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Preface

I have been teaching probability and mathematical statistics to graduate students for
close to 50 years. In my career I realized that the most difficult task for students is
solving problems. Bright students can generally grasp the theory easier than apply it.
In order to overcome this hurdle, [ used to write examples of solutions to problems and
hand it to my students. I often wrote examples for the students based on my published
research. Over the years I have accumulated a large number of such examples and
problems. This book is aimed at sharing these examples and problems with the
population of students, researchers, and teachers.

The book consists of nine chapters. Each chapter has four parts. The first part
contains a short presentation of the theory. This is required especially for establishing
notation and to provide a quick overview of the important results and references. The
second part consists of examples. The examples follow the theoretical presentation.
The third part consists of problems for solution, arranged by the corresponding sec-
tions of the theory part. The fourth part presents solutions to some selected problems.
The solutions are generally not as detailed as the examples, but as such these are
examples of solutions. I tried to demonstrate how to apply known results in order to
solve problems elegantly. All together there are in the book 167 examples and 431
problems.

The emphasis in the book is on statistical inference. The first chapter on proba-
bility is especially important for students who have not had a course on advanced
probability. Chapter Two is on the theory of distribution functions. This is basic to
all developments in the book, and from my experience, it is important for all students
to master this calculus of distributions. The chapter covers multivariate distributions,
especially the multivariate normal; conditional distributions; techniques of determin-
ing variances and covariances of sample moments; the theory of exponential families;
Edgeworth expansions and saddle-point approximations; and more. Chapter Three
covers the theory of sufficient statistics, completeness of families of distributions,
and the information in samples. In particular, it presents the Fisher information, the
Kullback-Leibler information, and the Hellinger distance. Chapter Four provides a
strong foundation in the theory of testing statistical hypotheses. The Wald SPRT is

XV



xvi PREFACE

discussed there too. Chapter Five is focused on optimal point estimation of differ-
ent kinds. Pitman estimators and equivariant estimators are also discussed. Chap-
ter Six covers problems of efficient confidence intervals, in particular the problem of
determining fixed-width confidence intervals by two-stage or sequential sampling.
Chapter Seven covers techniques of large sample approximations, useful in estima-
tion and testing. Chapter Eight is devoted to Bayesian analysis, including empirical
Bayes theory. It highlights computational approximations by numerical analysis and
simulations. Finally, Chapter Nine presents a few more advanced topics, such as
minimaxity, admissibility, structural distributions, and the Stein-type estimators.

I would like to acknowledge with gratitude the contributions of my many ex-
students, who toiled through these examples and problems and gave me their impor-
tant feedback. In particular, I am very grateful and indebted to my colleagues,
Professors A. Schick, Q. Yu, S. De, and A. Polunchenko, who carefully read parts
of this book and provided important comments. Mrs. Marge Pratt skillfully typed
several drafts of this book with patience and grace. To her I extend my heartfelt
thanks. Finally, I would like to thank my wife Hanna for giving me the conditions
and encouragement to do research and engage in scholarly writing.

SHELEMYAHU ZACKS
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CHAPTER 1

Basic Probability Theory

PART I: THEORY

Itis assumed that the reader has had a course in elementary probability. In this chapter
we discuss more advanced material, which is required for further developments.

1.1 OPERATIONS ON SETS

Let S denote a sample space. Let E;, E; be subsets of S. We denote the union by
E| U E, and the intersection by E| N E. E = S — E denotes the complement of
E.By DeMorgan’s laws E, UE, = E;NE,and E, N E, = E| U E,.

Given a sequence of sets {E,, n > 1} (finite or infinite), we define

sup E, = |_J En. igflEn:ﬂE,,. (1.1.1)

nz1 n>1 n>1

Furthermore, lim inf and lim sup are defined as
n—o00 n—00

linrgicngnzLJﬂEk, 1irrlrisong,,=ﬂUEk. (1.1.2)
n>1k>n n>1k>n
If a point of S belongs to lim supE,, it belongs to infinitely many sets E,. The sets
n—00
liminf E,, and lim sup E,, always exist and

n—00 n—00

liminf E,, C limsup E,,. (1.1.3)

n—00 n—00

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.



2 BASIC PROBABILITY THEORY

Ifliminf E,, = limsup E,, we say that a limit of {E,,, n > 1} exists. In this case,
n—00 n—00

lim E, = liminf E,, = limsup E,,. (1.1.4)

n—00 n—00 00

A sequence {E,, n > 1} is called monotone increasing if £, C E,. foralln > 1.In
o0

this case lim E,, = UE”' The sequence is monotone decreasing if £, D E, |, for
n—0Q
n=1

o0
all n > 1. In this case lim E,, = ﬂEn. We conclude this section with the definition
n—oo
n=1

of a partition of the sample space. A collection of sets D = {E}, ..., E} is called

a finite partition of S if all elements of D are pairwise disjoint and their union
k

is S,ie., E;NE; =@ foralli # j; Ej, E; € D; and UEi = S. If D contains a

i=1
[}

countable number of sets that are mutually exclusive and UE,- = &S, we say that D
i=1
is a countable partition.

1.2 ALGEBRA AND o-FIELDS

Let S be a sample space. An algebra A is a collection of subsets of S satisfying

i Sed
(i) ifEe A then E € A; (1.2.1)
(iii) ifE],EzE.A then E[UE2€A.

We consider # = S. Thus, (i) and (ii) imply that ¥ € A. Also, if E|, E; € A then
EiNE, e A.

The trivial algebra is Ay = {#, S}. An algebra A, is a subalgebra of A, if all sets
of A, are contained in A,. We denote this inclusion by A; C A,. Thus, the trivial
algebra A is a subalgebra of every algebra A. We will denote by A(S), the algebra
generated by all subsets of S (see Example 1.1).

If a sample space S has a finite number of points n, say 1 < n < oo, then the col-
lection of all subsets of S is called the discrete algebra generated by the elementary
events of S. It contains 2" events.

Let D be a partition of S having k, 2 < k, disjoint sets. Then, the algebra generated
by D, A(D), is the algebra containing all the 2¢ — 1 unions of the elements of D and
the empty set.



PART I: THEORY 3

An algebra on S is called a o -field if, in addition to being an algebra, the following
holds.

o0
(iv) If E, € A,n > 1, then UE,, e A

n=1

We will denote a o-field by F. In a o-field F the supremum, infinum, limsup, and
liminf of any sequence of events belong to . If S is finite, the discrete algebra A(S)
is a o-field. In Example 1.3 we show an algebra that is not a o-field.

The minimal o-field containing the algebra generated by {(—oo, x], —00 < x <
o0} is called the Borel o -field on the real line R.

A sample space S, with a o-field F, (S, F) is called a measurable space.

The following lemmas establish the existence of smallest o-field containing a
given collection of sets.

Lemma 1.2.1. Let £ be a collection of subsets of a sample space S. Then, there
exists a smallest o -field F(E), containing the elements of £.

Proof. The algebra of all subsets of S, A(S) obviously contains all elements of £.
Similarly, the o-field F containing all subsets of S, contains all elements of £. Define
the o-field F () to be the intersection of all o-fields, which contain all elements of
£. Obviously, F(€) is an algebra. QED

A collection M of subsets of S is called a monotonic class if the limit of any
monotone sequence in M belongs to M.

If £ is a collection of subsets of S, let M*(E) denote the smallest monotonic class
containing &.

Lemma 1.2.2. A necessary and sufficient condition of an algebra A to be a o -field
is that it is a monotonic class.

Proof. (i) Obviously, if A is a o-field, it is a monotonic class.

(ii) Let A be a monotonic class.
n

LetE, € A,n > 1.Define B, = UEi.ObViously B, C B,y foralln > 1.Hence

i=1

o0 o0 o0 o0
nlingan = UB,, € A.But UB,, = UE,l.Thus, igll) E, € A.Similarly, ﬂEn e A.
n=1 n=1 n=1 = n=1

Thus, A is a o-field. QED

Theorem 1.2.1. Let A be an algebra. Then M*(A) = F(A), where F(A) is the
smallest o -field containing A.



4 BASIC PROBABILITY THEORY

Proof. See Shiryayev (1984, p. 139).

The measurable space (R, B), where R is the real line and B = F(R), called the
Borel measurable space, plays a most important role in the theory of statistics.
Another important measurable space is (R”, B"),n > 2, where R" = R x R x - -+ x
R is the Euclidean n-space, and B” = B x - - - x B is the smallest o-field containing
R”, 4, and all n-dimensional rectangles I = I} x - -+ x [, where

I =(a;,b;], i=1,....,n, —o0<a; <b <o.
The measurable space (R*, B>) is used as a basis for probability models of

experiments with infinitely many trials. R* is the space of ordered sequences
X = (x1,x2,...), =00 < x, < o0o,n = 1,2,.... Consider the cylinder sets

Chx---xL)y={x:x;€l;,i=1,...,n}
and
CBy x-+xB)={x:x;€B;,i=1,...,n}

where B; are Borel sets, i.e., B; € B. The smallest o-field containing all these cylinder
sets, n > 1, is B(R*). Examples of Borel sets in B(R*) are

(a) {x:xeR*, supx, > a}
n>1

or

(b) {x:x € R*® limsupx, < a}.

n—00

1.3 PROBABILITY SPACES

Given a measurable space (S, F), a probability model ascribes a countably additive
function P on JF, which assigns a probability P{A} to all sets A € F. This function
should satisfy the following properties.

(A.1) IfA e Fthen0 < P{A} < 1.
(A2) P{S}=1. (1.3.1)

(A.3) If{E,,n > 1} € Fis asequence of disjoint

sets in F, then P {UE} =Y P{E,}. (1.3.2)
n=1

n=I



PART I: THEORY 5
Recall that if A C B then P{A} < P{B}, and P{A} = 1 — P{A}. Other properties

will be given in the examples and problems. In the sequel we often write AB for
ANB.

Theorem 1.3.1. Let (S, F, P) be a probability space, where F is a o -field of subsets
of S and P a probability function. Then

(i) if By C Busr,n > 1, B, € F, then

P { im B,,} = lim P{B,}. (13.3)

n—0oo

(@) if B, D By+1,n > 1, B, € F, then

P { lim B,,} = lim P{B,). (13.4)

n—0o0

o0
Proof. (i) Since B, C B4, lim B, = _JB,. Moreover,
n—0o0

n=1

o0 o0
P{UBn} = P{Bi}+Y_P{B, — B,_1}. (1.3.5)
n=1 n=2
Notice that for n > 2, since B,B,_; = 0,

P{Bn - Bn—l} = P{Ban_]}
= P{Bn} - P{Ban—l} = P{Bn} - P{Bn—l}-

(1.3.6)

Also, in (1.3.5)

00 N
P(Bi)+ ) P{B,— B, 1} = lim (P{Bl} + Y (PB.) - P{Bn1}>)
n=2 n=2

= lim P(By). (1.3.7)
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Thus, Equation (1.3.3) is proven.

(ii) Since B, O Byj1.n > 1, B, C Byj1.n > 1. lim B, = (1) B,. Hence,
n—oo
n=1

o0
P(nILIEIOBn)Zl—P QBH

_ _p{[]én}

=1— lim P{B,} = lim P{B,).
n—0oQ n—oo

QED

Sets in a probability space are called events.

1.4 CONDITIONAL PROBABILITIES AND INDEPENDENCE

The conditional probability of an event A € F given an event B € F such that
P{B} > 0, is defined as

_ P{ANB)
P{A| B} = —PE (1.4.1)

We see first that P{- | B} is a probability function on F. Indeed, for every A € F,
0 < P{A | B} < 1. Moreover, P{S | B} = 1 and if A and A, are disjoint events in
F, then

P{AIUA2|B}=%B/}42W

P{A|B}+ P{A,B) (14.2)
- B} = P{A, | B} + P{A, | B}.

If P{B} > 0and P{A} # P{A | B}, we say that the events A and B are depen-
dent. On the other hand, if P{A} = P{A | B} we say that A and B are independent
events. Notice that two events are independent if and only if

P{AB} = P{A}P{B}. (1.4.3)
Given n events in A, namely Ay, ..., A,, we say that they are pairwise independent
if P{A;A;} = P{A;}P{A;} for any i # j. The events are said to be independent in

triplets if

P{A;A;Ar} = P{A;}P{A;}P{As}
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for any i # j # k. Example 1.4 shows that pairwise independence does not imply
independence in triplets.

Given n events Ay, ..., A, of F, we say that they are independent if, for any
2 <k <mnandany k-tuple (1 <i; <ip <--- < iy <n),

k

k
PIA; ¢t =
j=1 J

P{A; }. (1.4.4)
1

Events in an infinite sequence {A;, A,,...} are said to be independent if
{Ay, ..., A,}areindependent, for eachn > 2. Given a sequence of events Ay, A,, .. .
of a o-field F, we have seen that

[ oo )
limsup A, = ﬂ U Ag.

oo n=1k=n

This event means that points w in lim sup A,, belong to infinitely many of the events
n—o0
{A,}. Thus, the event limsup A, is denoted also as {A,, i.0.}, where i.0. stands for
n—oo

“infinitely often.”
The following important theorem, known as the Borel-Cantelli Lemma, gives
conditions under which P{A,, i.0.} is either O or 1.

Theorem 1.4.1 (Borel-Cantelli). Let {A,} be a sequence of sets in F.

(i) IfZP{An} < o0, then P{A,, i.0.} = 0.

n=1

oo
(ii) IfZP{An} = oo and {A,} are independent, then P{A,,i.0.} = 1.

n=1

[o.¢]
Proof. (i) Notice that B, = UAk is a decreasing sequence. Thus

k=n
P{A,,i0} =P :ﬂ] Bn} = lim P(B,}.

But

P{B,} =P [U Ak} <Y P{A).
k=n k=n
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oo [o¢]
The assumption that ZP{A,,} < oo implies that lim ZP{Ak} =0.
P n—)OOkzn
(ii) Since A, A,, ... are independent, A, A,, ... are independent. This implies
that

o o0 o0
P {ﬂ Ak} =[] PtAd =]]a - Pla.
k=1 k=1 k=1
If 0 < x < 1 thenlog(l — x) < —x. Thus,

log [ (1 = P{A) = Y log(1 — P{AW)
k=1 k=1

< - P{A}=-o0
k=1

oo [o.¢]
since ZP{A,,} =o00. Thus P {ﬂAk} =0 for all n» > 1. This implies that

n=1 k=1
P{A,,i0) = 1. QED

We conclude this section with the celebrated Bayes Theorem.

Let D = {B;,i € J} be a partition of S, where J is an index set having a finite or
countable number of elements. Let B; € F and P{B;} > Oforall j € J.Let A € F,
P{A} > 0. We are interested in the conditional probabilities P{B; | A}, j € J.

Theorem 1.4.2 (Bayes).

P{BjIP{A| B}
> P{B;}P{A | B;}

jled

P{B; | A} = (1.4.5)

Proof. Left as an exercise. QED

Bayes Theorem is widely used in scientific inference. Examples of the application
of Bayes Theorem are given in many elementary books. Advanced examples of
Bayesian inference will be given in later chapters.

1.5 RANDOM VARIABLES AND THEIR DISTRIBUTIONS

Random variables are finite real value functions on the sample space S, such that
measurable subsets of F are mapped into Borel sets on the real line and thus can be
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assigned probability measures. The situation is simple if S contains only a finite or
countably infinite number of points.

In the general case, S might contain non-countable infinitely many points. Even if
S is the space of all infinite binary sequences w = (i, i3, . . .), the number of points
in § is non-countable. To make our theory rich enough, we will require that the
probability space will be (S, F, P), where F is a o-field. A random variable X is a
finite real value function on S. We wish to define the distribution function of X, on
R, as

Fy(x) = P{w : X(w) < x}. (L.5.1)

For this purpose, we must require that every Borel set on R has a measurable inverse
image with respect to F. More specifically, given (S, F, P), let (R, B) be Borel
measurable space where R is the real line and B the Borel o-field of subsets of R. A
subset of (R, B) is called a Borel set if B belongs to 5. Let X : S — R. The inverse
image of a Borel set B with respect to X is

X' (B)={w: X(w) € B}. (1.5.2)

A function X : S — R is called F-measurable if X~!(B) € F for all B € B. Thus,
a random variable with respect to (S, F, P) is an F-measurable function on S.
The class Fy = {X~'(B) : B € B} isalso a o-field, generated by the random variable
X. Notice that Fy C F.

By definition, every random variable X has a distribution function F. The prob-
ability measure Py {-} induced by X on (R, B) is

Px{B} = P{X"'(B)}, BeB. (1.5.3)
A distribution function FY is a real value function satisfying the properties

@) ‘lir_n Fx(x)=0;
(i) lim Fx(x) =1;
X—>00
(iii) Ifx1 < X then Fx(x]) < Fx(Xz); and
(iv) liﬂ)lFx(x + ¢€) = Fx(x), and li?(}F(x —€)= Fx(x—),all —oo < x < o0.

Thus, a distribution function F is right-continuous.
Given a distribution function Fy, we obtain from (1.5.1), for every —oo < a <
b < o0,

P{w :a < X(w) < b} = Fx(b) — Fx(a) (1.5.4)
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and
P{w : X(w) = xo} = Fx(x9) — Fx(xo—). (1.5.5)

Thus, if F is continuous at a point xg, then P{w : X(w) = xo} = 0.If X is arandom
variable, then ¥ = g(X) is a random variable only if g is B-(Borel) measurable,
i.e., for any B € B, g Y(B) € B. Thus, if ¥ = g(X), g is B-measurable and X F-
measurable, then Y is also F-measurable. The distribution function of Y is

Fy(y) = P{w : g(X(w)) < y}. (1.5.6)

Any two random variables X, Y having the same distribution are equivalent. We
denote this by ¥ ~ X.

A distribution function F may have a countable number of distinct points of
discontinuity. If x¢ is a point of discontinuity, F(xg) — F(xo—) > 0. In between
points of discontinuity, F is continuous. If F' assumes a constant value between
points of discontinuity (step function), it is called discrete. Formally, let —oo <
X] < xp < --- < 0o be points of discontinuity of F. Let /4(x) denote the indicator
function of a set A, i.e.,

1, ifxeA
latx) = {0, otherwise.

Then a discrete F' can be written as

Fa(¥) =Y I o () F (x7)
i=1 (1.5.7)
= Y (F(xi)— F(x;—)).

{xi <x}

Let u; and u;, be measures on (R, B). We say that 1, is absolutely continuous
with respect to w,, and write ;1 << o, if B € Band u;(B) = Othen u;(B) = 0.Let A
denote the Lebesgue measure on (R, 3). Forevery interval (a, b], —00 < a < b < 00,
A((a, b]) = b — a. The celebrated Radon—-Nikodym Theorem (see Shiryayev, 1984,
p- 194) states that if £ < o and w1, u, are o -finite measures on (R, 3), there exists
a B-measurable nonnegative function f(x) so that, for each B € B,

wi(B) = /B S (0)d pa(x) (1.5.8)
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where the Lebesgue integral in (1.5.8) will be discussed later. In particular, if P,
is absolutely continuous with respect to the Lebesgue measure A, then there exists a
function f > 0 so that

aw}szunux BeB. (1.5.9)
B

Moreover,
F.(x)= f f)dy, —o0<x <oo. (1.5.10)
—0oQ

A distribution function F' is called absolutely continuous if there exists a non-
negative function f such that

&
F(é):/ fx)dx, —oo0 <& < o0. (1.5.11)

The function f, which can be represented for “almost all x” by the derivative of F,
is called the probability density function (p.d.f.) corresponding to F.

If F is absolutely continuous, then f(x) = — F(x) “almost everywhere.” The

X
term “almost everywhere” or “almost all” x means for all x values, excluding maybe
on a set N of Lebesgue measure zero. Moreover, the probability assigned to any
interval (o, B8], ¢ < B, is

B
Pla < X <B}=F(B)— F(a) = / fx)dx. (1.5.12)
Due to the continuity of F' we can also write
Pla < X < B} = Pla < X < B}.

Often the density functions f are Riemann integrable, and the above integrals are
Riemann integrals. Otherwise, these are all Lebesgue integrals, which are defined in
the next section.

There are continuous distribution functions that are not absolutely continuous.
Such distributions are called singular. An example of a singular distribution is the
Cantor distribution (see Shiryayev, 1984, p. 155).

Finally, every distribution function F(x) is a mixture of the three types of
distributions—discrete distribution Fy4(-), absolutely continuous distributions Fy.(-),
and singular distributions Fi(-). That is, for some 0 < p;, p», p3 <1 such that
pit+pt+p3=1,

F(x) = p1Fa(x) + paFac(x) + p3Fy(x).

In this book we treat only mixtures of Fy(x) and Fy.(x).
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1.6 THE LEBESGUE AND STIELTJES INTEGRALS

1.6.1 General Definition of Expected Value: The Lebesgue Integral

Let (S, F, P) be a probability space. If X is a random variable, we wish to define the
integral

E{X} = f Xw)P@dw). (1.6.1)
S

We define first E{X} for nonnegative random variables, i.e., X(w) > 0 for all
w € 8. Generally, X = XT — X, where X" (w) = max(0, X(w)) and X~ (w) =
—min(0, X(w)).

Given a nonnegative random variable X we construct for a given finite integer n
the events

k—1 k
Agn = 1w : > §X(w)<2—n , k=1,2,...,n2"

and
An2”+l,n ={w: X(w)>n}

These events form a partition of S. Let X,,, n > 1, be the discrete random variable
defined as

n2"

1
Xn(w):Z > L, W) +nly ., (W). (1.6.2)
k=1

Notice that foreach w, X,,(w) < X, 1(w) < ... < X(w) forall n. Also, if w € A,
k=1,...,n2", then [ X(w)— X,(w)| < Tk Moreover, Auziq1n D A2+ s
alln > 1. Thus

o0
nlggo Ay = ﬂ{w : X(w) > n)
n=1
= 0.
Thus forallw € S

Iim X,(w) = X(w). (1.6.3)
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Now, for each discrete random variable X,,(w)

n2"
-1
E{X,} = —— P{A., P{w : X . 1.6.4
(X2} kZ:lj S PlARa} +nP{w 2 XOv) > n) (1.6.4)
Obviously E{X,} <n,and E{X,,11} > E{X,}. Thus, lim E{X,} exists (it might be

+00). Accordingly, the Lebesgue integral is defined as

E{X) :fX(w)P{dw}
(1.6.5)
= lim E(X,).

The Lebesgue integral may exist when the Riemann integral does not. For example,
consider the probability space (Z, B, P) where Z = {x : 0 < x < 1}, B the Borel
o-field on Z, and P the Lebesgue measure on [53]. Define

Fx) = 0, if x is irrational on [0, 1]
r) = 1, if x is rational on [0, 1].

Let By={x:0<x<1, f(x)=0}, B, =[0,1] — By. The Lebesgue integral
of fis

1
/ fx)dx =0-P{By}+1-P{B} =0,
0

since the Lebesgue measure of B is zero. On the other hand, the Riemann integral of
f(x) does not exist. Notice that, contrary to the construction of the Riemann integral,

the Lebesgue integral / f(x)P{dx} of a nonnegative function f is obtained by par-

titioning the range of the function f to 2" subintervals D, = {B;”)} and construct-
o
ing a discrete random variable f, = Z i Iix e B;.”)}, where f, ; =inf{f(x):

j=l1
on

X € B;”)}. The expected value of f, is E{f,} = Z iiP(X e B;")). The sequence
j=1

{E{ f,,}, n > 1} is nondecreasing, and its limit exists (might be +00). Generally, we

define

E{X}=E{XT}— E{X"} (1.6.6)

if either E{X*} < oo or E{X~} < o0.
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If E{X*} = oo and E{X~} = oo, we say that E{X} does not exist. As a special
case, if F is absolutely continuous with density f, then

E{X} = /00 xf(x)dx

o0

oo
provided / |x] f(x)dx < oo.If F is discrete then

o0

E{X} =) x,P{X = x,}

n=1

provided it is absolutely convergent.

From the definition (1.6.4), it is obvious that if P{X(w) > 0} = 1 then E{X} > 0.
This immediately implies that if X and Y are two random variables such that P{w :
X(w)>Y(w)} =1, then E{X — Y} > 0. Also, if E{X} exists then, for all A € F,

E{IX|14(X)} = E{IX]},

and E{X 14(X)}exists. If E{X} is finite, E{X I4(X)} is also finite. From the definition
of expectation we immediately obtain that for any finite constant c,

E{cX} = cE{X},
E{X+Y}=E{X}+ E{Y}.

(1.6.7)

Equation (1.6.7) implies that the expected value is a linear functional, i.e., if
X1, ..., X, are random variables on (S, F, P) and By, B, ..., B, are finite con-
stants, then, if all expectations exist,

E{ﬁwZﬂ,x,-} =po+ Y BE(X:) (1.6.8)
i=1 i=1

We present now a few basic theorems on the convergence of the expectations of
sequences of random variables.

Theorem 1.6.1 (Monotone Convergence). Let {X,} be a monotone sequence of
random variables and Y a random variable.

(i) Suppose that X,(w) / X(w), X,(w) > YW) foralln and allw € S, and
n—o00

E{Y} > —o0. Then

lim E{X,} = E{X).
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@) IfF X,(w) \y Xw), X,(w) <YWw), forallnandallw € S, and E{Y} < o0,

n— 00
then
lim E{X,} = E{X}.
n—o00o
Proof. See Shiryayev (1984, p. 184). QED

Corollary 1.6.1. If X, X», ... are nonnegative random variables, then

E {an} = iE{X”}. (1.6.9)
n=1 n=1

Theorem 1.6.2 (Fatou). Let X, n > 1 and Y be random variables.

@ If X,(w)>Yw), n> 1, foreachw and E{Y} > —o0, then

E { h_mX} < lim E{X,};

n—o00 n— 00

@@@) if X,(w) < Y(w), n > 1, for eachw and E{Y} < oo, then
im E(X,) < E { Exn};
n—o0 n—00

(iii) if | X,(w)| < Y(w) for eachw, and E{Y} < oo, then

E{h_mX} < lim E{X,} < Tim E{X,) SE{HXH}. (1.6.10)
n—oo n—oo

n—oo n—00

Proof. (i)

lim X,(w) = lim inf X,,(w).

N 00 n—oom=>n

The sequence Z,(w) = inf X,,(w), n > 1 is monotonically increasing for each w,
and Z,(w) > Y(w),n > 1. Hence, by Theorem 1.6.1,

lim E{Z,} = E { lim z,,}.
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n—o0 n—00

oo n—>00

The proof of (ii) is obtained by defining Z,(w) = supX,,(w), and applying the

previous theorem. Part (iii) is a result of (i) and (ii). QED

Theorem 1.6.3 (Lebesgue Dominated Convergence). Let Y, X, X, n > 1, be
random variables such that | X,,(w)| < Y(w), n > 1 foralmostallw, and E{Y} < oo.

Assume also that P {w :lim X,,(w) = X(w)} = 1. Then E{|X|} < oo and
n— o0

lim E{X,} = E { lim X} (1.6.11)
n—00 n—00
and
lim E{|X, — X|} = 0. (1.6.12)
n—oo

Proof. By Fatou’s Theorem (Theorem 1.6.2)

E{@X} < lim E(X,) < Tm E(X,} < £ | m X, }
n—oQ n—oo

n—oo n—oo

But since lim X,,(w) = X(w), with probability 1,
n—0o0
E{X})=E [ lim Xn] — lim E{X,).
n—o0 n—0oQ

Moreover, | X(w)| < Y (w) foralmost all w (with probability 1). Hence, E{|X|} < oo.
Finally, since | X,,(w) — X(w)| < 2Y(w), with probability 1
lim E{|X, — X|) = E { lim | X, — X|} =0
QED

We conclude this section with a theorem on change of variables under Lebesgue
integrals.

Theorem 1.6.4. Let X be a random variable with respect to (S, F, P). Let g : R —
R be a Borel measurable function. Then for each B € B,

/g(x)PX{dx}:/ g(X(w))P{dw}. (1.6.13)
B

X~1(B)
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The proof of the theorem is based on the following steps.

