multiple of 1,2,—3; the translations are all

parallel to the same plane.
9 (4,-3,0)

10 Al %(a +b+c+d); the lines joining the mid-
points of opposite edges of a tetrahedron meet
and bisect one another.

11 le+2f; La+b+c), J(a+b+c+d)

12 (a) Intersectat (1,—1,0)

(b) Parallel (c) Skew

13 04m

Exercise 12C (page 172)

15

2 IJ_ ;

3 3

43 : VEs
5 r=i+3j+k+/(-6j-2k), 2415 ”;

Miscellaneous exercise 12 (page 172)

3

2 (a) r=(f)+t(_32) (b (2,3)
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2 1
3¢ r=|3]+4] 1 | () 25m
5 -05

4 (cos2a,sin2a); for all a, the intersection lies
on the circle with (—1,0) and (1,0) atends of a
diameter.

5 1.68 km, 20 seconds

2

7 (a) Above (61,77) on the ground
(¢) 384kmh™', 38.7°
(d) 386kmh' 535°
8 (@) () 3i+3j+4k (i) 25°
(b) 5i+9j+12k, —%(15i+123j+164k)
©- Ji+3j+2k
9 (85,~10); 2200 m, 2 minutes
10 u<-loru>05; 0.5<u<0.753

-2
6 (a) (i) [6] (iii) 1, W11 (b) 479° (c) 21

(b) 4200 m

13 Vectors: planes in three
" dimensions

Since vector equations are not unique, other ¢
answers are sometimes possible.
Exercise 13A (page 179)

1 5x-8y+4z=1

2 2x-y-z=4

3 There are many p: litj WO are

,9.,0)

Exercise 13B (page 185)

2 14 . (0 0
@ (7] () |-13 (© |-3]or|1
5 23 0 0

1
2 (@) —6jorj (b) —10i+5jor -2i+j
(¢) 2kork

3 i-4j-7k, x—4y-T7z=23

1
4 [1],x+y+z=—3
1
5 @ z=0 T (b) x+y+z=0
() 1lx+2y+5z=30 (d) 5x+13y+7z=21
6 (0,0,0),7
71

8 Sx+y+7z=0

9 r=4i+2j-k+:(3i+4j-k)
10 53¢

11 They lie in the plane 5x+y=10.
12 r=-7i+3j+1(33i-9j+k)
13 r=4i+2j-3k+1(2i+3j-4k)
14 2x+y-z=0

15 Sx-y+7z=20

16 Sx-y+3z=12

2 -1 1 0
17 @) r=|-1|+s| 3 ,r=[—1J+t(—3
1 -4 1 \4

0
® (12-3) © cos"—\é—g @ [;]
ellaneous exercise 13 (page 186)

H3y+4z=-11

0 3
63.1° (b) r=]-2 |+t 2}
HAE

—6 1 -6
3@ | S| B r=[2]+t[5}
13 -3 13

ap+bg+cr—d
Va? +b% +c?
2x—-3y—8z=28
7 (a) (5,1,-1) is a point on the line, so the
position vector of (5,1,—1) is suitable for a.
The vector 2i—3j+Kk is normal to the plane,
and therefore lies along the line, so it is a
suitable choice for b.
(b) (i) 69°or 111°
8 (@ r=2+j-k+s(i-}j),
r=>5i-2j-k+(j+2k)
(c) 71.6° or 108.4°
(e) 2x+2y—-z=7
9 3x-2y-z=16

17
10 @) 3 ®) [—10] © 2L

14 J6s

14 The binomial expansion

Exercise 14 (page 193)
1 (a) 1-3x+46x2 (b) 1-5x+15x°
© 1+4x+10x2 (d) 1+6x+21x°
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2 (&) 1-4x+16x* (b) 1+6x+24x’ 3x®  15x*

© 1+12x+90%> (d) 1-x+3x° 6 1-r+o 7
3@ Z: ®) -8 . © —27(3) (d) 256 7 1+ix-xta=2,b=-3

© 5 B -20a (g) 206 8 1+2x+3x*+4x°,a=5b=7

M galn+n+2)c’ 9 4+x—fx?,|x[<$
4 (& 1+ix- gxz ®) 1+3x-Fx 10 1-}x-}x"-gx°

© 1—7x+gx d) 1+%x+§x2 11 1+%x—337x2
5 (@ 1+2x-2x>  (b) 1-x+2x° 12 3-3x+34

© 1-8x+8x  (d) 1+{x+p3gx" 13 n=15, 1-1x-}s2, 151
6@ -3 ®F ©F @-3 15 |x|<}

1 1.3

© 20 @ I3(g) ~169 16 (2) 1-2x+3x2-4x°

(h) 48"("+2)("+4)b (b) 1+2x% +3x* +4x°
7 (a) l—gx ngx2 b) 1+gx -mx © 1-4x*+12x*-32x%

© 2+fx—-gx* (@ 6+3x-Zx° 17 A=1,B=-1,C=0,D=1,E=-1

8 |x|<%
2 3
(@) 4+12x+27x% +54x
®) f+ix+HS+ESC
9 (@ 1- 3x—9x2—-2—x3|x|<1
(b) 1-5x+25x*—125x,|x|<]
© 1—3x+18x2—126x3,|x{<11;
(d) 1+8x+40x2+160x3 |x] <3
& 1+x2- x +1 x4|x|<1w/_
(ﬂ 2- gx_8x2_80 3[x|<1
(g) 10~ 4x+3x —Bxe’ |x
(h) 1+7x+1x +gx 8

(1) g 1—6x+1§6x —37x3,

10

11 1+3x-18%°
12 6
13 15
14 1+3x+8x%,
15 4,6,~100
16 1+x+2x>+3x*+5x*,1.001002003 005
17 (a) 2-2x+7x* () 1+5x+6x°

18 3%

|x}<i, 4123

Miscellaneous exercise 14 (page 195)
1+5x+15x2 +%x3

1-2x-2x2-4x°

1-6x+24x% ~80x°

1-4%" +12x* - 3245
2+fx—xt | x]<4

v AW N e

26

0.95Q 700 000 026 9919
4x*, 1.000 200 030 004

%) 149535
3

5
X
24, 3.605525
1-2x+4x*-8x> +16x*
3+7x+7x , 3
1-2x%+15x* ,0.531

, 0.346 056, 0.69

Rational functions

Exercise 15A (page 201)
1 @ 2x-4 (b) 3x+2
2 1
() x“-3x+6 (d) 12
© +Ix-2) O -
x“+x+1
2 @5 ®Ll  ©1
@ -1 @1 o %
3 (@) x+4 () —— (@ 22
! +7 2x+1
x+6 x+4 ~2(4x +5)
@ 3 @7 O =
5x 25x Tx+11
4 (a) Ty () D © >
x=17 X2 +4x+2 13x+14
@ T3 @ 0 5
8+3x 5
5 (a) yy ®) Y
7 3x-5
©) 22 @ P
5x—2-x x2+2x+1
®© ~x ® 2
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6 (a) (—%i% (b) 2_123)"(2‘_1_,_13 (©) Tin|x|+3In|2x+5[+k
AX X X ‘x 5 —g _
o 22210 @ 5 @ 3mn|3x+1{-3mn(2x~1|+&
(x+3)(x+4) (x=3)(x+1) 5 () Ini8 (b) 40 (c) 3n¥f (d) In
© 22x+19 @ 26x-20 1 . s ,
(2x +3)(3x +1) (2x+1)(5x—3) b St TR A
4x+17 -3 6 3
7 @ —Mm8m— b) ——— - - 2 _ 3. i
(a) Gr-D2x+1) (b) Ixaxe]) 7 Toax 1+2x’3 18x+84x* ~360x"; |x|<
2 2
© 8x° +13x @ 6x°+17x 3 3a +8
(x+2)(x+1) 2x~-1)(x+2) x+2a x-a
25 +6x+5 x*~2x+18 9 2In3
| © ——0= ® =)
(x+1)(x+2) (xr+4)(x-2) Exercise 15C (page 211)
4x+5 6x—1 1 1 2
8 (8 ——— ® ——= —_—— 4 s
(x+1)(x+3) (x+2)(x-1) A S S
6x+2 —4x
©) @) ——— ) 2 L
x(x-3) (x+2)(x-2) \ _x+2+(x+2)2+x—1
1 - 5
@© ® 3__3 3
x-3 *= 2x 2Ax-2) (x-2)*
9. @ 6.0) 3x (© o 2 -1 3
B 2x-1 x+1 (x+1)" .
- oy 2x+2 )
© x+3 ® 2 (a ,41n[x+1|+21n|x+2[~—f_§+k
X
10 @ 2 ®) (b) In|2x—3|—ln5x+2|~——— +&
) aer 5(5x+2)
(Gx-D(x+2 5 3.7
G 4 7+21n2—71ng
11 a 5 1-3x+9x?
b2 x*-9 Exercise 15D (page 215)
13 (@ 1 ._l_+ ! b 1=
@ x=1 x*+1 ®) x+1 x*+4
1 x—-2 4 x—4
14 (a) —_ d -
© T3 @ g
1 1 1 1-4x
Exercise 15B (pag © 2 e D Tear s
1 1 3 7 2 2+x 2 x
1. —_— b) ——+—— - Z_
(@ x+5 x+3 ®) x—-1 x+5 ® 1+2x 4+x2 ® x x%49
~4 5 8 4 3 6x+1
¢) — 4 —— d - i -
© x—-4 x-5 @ 2x-1 x+3 @ x+4 22247
2 (a) 5 +_3_ (b) 5 _ 5 2 (a) 1-3x+x?+x° (b) —2x+%x2—8x3