1. If A € B and g(x) = I4(x) then

/ () Px{dx) = / I4(x)Pyldx} = Px{A N B)
B B
=P{w: X '(ANX'(B)
- f g(XW)P{dw).
X-'(B)

2. Show that Equation (1.6.13) holds for simple random variables.
3. Follow the steps of the definition of the Lebesgue integral.

1.6.2 The Stieltjes—Riemann Integral

Let g be a function of a real variable and F a distribution function. Let («, 8] be a
half-closed interval. Let

C=X)<X| <+ <Xp_| <X,=p

be a partition of («, 8] to n subintervals (x;—, x;],i = 1, ..., n. In each subinterval
choose x; L Xil < x{ < x; and consider the sum

Su=Y_ gUNIF(x;) — Fxi_p]. (1.6.14)
i=1

If,asn — 0o, max |x; — x;—;| = Oandif lim S, exists (finite) independently of the
1<i<n n—oo

partitions, then the limit is called the Stieltjes—Riemann integral of g with respect
to F. We denote this integral as

B
/ g(x)dF(x).

o

This integral has the usual linear properties, i.e.,

B B
(@ / Cg(X)dF(X)=C/ g(x)dF(x);

B B B
(i) / (gl(X)+gz(X))dF(x)=/ gl(X)dF(x)Jr/ &2(xX)dF (x); (1.6.15)
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and

B B B
(iii) / gx)d(y Fi(x) + 8 Fa(x)) = J// g(x)dF1(x) +5f 8(x)dF>(x).

o

One can integrate by parts, if all expressions exist, according to the formula

B B
/g(X)dF(X)Z[g(ﬂ)F(ﬂ)—g(a)F(Ot)]—/ g'()F(x)dx, (1.6.16)

where g’(x) is the derivative of g(x). If F is strictly discrete, with jump points
—00 < <éH <o <00,

ﬂ o0
/ g(x)dF(x) = E Ha < &5 < B}g(€))p;. (1.6.17)
o ]:l

where p; = F(§;) — F(§;—), j =1,2,.... If F is absolutely continuous, then at
almost all points,

F(x +dx) — F(x) = f(x)dx + o(dx),

as dx — 0. Thus, in the absolutely continuous case

B B
/ g(x)dF(x):/ gx)f(x)dx. (1.6.18)

Finally, the improper Stieltjes—Riemann integral, if it exists, is
o B
/ g(x)dF(x) = ﬁlim / g(x)dF(x). (1.6.19)
—00 =0 Ju
o—>—00

If B is a set obtained by union and complementation of a sequence of intervals, we
can write, by setting g(x) = I{x € B},

P{B} = /oo I{x € B)dF(x)

oo

_ / dF(x),
B

where F is either discrete or absolutely continuous.

(1.6.20)
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1.6.3 Mixtures of Discrete and Absolutely Continuous Distributions

Let F4 be a discrete distribution and let F,. be an absolutely continuous distribution
function. Then foralla 0 < o < 1,

F(x) = aFy(x) + (1 — @) Fae(x) (1.6.21)

is also a distribution function, which is a mixture of the two types. Thus, for such
mixtures, if —oco < & < &, < --- < oo are the jump points of Fy, then for every
—00 <y <48 <ooand B = (y, 4],

§
P{B} = / dF(x)
Y

o s (1.6.22)
=a) Iy <& < 8}dFa(E) + (1 — a)f dF e (x).
j= 4
Moreover, if BT = [y, §] then
P{B*} = P{B} + dFq(y).
The expected value of X, when F(x) = pF4q(x) + (1 — p)Fa(x) is,
E{X}=p Zéjfd(éj) +(1- p)[ X fac(x)dx, (1.6.23)

(i}

where {£;} is the set of jump points of Fy; fq and f,. are the corresponding p.d.f.s.
We assume here that the sum and the integral are absolutely convergent.

1.6.4 Quantiles of Distributions

The p-quantiles or fractiles of distribution functions are inverse points of the distri-
butions. More specifically, the p-quantile of a distribution function F', designated by
X, or F~(p), is the smallest value of x at which F(x) is greater or equal to p, i.e.,

x, = F~'(p) = inf{x : F(x) > p}. (1.6.24)

The inverse function defined in this fashion is unique. The median of a distribution,
X5, 1s an important parameter characterizing the location of the distribution. The
lower and upper quartiles are the .25- and .75-quantiles. The difference between
these quantiles, Ry = x 75 — X 25, is called the interquartile range. It serves as one
of the measures of dispersion of distribution functions.
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1.6.5 Transformations

From the distribution function F(x) = a Fg(x) + (1 — a)Fy(x), 0 < a < 1, we can
derive the distribution function of a transformed random variable ¥ = g(X), which
is

Fy(y) = P{g(X) <y}

=P (1.6.25)

= o I{g € ByJdFu(&) + (1 — ) /B A

j=1

where
By ={x:g(x) <y}

In particular, if F' is absolutely continuous and if g is a strictly increasing differentiable
function, then the p.d.f. of Y, h(y), is

d
o= fx@ ') <@g1(y)) , (1.6.26)
where g’l( y) is the inverse function. If g’(x) < O for all x, then

d
fro = fxe ') - 'Eg_l(”’ : (1.6.27)

Suppose that X is a continuous random variable with p.d.f. f(x). Let g(x) be a
differentiable function that is not necessarily one-to-one, like g(x) = x2. Excluding
cases where g(x) is a constant over an interval, like the indicator function, let m(y)
denote the number of roots of the equation g(x) =y. Let §;(y), j =1,...,m(y)
denote the roots of this equation. Then the p.d.f. of Y = g(x) is

m(y)

Fr) =" fx& o) (1.6.28)
j=1

1
18" (&I

if m(y) > 0 and zero otherwise.
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1.7 JOINT DISTRIBUTIONS, CONDITIONAL DISTRIBUTIONS
AND INDEPENDENCE

1.7.1 Joint Distributions

Let (X1, ..., Xi) be a vector of k random variables defined on the same probability
space. These random variables represent variables observed in the same experiment.
The joint distribution function of these random variables is a real value function F
of k real arguments (&, ..., &) such that

F&,....8)=P(Xi <&,..., Xy <&} (1.7.1)

The joint distribution of two random variables is called a bivariate distribution
function.
Every bivariate distribution function F has the following properties.

@ ; lim F(&, &)= 521_1)111001’(51, £) =0, forall &,&;

(i) lim lim F(&. &) = I;
fimoo e (1.7.2)
(iii) 16%1 F(& 1 +€,85 +¢€)=F(&, &) forall (§,&);

(iv) forany a <b, c <d, F(b,d)— F(a,d)— F(b,c)+ F(a,c) > 0.

Property (iii) is the right continuity of F(&;, &). Property (iv) means that the prob-
ability of every rectangle is nonnegative. Moreover, the total increase of F (&}, &)
is from O to 1. The similar properties are required in cases of a larger number of
variables.

Given a bivariate distribution function F. The univariate distributions of X; and
X, are F; and F, where

Fi(x) = lim F(x,y), F>(y) = lim F(x, y). (1.7.3)

F) and F, are called the marginal distributions of X; and X,, respectively. In
cases of joint distributions of three variables, we can distinguish between three
marginal bivariate distributions and three marginal univariate distributions. As in the
univariate case, multivariate distributions are either discrete, absolutely continuous,
singular, or mixtures of the three main types. In the discrete case there are at most a
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countable number of points {(él(j), e, E,in), j = 1,2, ...} on which the distribution

concentrates. In this case the joint probability function is

Px,=¢£”, .. x, =€), if(, ... =E", ..., &)

pxy, .. X)) = j=12...
0, otherwise.
(1.7.4)
Such a discrete p.d.f. can be written as
o0 . .
PGt x) =Y e, x) = E L E
j=1
R a0)) _ £
where p; = P{X; =§&",..., Xix =§7'}.
In the absolutely continuous case there exists a nonnegative function f(xy, ..., xz)
such that
& &
F(é],...,%‘k)Z/ f f(xl,...,xk)dxl...dxk. (175)
—00 —00
The function f(xy, ..., x;) is called the joint density function.

The marginal probability or density functions of single variables or of a subvector
of variables can be obtained by summing (in the discrete case) or integrating, in the
absolutely continuous case, the joint distribution functions (densities) with respect to
the variables that are not under consideration, over their range of variation.

Although the presentation here is in terms of k discrete or k absolutely contin-
uous random variables, the joint distributions can involve some discrete and some
continuous variables, or mixtures.

If X, has an absolutely continuous marginal distribution and X, is discrete, we
can introduce the function N(B) on B, which counts the number of jump points
of X, that belong to B. N(B) is a o-finite measure. Let A(B) be the Lebesgue
measure on 3. Consider the o -finite measure on B, u(B; x By) = A(B))N(B,). If
X is absolutely continuous and X, discrete, their joint probability measure Px is
absolutely continuous with respect to u. There exists then a nonnegative function fx
such that

Fx(xl,xz)=f / Sx(1, y2)dy1dN(y).

The function fx is a joint p.d.f. of X, X, with respect to u. The joint p.d.f. fx is
positive only at jump point of X5.
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If Xi,..., Xx have a joint distribution with p.d.f. f(xy, ..., x;), the expected
value of a function g(X7y, ..., X;) is defined as
E{g(Xl, ey Xk)} = /g()ﬂ, ey xk)dF(xl, ey xk). (176)

We have used here the conventional notation for Stieltjes integrals.

Notice that if (X, Y) have a joint distribution function F(x, y) and if X is discrete
with jump points of Fi(x) at £, &, ..., and Y is absolutely continuous, then, as in
the previous example,

[ etyarce sy = 3 [ a0 0ay
=1

where f(x, y) is the joint p.d.f. A similar formula holds for the case of X, absolutely
continuous and Y, discrete.

1.7.2 Conditional Expectations: General Definition

Let X(w) > 0, for all w € S, be a random variable with respect to (S, F, P). Con-
sider a o-field G, G C F. The conditional expectation of X given G is defined as a
G-measurable random variable E{X | G} satisfying

/X(W)P{dw}z/E{X|g}(w)P{dw} (1.7.7)
A A

for all A € G. Generally, E{X | G} is defined if min{E{X™ | G}, E{X~ | G}} < o©
and E{X | G} = E{X" | G} — E{X~ | G}. To see that such conditional expectations
exist, where X (w) > O for all w, consider the o -finite measure on G,

0(A) = / Xw)P{dw}, Aeg. (1.7.8)
A

Obviously Q <« P and by Radon—-Nikodym Theorem, there exists a nonnegative,
G-measurable random variable E{X | G} such that

mm=AEmwmwwwm. (1.7.9)

According to the Radon—Nikodym Theorem, E{X | G} is determined only up to a set
of P-measure zero.
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If BeF and X(w) = Ig(w), then E{X |G} = P{B |G} and according to
(1.6.13),

P{AOB}Z/IB(W)P{dW}
A (1.7.10)
=fP{B|g}P{dw}.
A

Notice also that if X is G-measurable then X = E{X | G} with probability 1.

On the other hand, if G = {@, S} is the trivial algebra, then E{X | G} = E{X}
with probability 1.

From the definition (1.7.7), since S € G,

E{X}=/X(W)P{dw}
S
:/SE{X | GYP{dw}.

This is the law of iterated expectation; namely, for all G C F,

E{X} = E{E{X | G}}. (1.7.11)
Furthermore, if X and Y are two random variables on (S, F, P), the collection of all
sets {Y~!(B), B € B}, is a o-field generated by Y. Let Fy denote this o-field. Since
Y is arandom variable, Fy C F. We define

E{X|Y}=E{X | Fy}. (1.7.12)
Let yo be such that fy(yp) > O.

Consider the Fy-measurable set As = {w : yo < Y(w) < yg + 8}. According to
(1.7.7)

00 ryo+s
/ Xw)P(dw) = / / xfxy(x, y)dxdy
Aé —0o0 Yy

(1.7.13)
Yo+6
=/ E{X | Y =y} fyr(y)dy.
Yo
The left-hand side of (1.7.13) is, if E{|X|} < 00
0 Yo+34 Yo+98 00
/ x / fxy(x, y)dydx = / fr(30) / S D) oy
—oo Jyo fY(yo)
= fr(3o)8 /oo dex +0@), asd—0
—  Sr(30)
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8
where }in})? = 0. The right-hand side of (1.7.13) is

Yo+
/ E{X|Y =y}fy(y)dy = E{X | Y = yo} fr(30)d +0(8), as § — 0.

Yo

Dividing both sides of (1.7.13) by fy(y)d, we obtain that

E{X|Y =y}= / xfxyy(x | yo)dx
/oo Sxr(x, yo0)
= x——"dx.
—00 fx(YO)
We therefore define for fy(yg) > 0
JSxr(x, yo)

== - 1.7.14
Sxiy (x| yo) o) ( )

More generally, for k > 2let f(xy, ..., x;) denote the joint p.d.f. of (X1, ..., Xi).
Let 1 <r <k and g(xy, ..., x,) denote the marginal joint p.d.f. of (X,..., X,).
Suppose that (&, ..., &) is a point at which g(&;,...,& ) > 0. The conditional
p.df.of X,11,..., Xi given {X| =&, ..., X, =&} is defined as

_ f($1,---yér,xr+1,~~-,xk).

h(Xits e N
gt oo X [ €100 ) g, ... &)

(1.7.15)

We remark that conditional distribution functions are not defined on points
(&1, ...,& ) such that g(&, ..., &) = 0. However, it is easy to verify that the proba-
bility associated with this set of points is zero. Thus, the definition presented here is
sufficiently general for statistical purposes. Notice that f(x,41, ..., x¢ | &1,...,&)
is, for a fixed point (¢, ..., &) at which it is well defined, a nonnegative function of
(X415 ..., Xx) and that

de(x,+1,...,xk |§1,...,§,):1.

Thus, f(x;+1,...,x% | &1, ...,&) is indeed a joint p.d.f. of (X,+1,..., Xi). The
point (&, ..., &) can be considered a parameter of the conditional distribution.
Y (X, 41, ..., Xp)is an (integrable) function of (X, 41, ..., Xi), the conditional

expectation of ¥ (X, 1,..., Xp) given {X|; =§&,..., X, =& }is

EW(Xep1, ..., X)) 1 &1, ..., 8 ) Z/Tﬂ(xrﬂ, NN 73/ C SR TN 7l [F ST SR
(17.16)

This conditional expectation exists if the integral is absolutely convergent.
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1.7.3 Independence

Random variables X1, ..., X,, on the same probability space, are called mutually
independent if, for any Borel sets By, ..., B,
P{w: Xi(w)e€ By,...,X,(w) € B,} = HP{W :X;eBj). (1.7.17)
j=1
Accordingly, the joint distribution function of any k-tuple (X;,, ..., X; ) is a product

of their marginal distributions. In particular,

Fx,ox, (51, xa) = [ | Fx, () (1.7.18)

i=1

Equation (1.7.18) implies that if X, ..., X,, have a joint p.d.f. fx(xi, ..., x,) and if
they are independent, then

Sy =] e @ (1.7.19)
=1
Moreover, if g(X1,...,X,) = ng(Xj), where g(xi, ..., x,) is B™-measurable
=1

and g;(x) are B-measurable, then under independence
n
E{g(X1..... X} = [ | E{g;(X))}. (1.7.20)
Jj=1
Probability models with independence structure play an important role in statistical
theory. From (1.7.12) and (1.7.21), we imply that if X*) = (X, ..., X,) and Y =

s+1, - - ., X,) are independent subvectors, then the conditional distribution o
X,y X dependent subvectors, then th ditional distribution of X"
given Y is independent of Y, i.e.,

FOr, ooy Xp | Xpg1s e s X)) = f(X1, ..., %) (1.7.21)

with probability one.

1.8 MOMENTS AND RELATED FUNCTIONALS
A moment of order r,r = 1,2, ..., of a distribution F(x) is

wy = E{X"}. (1.8.1)
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The moments of Y = X — u are called central moments and those of | X | are called
absolute moments. It is simple to prove that the existence of an absolute moment
of order r, r > 0, implies the existence of all moments of order s, 0 < s <r, (see
Section 1.13.3).

Let uf = E{(X — 1)}, r =1,2, ... denote the rth central moment of a dis-
tribution. From the binomial expansion and the linear properties of the expectation
operator we obtain the relationship between moments (about the origin) , and center
moments m,

Mf:Z(—lV(Z)u,ju{, r=1,2,... (1.8.2)
j=0

where o = 1.
A distribution function F is called symmetric about a point & if its p.d.f. is
symmetric about &, i.e.,

fEo+h)=fE —h), al 0=h<oo.

From this definition we immediately obtain the following results.

(i) If F is symmetric about &y and E{|X|} < oo, then & = E{X}.
(ii) If F is symmetric, then all central moments of odd order are zero, i.e.,
E{(X — E{X})*}=0,m =0,1,..., provided E|X|*"*! < co.

The central moment of the second order occupies a central role in the theory
of statistics and is called the variance of X. The variance is denoted by V{X}. The
square-root of the variance, called the standard deviation, is a measure of dispersion
around the expected value. We denote the standard deviation by o. The variance of
X is equal to

V{X} = E{X?*} — (E{X})*. (1.8.3)

The variance is always nonnegative, and hence for every distribution having a finite
second moment E{X?} > (E{X})*. One can easily verify from the definition that if
X is a random variable and a and b are constants, then V{a + bX} = b>V{X}.

The variance is equal to zero if and only if the distribution function is concentrated
at one point (a degenerate distribution).

A famous inequality, called the Chebychev inequality, relates the probability of
X concentrating around its mean, and the standard deviation o.

Theorem 1.8.1 (Chebychev). If Fx has a finite standard deviation o, then, for every
a >0,

2
Plw:IXw)—pl<a)>1-2, (1.8.4)
a

where u = E{X}.
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Proof.
ol = /w(x — wdFx(x)
= / (x — wPdFy(x) + / (x — pPdFy(xy (18
{lx—p|<a} {lx—p|>a}
>a’Pl{w : | X(w) — u| > a).
Hence,
02
Pw [ X(w)—ul<al=1—-P{w: | X(w) —pu|>a} =2 1—-—.
" QED

Notice that in the proof of the theorem, we used the Riemann—Stieltjes integral. The
theorem is true for any type of distribution for which 0 < o < co. The Chebychev
inequality is a crude inequality. Various types of better inequalities are available,
under additional assumptions (see Zelen and Severv, 1968; Rohatgi, 1976, p. 102).

The moment generating function (m.g.f.) of a random variable X, denoted by
M, is defined as

M(t) = E{exp(tX)}, (1.8.6)

where ¢ is such that M(t) < co. Obviously, at + = 0, M(0) = 1. However, M(¢)
may not exist when 7 £ 0. Assume that M(¢) exists for all ¢ in some interval (a, b),
a < 0 < b. There is a one-to-one correspondence between the distribution function
F and the moment generating function M. M is analytic on (a, b), and can be
differentiated under the expectation integral. Thus

r

dat’

M(t) = E{X"exp{tX}}, r=12,.... (1.8.7)

Under this assumption the rth derivative of M(t) evaluated at t = 0 yields the
moment of order r.

To overcome the problem of M being undefined in certain cases, it is useful to use
the characteristic function

¢(t) = E{e"*}, (1.8.8)

where i = +/—1. The characteristic function exists for all ¢ since

6(1)] = ‘ / ¢ dF(x)

< /OO le"™|dF (x) = 1. (1.8.9)

oo

Indeed, |¢!*| = 1 for all x and all 7.
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If X assumes nonnegative integer values, it is often useful to use the probability
generating function (p.g.f.)

Gny=> t'p;, (1.8.10)
j=0

which is convergent if |[¢| < 1. Moreover, given a p.g.f. of a nonnegative integer value
random variable X, its p.d.f. can be obtained by the formula

k
P{lw : X(w) =k} = id—

PTG G(1)],_y- (1.8.11)

The logarithm of the moment generating function is called camulants generating
function. We denote this generating function by K. K exists for all ¢ for which M
is finite. Both M and K are analytic functions in the interior of their domains of
convergence. Thus we can write for 7 close to zero

]

K(t) = log M(t) = Z%ﬂ' (1.8.12)
j=0 7"

The coefficients {«;} are called cumulants. Notice that ko = 0, and «;, j > 1, can be
obtained by differentiating K (¢) j times, and setting ¢+ = 0. Generally, the relation-
ships between the cumulants and the moments of a distribution are, for j = 1,...,4

K1 = U1

Ky = po — i =

5 (1.8.13)
K3 = 3 — 3pap1 + 207 = 13
Ky = Wy — 3(M§)Z~
The following two indices
M*
Br== (1.8.14)
o
and
/*L*
B ==, (1.8.15)
o

where 0% = w5 is the variance, are called coefficients of skewness (asymmetry) and
kurtosis (steepness), respectively. If the distribution is symmetric, then 8, = 0. If
B1 > 0 we say that the distribution is positively skewed; if B; < 0, it is negatively
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skewed. If 8, > 3 we say that the distribution is steep, and if 8, < 3 we say that the
distribution is flat.

The following equation is called the law of total variance.

If E{X?} < oo then

V{X} = E(V{X | Y}} + V(E{X | Y}}, (1.8.16)

where V{X | Y} denotes the conditional variance of X given Y.

It is often the case that it is easier to find the conditional mean and variance,
E{X | Y}and V{X | Y}, than to find E{X} and V {X} directly. In such cases, formula
(1.8.16) becomes very handy.

The product central moment of two variables (X, Y) is called the covariance and
denoted by cov(X, Y). More specifically

cov(X, Y) = E{[X — E{X}][Y — E{Y}]}
— E{XY} — E{X)E{(Y).

(1.8.17)

Notice that cov(X, Y) = cov(Y, X), and cov(X, X) = V{X}. Notice that if X is a
random variable having a finite first moment and a is any finite constant, then
cov(a, X) = 0. Furthermore, whenever the second moments of X and Y exist the
covariance exists. This follows from the Schwarz inequality (see Section 1.13.3),
i.e., if F is the joint distribution of (X, Y) and Fx, Fy are the marginal distributions
of X and Y, respectively, then

2
(/ g(X)h(y)dF(x,y)) =< (/ gz(X)de(X)) (/ hz(y)dFy(y)> (1.8.18)

whenever E{g?(X)} and E{h*(Y)} are finite. In particular, for any two random vari-
ables having second moments

covi(X,Y) < V{X}V{Y}).

The ratio

_ cov(X,Y) (1.8.19)
NIy 1214 -

is called the coefficient of correlation (Pearson’s product moment correlation). From

(1.8.18) we deduce that —1 < p < 1. The sign of p is that of cov(X, ).
The m.g.f. of a multivariate distribution is a function of k variables

k
M, ....t;)=E {exp{Zt,-Xi}}. (1.8.20)
i=1
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Let Xy, ..., X} berandom variables having a joint distribution. Consider the linear
k

transformation Y = 2/3 ;X j, where By, ..., By are constants. Some formulae for the
j=1

moments and covariances of such linear functions are developed here. Assume that

all the moments under consideration exist. Starting with the expected value of ¥ we

prove:

k k
E[Z:Bixi} =Y BE{X,). (1.8.21)
i=1 i=l

This result is a direct implication of the definition of the integral as a linear operator.

Let X denote a random vector in a column form and X' its transpose. The expected
value of a random vector X' = (X1, ..., X;) is defined as the corresponding vector
of expected values, i.e.,

E{X'} = (E{X\}, ..., E{X}). (1.8.22)

Furthermore, let X denote a £ x k matrix with elements that are the variances and
covariances of the components of X. In symbols

X =(oy;i,j=1,...,k), (1.8.23)

where 0;; = cov(X;, X;), 0;; = V{X;}.If Y = B'X where B is a vector of constants,
then

V{r}=p'x%p

=> > BiBjoij
i

(1.8.24)

k
> Bloii + ZZﬂiﬂjUij-
i=1

i#]

The result given by (1.8.24) can be generalized in the following manner. Let Y; = 'X
and Y, = a’X, where & and B are arbitrary constant vectors. Then

cov(Yy, ) =o' X B. (1.8.25)
Finally, if X is a k-dimensional random vector with covariance matrix ¥and Y is an
m-dimensional vector Y = AX, where A is an m X k matrix of constants, then the

covariance matrix of Y is

VY] = AT A (1.8.26)
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In addition, if the covariance matrix of X is X, then the covariance matrix of Y =
& + AXis V, where £ is a vector of constants, and A is a matrix of constants. Finally,
if Y = AX and Z = BX, where A and B are matrices of constants with compatible
dimensions, then the covariance matrix of Y and Z is

C[Y,Z]= AXB'. (1.8.27)

We conclude this section with an important theorem concerning a characteristic
function. Recall that ¢ is generally a complex valued function on R, i.e.,

oo

() = f ” cos(tx)dF(x) + i / sin(tx)dF (x).

o0 —00

Theorem 1.8.2. A characteristic function ¢, of a distribution function F, has the
following properties.

(@) o) < ¢0) = 1;
(ii) ¢(t) is a uniformly continuous function of t, on R;
(iii) ¢(t) = ¢(—1), where 7 denotes the complex conjugate of z;
(iv) ¢(t) is real valued if and only if F is symmetric around xo = 0;
(v) if E{|X|"} < oo for some n > 1, then the rth order derivative ¢ (2) exists for
every 1 <r <n, and

o) = / Do(ix)fel”dF(x), (1.8.28)
1
pr = —¢"(0), (1.8.29)
l
and
n . j N )
o0 =3+ Ry, (1.8.30)

Jj=1

where |R,(1)] < 3E{|X]|"}, R,(t) > Oast — O;
i) if @M(0) exists and is finite, then o, < 00;
(vii) if E{|X|"} < oo foralln > 1 and

._(E{|X|"}>”” 1
lim = — <00, (1.8.31)

n—o00 n! R
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then

() = Z%“n lt| < R. (1.8.32)

!
n=0

Proof. The proof of (i) and (ii) is based on the fact that |¢!”*| = 1 for all ¢ and all x.
Now, [ e ""dF(x) = ¢(—t) = ¢(t). Hence (iii) is proven.
(iv) Suppose F(x) is symmetric around xo = 0. Then dF(x) = dF(—x) for all x.
oo

Therefore, since sin(—rx) = — sin(¢x) for all x, sin(tx)dF(x) = 0, and ¢(¢) is
—0Q
real. If ¢(¢) is real, ¢(t) = ¢(¢). Hence ¢x(t) = ¢_x(¢). Thus, by the one-to-one
correspondence between ¢ and F, for any Borel set B, P{X € B} = P{—X € B} =
P{X € —B}. This implies that F is symmetric about the origin.
W If E{|X]|"} < oo, then E{|X]|"} < oo forall 1 <r < n. Consider

ot +h) — o) —E {eitx (eihx . 1)} '
h h

ihx

Since < |x|, and E{|X|} < oo, we obtain from the Dominated Conver-

gence Theorem that

oWV(1) = (w)

h

. ihX __ 1
—E {e”x lim < }
h—0 h

= iE{Xe"X}.

L
Hence 1 = —¢(0).
i
Equations (1.8.28)—(1.8.29) follow by induction. Taylor expansion of e yields

& n
_ Z (zy) ( Y) —(COs(01y) + i sin(62y)).

where |0;] < 1 and |6,| < 1. Hence

¢(t) = Efe'"*}

1 n
Zk—) (l) S+ R(1),
k=0
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where
R, (t) = E{X"(cos(61tX) + i sin(6>t X) — 1)}.

Since | cos(ty)| < 1, |sin(ty)| < 1, evidently R, (¢) < 3E{|X|"}. Also, by dominated
convergence, lirr(l) R,(t) =0.
—

(vi) By induction on n. Suppose ¢?(0) exists. By L’ Hospital’s rule,

¢(2)(0) — }lu%l [¢’(2h) — ¢'(0) n ¢'(0) — W(—Zh)il

2 2h 2h
1
li [¢(2h) — 2(0) + ¢(—2h)]

= lim —
h—0 4h?

eihx _ e*ihx 2
= Jim (T) dF(x)

L sin(hx) 2 2
_—%Er(l)f( T ) x“dF(x).