x+2 x-1 x—4 x+1 2 s 623 3
. 4 6 3 6 (©) 3—95x+27x -8052—5x
| © —+— @ --
: x-3 x+3 x 2x+1 3 4x 1 2(4—x2)
E i 35,2 Y@ Tt e @t
1 a —_—_———t—
I ¢ x+2 x-1 x-3 (x +1) (x +4)
| . : 1 8x
| R I SRS P O S © L 8
! x+3 x+1 x-1 x x-6 x+4 (x+4) (x2+16)
" 4 (a) 10In|x—3|-3In{x—1]+k
(b) In|x-2|-In|x+2|+k
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Exercise 15E (page 219) 1 1
1 1 B3 1-—2 4 3 __3
1@ I+~ ® l-— (@ l+— (2x-3)" 2x=3 2x43
X x+1 1
a1 2 ] 1 1 14 (@ 1 x+1 ) 2 + x-1
+ ) — — — a —— —
@ x?-1 x—1 x+1 x 2x7+3 x—-1 3x%42
x 3 2 2 1 10
- , 15 —, In3
© -2 Pt o3 x-2 2+l 21 T
x+9 1 2 1 1 11,10
- - 16 + =In>
, 4+ >
® (2x+5)3x+1)"  2x+5 3x+1 x+3) 7(4-x)" 73
2 2 Ty 41553,
- 17 —- , 143 FX+7 2+ x|<1
2 () 1__17 1.2 (b) 1+_1__x 1 1-x 2-x’ 4 i
x? x x+1 x2+1
1 1 3 33 2.
2 x—-4 2 3 18 +4x+8x |x|<—
© 1-——+= @ 24— 2+x 1-2x
X+4 x4l =2 (x+2) 19 B=1,C=3
5 2 3 1 3.2,17.3. 1
3y 20 A=2,B=2,C=-1; 245x-3x"+3x7; 5
© x-2 x+2 2x-1 . 3 27 4 K 2
2 1 3
“1+%+ +—, 2In2+1
® 2x—-5 2x+5 -X ’
@ 142 1 1 S S
x-1 x x+1 0(x—3) 20(x-2) 20(x+2)
3 4 4 . g
) 1+—- i 3-— 3 - =6
x? x+2 x-1 4x%+9 —x (1 x)z’co =0,¢,=5,¢, =6;
Miscellaneous exercise 15 (page 220 3r+1-(-1)
N (@ 2x*-3x-11x+6 (b) -14
x-3 x+1 (©) 21
2 1 1 . 5(2x—1) 5(x+2)
R L
x x-1 x+1 25 m(2-1n2)
3 1, 11+ 3 26 (a) A1=1,B=14,C=2
x x (x-— 27 @) —— - L.
4 1 x-3 x-1
PR S S S
x| tnles ] (x=3° x-3 (x-1* x-1
5 In/x|-Injx+1|}
25
1 1 1 (C) (48 ln)
6 —+—
2 x 3-x
¥ 16 Complex numbers
7 ~Injx+1|+2Injx+2|+k
3 , Exercise 16A (page 226)
8 3x‘”+‘"|x (x-1)]+x 1 (a) 4 ®) 6i () 13 (d) 24i
NI © 24i  ® -10 (@16  (h) -36
[R5 2 (@ 4-i ®) 2+3i () 7+0i
10 -l—iz+——1 ~1n|x|+ +ln|x +k () 5+2i (€) 5-5i () 8+6i
x x° x-l @ L1+7) @ L1-7) @ 1-3i
n |3t G 2+4i (0 L(-1-3i) O 13+
4x-3
2% 3 2x-y=1, x+2y=3, x=1, y=1; 1+i '
(x-3)(x+3) 4 (a 3 (b) 3 © 3 (@ -6
© 3 ® -1

5 (2),(b).(d)
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Exercise 16B (page 230)
1 (@ -2-5i () 3(7-2i)
© 3(-5+i) (d) 55(7+24i)
2 (@ z=2,w=i b)) z=1+i,w=2i
3 @ #3i () —2+i
© 3+4i (@ 3(-1%5i)
4 (@ 1-7i ()2 () 14i (i) 50
(V) os(-24+7i)
(b —2-i () -4 G 21 (i) 5
(iv) 1(3-41)
© 5 @ 10 (i) 0 (iti) 25
(iv) 1
(d -3i (@O0 (i) 6i (i) 9
(iv) -1
5 (@ (z-5i)(z+51)
(b) (3z~1-2i)(3z—1+2i)
(© (2z+3-2i)(2z+3+2i)
d) (z-2)(z+2)(z-2i)(z+2i)
(& (z-3)(z+3)(z-i)z+1)
0 (z-2)(z+1-2i)(z+1+2i)
(® (2+1)(z-2-i)z-2+i)
) (z-D*(z+1-i)(z+1+1)
6 1-i, —1+2i, -1-2i

21, 2471, 2=7

Circle centfe O radius 5, x* +y* =25
(b) Line x=3 /’ (c) Line x=3
(d) Line y=1 -
(e) Circle centre 2+0i radius 2,
X+ Y —4x=0
(f) Line x=2 (g) Line y=2x+3
(h) Circle centre J+0i radius 15,
2, 2
Xy —x=2
(i) Parabola y* =4x
6 (a) Exterior of circle centre O radius 2,
X +y?>4
(by" Interior and boundary of circle centre 0+ 3i
radius 1, x* +y* —6y+8<0
(c) Half-plane including boundary, x+y <0
(d) Interior of circle centre —1+01i radius 2,
x2+y?+2x-3<0

11 If in a triangle ABC, O is the mid-point of BC,
then AB?+AC? =20A% +20C? (this is
Apollonius’ theorem).

Exercise 16D (page 239)

1 (@ 1-i, —-1+1 . (b) 1+2i, -1-2i
(¢) 3+2i, -3-2i @ 3-i, -3+i

2 @ i,-1-i (b) 2,-3+i
() -1-i, —=3+i d) —2i,~1+i
e 1,-2-i

3 (@) 2+2i, -2-2i, 2-2i, -2+2i
®) $V2(3+1), $v2(-3-1), 142(1-3i),
IV2(-1+3i)
4 -2i, 3+, —3+i
~1-i; 22 =(1+i)z+2i=0;

W1+3)+1(1=43)i, $(1-+3)+1(1++3)i

lgneous exercise 16 (page 239)

1-3i; 22 -4z +142-20=0

(@ 3,3 (b) 4i

5-2i, -5+2i

3-i, -3+3i
. =2i, 2-2i, -4

(@ p=-4,9g=2 (b) 1-i, 1+i,-1, -4
2

9 z,=3z, 7, =4z; z, =nz,commectfor n=5.
10 (a) kg’ +2iz—k=0; a=1, b=~1, c=0,

d=1
(b) o isreal and negative.

. k .
© B-%k1=m(2k+(l—k2)1)

NN AW

- ]

17 Complex numbers in

polar form
Exercise 17A (page 242)
1 @ 1++3i () -5v2+5V2i
(¢) 0-5i (d) -3+0i

(e) —4.16+9.09i () -099-0.14i
2 r(cos@+isind) where

(a) r=224,0=111 (b) r=5,6=-093

© r=1781,0=227

(d) r=10.63,6=-229

() r=1,08=0 ) r=2,0=zxm

L
2
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® r=3,0=7t1 ) r—4,6-5%7t 14 (a) 2sin6,6-1z (b) —2sing,0+1x
) r=2,0=—=nm i) r=2,0=%m .
@ 4 0 T3 Exercise 17C (page 250)
5 (@) —2+2+/3i ) 1+2i _ _
(C) —3-6i (d) 1+_\/§1 1 -2+4i, 4+2i
() 2-2v3+i ® (1—43)+(1+J§)i 2 (3+24§)+(3J§—2)i, —(2\/5—3)—(3«/§+2)1
6 ( V3+i (b) 3+4i 3 £2V3+(343)i
€) —3+4i, 9+4i 4 S(1-50)
@ FiV2+(2£12)i 13 _ N D
L 7 (@ 6+3i (b) 11(6+3i) () 18(6+3i)
g S 8 (@) 100+i) () D@+i) (o) 801+i)
—27
.8 11 (I-ia+ic, (1+Db—ic, H(a+b)+1(b-a)i;
9 g7 M is the third vertex of an isosceles right-angled
10 %ﬂ' triangle having AB as hypotenuse.
11 /5 12 3-3i, 5+3i, 4i, -2
12 iz .
Exercise 17D (page 254)
Exercise 17B (page 247) fsos % 7 +isin % 7;),
1 r(cosf+isin8), where o )
; . Qs —isin2z)  (c) =(1-i)
@ r=2,8=5n ® r=2,6=5n :
) ) : (e) +(1.098...+0.455...1)
(C) r=7,.6=—ﬁﬂ (d) r=8, )
=41
e) r=2,0=37 =1
© 6 ® r=3 #5+28)i (V3 +i), £(1-+3i)
(g) r=4,0=2x (h) r=16,6=1 IV e I
’ 3 . ’ e’ —e® isimaginary, € +¢e* has modulus 1.
imi dri .
(i) r=8,6=0 G r= (@) e, e (b) te(cosl+isinl)
k) r=2,6=—%zt 6 itany
cos@ :
(m) r=2,6 10 e , sin@
©) r =1.0 Miscellaneous exercise 17 (page 255)
_ _ 1 (a) seca (b) 4secx (c) %n—a
@ r=16=~ @ Zn-a
2 2fcostn+, 25-0927 @@ 3 (b 0.120
5 (a) cosf-— cds 8 —isin @ 36
() r(cosf@—isn@ (cosB—isin6) 4 Circle with centre 3+4i and radius 2
(@ 7 (b) 2sin'04~0823
6 2(COS%7I + isin%n:) , 6 Interior and boundary of the circle with censtre
V{cos{-1n)+isin~La)); —F+i -2+2V3i andradivs 2 (@) 2 () 27
' 7 (@ =3%5i (b) V34, 211 () 10
7 (@) 29+278i by —122-597i : 1 5 .
© (-8432+53761)x10™ 8 @ g7, 57 )8, -7
8 (@ - % x (b % T () % r (d) % T (c) Perpendicular bisector of line segment
A . i
9 (@ % T ®) - % T @ - % x _];);mng points representing « and
10 The semicircle in the first quadrant of the circle @ prid
with 3 and 4i at ends of a diameter 9 (a) -3-4i,11-2i; -1-2i, -5
11 The line segment AB b) \/5, +2.03;5,. @
12 The major arc of the circle with centre -1 10 (2 2,im; 442, 37,82, 3x;
passing through i and —i N ) . 8 4
//L 7 - __\'/5, iz
13 (2) sec6,d ®) -s g"j v T2
(c) -secB,0—-m (d) sdch, 7 (b) —-8+8i
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: 2