By Fatou’s Lemma,

o) < — [ 1 sin(hx) 2 2
¢ 7(0) = m\ =7 x“dF(x)

= —/xzdF(x) = —ls.
Thus, pt, < —¢P(0) < co. Assume that 0 < iy, < oo. Then, by (v),
dP ) = / (ix)* "™ dF(x)
=(—1)k/e”xdG(x),
where dG(x) = x**dF(x), or
G(x) = / ) u* dF (u).

—0Q

. (—DFp0 () | _ .
Notice that G(00) = o < co. Thus, T is the characteristic function of
00

1
the distribution G(x)/G(c0). Since 6o~ 0, / XM 2qF(x) = f x2dG(x) < oo.
o0

This proves that oy < coforallk =1,...,n.
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E{|X|"h'" 1
(vii) Assuming (1.8.31),if 0 < 79 < R, lim & —. Therefore,
n—>00 n! fo
E{1X|" " 1/n
——EUXMip'"

n—00 n!

By Stirling’s approximation, lim (n!)!/" = 1. Thus, for 0 < 7y < R,
n—00

—— (E{XI"O\ "
Tim (M) <1
n—00 n!

E{| X"}y .
Accordingly, by Cauchy’s test, Z— < 00. By (iv), for any n > 1, for any

n=1

]t <to

¢<r)=2( D+ R0,

k=0

n
where R (1)| < 3lE{|X| "}. Thus, for every ¢, || < R, hm |R ()] = 0, which

implies that

k
@) = Z%Hk, forall |t| < R.
k=1

QED

1.9 MODES OF CONVERGENCE

In this section we formulate many definitions and results in terms of random vectors
X=X, Xo,--- ,Xk)’, 1 <k < oo. The notation ||X]| is used for the Euclidean

norm, i.e., ||x]|?> = Zx

We discuss here four modes of convergence of sequences of random vectors to a
random vector.

(i) Convergence in distribution, X,, i> X;
(ii) Convergence in probability, X, 250X
(iii) Convergence in rth mean, X, AN X; and

(iv) Convergence almost surely, X, —> X.
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. e d .
A sequence X,, is said to converge in distribution to X, X,, —> X if the corre-
sponding distribution functions F, and F satisfy

nlingo/g(X)an(X) = /g(X)dF(X) (1.9.1)

for every continuous bounded function g on R¥.
One can show that this definition is equivalent to the following statement.

A sequence {X, } converges in distribution to X, X,, 4x if lim F,(x) = F(x)
n—o00
at all continuity points X of F.

IfX, 4 Xwe say that F, converges to F' weakly. The notation is F, = F
or F, = F.
We define now convergence in probability.

A sequence {X,} converges in probability to X, X,, 2 x if, for each € > 0,
lim P{||X, — X]|| > €} =0. (1.9.2)

We define now convergence in rth mean.

A sequence of random vectors {X, } converges inrthmean,r > 0,t0 X, X,, X
if E{||1X, —X]||"} > 0asn — oo.
A fourth mode of convergence is

A sequence of random vectors {X, } converges almost-surely to X, X,, 25 X, as
n— oo if

P{lim X, = X} = 1. (1.9.3)

n—oo

The following is an equivalent definition.
X, = Xasn — 00 if and only if, for any € > 0,

lim P{||X,, — X]|| <€, Vm >n} = 1. (1.9.4)
Equation (1.9.4) is equivalent to
P{lim || X, — X|| <€} =1.
n—o00
But,

P{lim X, — X|| <€} =1— P{lim [|X, — X|| > €}
n—o00 n—oo

—1—P{IX, —X|| > €, io0l).
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By the Borel-Cantelli Lemma (Theorem 1.4.1), a sufficient condition for

a.s. .
X, — Xis

ST PUX, — X[l 2 €} <0 (1.9.5)

n=1

for all e > 0.
Theorem 1.9.1. Let {X,,} be a sequence of random vectors. Then

(@) X, =5 Ximplies X, —> X.
®) X, — X, r > 0, implies X, —> X.
() X, -2 XimpliesX, - X.

Proof. (a) Since X, 2% X, for any € > 0,

0= P{lim ||X, — X|| > €}
n—oo

n—o0o

= lim PIU||Xm—X||Ze} (1.9.6)

m>n

\%

lim P{||X, — X]| = €}.
n—oo

The inequality (1.9.6) implies that X, —> X.
(b) It can be immediately shown that, for any € > 0,

E{|IX, = X|I"} = €" P{|IX, — X]| > €}.
Thus, X, AN X implies X, 2, X,
(c) Let € > 0. If X,, <X then either X < xy+ €1, where 1 =(1,...,1), or
||1X,, — X]|| > €. Thus, for all n,
F,(x0) < F(xo +€1) + P{|IX,, — X|| > €}.
Similarly,
F(xg — €1) < Fy(xo) + P{|IX,, — X]| > €}.

Finally, since X, LN X,

F(xg — €1) < lim F,(x) < lim F,(xp) < F(xo + €1).
n—oo

n—oo
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Thus, if X, is a continuity point of F, by letting ¢ — 0, we obtain

lim F,(xq) = F(xp).
n—o0

QED
Theorem 1.9.2. Let {X,,} be a sequence of random vectors. Then

(@) ifceRE thenX, -5 cimpliesX, -2 ¢
(b) if X, Y X and X, 1" < Z, for some r > 0 and some (positive) random
variable Z, with E{Z} < oo, then X,, X

For proof, see Ferguson (1996, p. 9). Part (b) is implied also from Theorem 1.13.3.

Theorem 1.9.3. Let {X,} be a sequence of nonnegative random variables such that
X, = X and E{X,} — E{X}, E{X} < oo. Then

E{X,—X|} =0, as n —> oo. (1.9.7)

Proof. Since E{X,} - E{X} < oo, for sufficiently large n, E{X,} < oo. For
such n,

E{|Xn - X|} = E{(X - Xn)I{X = Xn}} + E{(Xn - X)I{Xn > X}}
— 2E((X — X)I{X = X,}} + E(X — X,).

But,
0 = (X - Xn)[{X = Xn} < X.
Therefore, by the Lebesgue Dominated Convergence Theorem,

lim E{(X — X,)I{X > X,}} = 0.

This implies (1.9.7). QED
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1.10 WEAK CONVERGENCE

The following theorem plays a major role in weak convergence.

Theorem 1.10.1. The following conditions are equivalent.

@ X, > X;
(b) E{g(X,)} = E{g(X)}, for all continuous functions, g, that vanish outside a
compact set;

(c) E{gX,)} = E{g(X)}, for all continuous bounded functions g;

(d) E{g(X,)} = E{g(X)}, for all measurable functions g such that P{X €
C(g)} = 1, where C(g) is the set of all points at which g is continuous.

For proof, see Ferguson (1996, pp. 14-16).

Theorem 1.10.2. Let {X,} be a sequence of random vectors in R¥, and X,, 4 x
Then
(i) £X,) —5 £X);
(ii) if {Y,} is a sequence such that X,, — 'Y, AN 0, then'Y, LN X;
(iii) if X, € R and Y, € R and Y, - ¢, then

(%) = (0)

Proof. (i) Let g : R! — R be bounded and continuous. Let 4(x) = g(f(x)). If x is
a continuity point of f, then x is a continuity point of A, i.e., C(f) C C(h). Hence
P{X € C(h)} = 1.By Theorem 1.10.1 (c), it is sufficient to show that E{g(f(X,))} —

E{g(f(X))}. Theorem 1.10.1 (d) implies, since P{X € C(h)} =1 and X,, N X,
that E{h(X,)} — E{h(X)}.

(i) According to Theorem 1.10.1 (b), let g be a continuous function on R
vanishing outside a compact set. Thus g is uniformly continuous and bounded.
Let € > 0, find § > O such that, if ||[x — y|| < § then |g(x) — g(y)| < €. Also, g is
bounded, say |g(x)| < B < oo. Thus,

|E{g(Yn)} — E{gX)}| < |E{g(Yn)} — E{g(X)}| + |E{g(Xn)} — E{g(X)}|
= E{|g(Yn) — gX)I{|IXy — Yull = 8}}
+ E{|g(Yn) — eX)I{[IXy — Y|l > &}
+ [E{g(Xn)} — E{gX)}|
<€ +2BP{|IX, — Yull > 6}
TIE{gXn)} — E{gX)}| —> e
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Hence Y, —d> X.

(iii)
P{H(X”) - (X,,> >€} = P{||[Y, —c¢|| > €} = 0, as n — oo.
Yn C
.. Xn d X
Hence, from part (ii), (Yn> LN <c> of

As a special case of the above theorem we get

Theorem 1.10.3 (Slutsky’s Theorem). Let {X,} and {Y,} be sequences of random

variables, X, —d> X and?, L5 ¢ Then

i X, +Y, -5 X+

.. d
(i) XY, — cX; (1.10.1)
. X, d X
(iii) if ¢ #0 then A —_— —.
c

n

A sequence of distribution functions may not converge to a distribution function.
For example, let X,, be random variables with

0, x<-n

Fu(x) = , —hn<x<n

— N =

s n<x.

1 1
Then, lim F,(x) = — for all x. F(x) = — for all x is not a distribution function. In
n—0o0

this example, half of the probability mass escapes to —oco and half the mass escapes
to +00. In order to avoid such situations, we require from collections (families) of
probability distributions to be tight.

Let F = {F,, u € U} be a family of distribution functions on R*. F is tight if, for
any € > 0, there exists a compact set C C R* such that

sup/ I{x € R* — C}dF,(x) < €.
uel

In the above, the sequence F, (x) is not tight.
If F is tight, then every sequence of distributions of J contains a subsequence
converging weakly to a distribution function. (see Shiryayev, 1984, p. 315).
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Theorem 1.10.4. Let {F,} be a tight family of distribution functions on R. A nec-
essary and sufficient condition for F, = F is that, for each t € R, lim ¢,(t) exists,
n—0o0

where ¢, (1) = / " dF,(x) is the characteristic function corresponding to F,.

For proof, see Shiryayev (1984, p. 321).

Theorem 1.10.5 (Continuity Theorem). Let {F,} be a sequence of distribution
functions and {¢,} the corresponding sequence of characteristic functions. Let F be
a distribution function, with characteristic function ¢. Then F,, = F if and only if
du(t) = @(t) for all t € R¥. (Shiryayev, 1984, p. 322).

1.11 LAWS OF LARGE NUMBERS

1.11.1 The Weak Law of Large Numbers (WLLN)

Let Xy, Xy, ... be a sequence of identically distributed uncorrelated random vectors.
Let p = E{X,} and let T = E{(X; — w)(X; — )’} be finite. Then the means X,, =

1
—ZX,- converge in probability to u, i.e.,
n

i=1

X, 2 pu asn—>00.X, = p asn— oo. (1.11.1)

The proof is simple. Since cov(X,,, X,/) = 0 for all n # n’, the covariance matrix of

_ 1 _
X, is —X. Moreover, since E{X,} = u,
n
_ 2 1
E{|[Xy —plI’} = —tr{¥} >0 as n— oo.
n

Hence X, 2, @, which implies that X, SN w. Here tr.{X} denotes the trace

of X.
If X, X5, ... are independent, and identically distributed, with E{X;} = u, then
the characteristic function of X, is

b5 (1) = (¢ (%)) , (1.112)

where ¢(t) is the characteristic function of X. Fix t. Then for large values of #n,

t j 1
¢(—):1+l—t’u+o(—>, as n — 00.
n n n
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Therefore,
i, 1\\" i
o, O =({1+-tu+o| - — et (1.11.3)
n n

@(t) = ¢''* is the characteristic function of X, where P{X = u} = 1. Thus, since

o . < d L S
e''* is continuous at t =0, X, — . This implies that X, SN u (left as an
exercise).

1.11.2 The Strong Law of Large Numbers (SLLN)

Strong laws of large numbers, for independent random variables having finite
expected values are of the form

1 n
- E (X; — ) 25 0, as n — oo,
n

i=1

where u; = E{X;}.

Theorem 1.11.1 (Cantelli). Let {X,} be a sequence of independent random vari-
ables having uniformly bounded fourth-central moments, i.e.,

0<EX,— ) <C <o0 (1.11.4)
foralln > 1. Then
1 " a.s.
- § X; — i) = 0. (1.11.5)
n j:l n—o0

Proof. Without loss of generality, we can assume that i, = E{X,} = Oforalln > 1.
1 n 4 1 n
EJdl-) X; = — E{x?
(rE) =l e
+4Y Y EXX1+3) ) E(X(X])

i#j i#]
+6Y Y S EXIX XAy Y. ZE{XinXkXI}}
i#j#k i j kAl

1 & 3
= F §M4,i + FZ Zo’izo'jz,

i#]
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where (q; = E{X}} and 67 = E{X}}. By the Schwarz inequality, o/07 < (14, -
u4]-)1/2 for all i # j. Hence,

15;{)(4}_”3 M 0(i>

n* n?
By Chebychev’s inequality,

P{IX,] > €} = P{X} > €'}

Hence, for any € > 0,

where C* is some positive finite constant. Finally, by the Borel-Cantelli Lemma
(Theorem 1.4.1),

P{|X,| = €,i0) =0.
Thus’ P{|Xn| < €, iO} = 1 QED

Cantelli’s Theorem is quite stringent, in the sense, that it requires the existence of
the fourth moments of the independent random variables. Kolmogorov had relaxed
this condition and proved that, if the random variables have finite variances, 0 <

o} < 0o and

i—j (1.11.6)

then —Z(X Wwi) 2% 0asn — oo.

If the random variables are independent and identically distributed (i.i.d.), then
Kolmogorov showed that E{|X|} < oo is sufficient for the strong law of large
numbers. To prove Kolmogorov’s strong law of large numbers one has to develop
more theoretical results. We refer the reader to more advanced probability books (see
Shiryayev, 1984).
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1.12 CENTRAL LIMIT THEOREM

The Central Limit Theorem (CLT) states that, under general valid conditions, the
distributions of properly normalized sample means converge weakly to the standard
normal distribution.

A continuous random variable Z is said to have a standard normal distribution,
and we denote it Z ~ N (0, 1) if its distribution function is absolutely continuous,
having a p.d.f.

1
flx) = e 00 <x <00 (1.12.1)

Var

The c.d.f. of N(0, 1), called the standard normal integral is

1 X
d(x) = 7= e 2 dy. (1.12.2)

The general family of normal distributions is studied in Chapter 2. Here we just
mention that if Z ~ N (0, 1), the moments of Z are

(291NN
o = 4 2 =2 (1.12.3)
0, ifr =2k + 1.
The characteristic function of N (0, 1) is
P = / T mtatinng
= — e ? X
V21 J-0 (1.12.4)
= e’%’z, —0 <t < 0.
A random vector Z = (Z,, . .., Z;) is said to have a multivariate normal distribu-

tion withmean u = E{Z} = 0 and covariance matrix V (see Chapter2),Z ~ N(0, V)
if the p.d.f. of Z is

Lo 1 1,
f(Z,V)—WCXp{ EZV Z}

The corresponding characteristic function is
1 !
¢z(t) = exp _Et vty (1.12.5)

t € R%,
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Using the method of characteristic functions, with the continuity theorem we
prove the following simple two versions of the CLT. A proof of the Central Limit
Theorem, which is not based on the continuity theorem of characteristic functions,
can be obtained by the method of Stein (1986) for approximating expected values or
probabilities.

Theorem 1.12.1 (CLT). Let {X,} be a sequence of i.i.d. random variables having

a finite positive variance, i.e., . = E{X,}, V{X,} = 0% 0 < 6> < cc. Then
Xn 2 d
Jn=—=—2 55 N, 1), as n — oo. (1.12.6)
o
Xn — K Xi—n

Proof. Notice that \/n ,i > 1.Moreover,

1 n
= ﬁzzi, where Z,‘ =
i=1

1
E{Z;} =0and V{Z;} = 1,i > 1.Let ¢2(t) be the characteristic function of Z;. Then,
since E{Z} =0, V{Z} = 1, (1.8.33) implies that

2
¢z(t) =1— 3 +o(t), as t — 0.

Accordingly, since {Z,} are i.i.d.,

b 7. () = B (%)

~(-5+()

_ 42
— e "7 as n > 0.

Hence, /it Z, -2 N(0, 1). QED

_ 1<
Theorem 1.12.1 can be generalized to random vector. Let X,, = — E X;,n>1
n
=1
The generalized CLT is the following theorem.

Theorem 1.12.2. Let {X,} be a sequence of i.i.d. random vectors with E{X,} = 0,

and covariance matrix E{X,X',} =V, n > 1, where V is positive definite with finite
eigenvalues. Then

JiX, -5 N, V). (1.12.7)
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Proof. Let ¢x(t) be the characteristic function of X;. Then, since E{X;} = 0,

t
¢ m x,(0) = ¢dx (ﬁ)

as n — 00. Hence

. 1 /
nlingo¢ﬁ x,(t) =exp {_tht} , teRk
QED

When the random variables are independent but not identically distributed, we
need a stronger version of the CLT. The following celebrated CLT is sufficient for
most purposes.

Theorem 1.12.3 (Lindeberg-Feller). Consider a triangular array of random vari-
ables {Xn i}, k=1,...,n, n>1 such that, for each n > 1, {X, .,k =1,...,n}

n

are independent, with E{X,;} =0 and V{X, } =0,ik. Let S, = ZX””‘ and
k=1

n
Bﬁ = Zanzyk. Assume that B, > 0 for each n > 1, and B, /' oo, as n — oo. If,

k=1
for every € > 0,

1 n
r E{X;  J{|Xux| > €B,} = 0 (1.12.8)
nog=1
d o2,
asn — oo, then S,/B, —> N(0, 1) as n — oco. Conversely, iflmlflx # — Oas
<k<n

n— ocoand S,/B, —> N(O,1), then (1.12.8) holds.

For a proof, see Shiryayev (1984, p. 326). The following theorem, known as
Lyapunov’s Theorem, is weaker than the Lindeberg—Feller Theorem, but is often
sufficient to establish the CLT.
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Theorem 1.12.4 (Lyapunov). Let {X,} be a sequence of independent random
variables. Assume that E{X,} =0, V{X,} > 0 and E{|X,|’} < oo, for all n > 1.
n

Moreover, assume that B,f = ZV{XJ-} ' 00. Under the condition
j=1

1 n
= Y E(IX;P’} > 0 as n — oo, (1.12.9)
noj=1
d

the CLT holds, i.e., S,/B, —> N(,1)asn — oo.

Proof. 1t is sufficient to prove that (1.12.9) implies the Lindberg—Feller condition
(1.12.8). Indeed,

E(X,1P) = / e PdF ()

= [ (xPdF; (o)
{x:|x|>€B,}
> €B, / xzdFj(x).
{x:|x|>Bye}

Thus,

n

1

1 n
2 3
E xdF-(x)§—~—E E{X;]°’} — 0.
\/{.x:x>eBn] ! € Br? j=1 !

1
B2
n j:1

QED
Stein (1986, p. 97) proved, using a novel approximation to expectation, that if

X1, X5, ...areindependent and identically distributed, with EX; = 0, EX f = land
y = E{|X,]?} < oo, then, forall —oo < x <ocoandalln =1,2, ...,
S —_

1 n
P{ﬁgXifx}—Q(x) 7

where ®(x) is the c.d.f. of N(0, 1). This immediately implies the CLT and shows that
the convergence is uniform in x.

6y

1.13 MISCELLANEOUS RESULTS

In this section we review additional results.
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1.13.1 Law of the Iterated Logarithm
We denote by log,(x) the function log(log(x)), x > e.

Theorem 1.13.1. Let {X,} be a sequence of i.i.d. random variables, such that

E{X\}=0and V{X,} =0% 0 <0 <oo. Let S, = Y _X;. Then

i=1

P{Hn ISal _ 1} =1, (1.13.1)
neoow(n)

where ¥(n) = (20°nlog,(n))"/?, n > 3.

For proof, in the normal case, see Shiryayev (1984, p. 372).

The theorem means the sequence |S,,| will cross the boundary v (n), n > 3, only a
finite number of times, with probability 1, as n — oo. Notice that although E{S,} =
0, n > 1, the variance of S, is V{S,} = no? and P{|S,| /' oo} = 1. However, if

n a.s.

S, S, .
we consider — then by the SLLN, — —> 0. If we divide only by /n then, by
n n

Sn . .
the CLT, 7 —d> N(0, 1). The law of the iterated logarithm says that, for every
o/n
Sn . .
4] > (1+¢€),/2log,(n), i.o.} = (. This means, that the fluctuations
o/n

of S, are not too wild. In Example 1.19 we see that if {X,} are i.i.d. with P{X| =

e>0,P

1}=P{X;=-1}= 5 then == =5 Q0 asn — co. Butn goes to infinity faster

n
Sn

V2nlog,(n)

then P{|W,| < 1 +¢€,i.0.} = 1. {W,} fluctuates between —1 and 1 almost always.

than /nlog,(n). Thus, by (1.13.1), if we consider the sequence W,, =

1.13.2 Uniform Integrability

A sequence of random variables {X,} is uniformly integrable if

lim sup E{|X,|I{|X,| > c}} = 0. (1.13.2)

=00 ;51

Clearly, if | X,,| < Y foralln > 1 and E{Y} < oo, then {X,,} is a uniformly integrable
sequence. Indeed, | X, |I{|X,| > ¢} < |Y|I{|]Y| > c} foralln > 1. Hence,

sup E{|X,[I{|Xy| > c}} < E{]Y|[I{]Y] > c}} - O

n>1

as ¢ — oo since E{Y} < oo.
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Theorem 1.13.2. Let {X,} be uniformly integrable. Then,

(i) E{lim X,} < lim E{X,} < lim E{X,} < E{lim X,,};
n—oo n—o0

n—oo n— 00

(@i) if in addition X, iy X, as n — 09, then X is integrable and

lim E{X,} = E{X},
n—oo

lim E{|X, — X|} = 0.
n—0oQ

Proof. (i) Forevery c > 0
E{X,} = E{X,I{X, < —c}} + E{X,I{X, > —c}}.
By uniform integrability, for every € > 0, take c sufficiently large so that

sup |[E{X, I{X, < —c}}| <e.

n>1

By Fatou’s Lemma (Theorem 1.6.2),

h_mE{XnI{Xn = _C}} = E { h_anI{Xn > _C}} .

n—0o0 n—0o0

But X, /{X,, > —c}} > X,,. Therefore,

h_mE{XnI{Xn > —C}} = E{li_mX”}.

n—oo n—00
From (1.13.6)—(1.13.8), we obtain
lim E{X,} > E{h_mX} —e.
n— 00 n—o00
In a similar way, we show that

lim E{X,} < E{mxn} + €.
n—00

49

(1.13.3)

(1.13.4)

(1.13.5)

(1.13.6)

(1.13.7)

(1.13.8)

(1.13.9)

(1.13.10)

Since € is arbitrary we obtain (1.13.3). Part (ii) is obtained from (i) as in the Dominated

Convergence Theorem (Theorem 1.6.3).

QED

Theorem 1.13.3. Let X, > 0,n > 1, and X, —> X, E{X,} < 0o. Then E{X,} —

E{X} if and only if {X,,} is uniformly integrable.
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Proof. The sufficiency follows from part (ii) of the previous theorem.
To prove necessity, let

A ={a: Fx(a) — Fx(a—) > 0}.
Then, foreachc & A
X, I{X, <c} = XI{X <c).
The family {X, 71{X,, < c}} is uniformly integrable. Hence, by sufficiency,

lim E{X,[{X, < c}} = E{XI{X < c}}

for c € A, n — 00. A has a countable number of jump points. Since E{X} < oo, we

€
can choose ¢y ¢ A sufficiently large so that, for a given e > 0, E{XI{X > ¢y}} < 3
Choose Ny(¢) sufficiently large so that, for n > Ny(e),

E(X,I{X, > co}} < E{XI{X > co}} + %

Choose ¢; > ¢y sufficiently large so that E{X,I{X, > ci}} <€, n < Ny. Then
sup E{X, I{X, > c1}} <e. QED

Lemma 1.13.1. If {X,} is a sequence of uniformly integrable random variables,
then

sup E{| X, |} < oo. (1.13.11)

n>1

Proof.
sup E{|X|,} = sup(E{| X, |I{|X,| > c}} + E{|X,|I{|X,] < c}})
n>1 n>1
< sup E{|X,,|I{|X,| > c}} + sup E{|X,|I{|X,] < c}}
n>1 n>1

<e+ec,

for 0 < ¢ < oo sufficiently large. QED



PART I: THEORY 51

Theorem 1.13.4. A necessary and sufficient condition for a sequence {X,} to be
uniformly integrable is that

sup E{|X,|} < B < o0 (1.13.12)
n>1
and
sup E{| X, |14} — O when P{A} — 0. (1.13.13)

n>1

Proof. (i) Necessity: Condition (1.13.12) was proven in the previous lemma. Fur-
thermore, for any 0 < ¢ < oo,
E{|Xnlla} = E{| X, I{AN{|Xn| = c}}}
+ E{| X, | I{AN{|X,| < c}}} (1.13.14)
< E{|X,[1{|Xn| = c}} + cP(A).

Choose c sufficiently large, so that E{|X,|I{|X,| > c}} < % and A so that P{A} <

Zi’ then E{|X,|l4} < €. This proves the necessity of (1.13.13).
c

(ii) Sufficiency: Let € > 0 be given. Choose §(¢) so that P{A} < §(¢), and
sup E{|X, |14} < €.

n>1

By Chebychev’s inequality, for every ¢ > 0,

E{| X}
P{|{Xy| 2 ¢} = —, 1.
c
Hence,
1 B
sup P{|Xy| > ¢} < —sup E{|X, [} < —. (1.13.15)
n>1 C n>1 C

The right-hand side of (1.13.15) goes to zero, when ¢ — o00. Choose ¢ sufficiently
large so that P{|X,| > ¢} < €. Such a value of ¢ exists, independently of n, due to

oo
(1.13.15).Let A = =U|Xn| > c}.For sufficiently large ¢, P{A} < € and, therefore,

n=1

sup E{| X, | I{|Xy| = c}} < E{|Xy|Ia} = 0

n>1

as ¢ — oo. This establishes the uniform integrability of {X,,}. QED
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Notice that according to Theorem 1.13.3,if E|X,|" < oo,r > 1 and X, 250X,
lim E{X,} = E{X"} if and only if {X,,} is a uniformly integrable sequence.
n—oo

1.13.3 Inequalities

In previous sections we established several inequalities. The Chebychev inequal-
ity, the Kolmogorov inequality. In this section we establish some useful additional
inequalities.

1. The Schwarz Inequality

Let (X, Y) be random variables with joint distribution function Fxy and marginal
distribution functions Fx and Fy, respectively. Then, for every Borel measurable and
integrable functions g and A, such that E{g?(X)} < oo and E{h?*(Y)} < o0,

12 12
< (/gz(x)de(x)> </h2(y)dFy(y)> . (1.13.16)

To prove (1.13.16), consider the random variable Q(¢) = (g(X) + th(Y))?, —oo <
t < co. Obviously, Q(t) > 0, for all #, —oo < t < 0o. Moreover,

'/g(x)h(y)dey(x, y)

E{Q(1)) = E{g*(X)} + 2t E{g(X)h(Y)} + P E{h*(Y)} = 0
for all t. But, E{Q(t)} > 0 for all 7 if and only if
(E{g(X)h(N)})* < E{g*(X)E{R*(Y))}.
This establishes (1.13.16).
2. Jensen’s Inequality

A function g: R — R is called convex if, for any —oco <x <y < oo and
0<a<l,

glax + (1 —a)y) < agx) + (I —a)g(y).
Suppose X is a random variable and E{|X|} < oo. Then, if g is convex,
8(E{X}) = E{g(X)}. (1.13.17)

To prove (1.13.17), notice that since g is convex, for every xp, —00 < xo < 00, g(x) >
g(x0) + (x — xg)g*(xp) for all x, —oco < x < 0o, where g*(xo) is finite. Substitute
xo = E{X}. Then

8(X) = g(E{X}) + (X — E{X}Dg"(E{X})

with probability one. Since E{X — E{X}} = 0, we obtain (1.13.17).