11 (2 1-3i, -3 ©
® 2,1ir;2, -1m:4,0:1, 22 ©

(c) Circle with centre 1++/3i and radius /3
rele 3@

(d) 1-+3i

12 (2) (i) Line through A parallel to OB ®)
(ii) Line AB (©)

_ (iii) Circle having AB as a diameter
13 |[f(1)-£(0)|=1
If g(z)=zand g{w)=w*,
then [z—w*|=|z—w]|, (z—2z*)(w-w*)=0,

@

ImzxImw=0,s0 Imz=0o0rImw=0; (e)
8(z)=7z or g(z)=z*;
f(z) = &+ Bz with | B|=1 (rotation then 6
translation) or f(z)=a+ fz* with | §|=1
(reflection in real axis then rotation then 4 (b)
translation)
: X
18 Integration
. s
Exercise 18A (page 261) /
. 1
1@ 2mVx-2[+k (b “3GxH) @
© 2cos(3 ) +k (®)
(d) ®
2 lrn-
O 3 (a
(d)
4 (a
©
7

2 @ L2x+1)’-L@x+1)*+k - 1 @
= & Bx—1(2x+1)* +k ©
®) (253" + F(2x-3) +k ©
= g(12x +31)(2x-3)° +k

3 5 2
© lex-Di+h@x-17+k (@)
3 (©)
E1—5(3x+1)(2x—1)f+k ©
(S

@ 4x-2) +2(x- 4 +x _
3 (a

=2(x+2Wx—4+k
LR ©

(e)

]n]x+1|+—1——+k
x+1

3x=3n|2x+3|+k
Fsin7 3x+k
Ssin™ 3x+LxV16-9x7 +k

3In(2e* +1)+k
%(x+1)3—%(x+1)%+k
= 3@2x-3)x+1i+k

P

V1-x2
—41n|2—J§|—2J§+k

+k

tan'e* +k
x
Vx+1

e’ +1

n 1+k (b) 2In +k

2

e’ -

¢ 18B (page 263)

ln(% 1+ e))
11L5_ (e)
87 (h)
3 0)

(b) 2In2 (c) %
T ® 109.L

= N[

tan~' 3—tan 'l)

V3 (k) 3Ing

§71'

W= N

72 . (©

-z ®

m W

o= o
3

T (e)
_1
2(In2)*
2(1-1n2) (d 1

3

(b) In2

Exercise 18C (page 266)

ez at) ok @) La+x?)i+k

Esin® x+k (d) stan*x+k
“Nl-x*+k (B -Joos*2x+k
6
—5(1=) +k (b)) -4(3- 2x) +k
&(5-32%) +k (@ «/1+x +k
Isec* x+k (0 (sin*4x+k
In(l+sinx)+k  (b) Yln|1+x*|+k

In|sinx|+k (@ In(4+e*)+k
~3n|5-e*|+k (D injsec3x|+k
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4 (@ In(e+l) (b) +In2 (¢) iIn} 3 jtan"'Zx+k
5@ % ® 8 © L(4-2) 4 4
@ B2 @3 O 3(0410-) 5 1_1.}
4 12
1 1 g
® 3 (h) n+l D 3 6 (@) xcos'x—v1-x?+k

1 1
6 1- — |if n21,
2("—1)[. (1+a2) IJ

Jin(1+a) if n=1; n>1; %1—_5
Exercise 18D (page 270)
1 (@) sinx—xcosx+k (b) 3(x—1e*+k

©
2 (a)
‘(b) %xsin4x+%cés4x+k
© 1x*(2In2x-1)+k
3 (a) 5x°(6In3x-1)+k
®) I@2x-De*"+k
© =x(n2x-1)+k
4 @ He’+1) ) IV2(4-m)
(n+1)?