PART I: THEORY 53

3. Lyapunov’s Inequality
If0 <s <rand E{|X|"} < o0, then

(E{XI*HY* < (E{XI"HY". (1.13.18)

To establish this inequality, let # = r/s. Notice that g(x) = |x|" is convex, since ¢ > 1.
Let & = E{|X|*}, and (| X|*)" = | X|". Thus, by Jensen’s inequality,

g(&) = (EIXI')" < E{g(1X"))
= E{|X]"}.

Hence, E{|X|*}'/* < (E{|X|"}))"/". As a result of Lyapunov’s inequality we have the
following chain of inequalities among absolute moments.

E{X|} < (E{X*)'? < (E{XPP'P <.... (1.13.19)

4. Holder’s Inequality
1 1
Let ] <p<oo and 1 <g < oo, such that —+ — =1. E{|X|’} < oo and
P 9
E{|Y|?} < oo. Then

E{IXY|} < (E{IX|"DV/P(E{|Y 7). (1.13.20)

Notice that the Schwarz inequality is a special case of Holder’s inequality for p =
q="2.
For proof, see Shiryayev (1984, p. 191).

5. Minkowsky’s Inequality
IfE{|X|’} < occand E{|Y|P} < coforsome ] < p < oo,then E{|X + Y|’} < o0
and

(E{X +YI”HV? < (EIX|I)V? + (E(Y|PH/?. (1.13.21)

For proof, see Shiryayev (1984, p. 192).

1.13.4 The Delta Method

The delta method is designed to yield large sample approximations to nonlinear
functions g of the sample mean X, and its variance. More specifically, let {X,} be
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a sequence of i.i.d. random variables. Assume that 0 < V{X} < oo. By the SLLN,
X, =5 u, asn — oo, where X, =—ZXj,andbytheCLTf LN

j=1
N(0,1). Let g : R — R having third order continuous derivative. By the Taylor

expansion of g(X,,) around 1,

n—o0

_ _ 1 _
(X)) = g(p) + (X, — gV () + 5 Xn = w)?g@(w) + R,, (1.13.22)

where R, = é(}_(,, — )3g®(uk), where pu¥ is a point between X, and p, i.e., | X, —
wil < |X, — wl. Since we assumed that g (x) is continuous, it is bounded on the
closed interval [ — A, u 4 A]. Moreover, g®(u*) — ¢®(u), as n — oo. Thus
R, % 0, as n — oco. The distribution of g(u) + gV (u)(X, — 1) is asymptotically

- 2 - d
N(g(n), (@V()*a?/n). (X, — 1)* > 0, as n — oo. Thus, \/n(g(X,) — g(n)) =
N(0, 0%(g"(w))?). Thus, if X, satisfies the CLT, an approximation to the expected
value of g(X,,) is

E{g(X,)} = g(w) + <2>(u) (1.13.23)

An approximation to the variance of g(X,,) is

2
- o
VigXnh = — (VG0 (1.13.24)
Furthermore, from (1.13.22)

Vn(g(X,) — g(w) = vn(X, — wg () + Dy, (1.13.25)

where

X, -y
D, = %g(z)(ul’;*), (1.13.26)

and |u* — X,| < |u — X,| with probability one. Thus, since X, — pu — 0 a.s., as
n — oo, and since |g@(w*)| is bounded, D, —> 0, asn — oo, then

§Xn) — W) 4 oy, (1.13.27)
olgM(p)l
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1.13.5 The Symbols 0, and O,

Let {X,} and {Y,} be two sequences of random variables, ¥, > 0 a.s. for all n > 1.
We say that X, = 0,(Y,), i.e.,, X, is of a smaller order of magnitude than Y, in
probability if

X,
22 P00 as n— oo. (1.13.28)

n

We say that X,, = O,(Y,), i.e., X,, has the same order of magnitude in probability as

X
Y, if, for all € > 0, there exists K, such that sup, P HT” > KE} <e.
n

One can verify the following relations.

@ o0,(D)+ 0p(1) = 0,(1),
(i) O0,(1)+ 0,(1) = 0,(1),
i) 0,(1) + 0,(1) = 0,(1), (1.13.29)
iv)  0,(1)- 0,(1) = Op(1),
W) 0,(1)- 0,(1) = 0,(1).

1.13.6 The Empirical Distribution and Sample Quantiles

Let X1, X», ..., X, be i.i.d. random variables having a distribution F. The function
1 n

Fy(x) = — Z 1{X; < x} (1.13.30)
e

is called the empirical distribution function (EDF).
Notice that E{I{X; < x}} = F(x). Thus, the SLLN implies that at each x,

F,(x) 2 F (x) as n — oo. The question is whether this convergence is uniform
in x. The answer is given by

Theorem 1.13.5 (Glivenko—Cantelli). Ler X, X», X3, ... be i.i.d. random vari-
ables. Then

sup  |F(x) — F(x)] = 0, asn — oo. (1.13.31)

—00<X <00

For proof, see Sen and Singer (1993, p. 185).
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The pth sample quantile x,, , is defined as

Xn,p = Fn_l(l?)
= inf{x : F,(x) > p}

(1.13.32)

for 0 < p < 1, where F, (x) is the EDF. When F'(x) is continuous then, the points of
increase of F),(x) are the order statistics X(j.,,) < -+ < X(u.) With probability one.

AlSo, Fy(X(im)) = —i = 1, ..., n. Thus,
n

Xn,p = X(,'( )in) s where
! ! (1.13.33)
i(p) = smallest integer i such that i > pn.

Theorem 1.13.6. Let F be a continuous distribution function, and &, = F “L(p),
and suppose that F(§,) = p and for any € >0, F(§, —€) < p < F(§, +¢€). Let
X1, ..., Xy bei.i.d. random variables from this distribution. Then

a.s.
Xp,p —> &, as n — 0.

For proof, see Sen and Singer (1993, p. 167).
The following theorem establishes the asymptotic normality of x,, ,.

Theorem 1.13.7. Let F(x) be an absolutely continuous distribution, with continuous
pdf f(x). Letp,0<p<1,§,= F~'(p) and f(&p) > 0. Then

1 —
Gy — &) -5 N (0, %) . (1.13.34)
P

For proof, see Sen and Singer (1993, p. 168).

The results of Theorems 1.13.6—1.13.7 will be used in Chapter 7 to establish the
asymptotic relative efficiency of the sample median, relative to the sample mean.

PART II: EXAMPLES

Example 1.1. We illustrate here two algebras.
The sample space is finite

S=1{1,2,...,10}.

Let E; = {1, 2}, E; = {9, 10}. The algebra generated by E| and E5, A;, contains the
events

Ay ={8,0,E, Ei, Es, E2, E{ U Ey, E\ U Ey).
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The algebra generated by the partition D = {E, E», E3, E4}, where E| = {1, 2},
E, =1{9,10}, E5 = (3,4, 5}, E4 = {6, 7, 8} contains the 2* = 16 events

A, ={S,0,E\, Es, E3, E4, E\UEy, EyUE3, EyUE4, E; UE3, E; U Ey,
E;UE4, EiUE,UE;, E\UE,UE4, E;UE3;UE,, E;UE3U Ey}.

Notice that the complement of each set in A; is in A;. A; C Ay Also, A,
c A(S). ]

Example 1.2. In this example we consider a random walk on the integers. Consider
an experiment in which a particle is initially at the origin, 0. In the first trial the particle
moves to +1 or to —1. In the second trial it moves either one integer to the right or one
integer to the left. The experiment consists of 2n such trials (1 < n < 00). The sample

space S is finite and there are 22" points in S, i.e., S = {(i1, ..., i) : ij==I1,j=
2n

1,...,2n). LetE; = {(il,...,izn) > ik =j},j =0,42,4,---,4+2n E;isthe
k=1

event that, at the end of the experiment, the particle is at the integer j. Obviously,
—2n < j < 2n. It is simple to show that j must be an even integer j = 2k, k =
0,1,...,n.Thus, D = {Ey, k =0, 1, ..., £n} is a partition of S. The event Ey;
consists of all elementary events in which there are (n + k) +1s and (n — k) —1s.

Thus, Ey is the union of <n2—i’—1k> points of S, k =0, 1, ..., +n.
The algebra generated by D, A(D), consists of ¢ and 2*"*! — 1 unions of the
elements of D. ]

Example 1.3. Let S be the real line, i.e., S = {x : —00 < x < oo}. We construct an
algebra A generated by half-closed intervals: E, = (—00, x], —00 < x < co. Notice
that, for x <y, Ex U Ey = (—00, y]. The complement of E, is E. = (x, 00). We
will adopt the convention that (x, 0o) = (x, 0o].

1
Consider the sequence of intervals E,, = (—oo, 1-— —],n > 1.AlE, € A How-
n

o
ever, UE,, = (=00, 1). Thus lim E, does not belong to A. A is not a o-field. In
n—o00
n=1
order to make A into a o-field we have to add to it all limit sets of sequences of
events in A. ]

Example 1.4. We illustrate here three events that are only pairwise independent.

1
Let S = {1, 2, 3,4}, with P(w) = 7 for all w € S. Define the three events

A ={1,2}, A,={1,3}, Asz={1,4}.
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P{A,-}:%,i:l,2,3
AN A, = {1},
AN As = {1}
A, N As = {1,
Thus
1
P{AIN A} = 1= P{A1}P{A2}.
1
P{A| N A3} = 1= P{A}P{A3}.
1
P{A, N A3} = 1= P{A>} P{A3).

Thus, Ay, Ay, Az are pairwise independent. On the other hand,
AINANA; = {1}
and
P{AIN AN A3} = ‘—11 # P{A|}P{A} P{A3} = %-

Thus, the triplet (A, A,, A3z) is not independent. [ ]

Example 1.5. An infinite sequence of trials, in which each trial results in either
“success” S or “failure” F is called Bernoulli trials if all trials are independent and
the probability of success in each trial is the same. More specifically, consider the
sample space of countable sequences of Ss and Fs, i.e.,

SZ{(l’],l‘Q,...)Il‘jZS,F,j=1,2,...}.
Let
Ej:{(i],iz,...)lij:S},j=1,2,....

We assume that {E|, E;, ..., E,} are mutually independent for all n > 2 and
P{Ej}=pforallj=1,2,...,0<p <1
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The points of S represent an infinite sequence of Bernoulli trials. Consider the
events

Aj={li1,ip,..)1j=8ijp1=F,ijn =S5}
=EjﬂEj+1ﬂEj+2

Jj=1,2,....{A;} are not independent.
Let B; = {A3j41}, j = 0. The sequence {B;, j > 1} consists of mutually indepen-

dent events. Moreover, P(B;) = p*(1 — p) forall j = 1,2,.... Thus, » P(B)) =
j=1

oo and the Borel-Cantelli Lemma implies that P{B,,i.0.} = 1. That is, the pat-

tern SFS will occur infinitely many times in a sequence of Bernoulli trials, with

probability one. u

Example 1.6. Let S be the sample space of N = 2" binary sequences of size n,
n < oo,ie.,

S={(i1,....0n):1;=0,1, j=1,...,n}.

We assign the points w = (iy, .. ., i,) of S, equal probabilities, i.e., P{(i1, ..., i,)} =
27", Consider the partition D = {By, By, ..., B,} to k = n + 1 disjoint events, such
that

n
sz{(il,...,i,,):Zilzj}, j=0,...,n.
=1

B; is the set of all points having exactly j ones and (n — j) zeros. We define the
discrete random variable corresponding to D as

X(w) = jlg w).
j=0
The jump points of X(w) are {0, 1, ..., n}. The probability distribution function of
X(w)is
fx(x) = I;(x)P{B;}.
j=0

It is easy to verify that

P{B;} = (';)2 i=0,1,....n
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where

|
(n>=n—, j=0,1,...,7’l.
J Jlin — !

Thus,

e =t )2
=0

The distribution function (c.d.f.) is given by

0, ifx <0

FX(X)Z i(’?)z—n
] b

j=0

where [x] is the maximal integer value smaller or equal to x. The distribution function
illustrated here is called a binomial distribution (see Section 2.2.1). [ ]

Example 1.7. Consider the random variable of Example 1.6. In that example X (w) €
{0,1,...,n}and fx(j) = (’;)2”, Jj =0,...,n. Accordingly,

n n—1
AN \Aw R n—1\,__ n
E{X}=§ J<j>2 =3 ( i )2< “:5.

j=0 j=0
|

Example 1.8. Let (S, F, P) be a probability space where S = {0, 1,2, ...}. Fis
the o-field of all subsets of S. Consider X (w) = w, with probability function

pi=Plw:Xw)=j)

y¥i
:e_’\,—', j=0,1,2,...
J:

oo i o0
b
forsome 1,0 < A < 00.0 < p; < oo forall j, and since — =" E pj=1
Jj=0 Jj=0
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Consider the partition D = {A}, Ay, A3} where Ay ={w :0<w <10}, A, =
{fw:10 <w <20} and A3 = {w : w > 21}. The probabilities of these sets are
10
W
_ _ A
q1=P{A}=e ZF,
j=0
20

¢ = P{Ay} =e” Z

= A
g = P{As) = e~ Z—,
j=21 '

The conditional distributions of X given A; i = 1, 2, 3 are

A‘X
;IA,-(JC)
fxia () ==——, =123
=l
m
J=bi-i J:
where by =0, by = 11, b, =21, b3 = 00
The conditional expectations are
b2
!
E(X | A} =20 =123
ol
m
Jj=bi J

where a+ = max(a, 0). E{X | D} is a random variable, which obtains the values
E{X | A} with probability q;, E{X | A,} with probability ¢,, and E{X | A3} with
probability g3. [ ]

Example 1.9. Consider two discrete random variables X, Y on (S, F, P) such that
the jump points of X and Y are the nonnegative integers {0, 1,2, ...}. The joint
probability function of (X, Y) is

A
et ———— x=0,1,...,y;y=0,1,2,...
fxr(x,y) = (y + D! vy

0, otherwise,

where A, 0 < A < o0, is a specified parameter.
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First, we have to check that

ZZfXY(st) =L

x=0 y=0
Indeed,
¥y
fr) =Y frr(x, )
x=0
A
=e_k—‘, y=0,1,...
y!
and
o0
A
Ze_k—‘ =e .t =1.
y=0 e

The conditional p.d.f. of X given{Y =y}, y=0,1,...1is

1

— x=0,1,...,
@ In=11+y Y
0, otherwise.
Hence,
[
EX|Y=yl=——) x
1+yx:0
y
==, =0,1,...
5 y
and, as a random variable,
EX|v) =2
=
Finally,
o0
y A A
E{E{X|Y}}=) Ze*— =2,
(E{X | Y} éze =3

Example 1.10. In this example we show an absolutely continuous distribution for
which E{X} does not exist.
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1 1
Let F(x) = 3 + — tan™!(x). This is called the Cauchy distribution. The density
T
function (p.d.f.) is

1 1
7 14 x2

fx) =

-0 <X < Q.

Itis a symmetric density around x = 0, in the sense that f(x) = f(—x) for all x. The
expected value of X having this distribution does not exist. Indeed,

2 o0
—/ al dx
T Jo 1+X2

1
— lim log(1 + T?) = oco.
7T T—oo

/ x| f(0)dx

Example 1.11. We show here a mixture of discrete and absolutely continuous
distributions.

Let
0, ifx <0
Fae(x) = {1 —exp{—Ax}, ifx>0
0, ifx <0
[x] i
Fd(x) = -1 ,uj .
e —, ifx>0

where [x] designates the maximal integer not exceeding x; A and u are real positive
numbers. The mixed distribution is, for0 < o < 1,

0, ifx <0
_ SN
Fx) = ae Y B4 (1 - )l — exp(—ax)], ifx > 0.
j=0

This distribution function can be applied with appropriate values of «, A, and u
for modeling the length of telephone conversations. It has discontinuities at the
nonnegative integers and is continuous elsewhere. [ ]

Example 1.12. Densities derived after transformations.
Let X be a random variable having an absolutely continuous distribution with

p.df. fx.
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A.If Y = X?, the number of roots are

0, ify<0
m(y)=131, ify=0
2, ify>0.
Thus, the density of Y is
0, y=<0
FOY= () + fx(=yP, ¥ > 0.

f

B.IfY =cos X

0. iyl > 1
m(y)_{oo, iy < 1.

For every y, such that |y| < 1, let £(y) be the value of cos™!(y) in the interval (0, 7).
Then, if f(x) is the p.d.f. of X, the p.d.f. of Y = cos X is, for |y| < 1,

fry) = ﬁ Z{fx@(y) +2mj) +

+ fx(EQ) = 2nj) + fx(=§() + 27j) + fx(=§(y) — 27 )}
The density does not exist for |y| > 1. [ |

Example 1.13. Three cases of joint p.d.f.

A. Both X, X, are discrete, with jump points on {0, 1, 2, ...}. Their joint p.d.f. for
0<A<o0is,

X2 Ya—x, -2
Ixix,(x1, x2) = <x1>2 et —,

forx; =0,...,x,x, =0,1,.... The marginal p.d.f. are

/2

)C]!

fx,(x1) =e x1=0,1,...and

X2

A
fx,(x2) = 67/\;, x=0,1,....
!

B. Both X, and X, are absolutely continuous, with joint p.d.f.

Fxix. (e, ) = 210,1y(x) 10, (y)-
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The marginal distributions of X and X, are

fx,(x) = 2x1p,1)(x) and
() = 2(1 - y)I((),l)(y).

C. X, is discrete with jump points {0, 1, 2, ...} and X, absolutely continuous. The
joint p.d.f., with respect to the o-finite measure d N (x;)dy is, for 0 < A < oo,

X

A
N
fxlxz(xvy)—e ¥ 14x

]{x = 0, 1, .. .}I(O,]+x)(y)'

The marginal p.d.f. of X, is

X

A
fxx)=e*=, x=0,1,2,....

!

x!

The marginal p.d.f. of X3 is

l oo n )\'j
fo) =+ Yot i Loy (¥)-
n=0 j=0 """

Example 1.14. Suppose that X, Y are positive random variables, having a joint
p.d.f.

1
fxr(x,y) = —)Le’xyl(oqy)(x), O<y<oo, 0<x<y, 0<A<oo.
y
The marginal p.d.f. of X is

o q .

Felx) = / Lemay
x Y
= AE(Ax),

[e¢]

1
where E (&) = / —e "du is called the exponential integral, which is finite for all
u

£
& > 0. Thus, according to (1.6.62), for xo > 0,

I,
=€ "V (x.00)())

Srix(y | x0) = TEOm)
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Finally, for xy > 0,

o0
/ e Mdy
X

B X =xl==r00

e—kxu

T WEi(hxo)
||

Example 1.15. In this example we show a distribution function whose m.g.f., M,
exists only on an interval (—oo, fy). Let

Fx) = {(1),_ N ifx <0

e ifx >0,

where 0 < A < 0o. The m.g.f. is

[o.¢]
M@) = k/ e M dx
0

A A\
=——=(1-=-) , —oco<t<A.
A—t A

The integral in M(t) is oo if ¢+ > A. Thus, the domain of convergence of M is

Example 1.16. Let

X — 1, with probability p
" 710, with probability (1 — p)

i =1,...,n. We assume also that Xy, ..., X,, are independent. We wish to derive

the p.d.f. of S, = in' The p.g.f. of S, is, due to independence, wheng = 1 — p,

i=1
Xn:Xi
E{t5}=E {z }

= ﬁE{tXf}
i=1

=(pt+gq)’, —oo<t<o0.
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Since all X; have the same distribution. Binomial expansion yields

EDS (';)pj(l —p)' .

j=0

Since two polynomials of degree n are equal for all 7 only if their coefficients are
equal, we obtain

P{S, = j} = (7’)17!’(1 —py . j=0..n

The distribution of S, is called the binomial distribution. ]

Example 1.17. In Example 1.13 Part C, the conditional p.d.f. of X, given {X| = x}
is

Sxx,(y 1 x) = To,110().

1+x

This is called the uniform distribution on (0, 1 4 x). It is easy to find that

1
E(Y | X =x} = %
2
and
1 2
VY| X = = LF0°
12

Since the p.d.f. of X is

A
P{X:x}:e*l—f, x=01,2,...
X!

the law of iterated expectation yields

E{Y} = E{E{Y | X}}

=E 1+1X
- 2 2

N>

+

3

N =

since E{X} = \.
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The law of total variance yields

Vi{Y} = V{E(Y | X}} + E{V{Y | X}}

11 (14 X)?
_V{§+§x}+E{T}

1 1
= -V{X}+ —E{l +2X + X?
4{}+12{+ + X7}

1 1
= A4+ —0 422+ 11+ 2
1 +12(+ + A1+ 1))
= Lasarsl
T 12 3

To verify these results, prove that E{X} = A, V{X} = A and E{X?} = A(1 + 1). We
also used the result that V{a + bX} = b2V {X}. [ |

Example 1.18. Let X, X», X3 be uncorrelated random variables, having the same
variance o2, i.e.,

X =0l
Consider the linear transformations
Y1 =X + Xs,
Y =X + X3,
and
Y3 =X+ Xs.
In matrix notation
Y = AX,

where

b
I
O ==
—_—O =
—_—— O
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The variance—covariance matrix of Y, according to (1.8.30) is

VIY] = AXA’
=o?AA
2 1 1
=01 2 1
1 1 2
. . . C 1
From this we obtain that correlations of Y;, ¥; fori # j and p;; = > [

Example 1.19. We illustrate here convergence in distribution.

A.Let X, X5, ... berandom variables with distribution functions
0, ifx <0

=11 1
Fay=q24 (1 - —) (1—e™), ifx>0.

n n

X, —d> X, where the distribution of X is

0, x <0
F(x)_{l—e_x, x> 0.
B. X,, are random variables with
0, x <0

and F(x) = I{x > 0}. X,, LN X. Notice that F'(x) is discontinuous at x = 0. But,
forallx #0 lim F,(x) = F(x).
n—0oQ

C. X, are random vectors, i.e.,
X, = (Xlna in)a n>1.

The function I, (a, b), for0 < a, b < 00,0 < x < 1, is called the incomplete beta
function ratio and is given by

/ w11 =)’ 'du

I(a,b) = =2 5.5 :
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1

where B(a, b) = / u“ 11 — u)’"'du. In terms of these functions, the marginal

0
distribution of Xy, and X5, are

0, x <0
1 1
Fin(x)=1-+ (1 — —> Ii(a,b), 0<x=<1
n n
1, 1<x
and
0, y<0
1
Fou(y) = (1 - —) I,(a,b), 0<y<]I
e
1, 1<y

where 0 < a,b < oo. The joint distribution of (X ,,, X7,,)1s F,,(x, y) = F1,(x)F2,(y),

n > 1. The random vectors X, i> X, where F(X) is

0, x<0ory<0
Ix(avb)ly(aab)s OSX,)’SI

F(x,y) = 11(a,b), 0<x<l,y>1
I,(a,Db), l<x,0<y<l1
1, 1<x,1<y.

Example 1.20. Convergence in probability.

LetX, = (X1, X2,), Wwhere X; , (i = 1, 2)are independent and have a distribution

0, x<0
F,(x) = {nx, 0<x<%
1, L <.

n —

2
Fix an e > O and let N(¢) = [—], then for every n > N(e),
€

PI(X{,+X3,)"* <el=1.

Thus, X, — 0.
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Example 1.21. Convergence in mean square.
Let {X,} be a sequence of random variables such that

E{Xn}:l+c—l, 0 <a<ooand
n

b
ViX,} = —, 0<b<o0.
n

2
a
Then, X, —2> 1, as n — oo. Indeed, E{(X, — 1)?*} = S +-— 0,asn — oco.m
n n

Example 1.22. Central Limit Theorem.
A. Let {X,}, n > 1 be a sequence of i.i.d. random variables, P{X, = 1} = P{X, =

1 _ 1 < d
—1} = =.Thus, E{X,} =0and V{X,} = 1,n > 1.Th X, =— X;
} 5- Thus (X} and V{X,} n us /n ﬁ; —

n
N(0, 1). It is interesting to note that for these random variables, when S, = ZX i
i=1

1 Sy as.
—5, -4 N(O, 1), while 2 2% 0,
n

i

B. Let {X,} be i.i.d, having a rectangular p.d.f.
F(&x) = 1o,n(x).

1 1
In this case, E{X,} = 2 and V{X,} = vk Thus,

1
>
Jn 2 4 N, 1.
1 n—00
12

12

Notice that if n = 12, then if S|, = in’ then S, — 6 might have a distribution
i=1

close to that of N(0, 1). Early simulation programs were based on this. [ ]

Example 1.23. Application of Lyapunov’s Theorem.
Let {X,,} be a sequence of independent random variables, with distribution func-
tions

0, x <0

Fu(x) = {1 —exp{—x/n}, x>0
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n> 1. Thus, E{(X,} =n, V{X,} =n’ and E{X}}=6n’. Thus, B} = k’ =
k=1

nn+1)2n+1)

6 ,n > 1.In addition,

Y EX}}=6) kK= o0@m.
k=1 k=1

Thus,

> E(X})
k=1

Iim ——— =0.
n— 00 BS

It follows from Lyapunov’s Theorem that

D Xk —k)
k=l 4 N, 1.

o Jnm + D2 +1)

Example 1.24. Variance stabilizing transformation.
Let {X,} bei.i.d. binary random variables, such that P{X,, = 1} = p,and P{X,, =
0} = 1 — p. Itis easy to verify that u = E{X;} = p and V{X;} = p(1 — p). Hence,

X% 4 d : :
by the CLT, \/# ——— — N(0, 1), as n — oo. Consider the transformation
vp(l—=p)

g(X,) =2sin"!'VX,.

The derivative of g(x) is

2 1 1
JT—x 25 ad-n

g0 =

Hence V{X;}(gP(p))* = 1.
It follows that

Jn@2sin" (VX)) — 2sin”'(yp) —= N(O, ).
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1 1—2x

2) ___ -
87N = =5 T

. Hence, by the delta method,

1-2p

E{g(X,)} = 2sin"'(\/p) — W

This approximation is very ineffective if p is close to zero or close to 1. If p is close

to > the second term on the right-hand side is close to zero. [

Example 1.25. A.Let X;, X», ... bei.i.d. random variables having a finite variance

_ _ 1
0 < 02 < oo. Since /n(X, — 1) LN N(0,0%),wesaythat X, —pu = O, (T)
n
as n — oo. Thus, if ¢, / oo but ¢, = o(s/n), then c,(X, — 1) 25 0. Hence
X, — u=o0p(cy), as n — oo.

B. Let X, X5, ..., X, be i.i.d. having a common exponential distribution with
p.d.f.
0, ifx <0
f(xvlll')—{Me—/u7 lf)CZO
0<wu<oo. LetY, =min[X;,i =1,...,n] be the first order statistic in a random

sample of size n (see Section 2.10). The p.d.f. of Y, is

0, ify <0

Fayip) = {nue”“", ify >0.

1

Thus nY, ~ X, for all n. Accordingly, Y, = O, (—) as n — oo. It is easy to see
n

that /n Y, 25 0. Indeed, for any given € > 0,

PVnY,>el=e V""" 50 asn— .

1
Thus, Y, =0, (—) asn — 00.

NG
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Section 1.1
1.1.1 Showthat AUB = BU A and AB = BA.

1.1.2 Provethat AUB =AUBA,(AUB)— AB = ABU AB.

1.1.3 Show thatif AC Bthen AUB =Band AN B = A.
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1.14

1.1.5

1.1.6

1.1.7

1.1.8

1.1.9

1.1.10

1.1.11

1.1.12

1.1.13

1.1.14

1.1.15

1.1.16

BASIC PROBABILITY THEORY

Prove DeMorgan’s laws, ie, AUB=ANBorANB=AUB.

Show that for every n > 2, (UA,) = ﬂ&.
i=1

i=1

Show thatif Ay C--- C Ay then sup A, = Ay and inf A, = A;.

1<n<N 1<n<N

1
Find lim |:0, 1-— —).

n—o0 n

1
Find lim <O, —).
n—oo n
Show that if D = {Ay, ..., A} is a partition of S then, for every B, B =

LnJA,-B.
i=1

Prove that lim A, C lim A,.

n—00 n—oo

Prove that DA,, = ,,IEEOOAJ' and ﬁAn = nli)ngoﬁAj.
j=1 j=1

n=1 n=1

(o]

Show that if {A,} is a sequence of pairwise disjoint sets, then lim UA =
n—oo
j=n

b.
Prove that 1im (A, U B,) = lim A, U lim B,.
n—00 n—oo n—oo

Show that if {a,} is a sequence of nonnegative real numbers, then
sup[0, a,) = [0, sup a,).

n>1 n>1

Let AAB = AB U BA (symmetric difference). Let {A,} be a sequence of
disjoint events; define B = Ay, B,+1 = B,AA,+1, n > 1. Prove that lim

[o¢]
B, = UAn.
n=1

Verify
(i) AAB = AAB.
(ii) C = AABifandonlyif A = BAC.
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(ﬁ)(Lpu>A<Lﬁn>cLJuuAm)

n=1 n=1 n=1

1.1.17 Prove that lim,_ o A, = lim A

n—o00 ‘N

Section 1.2
1.2.1 Let A be an algebra over S. Show that if A|, A, € Athen A1A; € A.
122 LetS={—,...,—2,—1,0,1,2,...} bethesetof all integers. AsetA C S

is called symmetric if A = — A. Prove that the collection A of all symmetric
subsets of S is an algebra.

123 LetS={—,...,—2,—-1,0,1,2...}. Let A, be the algebra of symmetric
subsets of S, and let A, be the algebra generated by sets A, = {—2, —1,
it,...,0p},n>1,wherei; >0, j=1,...,n.

(i) Show that A3 = A; N A, is an algebra.
(ii) Show that A4 = A; U A, is not an algebra.

1.2.4 Show thatif Ais ao-field, A, C A,41,foralln > 1, then lim A, € A.
n—o0o

Section 1.3

1.3.1 Let F(x) = P{(—o0, x]}. Verify
(@) P{(a,bl} = F(b) — F(a).
(b) P{(a,b)} = F(b—) — F(a).
(¢) P{la,b)} = F(b—) — F(a—).

1.3.2 Prove that P{A U B} = P{A} + P{BA}.

1.3.3 A point (X, Y) is chosen in the unit square. Thus, S = {(x,y): 0 < x,y <
1}. Let B be the Borel o-field on S. For a Borel set B, we define

mm://ww.
B

Compute the probabilities of

B:{(x,y):x>%}

C={(x,y):x2+y2§1}
DZ{(/V’)’)x-G-ySl}

P{DN B}, P{DNC)}, P{C N B}.
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1.34

1.3.5

1.3.6

BASIC PROBABILITY THEORY

LetS = {x : 0 < x < oo}and B the Borel o -field on S, generated by the sets

[0, x), 0 < x < oco. The probability function on B is P{B} = A/ e dx,
B
for some 0 < A < co. Compute the probabilities

() P{X <1/7}.

1
(iii) Let B, = |:O, <1 + —) /A). Compute lim P{B,} and show that it is
n n—o00

equal to P { lim Bn].

Consider an experiment in which independent trials are conducted sequen-
tially. Let R; be the result of the ith trial. P{R;, = 1} = p, P{R; =0} =1 —
p- The trials stop when (R, Ry, ..., Ry) contains exactly two 1s. Notice that
in this case, the number of trials N is random. Describe the sample space. Let

w,, be a point of S, which contains exactly n trials. w,, = {(i, ..., i1, 1)},
n—1

n—1

n>2 where Y ij=1.Let E, = {(i1,....in-1. 1) Y ij =1},

j=1 j=1
(i) Show that D = {E,, E3, ...} is a countable partition of S.

(i) Show that P{E,} = (n — 1)p*>q" 2, where0 < p < 1,g =1 — p, and

prove that ZP{E,I} =1.
n=2
(iili) What is the probability that the experiment will require at least 5 trials?

In a parking lot there are 12 parking spaces. What is the probability that
when you arrive, assuming cars fill the spaces at random, there will be four
adjacent spaces vacant, while all other spaces filled?

Section 1.4

14.1

1.4.2

14.3

Show that if A and B are independent, then A and B, A and B, A and B are
independent.

Show that if three events are mutually independent, then if we replace
any event with its complement, the new collection is still mutually
independent.

Two digits are chosen from the set P = {0, 1, ..., 9}, without replacement.
The order of choice is immaterial. The probability function assigns every
possible set of two the same probability. Let A;(i =0, ..., 9) be the event
that the chosen set contains the digit i. Show that for any i # j, A; and A
are not independent.
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144 LetAy,..., A, be mutually independent events. Show that

P {UA,-} =1-[]PiA}.
i=1 i=1
1.4.5 If an event A is independent of itself, then P{A} =0 or P(A) = 1.

1.4.6 Consider the random walk model of Example 1.2.
(i) Whatis the probability that after n steps the particle will be on a positive
integer?
(ii) Compute the probability that after n = 7 steps the particle will be at
x=1
(iii) Let p be the probability that in each trial the particle goes one step
to the right. Let A, be the event that the particle returns to the origin
after n steps. Compute P{A,} and show, by using the Borel-Cantelli

1
Lemma, that if p ;ri- then P{A,,i.0.} =0.

1.4.7 Prove that

0()-*
@ S0
w (1))~

1.4.8 Whatis the probability that the birthdays of n = 12 randomly chosen people
will fall in 12 different calendar months?

1.4.9 A stick is broken at random into three pieces. What is the probability that
these pieces can form a triangle?

1.4.10 There are n = 10 particles and m = 5 cells. Particles are assigned to the
cells at random.

(i) What is the probability that each cell contains at least one particle?

(i) What is the probability that all 10 particles are assigned to the first 3
cells?

Section 1.5

1.5.1 Let F be a discrete distribution concentrated on the jump points —oco <
£ <& <o <oo. Letp; =dF(),i = 1,2, .... Define the function

1, ifx=>0
Ulx) = {0, ifx <O.
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1.5.2

1.5.3

1.54

BASIC PROBABILITY THEORY

(i) Show that, for all —o0 < x < 00
o0
F(x)=)_ pU(x—&)
i=1

=Y nie <.
i
(ii) For & > 0, define
D) = UG+ B~ U1 = 11T(x = —h) — [ = O}
Show that

00 o0
/ > piDyU(x —&)dx =1 forallh > 0.
—0Q

i=1

o
(iii) Show that for any continuous function g(x), such that Z pilgE)l <

i=1
oo,

lim /_ N ; pig(X)DyU(x — &)dx = ; pig(&).

Let X be a random variable having a discrete distribution, with jump points
i

2

& =1i,and p; = dF(&) = e’z,—', i=0,1,2,.... Let Y = X3. Determine
i!

the p.d.f. of Y.

Let X be a discrete random variable assuming the values {1, 2, ..., n} with
probabilities
pl_n(n+1)9 £ 7n'

() Find E{X).
(ii) Let g(X) = X?; find the p.d.f. of g(X).

Consider a discrete random variable X, with jump points on {1, 2, ...} and
p.d.f.

femy =S, n=12...
n
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1.5.5

1.5.6

1.5.7

where c is a normalizing constant.
(i) Does E{X} exist?
(i) Does E{X/log X} exist?

Let X be a discrete random variable whose distribution has jump points
at {xy, x2,...,xr}, 1 <k < oo. Assume also that E{|X|} < co. Show that
for any linear transformation Y = o + Bx, B #0, —00 < o < 00, E{Y} =
o + BE{X}. (The result is trivially true for 8 = 0).

Consider two discrete random variables (X, Y) having a joint p.d.f.

: e r Y .
Sxy(j,n) = = - ( ) a1 =py", j=0,1,...,n,
Jin—=jN\1-p

n=20,1,2,....

(i) Find the marginal p.d.f. of X.

(ii) Find the marginal p.d.f. of Y.
(iii) Find the conditional p.d.f. fxy(j | n),n =0,1,....
(iv) Find the conditional p.d.f. fyx(n | j), j =0,1,....
(v) FInd E{Y | X =j},j=0,1,...
(vi) Show that E{Y} = E{E{Y | X}}.

Let X be a discrete random variable, X € {0, 1, 2, ...} with p.d.f.
fx(m)=e"—e "V n=0,1,....
Consider the partition D = {A|, A,, A3}, where

A ={w: X(w) <2},
Ay={w:2 < X(w) < 4},
As={w 4 < X(w)}.

(i) Find the conditional p.d.f.
fxp(x | A), =123

(i) Find the conditional expectations E{X | A;},i = 1,2, 3.
(iii) Specify the random variable E{X | D}.
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J a1

A
1.5.8 Foragiven A, 0 < A < 00, define the function P(j;A) = e Tk
=0 "

(i) Show that, for a fixed nonnegative integer j, F;(x) is a distribution
function, where

0, ifx <0
it = {I—P(j— l:x), ifx >0

and where P(j;0) = I{j > 0}.
(ii) Show that F;(x) is absolutely continuous and find its p.d.f.
(iii) Find E{X} according to F;(x).

1.5.9 Let X have an absolutely continuous distribution function with p.d.f.

3x%, if0<x<l1
0, otherwise.

f(X)={

Find E{e~X}.

Section 1.6

1.6.1 Consider the absolutely continuous distribution

0, ifx<O
Fx)=13x, if0<x<1
1, ifl<x

of a random variable X. By considering the sequences of simple functions

n ._1 '—l .
X,,(w):Z’n I{ln §X(w)<;—}, n>1

i=1

and

(i1 [i-1 i
Xn(w)_z< - )1{ - 5X(w)<n}, n>1,

i=1

show that

1
1

lim E{X,} :/ xdx = —
0 2

n—00
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and

1
1
lim E{X2} =f x2dx = —.
0 3

n—oo

1.6.2 Let X be a random variable having an absolutely continuous distribution F,
such that F(0) = 0 and F(1) = 1. Let f be the corresponding p.d.f.

(i) Show that the Lebesgue integral
i i—1
F|—=|)—-F .
[ (2”) ( 2 )]

(i) If the p.d.f. f is continuous on (0, 1), then

| o
i—1

P{dx} =1
Ax {X} nlfgog n

1 1
/ xPldx} =/ xf(x)dx,
0 0

which is the Riemann integral.

1.6.3 Let X, Y be independent identically distributed random variables and let
E{X} exist. Show that

X+Y
E(X|X+Y)=E{Y |X+Y)=""—as.
1.64 Let X,,..., X, be ii.d. random variables and let E{X,} exist. Let S, =
n Sn
ij. Then, E{X; | S,} = =, a.s.
j=1 "
1.6.5 Let
0, ifx <0
! if 0
-, if x =
Fx(x) = ‘1‘ |
Z~|—§x3, ifo0<x <1
1, if 1 <x.

Find E{X} and E{X?}.
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1.6.6

1.6.7

1.6.8

1.6.9

1.6.10

1.6.11

1.6.12

BASIC PROBABILITY THEORY

Let X1, ..., X, be Bernoulli random variables with P{X; = 1} = p.If n =
n
100, how large should p be so that P{S, < 100} < 0.1, when S, = in?

i=1
Prove that if E{|X|} < oo, then, for every A € F,
E{|X[1,(X)} = E{|X]}.
Prove that if E{|X|} < oo and E{|Y|} < oo, then E{X + Y} = E{X} +
E{Y}.
Let {X,} be a sequence of i.i.d. random variables with common c.d.f.

0, ifx <0
Fo = {1—e—a ifx >0,

Let Sn = ix,
i=l

(i) Use the Borel-Cantelli Lemma to show that lim S, = oo a.s.
n—oQ

Sn
(ii) What is lim E ?
n—00 14+ S8,

Consider the distribution function F of Example 1.11, witha = .9, A = .1,
and u = 1.
(i) Determine the lower quartile, the median, and the upper quartile of

Fae(x).

(ii) Tabulate the values of Fy(x) forx = 0, 1, 2, ... and determine the lower
quartile, median, and upper quartile of Fy(x).

(iii) Determine the values of the median and the interquartile range IQR of
F(x).

(iv) Determine P{0 < X < 3}.

Consider the Cauchy distribution with p.d.f.

1 1
f(x,M9U)=E' 1+(_x—l,(,)2/0'2,

—0 < X < 00,
with u = 10 and o = 2.
(i) Write the formula of the c.d.f. F(x).

(i) Determine the values of the median and the interquartile range of F(x).

Let X be a random variable having the p.d.f. f(x) = e™*, x > 0. Determine
the p.d.f. and the median of

(i) Y =logX,
(i) Y = exp{—X}.
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1.6.13 Let X be arandom variable havingap.d.f. f(x) = l —% <x< % Deter-
mine the p.d.f. and the median of d
(i) Y =sin X,
(ii) Y = cos X,

(i) ¥ = tan X.

1.6.14 Prove that if E{|X|} < oo then

0 o0
E{X) = —/ F(x)dx +/ (1 — F(x))dx.
00 0

1.6.15 Apply the result of the previous problem to derive the expected value of a
random variable X having an exponential distribution, i.e.,

0, ifx <0
Flx) = {1 —e ™, ifx >0.

1.6.16 Prove that if F(x) is symmetric around 7, i.e.,
Fn—x)=1—F(n+x—), forall 0 <x < oo,

then E{X} = 7, provided E{|X|} < oo.

Section 1.7

1.7.1 Let (X, Y) be random variables having a joint p.d.f.

1, if—l<x<1,0<y<1—Ix|
fxy(x,y) = {0, otherwise.

(i) Find the marginal p.d.f. of Y.
(ii) Find the conditional p.d.f. of X given {Y = y},0 <y < 1.

1.7.2 Consider random variables {X, Y}. X is a discrete random variable with
X

jump points {0, 1, 2, .. .}. The marginal p.d.f. of X is fx(x) = e_)\—', x =

0,1,..., 0 < A < o0o. The conditional distribution of Y given {X.: x},
x>1,is

0, y<0
Fyx(y | x)=q3y/x, 0<y=<x
1, X <y.
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When {X = 0}

0, <0
Fy|x(y|0)={1 S >0,

(i) Find E{Y}.
(ii) Show that the c.d.f. of Y has discontinuity at y = 0, and Fy(0) —
Fy(0—) = e

oo
(iiif) Foreach 0 < y < oo, Fy(y) = fr(¥), Wheref frdy =1 —e™*.
0
Show that, for y > 0,

(o] 00 1 )\‘x
fY(y)=ZI{n—1<y<n}e—’\ —

n=1 x=n

o0
and prove that/ frdy =1 —e™*.
0

(iv) Derive the conditional p.d.f. of X given {Y = y},0 < y < o0, and find
E{X|Y =y}

1.7.3 Show that if X, Y are independent random variables, E{|X|} < co and
E{|Y] < oo}, then E{XY} = E{X}E{Y}. More generally, if g, & are inte-
grable, then if X, Y are independent, then

E{g(X)h(Y)} = E{g(X)}E{h(Y)}.

1.7.4 Show that if X, Y are independent, absolutely continuous, with p.d.f. fx
and fy, respectively, then the p.d.f.of T = X 4+ Y is

fT(f)=/ Sx () fy(t — x)dx.

[ fr is the convolution of fx and fy.]
Section 1.8

1.8.1 Prove thatif E{|X|"} exists, r > 1, then lim (a)" P{|X| > a} = 0.
a—> 00

1.8.2 Let X, X, bei.i.d. random variables with E{X %} < 00. Find the correlation
between X;and T = X + X,,.

1.8.3 Let Xy,..., X, bei.i.d. random variables; find the correlation between X

_ 1 ¢
and the sample mean X, = ;EIX,-.
i
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1.8.4 Let X have an absolutely continuous distribution with p.d.f.

0, ifx <0
= )\4m
fX(x) xm—le—)LX’ if x 20
(m —1)!
where 0 < A < oo and m is an integer, m > 2.
(i) Derive the m.g.f. of X. What is its domain of convergence?

(ii) Show, by differentiating the m.gf. M(¢), that
mm+1)---(m+r—1)
)\‘r
(iii) Obtain the first four central moments of X.
(iv) Find the coefficients of skewness 8, and kurtosis ;.

,r> 1.

1.8.5 Let X have an absolutely continuous distribution with p.d.f.

1

fxx)=131b—-a’
0, otherwise.

ifa<x<b

(i) What is the m.g.f. of X?
(ii) Obtain E{X} and V{X} by differentiating the m.g.f.

1.8.6 Random variables X, X,, X3 have the covariance matrix
300
IT=10 2 1
01 2
Find the variance of Y = 5x; — 2x, + 3x3.

1.8.7 Random variables Xy, ..., X,, have the covariance matrix

T =1+,

n

_ 1
where J is an n x n matrix of 1s. Find the variance of X,, = _in'
n

1.8.8 Let X have a p.d.f.

_1y2
e 2, —00o<x < o0

fx(x) =

Find the characteristic function ¢ of X.

85

E(X"} =
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1.8.9

1.8.10

1.8.11

1.8.12

1.8.13

1.8.14

BASIC PROBABILITY THEORY

Let Xy, ..., X, be i.i.d., having a common characteristic function ¢. Find
n

the characteristic function of X, = — E X;.
n .
j=1

If ¢ is a characteristic function of an absolutely continuous distribution, its

p.d.f. is

I [ _
fx) = 2—/ e " p(t)dt.
T

o0

Show that the p.d.f. corresponding to

=t =1
o) = {0, it > 1
is
£ 1 —cosx ||<n
X)= ——, |x| < —=.
X2 2

Find the m.g.f. of a random variable whose p.d.f. is

a—ll
fxo) = {a—2 ll=a
05

if |x| > a,
0<a<oo.

Prove that if ¢ is a characteristic function, then |¢(¢)|* is a characteristic
function.

Prove that if ¢ is a characteristic function, then
@) ‘ l‘im ¢(t) = 0 if X has an absolutely continuous distribution.
t|—00

(ii) limsup|¢(z)| = 1 if X is discrete.

|t]—>o00
Let X be a discrete random variable with p.d.f.

X

A
et —, x=0,1,...
fx) = x!

0, otherwise.

Find the p.g.f. of X.
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Section 1.9

1.9.1

1.9.2

1.9.3

194

1.9.5

1.9.6

Let F,, n>1, be the c.df. of a discrete uniform distribution on
1 2

’

—, —, ..., 1 ¢. Show that F},(x) i) F(x), as n — oo, where
nn

0, ifx<O
Fx)=13x, ifO<x<1
1, ifl <x.

Let B(j;n, p) denote the c.d.f. of the binomial distribution with p.d.f.
b(jin, p) = <';>pj(1 -p)"l j=0,1,...n,
where 0 < p < 1. Consider the sequence of binomial distributions
1
F,(x) =B [ [x];n, o IH{0<x <n}+I{x >n}, n=>1.
n

What is the weak limit of F,(x)?

Let Xy, X5,...,X,,... be ii.d. random variables such that V{X_l} =

02 < 00, and = E{X,}. Use Chebychev’s inequality to prove that X, =

n
P
—E X; — pmasn — oQ.
n

i=1

Let X, X5, ... be asequence of binary random variables, such that P{X, =

1 1
1}=—,and P{X,,=0}=1——,n>1.
n n

(i) Show that X, 5 0asn — oo, for any r > 1.

(ii) Show from the definition that X, L5 0asn — oo.
(iii) Show that if {X,} are independent, then P{X, = 1,i.0.} = 1. Thus,
X, # 0as.

Let €, €, ... be independent r.v., such that E{e,} = 1 and V{e,} = o2

for all n > 1. Let X; = ¢; and for n > 2, let X, = BX,_ + €,, where
n

1B

_ 1<
—l<,3<1.Sh0wthatXn=—ZX,~ —2> ,asn — 00.
e

Prove that convergence in the rth mean, for some r > 0 implies convergence
in the sth mean, forall0 < s < r.
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1.9.7

1.9.8

1.9.9

1.9.10

1.9.11

1.9.12

BASIC PROBABILITY THEORY

Let Xy, X5, ..., X, ... be i.i.d. random variables having a common rect-
angular distribution R(0, 6),0 < 6 < oo. Let X(,) = max{X;, ..., X,}. Let

€ > (. Show that ZP(’{X(") < 6 — €} < o0o. Hence, by the Borel-Cantelli
n=1

Lemma, X, 2% 6, as n — o0o. The R(0, 0) distribution is

0, ifx<O
Fy(x) = g if0<x <6
1, ifo <x

where 0 < 6 < oo.

Show that if X, —> X and X, —= Y, then P{w : X(w) # Y(w)} = 0.

Let X, —> X,Y, -2 Y, P{w: X(w) # Y(w)} = 0. Then, for every

€ >0,

P{|X,—Y,|>€}—>0, asn— oo.

. d .
Show thatif X,, — C asn — oo, where C is a constant, then X, 2 c.

o0
Let {X,,} be such that, for any p > 0, ZE{|X,,|P} < 0. Show that X, —>

n=1
Oasn — oo.

Let {X,,} be a sequence of i.i.d. random variables. Show that E{| X |} < oo
o

if and only if Y "P{|X;| > € - n} < co. Show that E|X;| < oo if and only
n=1
a.s.

o Xn o as.
if — — 0.
n

Section 1.10

1.10.1

1.10.2

Show that if X, has a p.d.f. f, and X has a p.d.f. g(x) and if /|fn(x) —
g(x)|dx — 0asn — oo, then sup|P,{B} — P{B}| — 0asn — oo, for all
B

Borel sets B. (Ferguson, 1996, p. 12).

Show that if a’X,, 4 a’X as n — oo, for all vectors a, then X, 4 X
(Ferguson, 1996, p. 18).
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1.10.3 Let {X,} be a sequence of i.i.d. random variables. Let Z, = /n(X, — 1),

B ] n
n > 1, where u = E{X;} and X,, = —ZXi. Let V{X,} < oo. Show that
n

i=1

{Z,) is tight.

1.10.4 Let B(n, p) designate a discrete random variable, having a binomial distri-

1
bution with parameter (n, p). Show that {B (n, 2—)} is tight.
n

1.10.5 Let P(A) designate a discrete random variable, which assumes on

A
{0,1,2,...)thep.df. f(x)= e’)\—',x =0,1,...,0 < A < co. Using the
x!

continuity theorem prove that B(n, p,) N P if limnp, = A.
n— 00

1
1.10.6 LetX, ~ B (n —) n > 1. Compute lim E{e *"}.
2n n—00

Section 1.11

1.11.1 (Khinchin WLLN). Use the continuity theorem to prove that if X,

X5, ..., X,,... are iid. random variables, then X, AN i, where
n=E{X}.

1.11.2 (Markov WLLN). Prove thatif X, X5, ..., X,, ... are independent random
variables and if p; = E{X} exists, forall k > 1, and E|X; — ux|'*® < o0

1
for some § > 0, all kK > 1, then 1_ZE|X" — y,kl”‘3 — 0asn—> o0
nl+s —

1 n
implies that — E (X — x) L5 0asn — oo.
n
k=1

1.11.3  Let {X,} be a sequence of random vectors. Prove that if X, LN 1 then

n

_ _ 1
X, SN i, where X, = —ZXj and n = E{X;}.
n

1.11.4 Let {X,} be a sequence of i.i.d. random variables having a common p.d.f.

0, ifx <0
= A
fx) — = _xmleA ifx >0,
(m— 1!
where0 < A < oo,m =1, 2, .... Use Cantelli’s Theorem (Theorem 1.11.1)

= s, m
to prove that X, 25 o asn — oo.
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1.11.5 Let {X,} be a sequence of independent random variables where
X, ~ R(—n,n)/n

and R(—n, n) is arandom variable having a uniform distribution on (—n, n),
i.e.,
Su(x) ! 1 (x)
nX) = = L—nn)(X).
o
Show that X, — 0, as n — oc. [Prove that condition (1.11.6) holds].

1.11.6 Let {X,} be a sequence of i.i.d. random variables, such that |X,| < C a.s.,
forall n > 1. Show that X, ——>  asn — oo, where u = E{X;}.

1.11.7 Let {X,} be a sequence of independent random variables, such that
1 1
P{X,=xl}==-(1——
2 21

and

P{X, = xn} = n>1.

1
n’

| =

1o
Prove that —ZX,- 25 0,as n — oo.
n

i=1
Section 1.12
1.12.1 Let X ~ P()),i.e.,

X

A
f(x):e’x—', x=0,1,....
x!

Apply the continuity theorem to show that

X—h 4 No 1), as A
—_— ,1), as A — oo.
NG
1.12.2 Let {X,} be a sequence of i.i.d. discrete random variables, and X; ~ P(}).
Show that
S N0 1), as 1 — 0o
3 b n .
A

What is the relation between problems 1 and 2?
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1.12.3

1.124

1.12.5

1.12.6

1
Let {X,} be i.i.d., binary random variables, P{X, = 1} = P{X, =0} = >
n > 1. Show that

= 1
Six, - Mt
i=1 4

—d> N(, 1), as n — oo,

Bil

nn+1)2n+1) .

where B2 =
24

> 1.

Consider a sequence {X,} of independent discrete random variables,
1

P{X, =n}=P{X, =—n}= > n > 1. Show that this sequence satisfies
the CLT, in the sense that
J6 S, d

—> N(0,1), as n — oo.

Jnn+1D)2n+1)

Let {X,} be a sequence of i.i.d. random variables, having a common abso-
lutely continuous distribution with p.d.f.

if [x| 1
— if x| < -
flx) = 2|x|log? |x| T
0, if x| > -

e

Show that this sequence satisfies the CLT, i.e.,
X,
Ji 2t L N, 1), as n— oo,
o

where 0% = V{X}.
(i) Show that

(G,n)—n) a
T —> N(,1), as n > o0

where G(1, n) is an absolutely continuous random variable with a p.d.f.

0, ifx <0

gn(x) = 1 n—]e—x x > O
n— 1) o=
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(ii) Show that, for large n,

1 1
w—0" T Jamn

n—1_-n
~

gn(n) =

1
n!~ 2 n"t2e™ as n — oo.
This is the famous Stirling approximation.

Section 1.13

1.13.1 Let X,, ~ R(—n, n), n > 1.Is the sequence {X,} uniformly integrable?

1132 Letz, — ‘o™

Jn

1.13.3 Let {X;,X5,..., X,,...} and {Y},Y>,...,Y,,...} be two independent
sequences of ii.d. random variables. Assume that 0 < V{X;} =0’ <
00, 0 < V{Y;} = oy? < 00. Let f(x,y) be a continuous function on R?,
having continuous partial derivatives. Find the limiting distribution of
J(f(X,, Y,) — f(E,n), where £ = E{X,}, n = E{Y1}. In particular, find
the limiting distribution of R, = X,,/Y,, when n > 0.

~ N(0, 1),n > 1. Show that { Z, } is uniformly integrable.

1.13.4 Wesaythat X ~ E(u), 0 < u < oo, if its p.d.f. is

0, ifx <0
pue . ifx > 0.

f(X)={

Let Xy, X»,..., X,, ... be a sequence of i.i.d. random variables, X; ~

_ I —
E(n),0 < pu <oo.LetX, = —ZX,-.
i

(a) Compute V{eX} exactly.
(b) Approximate V {e*"} by the delta method.

1.13.5 Let{X,}bei.i.d. Bernoullirandom variables, i.e., X; ~ B(1, p),0 < p < 1.

. 1 n
Let p, = ;X}:X, and
i=
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Use the delta method to find an approximation, for large values of n, of
@) E{W,}
@) V{w,}.