(x+3)e” +k

1 2
12x-1e* +k

©

5 (2—x2)cosx+2xsinx+k

. a—e " (acos2bm — bsin 2b7)
' a* +b*

1 ®F

9 (a)

Miscellaneous exercise 18 (page 271)
1

1 Jin|2x-1]-
2(2x~1)

+k

3
2 2n2-3

28

) xtan™ x-tin(1+x*)+k

© x{(Inx)’-2Inx+2)+k

1
7 57:—1

8 %tan’l %e" +k

9 In(1+3x%)+k
1In10

P L(ax-1 +k

—22-xf+k

—x(2x+3)% —%(2x+3)% +k
1

2 (3x-1)° -+E(3x—-1)5 +k

1 1

g7 ts :

Ix(+x)" - & (+x)° +k

Ex(Bx-1)° -2 (3x-1)° +k

x{(ax + b)13 1 (ax+ b)14
2 B3 2

+k

Sl=

1-2¢™!
16
7(81n2-3)

2x(x 1) -2 (x-1F +k

20
21

22

23 1.701; exact value is %1n1201

@ 070 "(c) 1.69

@ z{}+Hm)=171
3

25 gnm

26

27

3ma®, sna’

Lzct

1 2 .
Z7[(; ) 3 Y

%ﬂ:a2
(a) A=-1,B=1,C=1

2+2In5-3In3

29
30
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19 Differential equations

Exercise 19A (page 277)

1 (@) y=x*-5x2+3x+k
b) x=%t—%sin6t+k
(¢) P=500e" +k
(d) u=k-50e”
© y=2Vx(x+3)+k
(f) x=Insinz+2sint+£

2 () x=5e"-4
(b) v=3-3cos2t—2sin3s
© y=-In(1-£*)

3 (a) 'y=1nx+%-1 (b) y=2Jx—4

() y=x-2In(x+1)

14.1s

2

5
~6-37,2237

_ 1,2
y—k—fx

0483 m; —-0.12+0.0483

e 3 & n A

1 ()

(©
(e)

(b) y=sinte**

@ z
) u=3ax+c
1

2 (a) x=3% (b) u=

3 (a) y=2i7,x<ln2

T ath)_y=-In(3-x),x<3
T

!

/

ninutes

7 (a) 950 when I =25, s0 the tree stops
dr P

growing.
) %:0.242541, t=-10v25~ 1 +50
(¢) (i) 1.0years (i) 10 years
(d) h=:-001for 0<r=<50

1.

8 m=3; enlargement factors over the 4 months for

W= i

m=5and m= % are 25.6 and 35.3 respectively.

Exercise 19C (page 289)
1 @ y=x2+k ) y*=x"+k
(© y=ce%xz (d y*=+2n|x]+k
yotx
x+1
y? =k ; a set of circles with centre (0,0),
2=25

b 1)2 + ();—2)2 =k, circles with centre (—1,2)

@ y=+2: ) y=8v2x?

©) siny=%~cosx (d) cosy=2cosx
6 VvVi=k-wx?; v2=w2(a2—x2)
7 @ y+1=k(x2+1)", k>0

(b) secy=csecx,c#0

2
8 @ y=5—

(c) y=1,—2-— (d) y=2secx
x-1

21-kx*) -
9 (a) }’=W— (b) y=In(k+xInx)

© =4(k+tan%x)

(b) 2sinxcosy=1

10 y=kx"

11 (a) n= 500060.0l(0.05r—505in0.021)

(b) 3150

2
2 208" v2 _g0r
X

12 v
Miscellaneous exercise 19 (page 290)
1 y=x?+7x+3Inx+2
_ 10z
20~z

3 y=x3—~4x2+5x+3;

(1,5) maximum, (%,4%) minimurm
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] 1 1 20 P=600e*", P=600e?005 04002 the model
4 (@) 27r, — b)) —— Xt s . . ]
2nr mr(t+ 1)3 P =600e"" is not consistent with the data; the
1 model P = 60009051-04sin0021 3¢ onsistent with
) A= 1--7 the data, given to the nearest 100.
(+1) Smallest number is 549.
5 E . 21 (a) According to the model, £745.
dr b) £ 5%\6 per hour, which is approximately
6 (a) The number of people served in each £298 per hour.
minute; x=0.71> —41+8 2 (@ P= Poesinkl ) e