Find the asymptotic distribution of /7 <W,, ~log (%))
—p

1.13.6 Let X{, X, ..., X, bei.i.d. random variables having a common continuous
distribution function F(x). Let F,(x) be the empirical distribution function.
Fix a value xg such that 0 < F;,(xg) < 1.

(i) Show that nF,,(x9) ~ B(n, F(xp)).
(ii) What is the asymptotic distribution of F,,(xg) as n — oo?

1.13.7 Let Xy, X5, ..., X,, be i.i.d. random variables having a standard Cauchy
distribution. What is the asymptotic distribution of the sample median

F-1 l‘?
n 2'

PART IV: SOLUTIONS TO SELECTED PROBLEMS

k
1.1.5 Forn=2, A{UA, = A; N A,. By induction on n, assume that UAi =

i=1

k
mAi forallk=2,...,n.Fork=n+1,
i=1

i=1 i=1

1.1.10 We have to prove that | lim An) - (m An). For an elementary event

n—>00 n—00
w e S, let
1, ifweA,
Ia,(w) = {o, ifw ¢ A,
o o0
Thus, if w € lim A, = U ﬂAn, there exists an integer K (w) such that
n—oo n:1 k=n
]‘[ Iy (W) =1.
n>Kw)

oo oo oo
Accordingly, foralln > 1,w € kLJAk. Here w € m kLJAk = nli)_n;oA,l.
=n n=1 k=n
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1.1.15

1.2.2

1.2.3

BASIC PROBABILITY THEORY

Let {A,} be a sequence of disjoint events. For all n > 1, we define

B, = B,_1AA,
= Bn—IAn ) én—lAn

and

B = A,

B, = A A, UA A,

By = (A1 A2 U A1 A2)A3 U (A1A2 U A Ay)As
= (A1A; N A1A)A3 U A AR5 U A Ay Ay
= (A1 UA)(A UA)A3 U A AyA3 U A1 Ay A,
= A1 A)A3 UA AyA3 U A1Ay A3 U A AL A5,

By induction on n we prove that, for all n > 2,

B, = ﬁA,- U OA,- (A; :OA,-.
j=1 i=1

i=1 j#i

[e ]
Hence B, C B+ foralln > 1 and lim B, = UA,,.

n—o0
n=1
The sample space S = Z, the set of all integers. A is a symmetric setin S, if
A = —A. Let A = {collection of all symmetric sets}. ¢ € A.If A € A then
A e A.Indeed —A = —S — (—A) =S — A = A. Thus, A € A. Moreover,
if A, B € Athen AU B € A. Thus, A is an algebra.

S =7Z. Let A; = {generated by symmetric sets}. A, = {generated by
(=2, —-1,i1,...,ip), n>1,i; e N Vj=1,...,n}. Notice that if A=
(=2, =1,iy,...,i,)then A = {(--- , =4, =3, N — (i1, ..., i,))} € A;, and

S=AUA| € A;. A, is an algebra. A3 = A;NA,. If B € Az it must
be symmetric and also B € A;. Thus, B=(—-2,—-1,1,2) or B =
(---,—4,-3,3,4,...). Thus, B and B are in A3, so S=(BUB) € 43
and so is ¢. Thus, A is an algebra.

Let A4=A,UA,. Let A={-2,—1,3,7} and B = {—3,3}. Then
AUB ={-3,-2,—1,3;7}. But AU B does not belong to .4; neither to
A,. Thus AU B ¢ A4. Ay is not an algebra.
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1.3.5 The sample space is

n—1
S = {1, in1, 1):Zij =1, n>2}.
j=1

n—1
(@) Let E, = {(1.....ip-1,1): Y ij=1g, n=2,3,.... For j #k,
j=1

E;NE; = . Also U E,=S8. Thus, D = {E,, E3, ...} is a count-
n=lI
able partition of S.
(i) Allelementaryeventsw, = (i, ..., i,—1, 1) € E, are equally probable
and P{w,} = p’q" 2. There are (*;') = n — 1 such elementary events
in E,. Thus, P{E,} = (n — l)pzq"_z. Moreover,

Y PIEN=p*) (n—1g"
n=2 n=2

oo
:pZZlqk—l =1.
=1

Indeed,

o] ]

3 g ZZ%‘]I

=1 =1

_4d(_ 4
Cdg\1—¢q

1 1

T

(iii) The probability that the experiment requires at least 5 trials is the
probability that in the first 4 trials there is at most 1 success, which is
1 — p*(1 429 4 3¢7).

1.4.6 Let X, denote the position of the particle after n steps.

(i) If n = 2k, the particle after n steps could be, on the positive side only on
even integers 2,4, 6, ..., 2k. If n = 2k + 1, the particle could be after
n steps on the positive side only on an odd integer 1, 3,5, ..., 2k + 1.
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Let p be the probability of step to the right (0 < p < )andg =1—p
of step to the left. If n = 2k + 1,

2]
P{X,=2j+1} = <]>p2k+l igl, j=0,... k.

Thus, if n =2k + 1,

k
2j -
P{X,>0}=)" (J{)py‘“_-’q-’.

j=0

In this solution, we assumed that all steps are independent (see Sec-
tion 1.7). If n = 2k the formula can be obtained in a similar manner.

6
1
() P{X;=1}=)p*e’. I p= 5 then P{X7 = 1) = % = 0.15625.

(iii) The probability of returning to the origin after n steps is

0, ifn=2k+1

o0
1
Let A, = {X, = 0}. Then, ZP{A2k+1} =0 and when p = _,
k=0

2k\ 1 2 k) 1
ZP{Azk}—Z< >22k kg(‘:(k!)2~4—k:oo.

k=0

1
Thus, by the Borel-Cantelli Lemma, if p = > P{A,i.0o.} =1.0nthe

1
other hand, if p # >

o]

> <2k> (pg) = Rl <00
—~\k VT=4pq (1+/T—=4pq)

1
Thus,if p # - P{A,i.0) =0.

1.5.1 F(x) is a discrete distribution with jump points at —oo < & < & < -+ <
o0.pi=d(F§),i=1,2,....Ux)=1(x > 0).
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() Ux —&)=1(x = &)
F)=Y pi=Y pUx—§&).
&<x i=1

(ii) For h > 0,
1
D,U(x) = E[U(x +h) = Ux)].
Ux +h)=1if x > —h. Thus,

DyU(x) = l1(—h <x <0

& o
/ Zp,thx—s,)dx—Zpl /h é_du=Zp,-=1.
- trd i=1
Lo EiC)
i) Jim [ Zp,g(x)DhU(x—s,)dx—Zp, lim | S

- 5 G(Sz) G(Ez
=§ hiO _Zplg(“;:l

& d
Here, G(§) = / g(x)dx; d—EG(fi) = g(&).

1.5.6 The joint p.d.f. of two discrete random variables is

e r Y .
fxy(j,n) == - < )(A(]—p))",]:0,...,nn=0,1,....
Jin =PI\l —p

(i) The marginal distribution of X is

(D =Y frr(iom)
n=j
_ Pl —py @A =—p)
R Dy ey

_ 0P i (1 - p)"

i
A n=0

Ap)/
:fwlgﬂ i=01,2,....
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(i) The marginal p.d.f. of Y is

frimy =" pxy(j.n)
=0

i) par(|ny = XX (’]’.)pfa —py I, j=0,....n

fr(n)
~_ Jxx(j,n)
(iv) pyix(nlj)= fx—(J)
— o MI=p) (1 = p)y—i n>
(n—pn -
(v) EY|X=j)=j+11-p).
(vi) E{Y} = E{E{Y | X}} = A(1 — p) + E{X}
=AMl —p)+ip=A.
0, ifx <0
158 Fit) = {I—P(j—l;x), if x >0,
j-1
where j > 1,and P(j — 1;x) = e %
i=0""

(i) We have to show that, foreach j > 1, F;(x)isac.d.f.
(i) 0< Fj(x)<1forall0 <x < oo.
(ii) F;(0) =0and lim F;(x) = 1.
X—>00

(iii) We show now that F;(x) is strictly increasing in x. Indeed, for all
x>0

Jj—1 i
%Fj(x) =— ; % (e_")l.c—!)
j-l Y il
=e "+ ; (e‘*; — e_xm>
X!

= *— >0, forall0<x < o0.
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(ii) The density of F;(x) is

xIi-1

fikx) = — e, j>1, x=>0.
! (j— !

F;(x) is absolutely continuous.

00 xj 3
(iii) E;{X} :/0 = 1)!e Tdx

1.6.3 X, Y are independent and identically distributed, E|X| < oo.

EX|X+Y}+EY|X+Y}=X+Y

X+Y
E{XIX+Y}=E{Y|X+Y}=%.
0, x <0
1.6.9 Fo) = {l—e_x, x> 0.

(i) Let A, ={X, > 1}. The events A,, n > 1, are independent. Also

oo
P{A,} = e~!'. Hence, ZP{An} = 00. Thus, by the Borel-Cantelli

n=1
Lemma, P{A,i.0.} = 1. That s, P (nm S, = oo) =1
n— 00
Sn . . .
(ii) s > (. This random variable is bounded by 1. Thus, by the Dom-
' S, S,
inated Convergence Theorem, lim E = FE{ lim
n—00 1+ S, n—ool 4+ S,
=1.
0, ifx <0
— A‘ﬂ‘l
1.8.4 fX(x) xm—le—kx’ x> 0; m > 2.
(m—1)!
(i) The m.g.f. of X is
)"m o0
M) = —f e D xm=1gx
(m = 1! Jo

AT "
=—=(1—— , fort < A.
(A —t)m A



100

BASIC PROBABILITY THEORY

The domain of convergence is (—o0, A).

—m—1
t
(i) M@=" (1 — —)
A A
, m(m + 1) £\ "2
Mity=————(1——
=" (1)
_ —(m+r)
M(’)(t)zm(m+1) (m+r—1) (1_£> .
AT A
Thus, 11, = M(r)(t)|r:o _ m(m +1)- -/\-r(m +r—1 "
m
(iii) =
_ m(m + 1)
M=
_m(m+1)(m+2)
W=
_ m(m+ 1)(m + 2)(m + 3)
M4 = I .

The central moments are
uy =0
* 2 m
My = U2 — U] = ﬁ
Wy = s — 3paps + 213
1
= F(m(m + D(m +2) = 3m*m + 1) +2m>)

2m
=%

W = pa — dpsp + 6pop; — 3u
1
= F(m(m + D)(m + 2)(m + 3) — 4m*(m + 1)(m + 2)

+ 6m3(m + 1) — 3m*)

3m(m + 2)
T

) _2m 2 _ 3mm+2) 6
) bi=in = B T3
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1.8.11 The m.gf.is

l a
Mx(t) = a_2/ e (a — |x|)dx

2(cosh(at) — 1)
- ar

1
=1+ E(at)2 +o(t), ast— 0.

0, x<0O
. 1
1.9.1 Fy(x) = i, i§x<]+ ,j=0,...,n—1
n o n n
1, 1<ux.
0, x<O
Fx)y={{x, 0<x<l
1, 1<x.

All points —00 < x < 00 are continuity points of F(x). lim F,(x) = F(x),
n—oo

1
for all x <0 or x > 1. |F,(x)— F(x)] < — for all 0 <x < 1. Thus
n

F,(x) BN F(x),asn — oo.

1
0, w.p. (l — —)
1.9.4 X, = n

1
1, wp.—
n

n>1.

1 1 ;
(i) E{|X,|"} = —-1=—forallr > 0. Thus, X, —> 0, forall r > 0.
n n

n—oo

(i) P{|X,| > €} = —foralln > 1,any € > 0. Thus, X, —> 0.
n

n—oo
1 21
(iif) Let A, = {w : X,(w)=1}; P{A,}=—, n>0. ) — =oo. Since
n n

n=1
X1, X5, ... are independent, by Borel-Cantelli’s Lemma, P{X, =
1,i.0.} = 1. Thus X,, /# 0 a.s.

1.9.5 €y, e, independent r.v.s, such that E(e,,) = u,and V{e,} = o.Vn>1.

X1 =€,
Xy =BXp1+e€ =B(BXn2+€1)+e

o= B"Te Vnz=1, |Bl<1.
j=1
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Thus, E{X,} = uy_p/ — ﬁ
=0

ZZﬂ’ Te;

i=1 j=I1
n
12" 3 p
i
= — Gj IB J
Jj=l =]

1 n l_ﬂnfjJrl
= —Zej—
n 1—-8

j=1

Since {¢,} are independent,

V{X } _ 2(1 )2 Z(l n ]+1
2 n+1 2 2n+1
= g <1—2ﬂ(1_'3+)+’3(1_'3+)>—>Oasn—>oo.
n(l — B)? n(l —pB) n(l - B2)
Furthermore,
) " 2 ) ) 1 2
E=<Xn_ l—ﬂ) } = V{Xn}+ (E{Xn}_ 1_ﬂ>
A% 12
Y 1 — _ pn+ly2
(E{X,,} 1_,3> _n2(1—/3)2(1 B = 0 as n — oo.
— 2 "
H , Xn _—
ence — —5
1.9.7 X, X;, ... i.i.d. distributed like R(0, 0). X,, = max (X;). Due to indepen-

<i<n
dence,

0, x <0
F,(x)= P{X, <x}= ()
(x) = P{X( < x} (9) 0<x<6

1, 0 < x.
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Accordingly, P{Xu <0 —¢€}= (1 — 2) , 0<e<®. Thus,

o0

ZP{XW <0 —€}<oo, and P{Xy <6 —¢€,i.0.}=0. Hence,
n=1

X(n) — 6 a.s.

1.10.2 We are given that a'’X, ~4, a’X for all a. Consider the m.g.f.s, by conti-
nuity theorem Myx, (1) = E {eXn} - E{e'*=X}, for all ¢ in the domain of

convergence. Thus E{e/®*} — E{e»X} forall 8 = ra. Thus, X, X

1106 X, ~ B (n l)
n

Thus, lim My, (—1) = M,(—1), where X ~ P(1).

L1 G Mx,(f)=<MX G))
efe*])

(1 + = E{X}+0<l))n
n
1 n
<1 + ,LL+0 (n)) r::o et”, Vt.

e'* is the m.g.f. of the distribution

0, x<p
X > U

.. - d -
Thus, by the continuity theorem, X,, —> u and, therefore, X, HLIN w,
asn — oo.

1.11.5 {X,} are independent. For § > 0,

X, ~ R(—n,n)/n.
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The expected values are E{X,} =0Vn > 1.

) 4n? _1
T 12n 3
L <00

2

n:ln

Hence, by (1.11.6), X, = 0.

1.12.1 Mx = E {gt(%)} — e*\/xf*)u(lfe//ﬁ).

e

t 12
l—eXP{l/ﬁ}=1—<l+ﬁ+ﬁ+~-~)

ot 12
U 2
Thus,
Vat — a1 — eV t2+0<1)
- —e = — — ).
2 A
Hence,

M x-i (t) = €X (0] — / as A (0. ¢]
— _ e 2 — .

My(t) = /% is the m.g.f. of N(0, 1).

1

1.12.3 PX,=1)= 5
P(X, = 0) = -

n — - 29

1

E{X,} ==

X} =3
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3 n
n n . . n(n+1)
LetY, =nX,; E{Y,} = 5,E|Y,,|3 = ?.Notlcethat;in - =
- i i3 )
Z(Yi — 1), where p; = 3= E{Y;}. ElY; — w;]® = T Accordingly,
i=1

3 1
DB — wil’) L 4 12
i=l = 4 — 0 asn— oo.

n 3/2
D E((Y; — )’y (2]—4n(n +1)2n + 1))
i=1

Thus, by Lyapunov’s Theorem,

Zl n(n + 1)

1 1/
(an(n +1)(2n + 1))

> -5 NO, 1) asn — oo.

1135 {X,}iid. B(1,p),0<p < 1.

. 1
:;ZX"

W J—
=log —pn)
1
@ E{W,} = log 1 + 2—1)(1 - p)W'(p)
— n
, (I-pAd-=p+p) 1
W = =
) p(1— py? p(1—p)
” (1-2p)
Wi(p) = ——=
2 pi(1 — p)?
Thus,
~ p 1-2p
B = fos (1 - p> T o= p)
(i) yowy=d=p 1

n (p(1 = p))?
B 1
~np(l—p)



CHAPTER 2

Statistical Distributions

PART I: THEORY
2.1 INTRODUCTORY REMARKS

This chapter presents a systematic discussion of families of distribution functions,
which are widely used in statistical modeling. We discuss univariate and multivariate
distributions. A good part of the chapter is devoted to the distributions of sample
statistics.

2.2 FAMILIES OF DISCRETE DISTRIBUTIONS

2.2.1 Binomial Distributions

Binomial distributions correspond to random variables that count the number of suc-
cesses among N independent trials having the same probability of success. Such trials
are called Bernoulli trials. The probabilistic model of Bernoulli trials is applicable in
many situations, where it is reasonable to assume independence and constant success
probability.

Binomial distributions have two parameters N (number of trials) and 8 (success
probability), where N is a positive integer and 0 < 8 < 1. The probability distribution
function is denoted by b(i; N, 0) and is

N\ . .
b(i;N,@):(,)@’(l—@)N_’, i=0,1,...,N. (2.2.1)
i

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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The c.d.f. is designated by B(i; N, ), and is equal to B(i; N,60) = Zb(j; N, 0).
j=0

The Binomial distribution formula can also be expressed in terms of the incomplete
beta function by

N
2:MﬁNﬁ)=@@JV—a+D,¢n=L“”N (2.2.2)
j=a
where
1 &
I:(p, q) = ‘/ uP' (1 —uw)?'du, 0<é&<l. (2.2.3)
B(p.q) Jo

1
The parameters p and g are positive, i.e., 0 < p, g < 00; B(p,q) = / w11 —
0

u)?~'du is the (complete) beta function. Or

BG(;N,O)=1—1I(i+1,N—i)=T_o(N —i,i+1), i=0,...,N—1.
(2.2.4)

The quantiles B_l(p;N ,0), 0 < p < 1, can be easily determined by finding the
smallest value of i at which B(i; N, 6) > p.

2.2.2 Hypergeometric Distributions

The hypergeometric distributions are applicable when we sample at random without
replacement from a finite population (collection) of N units, so that every possible
sample of size n has equal selection probability, 1/ (2’ ) If X denotes the number of
units in the sample having a certain attribute, and if M is the number of units in the
population (before sampling) having the same attribute, then the distribution of X is
hypergeometric with the probability density function (p.d.f.)

(D)(20)
i n—i
h(i;N,M,n) = ————%, i=0,.
@@ n) N i

n
The c.d.f. of the hypergeometric distribution will be denoted by H(i; N, M, n). When
n/N is sufficiently small (smaller than 0.1 for most practical applications), we can

approximate H(i; N, M, n) by B(i;n, M/N). Better approximations (Johnson and
Kotz, 1969, p. 148) are available, as well, as bounds on the error terms.

. (2.2.5)
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2.2.3 Poisson Distributions

Poisson distributions are applied when the random variables under consideration
count the number of events occurring in a specified time period, or on a spatial
area, and the observed processes satisfy the basic conditions of time (or space)
homogeneity, independent increments, and no memory of the past (Feller, 1966,
p. 566). The Poisson distribution is prevalent in numerous applications of statistics to
engineering reliability, traffic flow, queuing and inventory theories, computer design,
ecology, etc.

A random variable X is said to have a Poisson distribution with intensity A,
0 < X < oo, if it assumes only the nonnegative integers according to a probability
distribution function

i

A
pisMy=er—, i=01... (2.2.6)
!

The c.d.f. of such a distribution is denoted by P(i; A).

The Poisson distribution can be obtained from the Binomial distribution by let-
ting N — o0, 6§ — 0 so that N6 — X, where 0 < A < oo (Feller, 1966, p. 153, or
Problem 5 of Section 1.10). For this reason, the Poisson distribution can provide a
good model in cases of counting events that occur very rarely (the number of cases
of arare disease per 100,000 in the population; the number of misprints per page in a
book, etc.).

The Poisson c.d.f. can be determined from the incomplete gamma function accord-
ing to the following formula

1 o0 !
P(k;A) = —/ xke ¥ dx, (2.2.7)
Ctk+1) J,
forallk =0, 1, ..., where
T(p) = / xP e dx, p>0 (2.2.8)
0
is the gamma function.

2.2.4 Geometric, Pascal, and Negative Binomial Distributions

The geometric distribution is the distribution of the number of Bernoulli trials until
the first success. This distribution has therefore many applications (the number of
shots at a target until the first hit). The probability distribution function of a geometric
random variable is

gi;:0) =000 —-0)"" i=1,2,... (2.2.9)

where 6, 0 < 6 < 1, is the probability of success.
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If the random variable counts the number of Bernoulli trials until the v-th success,
v =1,2,..., we obtain the Pascal distribution with p.d.f.

g(i:6,v) = (’ 1)9”(1 —0), i=vv+1,.... (2.2.10)
b

The geometric distributions constitute a subfamily with v = 1. Another family of
distributions of this type is that of the Negative-Binomial distributions. We designate
by NB(yr, v),0 < ¢ < 1,0 < v < oo, arandom variable having a Negative-Binomial
distribution if its p.d.f. is

b(i: = _POFD i =0t 22.11
n(l,w,l))—m( —w)w, 1 =0,1,.... ( )

Notice that if X has the Pascal distribution with parameters v and 6, then X — v
is distributed like NB(1 — 6, v). The probability distribution of Negative-Binomial
random variables assigns positive probabilities to all the nonnegative integers. It can
therefore be applied as a model in cases of counting random variables where the
Poisson assumptions are invalid. Moreover, as we show later, Negative-Binomial
distributions may be obtained as averages of Poisson distributions. The family of
Negative-Binomial distributions depend on two parameters and can therefore be
fitted to a variety of empirical distributions better than the Poisson distributions.
Examples of this nature can be found in logistics research in studies of population
growth with immigration, etc.

The c.d.f. of the NB(y, v), to be designated as NB(i; ¥, v), can be determined by
the incomplete beta function according to the formula

NB(kk; Y, v) =1y, k+1), k=0,1.... (2.2.12)

A proof of this useful relationship is given in Example 2.3.

2.3 SOME FAMILIES OF CONTINUOUS DISTRIBUTIONS

2.3.1 Rectangular Distributions

A random variable X has a rectangular distribution over the interval (6, 6,), —co <
01 < 6, < oo, if its p.d.f. is

s if 91 <X < 92
fr(x;61,6y) = § 02— 6 2.3.1)

0, otherwise.

The family of all rectangular distributions is a two-parameter family. We denote r.v.s
having these distributions by R(#, 6;); —00 < 6 < 6, < co. We note that if X is
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distributed as R(6,, 8,), then X is equivalent to 6; + (6, — 6;)U, where U ~ R(0, 1).
This can be easily verified by considering the distribution functions of R(8;, 6»)
and of R(0, 1), respectively. Accordingly, the parameter « = 6; can be considered a
location parameter and § = 6, — 6, is a scale parameter. Let fy(x) = I{0 < x < 1}
be the p.d.f. of the standard rectangular r.v. U. Thus, we can express the p.d.f. of
R(01, 6,) by the general presentation of p.d.f.s in the location and scale parameter
models; namely

x—91
6, — 0,

fr(x;61,6,) = ! fu ( ) , —o00 <x < oo. (2.3.2)
6, — 0y

The standard rectangular distribution function occupies an important place in the
theory of statistics. One of the reasons is that if a random variable has an arbitrary
continuous distribution function F(x), then the transformed random variable ¥ =
F(X) is distributed as U. Foreach §,0 < § < 1, let

F;'(6) =inf{x : F(x) = &) = £. (2.3.3)
Accordingly, since F(x) is nondecreasing and continuous,
PFX)<§)=PX < F ') =FF'(¢) =¢. (2.34)

The transformation X — F(X) is called the Cumulative Probability Integral
Transformation.
Notice that the pth quantile of R(8;, 6,) is

R,(61,60,) = 61 + p(6, — 61). (2.3.5)

The following has application in the theory of testing hypotheses.
If X has a discrete distribution F'(x) and if we define the function

Hx,y)=Fx —-0)+y[F(x)— F(x —0)], (2.3.6)

where —0o0 < x < 0o and 0 < y < 1, then H(X, U) has a rectangular distribution
as R(0, 1), where U is also distributed like R(0, 1), independently of X. We notice
that if x is a jump point of F(x), then H(x, y) assumes a value in the interval
[F(x — 0), F(x)]. On the other hand, if x is not a jump point, then H(x, y) = F(x)
for all y. Thus, for every p,0 < p <1,

H(x,y) < p if and only if

x < F7'(p) or x = F (p) and y < y(p),
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where

p=FF (p)-0)
F(F~Y(p)) = F(F~'(p) = 0)’

y(p) = (2.3.7)

Accordingly, forevery p,0 < p <1,

P{H(X,U) < p} = P{X < F ' (p)} + P{U < y(p)}P{X = F'(p)}
= F(F ' (p) = 0)+ y(PIF(F ' (p)) — F(F'(p) — 0)] = p.
(2.3.8)

2.3.2 Beta Distributions

The family of Beta distributions is a two-parameter family of continuous distributions
concentrated over the interval [0, 1]. We denote these distributions by B(p, ¢); 0 < p,
q < oo. The p.d.f. of a B(p, q) distribution is

fsp,g) = P la—x)t 0<x<l. (2.3.9)

1
B(p.q)

The R(0, 1) distribution is a special case. The distribution function (c.d.f.) of S(p, ¢)
coincides over the interval (0, 1) with the incomplete Beta function (2.3.2). Notice
that

Ie(p,g) =1—1L1_¢(q, p), forall 0 <& <1. (2.3.10)
Hence, the Beta distribution is symmetric about x = .5 if and only if p = q.

2.3.3 Gamma Distributions

The Gamma function I'(p) was defined in (2.2.8). On the basis of this function
we define a two-parameter family of distribution functions. We say that a random
variable X has a Gamma distribution with positive parameters A and p, to be denoted
by G(1, p), if its p.d.f. is

)LP
fla, p)= e )x!’—‘e—“, 0<x<oo. (2.3.11)
P

2~!is a scale parameter, and p is called a shape parameter. A special important case
is that of p = 1. In this case, the density reduces to

fa)=xe™, 0<x<oo. (2.3.12)
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This distribution is called the (negative) exponential distribution. Exponentially
distributed r.v.s with parameter A are denoted also as E(}).

The following relationship between Gamma distributions explains the role of the
scale parameter A~!

1
G(r. p)~ ~G(1, p). forall . (2.3.13)

Indeed, from the definition of the gamma p.d.f. the following relationship holds for
all§,0 <& < oo,

P{G(™ _ M plp=hx
,p) <&} = () xP e M dx
prJo (2.3.14)

RN [ —P{lG(l ) <
_F(p)/o xP7 e dx = . ,p_S}.

In the case of A = % and p =v/2,v =1, 2, ... the Gamma distribution is also called
chi-squared distribution with v degrees of freedom. The chi-squared random variables
are denoted by x2[v], ie.,

2~ (LY 1,2 (2.3.15)
v] ~ - =], v=12,.... 3.
X 2'2

The reason for designating a special name for this subfamily of Gamma distributions
will be explained later.

2.3.4 Weibull and Extreme Value Distributions

The family of Weibull distributions has been extensively applied to the theory of
systems reliability as a model for lifetime distributions (Zacks, 1992). It is also used
in the theory of survival distributions with biological applications (Gross and Clark,
1975). We say that a random variable X has a Weibull distribution with parameters
*a,€);0< X 0<a<o00; —00 <& < o0, if (X —&) ~G(A,1). Accordingly,
(X — &) has an exponential distribution with a scale parameter A ™', £ is a location
parameter, i.e., the p.d.f. assumes positive values only for x > £. We will assume
here, without loss of generality, that £ = 0. The parameter « is called the shape
parameter. The p.d.f. of X, for & = 0is

fw (s h, @) = aax® exp{—ix®}, 0<x < oo, (2.3.16)
and its c.d.f. is

1 —exp{—Ax*}, x>0
Fy( A, o) = 2.3.17)
0, x < 0.
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The extreme value distribution (of Type I) is obtained from the Weibull distribution
if we consider the distribution of ¥ = —log X, where X* ~ G(A, 1). Accordingly,
the c.d.f. of Y is

P{Y < n} = exp{—Ae ™"}, (2.3.18)
—00 < 11 < 00, and its p.d.f. is
fEv(x; A, @) = Aa exp{—ax — Ae” %'}, (2.3.19)

—00 < X < 00.
Extreme value distributions have been applied in problems of testing strength of
materials, maximal water flow in rivers, biomedical problems, etc. (Gumbel, 1958).

2.3.5 Normal Distributions

The normal distribution occupies a central role in statistical theory. Many of the
statistical tests and estimation procedures are based on statistics that have distributions
approximately normal in a large sample.

The family of normal distributions, to be designated by N (&, o2), depends on
two parameters. A location parameter £, —oo < £ < oo and a scale parameter o,
0 < 0 < oo. The p.d.f. of a normal distribution is

flx:&,0) = L —l<x_€>2 (2.3.20)
€, _md P 3 . , 3.

—0 < X < Q.

The normal distribution with £ =0 and ¢ = 1 is called the standard normal
distribution. The standard normal p.d.f. is denoted by ¢(x). Notice that N(£, o2) ~
&+ 0oN(0, 1). Indeed, since o > 0,

2 L L (y-¢\
rve.o<ai = [ ew i3 (F) fo

exp{—%zz}dz = P{E+oNO, 1) < x}.

1 L
N /,oo
(2.3.21)

According to (2.3.21), the c.d.f. of N(£, 02) can be computed on the basis of the
standard c.d.f. The standard c.d.f. is denoted by ®(x). It is also called the standard
normal integral. Efficient numerical techniques are available for the computation of
®(x). The function and its derivatives are tabulated. Efficient numerical approxima-
tions and asymptotic expansions are given in Abramowitz and Stegun (1968, p. 925).
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The normal p.d.f. is symmetric about the location parameter £. From this symmetry,
we deduce that

o(x) =¢(—x), all —oo<x <00
(23.22)
P(—x)=1—P(x), all —00 <x < 00.

B . 42
By a series expansion of e~*"/

formula

and direct integration, one can immediately derive the

(_l)jx2j+1

1 oo
Nz ; J2Qj+ 1)

1
d(x) = > + —00 < X < 0Q. (2.3.23)

The computation according to this formula is often inefficient. An excellent comput-
ing formula was given by Zelen and Severo (1968), namely

D(x) =1 — ¢p@)[byt +byt> + -+ bst’ ] +e(x), x>0, (2.3.24)

where ¢t = (1 + px)~!, p = .2316419; b; = .3193815; b, = —.3565638; b3 =
1.7814779; by = —1.8212550; bs = 1.3302744. The magnitude of the error term
is le(x)| < 7.5-1078.

2.3.6 Normal Approximations

The normal distribution can be used in certain cases to approximate well, the cumula-
tive probabilities of other distribution functions. Such approximations are very useful
when it becomes too difficult to compute the exact cumulative probabilities of the
distributions under consideration. For example, suppose X ~ B(100, .35) and we
have to compute the probability of the event { X < 88}. This requires the computation
of the sum of 89 terms in

88

B(88:100,.35) = (10_0)(.35)1(,65)100_1.
j

j=0

Usually, such a numerical problem requires the use of some numerical approximation
and/or the use of a computer. However, the cumulative probability B(88 | 100, .35)
can be easily approximated by the normal c.d.f. This approximation is based on the
celebrated Central Limit Theorem, which was discussed in Section 1.12. Accordingly,
if X ~ B(n, 6) and n is sufficiently large (relative to 6) then, for 0 < k; <k, <n,

Plky < X < ko) ~ @ kz—l—%——n@ _® kl_%—_ne (2.3.25)
R WY T T ) Jod—o ) 7

The symbol & designates a large sample approximation.

The maximal possible error in using this approximation is less than .14[n6(1 —
6)]~'/2 (Johnson and Kotz, 1969, p. 64). The approximation turns out to be quite
good, even if n is not very large, if 6 is close to 6y = .5. In Table 2.1, we compare the
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Table 2.1 Normal Approximation to the Binomial c.d.f. n = 25

0=.5 0=.4 0=.25
k Exact Approx. Exact Approx. Exact Approx.
0 0.000000 0.000001 0.000003 0.000053 0.000753 0.003956
1 0.000001 0.000005 0.000047 0.000260 0.006271 0.014120
2 0.000010 0.000032 0.000426 0.001100 0.031356 0.041632
3 0.000078 0.000159 0.002364 0.003982 0.095462 0.102012
4 0.000455 0.000687 0.009468 0.012372 0.212988 0.209462
5 0.002039 0.002555 0.029359 0.033096 0.377526 0.364517
6 0.007317 0.008198 0.073562 0.076521 0.560346 0.545964
7 0.021643 0.022750 0.153549 0.153717 0.725754 0.718149
8 0.053876 0.054799 0.273529 0.270146 0.849810 0.850651
9 0.114761 0.115070 0.424614 0.419128 0.927919 0.933337
10 0.212178 0.211855 0.585772 0.580872 0.969578 0.975176
11 0.345019 0.344578 0.732279 0.729854 0.988513 0.992343
12 0.500000 0.500000 0.846229 0.846283 0.995877 0.998054
13 0.654981 0.655422 0.922196 0.923479 0.998332 0.99959%4
14 0.787822 0.788145 0.965606 0.966904 0.999033 0.999931
15 0.885238 0.884930 0.986828 0.987628 0.999204 0.999990
16 0.946124 0.945201 0.995671 0.996018 0.999240 0.999999
17 0.978357 0.977250 0.998792 0.998900 0.999246 1.000000
18 0.992683 0.991802 0.999716 0.999740 0.999247 1.000000
19 0.997961 0.997445 0.999944 0.999947 0.999247 1.000000
20 0.999545 0.999313 0.999939 0.999991 0.999247 1.000000
21 0.999922 0.999841 0.999996 0.999999 0.999247 1.000000
22 0.999990 0.999968 0.999997 1.000000 0.999247 1.000000
23 0.999999 0.999995 0.999997 1.000000 0.999247 1.000000
24 1.000000 0.999999 0.999997 1.000000 0.999247 1.000000
25 1.000000 1.000000 0.999997 1.000000 0.999247 1.000000

numerically exact c.d.f. values of the Binomial distribution B(k;n, 0) with n = 25
(relatively small) and 6 = .25, .40, .50 to the approximation obtained from (2.3.25)
with k = k, and k1 = 0.

Considerable research has been done to improve the Normal approximation to the
Binomial c.d.f. Some of the main results and references are provided in Johnson and
Kotz (1969, p. 64).

In a similar manner, the normal approximation can be applied to approximate the
Hypergeometric c.d.f. (Johnson and Kotz, 1969, p. 148); the Poisson c.d.f. (Johnson
and Kotz, 1969, p. 99) and the Negative-Binomial c.d.f. (Johnson and Kotz, 1969,
p- 127).

The normal distribution can provide also good approximations to the G(A, v)
distributions, when v is sufficiently large, and to other continuous distributions. For
a summary of approximating formulae and references see Johnson and Kotz (1969)
and Zelen and Severo (1968). In Table 2.2 we summarize important characteristics
of the above distribution functions.
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24 TRANSFORMATIONS

2.4.1 One-to-One Transformations of Several Variables

Let Xi,..., X} be random variables of the continuous type with a joint p.d.f.
fxr, ..o xp). Lety; = gi(x;, ..., xx), i = 1,..., k, be one-to-one transformations,
andletx; = ¥i(y1,..., )i = 1, ..., k, be the inverse transformations. Assume that
gw, are continuous for all i, j = 1 , k at all points (yy, ..., yx). The Jacobian of

the transformation is
Wi .
J(yi, ..., yi) = det. i, j=1,...,k]; 24.1)
8yj

where det.(-) denotes the determinant of the matrix of partial derivatives. Then the
joint p.d.f. of (Yy, ..., Yp)is

h(yr, -y = fW@, - kIO Yy =Ons o). (24.2)

2.4.2 Distribution of Sums

Let X, X, be absolutely continuous random variables with a joint p.d.f. f(x;, x3).
Consider the one-to-one transformation ¥, = X, ¥> = X| 4+ X;. It is easy to verify
that J(y1, y2) = 1. Hence,

Sriv,(v1s y2) = fxp x, (01, Y2 — y1)-

Integrating over the range of Y, we obtain the marginal p.d.f. of Y,, which is the
required p.d.f. of the sum. Thus, if g(y) denotes the p.d.f. of ¥

gy) = / S,y — x)dx. (2.4.3)

If X; and X, are independent, having marginal p.d.f.s fi(x) and f>(x), the p.d.f. of
the sum g(y) is the convolution of f;(x) and f>(x), i.e.,

gy =/ Si(x) faly — x)dx. (2.4.4)

If X, is discrete, the integral in (2.4.4) is replaced by a sum over the jump points of
Fi(x). If there are more than two variables, the distribution of the sum can be found
by a similar method.

2.4.3 Distribution of Ratios

Let X, X, be absolutely continuous with a joint p.d.f., f(x;, x2). We wish to derive
the p.d.f. of R = X/ X». In the general case, X, can be positive or negative and
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therefore we separate between the two cases. Over the set —o0 < x; < 00,0 < x5 <
oo the transformation R = X/ X, and Y = X is one-to-one. It is also the case over
the set —00 < x| < 00, —00 < x, < 0. The Jacobian of the inverse transformation
is J(y,r) = —y. Hence, the p.d.f. of R is

0 00
h(r) = — / yf(yr, y)dy + /0 yf(yr, y)dy. (2.4.5)

The result of Example 2.2 has important applications.
Let X1, X3, ..., Xk be independent random variables having gamma distributions
k

with equal A, i.e., X; ~ Gl v), i =1,....k.Let T =» X; and fori =1,...,

i=1

k—1

Y, = X;/T.

The marginal distribution of Y; is g8 | v;, Zv 7 — Vi |. The joint distribution of

Y =(Yy, ..., Y,_1) is called the Dirichlet distribution, D(v;, vy, ..., v;), whose
joint p.d.f. is

kal

-1 k—
F(v + +v) _
O+ i1 v) = —— S I Ei D TH I Y

]_[r(u,- =l
i=1

k—1
fory; >0, y; < 1.

j=1
The p.d.f. of D(vy, ..., v;) is a multivariate generalization of the beta distribution.
k
Letv* = Zvj. One can immediately prove that foralli,i" =1,...,k—1
j=1
E{Y,Y,) = —7 (2.4.7)
BT CRN R D o
and thus
(Y, Yy) Vil 2.4.8)
cov(¥;, Vi) = ————— 4.
v2(v* + 1)

Additional properties of the Dirichlet distributions are specified in the exercises.



120 STATISTICAL DISTRIBUTIONS
2.5 VARIANCES AND COVARIANCES OF SAMPLE MOMENTS

A random sample is a set of n (n > 1) independent and identically distributed
(i.i.d.) random variables, having a common distribution F'(x). We assume that F' has
all moments required in the following development. The rth moment of F, r > 1,
is .

The rth sample moment is

A = lZx’ (2.5.1)

S

We immediately obtain that

1 n
E{f,} ==Y E{X])
i (2.5.2)

= U, 721’

since all X; are identically distributed. Notice that due to independence,
cov(X;, X;) =0 for all i # j. We present here a method for computing V{/i,}

n k
and cov{fi,, {1,7) for r # r’. We consider expansions of the form (ZXZ) k> 1,
i=1
in terms of augmented symmetric functions and introduce the following notation

=) X, (2.5.3)

[ll2] = Z Zx" xb (2.5.4)

i#]
bl =) > XXX}, (2.5.5)
i#j#k

etc. The sum of powers in such an expression is called the weight of [ ]. Thus,
the weight of [l;/xl3] is w =1} + [ + 3. In Table 2.3, we find expansions of
(l))*'(lp)* - -+ in terms of multi-sums [/]'l}’ - --]. For additional values of coef-
ficients for such expansions see David and Kendall (1955). For example, to

expand (ZX3> (ZX) the weight is w = 5, and according to Table 2.3,
i=1

3)(1)? = [5] + 2[41] + [32] + [317].
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Table 2.3 Augmented Symmetric Functions in Terms of Power-Series

Weight @) [
2 2 [2]
(1)? 21+ [1%]
3 (3) [31
@) (1) [3]1+[21]
1y [3] 4 3[21] + [13]
4 “4) [4]
3)(1) [4] + [31]
Q) [4] + [2%]
@)1y [4] 4 2[31] + [2%] + [21%]
()* [4] 4+ 4[31] + 3[22] + 6[21%] + [14]
5 ©) [5]
@) [5]+[41]
3)2) [51+ [32]
3)(1)? [5]+2[41] + [32] + [31?]
(27 (1) [5] + [41] + 2[32] + [221]
)(1)? [51 4 3[41] + 4[32] + 3[31%] + 3[221] + [21%]
1’ [51+ 5[41] + 10[32] + 10[312] + 15[221] + 10[21°] + [17]
6 (6) [6]
5)(1) [6] + [51]
®H2) [6] + [42]
®1%) [6] + 2[51] + [42] + [41?]
(37 [6]+1[3%]
3)2)(1) [6] + [51] + [42] + [3%] + [321]
31 [614 3[517 + 3[42] + 3[41%] + [3%] + 3[321]1 + [317]
) [6] + 3[42] + [2%]
(2)2(1) [6]1 4 2[51] + 3[42] + [412] + 2[3%] + 4[321] + [2°] + [221?]
@y [6] -+ 4[51] + 7[42] + 6[41%] + 4[3%] + 16[32]
+4[313] 4 3[2°] + 6[2%1%] + [21*]
(1)° [6] + 6[51] + 15[42] + 15[41%] + 10[3%] + 60[321]

+20[313] + 15[23] + 45[2%1%] + 15[214] + [1°]

(*) [3%] = [33], etc.
Source: Compiled from David and Kendall (1955).

Thus,

(£) (2] -wmpen

i#]

YRS H P L

i#] ik
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The expected values of such expansions are given in terms of product of the moments
(independence) times the number of terms in the sum, e.g.,

E ZZX?X§ =n(n — Duspo.
i#j

2.6 DISCRETE MULTIVARIATE DISTRIBUTIONS

2.6.1 The Multinomial Distribution

Consider an experiment in which the result of each trial belongs to one of k alternative
categories. Let 8’ = (1, ..., ;) be a probability vector, i.e., 0 < §; < 1 foralli =

k
1,...,kand ZQi = 1. 6; designates the probability that the outcome of an individual
i=1
trial belongs to the ith category. Consider n such independent trials, n > 1, and let

X = (Xq, ..., X;) be a random vector. X; is the number of trials in which the ith
k

category is realized, ZX i = n. The distribution of X is given by the multinomial
i=1

probability distribution

k
n! 3
PG, s jiin, ) = ———— | | 6/, (2.6.1)
]1! e ]k! ll:!
k
where j; =0,1,...,n and Z Jji = n. These terms are obtained by the multino-

i=1
mial expansion of (6; + - -- + 6;)". Hence, their sum equals 1. We will designate
the multinomial distribution based on n trials and probability vector 6 by M(n, 9).
The binomial distribution is a special case, when k = 2. Moreover, the marginal
distribution of X; is the binomial B(n, 6;). The joint marginal distribution of any
pair (X;, X;) where 1 <i < i’ < k is the corresponding trinomial, with probability
distribution function

n! .
pUji, jir) = 010l (1 —0;, — o)

Jiljiln — ji — ji)! (2.6.2)
where v = j; + ji.

We consider now the moments of the multinomial distribution. From the marginal
Binomial distribution of the X's we have

E{Xi}=n9,-, l=1,,k
V{Xi}=n0(1—6), i=1,... k.

(2.6.3)
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To obtain the covariance of X;, X;, i # j we proceed in the following manner. If
n =1 then E{X;X;} =0 for all i # j, since only one of the components of X is
one and all the others are zero. Hence, E{X; X ;} — E{X;}E{X;} = —6,0; ifi # j.If
n > 1, we obtain the result by considering the sum of n independent vectors. Thus,

cov(X;, X ;) = —n6;6;, all i # j. (2.6.4)

We conclude the section with a remark about the joint moment generating function

(m.g.f.) of the multinomial random vector X. This function is defined in the following
k-1

manner. Since X; =n — in’ we define for every k > 2

i=1
k—1
M, ....tr_1)=E {epot,-X,-} ) (2.6.5)
i=1

One can prove by induction on k that

k—1 k—1 n
M, ... o) = |:29ietf + (1 - Ze,ﬂ . (2.6.6)
i=1 i=1

2.6.2 Multivariate Negative Binomial

Let X = (X1, ..., Xy) be a k-dimensional random vector. Each random variable, X;,
i =1,...,k, can assume only nonnegative integers. Their joint probability distribu-
tion function is given by

k
r (U+Zji) k vk
g(jlv-~"jk;01v): k—ZZI (1 _291) 1_[91-/[, (267)

ro)[ [rG: + =

i=1

where ji,..., i =0,1,...; 0<v<oo, 0<6 <1 for eachi=1,...,k and
k

ZGi < 1. We develop here the basic theory for the case of k = 2. (For k = 1 the
i=1

distribution reduces to the univariate NB(6, v). Summing first with respect to j, we
obtain

T+ ji)(1 — 6 — 6,)"6]"
(1= 6" F TG+ 1)

o0
Zg(jl,jz;91,92, V) = (2.6.8)

72=0
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Hence, the marginal of X; is

6
PX,=ji}=nb(ji——.v)., ji=0.1,... (2.6.9)
1—-06,

where nb(j; ¥, v) is the p.d.f. of the negative binomial NB(y, v). By dividing the

joint probability distribution function g(j;, j2;61, 62, v) by nb ( Jjis , We

_‘, v
1—6,

obtain that the conditional distribution of X, given X; is the negative binomial
NB(6,, v + X1). Accordingly, if NB(6;, 6,, v) designates a bivariate negative bino-

mial with parameters (6, 6, v), then the expected value of X; is given by
E{X;}=v0;/(1 -6, —06,), i=1,2. (2.6.10)
The variance of the marginal distribution is
V{X1} =v01(1 —6,)/(1 —6; — 6,)*. (2.6.11)
Finally, to obtain the covariance between X; and X, we determine first

E{X | Xo} = E{X | E{X, | X1}}

2 E{X\(v + X2)} =v(v + 1) 616 2612
T e A T S o
Therefore,
1)9192
X, X)) = ——-—"F—. 2.6.13
cov(X1, X) =6, — 6,7 ( )

We notice that, contrary to the multinomial case, the covariances of any two compo-
nents of the multivariate negative binomial vector are all positive.

2.6.3 Multivariate Hypergeometric Distributions

This family of k-variate distributions is derived by a straightforward generalization
of the univariate model. Accordingly, suppose that a finite population of elements

k

contain M; of type 1, M, of type 2,..., My of type k and N — ZM[ of other
i=1

types. A sample of n elements is drawn at random and without replacement from this
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population. Let X;, i =1, ..., k denote the number of elements of type i observed
in the sample. The p.d.f. of X = (X, ..., X§) is

()(4 -5
(1:) 7 (2.6.14)

SO, oo N, My, ., My, n) =

k
x=01...G=1..4k,Y x=n
i=1

One immediately obtains that the marginal distributions of the components of
X are hypergeometric distributions, with parameters (N, M;,n),i =1, ..., k. If we
designateby H(N, M, ..., My, n) the multivariate hypergeometric distribution, then
the conditional distribution of (X,41,..., Xx) given (X1 =Jji,..., X, = j,)is the

hypergeometric H ( ZM,, Miy1, ..., My, n Z/, . Using this result and

the law of the iterated expectatlon we obtain the followmg result, for all i # j,

cov(X;, Xj) = —n (1 - )= L (2.6.15)

This result is similar to that of the multinomial (2.6.4), which corresponds to sampling
with replacement.

2.7 MULTINORMAL DISTRIBUTIONS

2.7.1 Basic Theory

A random vector (X1, ..., X;) of the continuous type has a k-variate multinormal
distribution if its joint p.d.f. can be expressed in vector and matrix notation as

fxp, ... x) = -8V~ l(x—g)} (2.7.1)

1
Quyr e p{

for —oo <& <00, i=1,...,k. Here, x=(x1,...,x), E=(&,...,&). Vis
a k x k symmetric positive definite matrix and |V| is the determinant of V. We
introduce the notation X ~ N (&, V). We notice that the k-variate multinormal p.d.f.
(2.7.1) is symmetric about the point &. Hence, & is the expected value (mean) vector
of X. Moreover, all the moments of X exist.
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The m.g.f. of X is

M(t, ..., ) = E{exp(t'X)}

{ (2.7.2)
=exp (?'Vt + t/£> .

To establish formula (2.7.2) we can assume, without loss of generality, that & = 0,
since if Mx(t) is the m.g.f. of X and Y = X + b, then the m.g.f. of ¥ is My(t) =
exp(t'b)Mx(t). Thus, we have to determine

M= ——M8M . tx— —xV~ dx;. 2.7.3
O = Goprvie /,oo [w exp( 2 X> I,J e

Since V is positive definite, there exists a nonsingular matrix D such that V =
DD'. Consider the transformation Y = D~'X; then X' V~!'x = y'y and t'x = t'Dy.
Therefore,

1 1 1
—Ex’v—lx +tx = —E(y —D't)(y — D't) + Et’Vt. (2.7.4)

Finally, the Jacobian of the transformation is | D| and

I D] o
M) = tVt) —— | ...
® exp<2 ) (2n>k/2|V|'/2/,oo

[ exp (—E(y —D'ty(y — D/t)) [av (2.7.5)

o0 i=1
Since |D| = |V|"/? and (27)7*/? times the multiple integral on the right-hand side
is equal to one, we establish (2.7.2). In order to determine the variance—covariance
matrix of X we can assume, without loss of generality, that its expected value is zero.
Accordingly, for all i, j,

2

]
cov(X;, X;) = WM(t)|t=0. (2.7.6)
L)

From (2.7.2) and (2.7.6), we obtain that cov(X;, X;) =0y;. (i, j = 1, ..., k), where
o;j is the (i, j)th element of V. Thus, V is the variance—covariance matrix of X.

A k-variate multinormal distribution is called standard if &, = O and o;; = 1 forall
i =1,..., k. Inthis case, the variance matrix will be denoted by R since its elements
are the correlations between the components of X. A standard normal vector is often
denoted by Z, its joint p.d.f. and c.d.f. by ¢x(z | R) and ®;(z | R), respectively.
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2.7.2 Distribution of Subvectors and Distributions of Linear Forms

In this section we present several basic results without proofs. The proofs are straight-
forward and the reader is referred to Anderson (1958) and Graybill (1961).

Suppose that a k-dimensional vector X has a multinormal distribution N (u, V). We
consider the two subvectors Y and Z, i.e., X' = (Y’, Z’), where Y is r-dimensional,
1<r<k.

Partition correspondingly the expectation vector & to & = (3', ¢’) and the covari-

ance matrix to
Vit Vi
V =
Vor Vo

The following results are fundamental to the multinormal theory.
) Y~ N@ Vi)
(i) Z ~ N(, V)
(i) Y [ Z~ N+ VioVy, (Z = ). Vi = Via Vi ' Vay),

and an analogous formula can be obtained for the conditional distribution of Z
given Y.
The conditional expectation

E{Y|Z) =1+ ViV, (Z—) 2.7.7)
is called the linear regression of Y on Z. The conditional covariance matrix
XY | Z) = Vii — ViaVy,' Vo (2.7.8)

represents the variances and covariances of the components of Y around the linear
regression hyperplane. The above results have the following converse counterpart.
Suppose that Y and Z are two vectors such that

(i) Y|Z~NAZ,V)
and
(ii) Z ~ N(¢, D);
then the marginal distribution of Y is the multinormal

Y ~ N(AZ,V + ADA")
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and the joint distribution of Y and Z is the multinormal, with expectation vector
(¢'A’, ¢'Y and a covariance matrix

V +ADA’ AD
DA’ D)

Finally, if X ~ N(§,V) and Y =b + AX, then Y ~ N(b + A&, AVA’). That is,
every linear combination of normally distributed random variables is normally
distributed.

In the case of k = 2, the multinormal distribution is called a bivariate normal
distribution. The joint p.d.f. of a bivariate normal distribution is

1
f(-x’ Y§$,M,01,02, 10) -
2rwo1004/ 1 — p?

1 x=&\ x—& y—n  (y-n\
eXp{_z(l—,ﬂ)[( o ) B +< o )“

2.7.9)

—00 < X,y < 00.
The parameters £ and n are the expectations, and 0’12 and 022 are the variances of
X and Y, respectively. p is the coefficient of correlation.
The conditional distribution of ¥ given {X = x} is normal with conditional expec-
tation

E{Y | x} =n+ Bx —§), (2.7.10)
where 8 = po,/o;. The conditional variance is
oy, =0y(1—p). (2.7.11)

These formulae are special cases of (2.7.7) and (2.7.8). Since the joint p.d.f. of (X, Y)
can be written as the product of the conditional p.d.f. of Y given X, with the marginal
p.d.f. of X, we obtain the expression,

1 - 1 —n—Blx —
f(X,y;S,n,ol,az,p):a(p(X 5)6 - p2¢(y n—pBkx g))
o _

o] (op) 1—,02

(2.7.12)
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This expression can serve also as a basis for an algorithm to compute the Bivariate-
Normal c.d.f,, i.e.,

(xo—§)/01 o
P{X < x0.Y < yo} =f p)d [ =1L 4 (27.13)
—00 0'2\/1 — p2

Let Zy, Z, and Z3; have a joint standard Trivariate-Normal distribution, with a
correlation matrix

I p2 P13
R=|pn 1 p3
o1z p 1

The conditional Bivariate-Normal distribution of (Z;, Z,) given Z3 has a covariance
matrix

1—p? —
V= P13 P12 012,023 . (27.14)
P12 — P13023 1 — p33

The conditional correlation between Z; and Z,, given Z3 can be determined from
(2.7.14). 1t is called the partial correlation of Z,, Z, under Z3 and is given by

P12 — P13023

P123 = . (2.7.15)
Ja = ot — o)
2.7.3 Independence of Linear Forms
Let X = (X1, ..., Xx)' be a multinormal random vector. Without loss of generality,

assume that E{X} = 0. Let V be the covariance matrix of X. We investigate first the

conditions under which two linear functions Y; = a’X and Y, = B’'X are independent.
/

LetY=(Y,Y,), A= (;,). That is, A is a 2 x k matrix and Y = AX. Y has

a bivariate normal distribution with a covariance matrix AV A’. Y; and Y, are inde-
pendent if and only if cov(Yy, ¥,) = 0. Moreover, cov(Yy, Y2) = &’V . Since V is
positive definite there exists a nonsingular matrix C such that V. = CC’. Accordingly,
cov(Yy, ¥») = 0if and only if (C’'a)'(C’B) = 0. This means that the vectors C'a and
C’B should be orthogonal. This condition is generalized in a similar fashion to cases
where Y and Y, are vectors. Accordingly, if Y; = AX and Y, = BX, then Y; and
Y, are independent if and only if AVB’ = 0. In other words, the column vectors of
CA'’ should be mutually orthogonal to the column vectors of C’B.
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2.8 DISTRIBUTIONS OF SYMMETRIC QUADRATIC FORMS OF
NORMAL VARIABLES

In this section, we study the distributions of symmetric quadratic forms in normal
random variables. We start from the simplest case.

Case A:
X ~ N, %), 0 =X>

Assume first that 02 = 1. The density of X is then ¢(x) = exp(— —xz) Therefore,
the p.d.f. of Q is

1 1
fo(y) = 2\/—)’71/2 [exp (_E(ﬁ)2> + exp <—§(—ﬁ)2)}
(2.8.1)

since I'(}) = /7.

Comparing fo(y) with the p.d.f. of the gamma distributions, we conclude that
if 62=1 then Q0 ~ G(z’ 2) ~ x?[1]. In the more general case of arbitrary o2,
Q ~ a*x?[1].