10

11
12
13

14

15

16

17

18

19

(@) 400x>+25y° =4 (b) (£0.1,0), (0,204)
N =3000e*% 45000, 35 days; %Al =4gN-F;
t

since N decreases, dEN—<O but [—| gets larger,
t

so N decreases with increasing rapidity.
(a) T=470-6x, 360°C

(b %xz =—kx, T=380—;x
@ g=0(1-(1-A)e™)

y= + !k(x 1)2 2x

23 0.185; minimum

Revision exercise 3
(page 296)

2x-2 2

X2 =2x+4 x+2

S B-3+hr ) 2(v2-1)

©
_1 1,1 2
1ny——+(—z+5x)ex (a)
2 minutes; ;7 @
5 (a
(a) 12, 41 rate of incres
never exceed 500
(b)
(¢) t=10In
18 yeax
p= mAe*! 7 @)
1+ Ae*!
54 000 (b)
5
35 dp, 3.0 years
30 000 p(l—(WolmP j ©)
@

y? =1+ccosec2x

3
br-dri-tin2 @ H{eF —1)

2+i (b) ~2%3i
z=2+i,w=i

@G 1,0 G 1, (i) 1,0

vy 1, m (v) 1,26 (vi) 1,20-2%
(vii) 1,20  (viii) 1, 20+27m

@) 2,0 (ii) 0, undefined

(iii) 2,0 (iv) 0, undefined

(v) 2cos8, 0 (vi) —2cos6, 0—rx
(vii) 2cosf, 0 (viii) —2cos@, 8+7
(x—l)(x2+x+1), (x+1)(x2—x+1)
(@=D(z+4+13i)(z+4-13i),

(z+1)(z—1+% 3i)(z— -1 31)
-1, 1; no roots; —1,1

~7 %\[_1, +i, _2\/5"'1
1, £i, £+ 1B31, £443+]

() i,2+i

51 (where the

_ 3 L 3 + signs are independent of each other)
TS Y= e} (x+1) 1 2 5 4
In -k n 8 1+—2—x—;x +éx3 gx
x-2 2(x-2)

y=3/3(4+6x-3sin2x)

(I+y)e™ =(1-x)"

10 (b)

©

9 The point does lie on the line.

cos2f +isin2f
P lies on a circle through A and B with
centre C.
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2
by Ix-

11 @ -leos(2x+in)+k 7

1o i3
l—2sm6x+k © zsin 2x+k

| 1 -3

i 12 r={4 |+t -1}, (-5,2,4)
B 2 1

] .

13 1-1x %xz—ix3

1 2

NS

16 3y=4x+2
17 a=nc,b=%n(n—l)(—‘2; »
a*~2b a’
c= =

s " "Td-w
18 1-2x+3x2-4x%+...,
1-3x+6x>—10x> +...

19 (@ In2

1 1

1
20 4, 3 16
+x 3-x" (1+x)°

TN —

In3, (1—12-+%ln3)ﬂ:

25 (a)

(b) —2(4+3x)2-x)}+

26 2x-2y+z=3 (@) 4 () 776
027 (@ 22 (b) 12i-15j-9k; 227
28 3i+4j+k, 3x—2y—2z=-1
——— 29 1z+37In2-271n3

" -—qminations

jination 1 for P3 (page 300)
/—’3; v R
(2
’

i

36

4 (i) Inn=1+In5000-¢""
(i) n— 5000e=13600

5 (i) 568°
(i) Eg., (-1,1,-2), (-3,0,-6)

-1y (2
Gii) r=| 1|+ef1
—2) 4

6 (i) 1115

1 X

a

@ -2 x*+1

8 (@) 3x’Imx—1x’+k (b) In3
9 (i) y-2x=1 (i) 077,04
10 (i) 1

‘u) l

Practice examination 2 for P3 (page 302)
In0.025
> p—
In3

1 =336

2 (i) 0551
(ii) Overestimate, since graph of y =secx
bends upwards

3 (i) 126
4 cost—2xs1n2x,"_lzﬂ_
cosy

5 (@ 2x-1,1 (b) k=%
6 () R=+10,a=184

(ii) 692,327
7 (i) ln%
8 () 41z (i i(ﬁﬁ)

(i) 1—~i(\[3_+\/§), —1+i(J§—J§)

9 (i) %_:cﬁ%"? (iii) %x

iv) 32
(iv) 3

5
2

=—-Ar+k

1
10 () (1} (i) x+2y-4z=9
9 \

-1
(ii) [3) (iv) 619°
-1
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The page numbers refer to the first mention of each term, or the box if there is one.

addition formulae
for sines and cosines, 70
for tangents, 72

addition
of complex numbers, 224
of polynomials, 4
of rational functions, 199

algebraic fractions (see rational functions)

angle units, 65

Argand diagram, 231

argument, of complex number, 241
ascending order, 3

astroid, 138

binomial approximations, 191
binomial expansion, 190
binomial series, 190
binomial theorem, 188
boundary condition,

of differential equatio

cardioid, 139
cartesian equation
of a line in two dimi

circle, equa

complex numbers,
addition of, 224
Argand diagram, 231
argument of, 241
conjugate, 227
division of, 225, 245
equating real and
imaginary parts, 225
equations with
complex coefficients, 236
real coefficients, 229
exponential form, 253
geometrical representation of, 231
imaginary axis, 231
imaginary part of, 224

complex numbers (continued)

modulus of, 232
modulus—argument form, 241
multiplication of, 225, 245
real axis, 231

real part of, 224

solving equations, 227

spiral enlargement, 248
square roots of, 236, 251
subtraetionf, 224

derivative of, 85
integral of, 90

cotangent, 66

cubic polynomial, 3

cusp, 135

decimal search, 109
degree
of a polynomial, 3
of product of polynomials, 5
of quotient of polynomials, 9
of remainder, 9
dependent variable, 278
derivative
of b*,51,61
of cosine, 85
of e*,53
from parametric equations, 134
of Inx, 56
from implicit equations, 144, 148
of product, 100
of quotient, 104
of secant, 86
of sine, 85
of sum, 99
of tangent, 104
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INDEX

descending order, 3
differential equation, 275
boundary condition, 276
for exponential growth, 284
general solution of, 275
initial condition, 276
particular solution of, 276
separable variables, 286
solution curve, 275
switching variablesin, 280
differentiating, see derivative
distance from a point to a line, 169
divided out form
of improper fractions, 217
division
of complex numbers, 225
in polar form, 245
of polynomials, 9
of rational functions, 200
rule for logarithms, 35
divisor, of polynomial, 9
double angle formulae, 73, 90

e, 37,52
equating coefficients, 7,
equating real and imagi

general solution
of a differential equation, 275
graph of exponential growth, 41

identically equal, 7
identity, 7
imaginary axis, 231
imaginary number, 224
implicit equations, 142
improper fraction,

of rational functions, 216
independent variable,

of differential equation, 278
inequalities involving modulus, 24
initial condition, 276

integrating
cosine, 90
f'(x)/f(x),266
1/x,57,60
sine, 90
integration
by parts, 268
definite integrals, 269
by substitution, 258
definite integrals, 262
reverse substitution, 264
iteration, 113
convergent, 113,116
divergent, 114
iterative solution of equations, 112

multiplication rule, 35
natural, 55

nth root rule, 35

power rule, 35

properties, 35

logarithmic differentiation, 149
logarithmic scale, 38

mathematical model, 44, 276
modulus function, 18
algebraic properties of, 20,234
of complex number, 232
equations involving, 23
inequalities involving, 24
graphs of, 18
modulus—argument form, 241
multiplication
of complex numbers, 225
in polar form, 245
of polynomials, 4
of rational functions, 200
rule for logarithms, 35

natural logarithm, 37, 55
normal equation of a plane, 176
normal to a plane, 176

nth root rule for logarithms, 35

parameter, 132
parametric equations, 132
differentiating, 134
converting to cartesian
equations, 133
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partial fractions, 203
algebraic method, 208
divided out form, 217
equating coefficients method, 203
for improper fractions, 217
with quadratic denominator, 211
with a repeated factor, 207
with simple denominator, 204
substitution method, 204
particular solution
of a differential equation, 276
perpendicular,
common to two vectors, 183
plane, 176
cartesian equation of, 177
normal equation of, 176
normal to, 176
polar coordinates, 241

polynomials, 3
addition of, 4
ascending order, 3
coefficients of, 3
constant, 3
constant term of, 3
cubic, 3
degree of, 3
descending order, 3
division of, 9
leading coefficie
linear, 3
multiplicatjo

terms of, 3

zero, 4
power law models, 45
power rule for logarithms, 35
product rule, for differentiating, 100
Pythagoras' theorem,

trigonometric forms, 67

quadratic polynomial, 3

quartic polynomial; 3

quotient, 9

quotient rule, for differentiating, 104

radians, 65

rational functions, 198
adding, 199
dividing, 200

multiplying, 200
simplifying, 198
splitting into partial fractions, 203
subtracting, 199
real axis, 231
real part of complex number, 224
reciprocal integral, 57, 60
remainder, 9
remainder theorem, 10
extended form, 11
root, of equation, 108

secant, 66

derivative of, 86
separable variables, 286
series, binomial, 190

of complex numbers, 224
of polynomials, 4

of rational functions, 199
um rule, for differentiating, 99

tangent, derivative of, 104
terms, of polynomial, 3
trapezium rule
accuracy of, 124
. with n intervals, 124
simple, 123
triangle inequalities, 234
trigonometric identities, see
addition formulae,
double angle formulae
trigonometric limits, 83, 84

variables

dependent, 278

independent, 278

separable for

differential equation, 286

vector equation

of aline, 161, 165
vector product, 183
vectors, common perpendicular, 183

zero polynomial, 4