Case B:
X ~NE 0%, 0=X~

This is a more complicated situation. We shall prove that the p.d.f. of Q (and so its
c.d.f. and m.g.f.) is, at each point, the expected value of the p.d.f. (or c.d.f. or m.g.f.)
of o2 X2[1 + 2J], where J is a Poisson random variable with mean

[

A= —
202

2.8.2)

Such an expectation of distributions is called a mixture. The distribution of Q when
02 = 1is called a noncentral chi-squared with 1 degree of freedom and parameter
of noncentrality A. In symbols Q ~ x2[1;1]. When A = 0, the noncentral chi-squared
coincides with the chi-squared, which is also called central chi-squared. The proof
is obtained by determining first the m.g.f. of Q. As before, assume that o> = 1. Then,

My(t) = \/% /OO exp (txz - %(x - 5)2) dx. (2.8.3)
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Write, for all < %

1x? 1( £)? 1(1 21) d 2+§2 ! (2.8.4)
X — =—(X — = — — X — . 0.
2 2 1—2¢ 1—2¢
Thus,
t
Mo(t) = exp (gzﬁ> a-20""2 r<1j2. (2.8.5)
Furthermore, /(1 — 21) = —1 + (1 — 21)". Hence,
e 8 ~(3+)
My(t) = e > 2; ﬁ(l —21)"GFD, (2.8.6)
J:

According to Table 2.2, (1 — 2£)~CG+7 is the m.g.f. of x2[1 + 2j]. Thus, according
to (2.8.6) the m.g.f. of x2[1; A] is the mixture of the m.g.f.s of x2[1 +2J], where J
has a Poisson distribution, with mean X as in (2.8.2). This implies that the distribution
of x2[1;A] is the marginal distribution of X in a model where (X, J) have a joint
distribution, such that the conditional distribution of X given {J = j} is like that of
x*[1 + 2] and the marginal distribution of J is Poisson with expectation A. From
Table 2.2, we obtain that E{x?[v]} = v and V{x?[v]} = 2v. Hence, by the laws of
the iterated expectation and total variance

E{x*[1;A]} =1+ 2x (2.8.7)
and
V{x?[1; A1} = 2(1 + 4X). (2.8.8)
Case C:
Xy, ..., X, are independent; X; ~ N(&;, od,i=1,...,n,

0= Xn:xf.
i=1

It is required that all the variances o> are the same. As proven in Case B,
X2~ ol m] ~ o P +20], i=1,...,n (2.8.9)

where Jl' ~ P()\,)
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Consider first the conditional distribution of Q given (Ji, . .., J,). From the result
on the sum of independent chi-squared random variables, we infer

Q|(Jl,...,J,,)Nozxz|:n+221,-:|, (2.8.10)

i=1

where Q | (J1, ..., J,) denotes the conditional equivalence of the random variables.
Furthermore, since the original X;s are independent, so are the J;s and therefore

Jid oo dy~ POy 4+ M) (2.8.11)

Hence, the marginal distribution of Q is the mixture of o?yx?[n +2M] where
M ~ P(A; 4+ - - -+ X,). We have thus proven that

Q ~ o) s hy + -+ Ayl (2.8.12)
Case D:
X ~ N(£,V) and Q = X AX,

where A is a real symmetric matrix. The following is an important result.

0 ~ x°[r;A], with A = %E’AE (2.8.13)

if and only if VA is an idempotent matrix of rank r (Graybill, 1961). The proof is
based on the fact that every positive definite matrix V can be expressed as V = CC,
where C is nonsingular. f Y = C~'X then Y ~ N(C~'&, I) and X'AX = Y'C'ACY.
C’AC is idempotent if and only if VA is idempotent.

The following are important facts about real symmetric idempotent matrices.

(i) A isidempotent if AZ = A.
(ii) All eigenvalues of A are either 1 or 0.

(iii) Rank (A) = tr.{A}, where tr.{A} = ZA”, is the sum of the diagonal ele-
i=1
ments of A.

(iv) The only nonsingular idemptotent matrix is the identity matrix I.

2.9 INDEPENDENCE OF LINEAR AND QUADRATIC FORMS
OF NORMAL VARIABLES

Without loss of generality, we assume that X ~ N (0, /). Indeed, if X ~ N(0, V) and
V = CC’ make the transformation X* = C~'X, then X* ~ N(0, I). Let Y = BX
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and Q = X'AX, where A is idempotent of rank r, 1 < r < k. B is an n x k matrix
of fullrank, 1 <n <k.

Theorem 2.9.1. Y and Q are independent if and only if
BA =0. (29.1)

For proof, see Graybill (1961, Ch. 4).
Suppose now that we have m quadratic forms X'B;X in a multinormal vector
X~ N(E,D.

Theorem 2.9.2. If X ~ N(&, I) the set of positive semidefinite quadratic forms
X'B;X (i =1,...,m) are jointly independent and X' B;X ~ x2[r;; i1, where r; is
the rank of B; and \; = %E’B,f, if any two of the following three conditions are
satisfied.

1. Each B; is idempotent (i = 1, ...,m);
m
2. ZB ; is idempotent;

Jj=1

3. BiB; =0foralli # j.

This theorem has many applications in the theory of regression analysis, as will
be shown later.

2.10 THE ORDER STATISTICS

Let Xy, ..., X, be a set of random variables (having a joint distribution). The order
statistic is

SXi, .-, X)) =Xy, X2, -+ - X()s (2.10.1)

where X(l) < X(z) <...-< X(,,).

If X1,..., X, are independent random variables having an identical absolutely
continuous distribution function F(x) with p.d.f. f(x), then the p.d.f. of the order
statistic is

f(X(l), ooy X(n)) =n! l_[ f(X(l‘)). (2102)

i=1
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To obtain the p.d.f. of the ith order statistic X;), i = 1,...,n, we can integrate
(2.10.2) over the set

Si¢)={-00=Xn =X = =Xi-1)<§ = Xg+1 =+ =< Xny < 00}
(2.10.3)

This integration yields the p.d.f.

fon ) = 5 FEFEE) ™A - FE)™, (2.10.4)

i—-—Dln—1

—o0 < & < 0o. We can obtain this result also by a nice probabilistic argument.
Indeed, for all dx sufficiently small, the trinomial model yields

P& —dx < X4 <& +dx} =

+2f(§)[F(§ —dx)I'"'[1 — F(§ + dx)]" 'dx + o(dx),
(i—Dln—=10)!

(2.10.5)

where o(dx) is a function of dx that approaches zero at a faster rate than dx, i.e.,
o(dx)/dx — Qasdx — 0.

Dividing (2.10.5) by 2dx and taking the limit as dx — 0, we obtain (2.10.4). The
joint p.d.f. of (X¢;), X(j)) with 1 <i < j < nis obtained similarly as

| .
Firh( y) = = S S OIFI

(i—DIG—1=D(n—j
[F(y)— F)P 0 [1 = FOn

—00 <X <y < O00.

(2.10.6)

In a similar fashion we can write the joint p.d.f. of any set of order statistics. From the

joint p.d.f.s of order statistics we can derive the distribution of various functions of

the order statistics. In particular, consider the sample median and the sample range.
The sample median is defined as

Xm +Xm 2, ifn=2m
M, = Ko+ Xoen)/ . (2.10.7)
Xm+1)» ifn=2m+ 1.

That is, half of the sample values are smaller than the median and half of them are
greater. The sample range R, is defined as

Ry = X — X0 (2.10.8)
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In the case of absolutely continuous independent r.v.s, having a common density
f(x), the density g(x) of the sample median is

2m + 1)!

Wf(x)F"’(x)[l - F&I7, ifn=2m+1
gx) = ot
m/ f@fCx —wF™ '@l — FQx —w)]" 'du, ifn=2m.
m — ! oo

(2.10.9)

We derive now the distribution of the sample range R,,. Starting with the joint p.d.f.
of (X(1), Xn))

foy)=nn =D FWIFQ) = FOI'"™?, x <y, (2.10.10)

we make the transformation u = x,r =y — x.
The Jacobian of this transformation is J = 1 and the joint density of (u, r) is

g, ry=nm — 1) fu)fu~+r[Fu+r)— Ful" > (2.10.11)

Accordingly, the density of R, is
h(r) =n(n — 1)/ f)fu+r)[Fu+r)— Fu]" du. (2.10.12)

For a comprehensive development of the theory of order statistics and interesting
applications, see the books of David (1970) and Gumbel (1958).

2.11 ¢-DISTRIBUTIONS

In many problems of statistical inference, one considers the distribution of the ratio
of a statistic, which is normally distributed to its standard-error (the square root of
its variance). Such ratios have distributions called the ¢-distributions. More specifi-
cally,let U ~ N(0, 1) and W ~ (x2[v]/v)!/2, where U and W are independent. The
distribution of U/ W is called the “student’s 7-distribution.” We denote this statistic
by #[v] and say that U/ W is distributed as a (central) #[v] with v degrees of freedom.

An example for the application of this distribution is the following. Let X, ..., X,,

be i.i.d. from a N(&, o%) distribution. We have proven that the sample mean X
2

is distributed as N (é s G—) and is independent of the sample variance S2, where
n
§? ~ o2x2[n — 11/(n — 1). Hence,

X —¢ N, 1)
N v (x2[n —11/(n — 1)1/2

~t[n—1]. (2.11.1)
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To find the moments of #[v] we observe that, since the numerator and denominator
are independent,

E{t[v])'} = E{U"} - E{(x*[v]/v)""?). (2.11.2)

Thus, all the existing odd moments of ¢[v] are equal to zero, since E{U"} =0
for all » =2m + 1. The existence of E{(¢[v])"} depends on the existence of
E{(Xz[v]/v)”/z}. We have

E{GC]/v) 7% = (%)”2 r (% - %) T (%) . (2.11.3)

Accordingly, a necessary and sufficient condition for the existence of E{(¢[v])"} is
v > r. Thus, if v > 2 we obtain that

E{:*[v]} = v/(v — 2). (2.11.4)

This is also the variance of ¢[v]. We notice that V{¢[v]} — 1 as v — oo. It is not
difficult to derive the p.d.f. of #[v], which is

1 2 —(v+1)/2

f(t;v):—v(l—i——) , —00 <t < 00. (2.11.5)
Vv BG. % v

The c.d.f. of #[v] can be expressed in terms of the incomplete beta function. Due to

the symmetry of the distribution around the origin

P{tvl <t} =1- Plt[vl < —t}, t<0. (2.11.6)

We consider now the distribution of (U 4 &)/ W, where & is any real number.
This ratio is called the noncentral ¢ with v degrees of freedom, and parameter of
noncentrality £. This variable is the ratio of two independent random variables namely
N(, 1) to (x%[v]/v)"/2. If we denote the noncentral ¢ by ¢[v; £], then

tlv;E] ~ (N0, 1) + &)/(x*[v]/v) /2. (2.11.7)

Since the random variables in the numerator and denominator of (2.11.7) are inde-
pendent, one obtains

12 T(L =1
E{t[v;é]}=é(§) 1%—/2;)) (2.11.8)
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and that the central moments of orders 2 and 3 are

2 2
w; = Vi{t[v; &} = ﬁ(l + &%) — 2% TTo) (2.11.9)

and

(2.11.10)

v 1
r{=—-
. vy 1/2 <2 2) v(2v — 3+ &%) .
U3 =§ (‘) —2u; ).
2 r'v/2) v—2)(v—23)

This shows that the ¢[v; £] is not symmetric. Furthermore, since U + & ~ —U + &
we obtain that, for all —oo < £ < o0,

Plt[v;i&] = t} = P{t[v; —§] < —1}. (2.11.11)

In particular, we have seen this in the central case (§ = 0). The formulae of the p.d.f.
and the c.d.f. of the noncentral ¢[v; ] are quite complicated. There exists a variety
of formulae for numerical computations. We shall not present these formulae here;
the interested reader is referred to Johnson and Kotz (1969, Ch. 31). In the following
section, we provide a representation of these distributions in terms of mixtures of
beta distributions.

The univariate 7-distribution can be generalized to a multivariate-f in a variety of
ways. Consider an m-dimensional random vector X having a multinomial distribution
N, o2R), where R is a correlation matrix. This is the case when all components of
X have the same variance 2. Recall that the marginal distribution of

Y, =(X; — &)~ N@©,0%, i=1,...,m.
Thus, if S? ~ 2x2[v]/v independently of Y1, ..., Y,,, then

X — &
tizl—gl, i=1,....,m

S

have the marginal ¢-distributions ¢[v]. The p.d.f. of the multivariate distribution of

1
t= EY is given by

f(tlv---vtm):

(2.11.12)

r (%(lH—m)) < 1 )gm

- 14+ —t'R™'t
(rvyn/2T (E) IR|1/2 v
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Generally, we say that X has a ¢[v; &, X] distribution if its multivariate p.d.f. is

_vtm
2

1
f(xl,-u,xm;E,E)O(<1+;(X—§)’E_l(x—§)> . (2.11.13)

This distribution has applications in Bayesian analysis, as shown in Chapter 8.

2.12 F-DISTRIBUTIONS

The F-distributions are obtained by considering the distributions of ratios of two
independent variance estimators based on normally distributed random variables. As
such, these distributions have various important applications, especially in the anal-
ysis of variance and regression (Section 4.6). We introduce now the F-distributions
formally. Let x2[v] and x?2[v,] be two independent chi-squared random variables
with v and v, degrees of freedom, respectively. The ratio

F[vi, vy] ~
e, vl x2[va2l/v2

(2.12.1)

is called an F-random variable with v; and v, degrees of freedom. It is a straightfor-
ward matter to derive the p.d.f. of F[vy, vz], which is given by
V1/2VV2/2 xv1/2-1

. — 1 2 .
fGv,m) = B (\)1 U2> (v + l)195)111/24-112/2'

(2.12.2)

2

The cumulative distribution function can be computed by means of the incomplete
beta function ratio according to the following formula

P{F[vi, ] <&} = Ige (%, %) , (2.12.3)
where
RE) =£" / (1 + ﬂg) . (2.12.4)
1%) V2

In order to derive this formula, we recall that if G (1, H) and G (1, %) are two

independent gamma random variables, then (see Example 2.2)

S0 /o2 ro D] ~5(22). s
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Hence,
G(l,%) /G (1,%)~@—1. (2.12.6)

We thus obtain

v 1
P{Flv,n] <& =P]=2 — ey — 1| <€
B ’3(3’2>
(2.12.7)
1 Vi Vi VvV
e e Ge)
2’2

For testing statistical hypotheses, especially for the analysis of variance and regres-
sion, one needs quantiles of the F[v;, v;] distribution. These quantiles are denoted
by Fpl[vi, v2] and are tabulated in various statistical tables. It is easy to establish
the following relationship between the quantiles of F[vy, v,] and those of F[v;, v{],
namely,

Fylvi,nl=1/F_,[v,v], 0<y <l (2.12.8)

The quantiles of the F[v;, v,] distribution can also be determined by those of the beta
distribution by employing formula (2.12.5). If we denote by B, (p, ) the values of x
for which I, (p, g) = y, we obtain from (2.12.4) that

=2 (2.2) /s (1 2)] ano

The moments of F[v;, v;] are obtained in the following manner. For a positive
integer r

(2.12.10)

oy T (e
) oG

We realize that the rth moment of F[v;, v,] exists if and only if v, > 2r. In
particular,

E{(F[vi,n]"} = <

E{F[vi, v2]} = va/(v2 = 2). (2.12.11)
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Similarly, if v, > 4 then

21)%(1)] + vy, —2)

Vbl = =4y

(2.12.12)

In various occasions one may be interested in an F-like statistic, in which the ratio
consists of a noncentral chi-squared in the numerator. In this case the statistic is
called a noncentral F'. More specifically, let x2[v1; A] be a noncentral chi-squared
with v; degrees of freedom and a parameter of noncentrality 1. Let x 2[v,] be a central
chi-squared with v, degrees of freedom, independent of the noncentral chi-squared.
Then

2 ;)»
Flvy, vp;A] ~ X A/m (2.12.13)

x2[v2l/v2

is called a noncentral F[v;, v; A] statistic. We have proven earlier that x2[vi;A] ~
x2[v; +2J], where J has a Poisson distribution with expected value A. For this
reason, we can represent the noncentral F[vi, v;;A] as a mixture of central F
statistics.

vi +2J 5P +2J1/(v +2J)
V| x2[v21/v2
v +2J
~

Flvi, vp;A] ~

(2.12.14)

Flvi +2J,v,],

where J ~ P(A). Various results concerning the c.d.f. of F[v;, vp; A], its moments,
etc., can be obtained from relationship (2.12.14). The c.d.f. of the noncentral F
statistic is

PFIv, vid) 5 8) = Y S PIFI +2) vl S wg/n +2)) - (21215)
j=0 7"

Furthermore, following (2.12.3) we obtain

o0

_ )\;i V1 1%
P F , ,)\, < = A —1 <_ '7 _)7
{Flvi,v;Al <é}=e ;j! re\5 T/ 5

where

V1 V1
R&) =t/ (1 - v—zs) :
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As in the central case, the moments of the noncentral F are obtained by employing
the law of the iterated expectation and (2.12.14). Thus,

V1 +2J

Vi

E{F[vl,vz;k]}zE{ Flvi +2J, vz]}. (2.12.16)
However, forall j =0, 1, ..., E{F[v; +2j, v2]} = v2/(v, — 2). Hence,

E{F[vi, vp; A1} = vo(vi +20)/((vi(v2 — 2)),

2J
V{Vl + Flvi+2J,n]|J= j} (2.12.17)
Vi
_(v1+2j)2. 2v§ .v1+v2+2j—2
B v} (v =2)%(n, — 4) v +2j '

Hence, applying the law of the total variance

203(v1 + 20) (V) + 61 + vy — 2) 42
vi(vy —2)2(1y — 4) vi(vy —2)2

V{F[vi, vp; 1]} = (2.12.18)

We conclude the section with the following observation on the relationship between
t- and the F-distributions. According to the definition of #[v] we immediately obtain
that

2 [v] ~ N0, 1)/(x*[v]/v) ~ F[L1, v]. (2.12.19)
Hence,

P{—t < tlv] <1} = P{F[1,v] < 1%} = Ipj0pip) (% %) . (21220)

Moreover, due to the symmetry of the #[v] distribution, for # > 0 we have 2P {t[v] <
t} =1+ P{F[1,v] <t*},0or

1 1 v
P{t[v]ft}=§<1-|-1,22 (§,§>> (2.12.21)

In a similar manner we obtain arepresentation for P{|¢[v, £]| < t}.Indeed, (N (O, 1) +
£)> ~ x*[1;1] where A = 1&2. Thus, according to (2.12.16)

Y 1 v
P{—t <t[vi€] <t} =e ZFI,Z/WZ) Sthy) 1222
j=0 7"
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2.13 THE DISTRIBUTION OF THE SAMPLE CORRELATION

Consider a sample of n i.i.d. vectors (X1, Y1), ..., (X,,Y,) that have a common
bivariate normal distribution

§ of  poioy
N , ).
n PO12 0,
In this section we develop the distributions of the following sample statistics.
(i) The sample correlation coefficient
r = SPDxy/(SSDx - SSDy)'/?; (2.13.1)
(ii) The sample coefficient of regression

b = SPDxy/SSDx (2.13.2)

where

" _ 1
SSDy = X, - X=X (1--J)X,
X ;( ) ( . )
- _ _ 1
SPDxy = » (X; = X)(¥; - V) =Y <1 — —J) X, (2.13.3)
n

i=1

. 1
SSDy = Z(Y,- Y} =Y <1 - —J) Y.
n

i=1

As mentioned earlier, the joint density of (X, Y) can be written as

1 x—§ y—n—px—§)
flx,y) = ¢< )¢ , (2.13.4)
0102/ 1 — p? o] 02/ 1 — p?
where 8 = po,/o;. Hence, if we make the transformation

Ui=X;—§,

(2.13.5)

S
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then U; and V; are independent random variables, U; ~ N (O, 012) and V; ~ N(O, 022 .
(1 — p?)). We consider now the distributions of the variables
Wi = SPDyy /oal(1 — p*)SSDy]'"?,
W, = (SSDy — SPD?,, /SSDy)o3(1 — p?), (2.13.6)
W; = SSDy /o2,

where SSDy, SPDyy and SSDy are defined as in (2.13.3) in terms of (U;, V;),
i=1,...,n.LetU=(Uy,...,U,) and V = (Vy, ..., V,). We notice that the con-

1
ditional distribution of SPDyy = V’ (I —=J ) U given U is the normal N (0, 022(1 —
n

02) - SSDy). Hence, the conditional distribution of W, given Uis N (0, 1). This implies
that W; is N (0, 1), independently of U. Furthermore, W; and W3 are independent,
and W3 ~ x2[n — 1]. We consider now the variable W. It is easy to check

1
SSDy — SPDyy, /SSDy = V' <A ~ %D AUU’A’) V, (2.13.7)

U

1
where A =1 — —J. Aisidempotent and sois B = A — ﬁAUU/A. Furthermore,
n

the rank of B is n — 2. Hence, the conditional distribution of SSDy — SPD?,,,/SSDy
given U is like that of 02(1 — p?)x2[n — 2]. This implies that the distribution of
W, is like that of x2[n — 2]. Obviously W, and W3 are independent. We show now
that Wy and W, are independent. Since SPDyy = V'AU and since BAU = (A —
ﬁAUU’A)AU = AU — ﬁAU -SSDy = 0 we obtain that, for any given U,
SPDyy and SSDy — SPD%,V/SSDU are conditionally independent. Moreover, since
the conditional distributions of SPDyv /(SSDy)"/? and of SSDy — SPD?,,, /SSDy, are
independent of U, W; and W, are independent. The variables W, W,, and W; can be
written in terms of SSDy, SPDxy, and SSDy in the following manner.

Wi = (SPDxy — BSPDy)/lo5 (1 — p*)SSDx]'/?,
W, = (SSDy — SPD%,/SSDx)/o3(1 — p?), (2.13.8)
W3 = SSDx o}

Or, equivalently,

r«/SSDy ,OVSSDX
o /T—p2  o1/1—p?
Wy = SSDy(1 —r?) /o3 (1 — p?),

W, =

(2.13.9)

W; = SSDx /o ?.
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From (2.13.9) one obtains that

p— r — _—p
Wl_\/m\/w2 1_pZ‘/W} (2.13.10)

An immediate conclusion is that, when p = 0,

ro — N, 1)

This result has important applications in testing the significance of the correlation
coefficient. Generally, one can prove that the p.d.f. of r is

n—

frip) = 2—,(1 —AT =Ty T (” - 1) @or)’.
! <

3
w(n—3) 2 j!

(2.13.12)

2.14 EXPONENTIAL TYPE FAMILIES

A family of distribution F, having density functions f(x;) with respect to some
o -finite measure w, is called a k-parameter exponential type family if

f(x:0) = h(x)A@) exp{y1 (U1 (x) + - - - + V(O Ur(x)},  (2.14.1)

—00 < x < 00,0 € ®.Here y;(),i =1, ..., k are functions of the parameters and
U;(x),i =1, ...,k are functions of the observations.

In terms of the parameters ¥ = (Yq,...,v¥;) and the statistics U=
(Ui (x), ..., Up(x)), the p.d.f of a k-parameter exponential type distribution can
be written as

@ 9) = h*(Ux) exp{—K (¥)} exp{y'U(x)}, (2.142)

where K(¢¥) = —log A*(¥). Notice that 2*(U(x)) > O for all x on the support set
of F, namely the closure of the smallest Borel set S, such that Py {S} =1 for all
¥. If ~*(U(x)) does not depend on ¥, we say that the exponential type family F is
regular. Define the domain of convergence to be

QF = {lﬁ : / R*(UG)) exp{—y U)}dp(x) < oo}. (2.14.3)

The family F is called full if the parameter space €2 coincides with ©*. Formula
(2.14.2) is called the canonical form of the p.d.f.; ¥ are called the canonical (or nat-
ural) parameters. The statistics U;(x)(i = 1, ..., k) are called canonical statistics.
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The family F is said to be of order k if (1, ¥, ..., ¥y) are linearly independent
k-1

functions of @. Indeed if, for example, ¥, = ap + Za V¥, for some o, ..., ox_1,

j=1
which are not all zero, then by the reparametrization to

we reduce the number of canonical parameters tok — 1. If (1, ¥, . .., ¥y) are linearly
independent, the exponential type family is called minimal.
The following is an important theorem.

Theorem 2.14.1. [If Equation (2.14.2) is a minimal representation then

(i) Q* is a convex set, and K (¥) is strictly convex function on Q*.

(ii) K(¥) is a lower semicontinuous function on R¥, and continuous in the interior
of Q.

For proof, see Brown (1986, p. 19).
Let

AY) = fh*(U(x)) exp{y'UX)}du(x). (2.14.4)

Accordingly, A(¥) = exp{K(¢¥)} or K(¢) = log A(¥). A(¥) is an analytic function
on the interior of Q* (see Brown, 1986, p. 32). Thus, A(¥) can be differentiated
repeatedly under the integral sign and we have for nonnegative integers /;, such that

k
Zli =1,
i=1

3! k
P k('/f)=fH(Ui(X))l"h*(U(X))~6XP{¢'U(X)}dM(X)~ (2.14.5)

Hawili i=1
i=l

The m.g.f. of the canonical p.d.f. (2.14.2) is, for ¥ in Q*,

M ¥) = /h*(U)e—K(x//)Jr(vﬁ+t)’UdM*(U)
(2.14.6)

= exp{—K(¥) + K(¥ + 0}
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for t sufficiently close to 0. The logarithm of M(t; ), the cumulants generating
function, is given here by

K*t¢y)=—-KW)+ K + ). (2.14.7)
Accordingly,

Ey {U} = VK*(t:9)| _,

(2.14.8)
= VK@),
where V denotes the gradient vector, i.e.,
0
— K@)
0y 4
VK({Y) =
0
— K@)
Y 4
Similarly, the covariance matrix of U is
82
Vy,(U) = (—K(r//);i,j =1, k) . (2.14.9)
v 0V 0y

Higher order cumulants can be obtained by additional differentiation of K (¢). We
conclude this section with several comments.

1. The marginal distributions of canonical statistics are canonical exponential type
distributions.

2. The conditional distribution of a subvector of canonical exponential type statis-
tics, given the other canonical statistics, is also a canonical exponential type
distribution.

3. The dimension of Q* in a minimal canonical exponential family of order k
might be smaller than k. In this case we call F a curved exponential family
(Efron, 1975, 1978).

2.15 APPROXIMATING THE DISTRIBUTION OF THE SAMPLE MEAN:
EDGEWORTH AND SADDLEPOINT APPROXIMATIONS

Let X1, X», ..., X, be i.i.d. random variables having a distribution, with all required
moments existing.



PART I: THEORY 147

2.15.1 Edgeworth Expansion

The Edgeworth Expansion of the distribution of W, = /n(X,, — )/o, which is
developed below, may yield more satisfactory approximation than that of the normal.
This expansion is based on the following development.

The p.d.f. of the standard normal distribution, ¢(x), has continuous derivatives of
all orders everywhere. By repeated differentiation we obtain

¢V (x) = —xp(x)
(2.15.1)
PP (x) = (x* — Dg(x),

and generally, for j > 1,

¢V (x) = (= 1) Hj(x)p(x), (2.15.2)

where H;(x) is a polynomial of order j, called the Chebychev—-Hermite polynomial.
These polynomials can be obtained recursively by the formula, j > 2,

Hj(x) = xHj_y(x) = (j — DHj (), (2.153)

where Hy(x) = 1 and H{(x) = x.
From this recursive relation one can prove by induction, that an even order poly-
nomial Hy,,(x), m > 1, contains only terms with even powers of x, and an odd order

polynomial, Hy,,+1(x), n > 0, contains only terms with odd powers of x. One can
also show that

/ ” H;(x)p(x)dx =0, forall j > 1. (2.15.4)

Furthermore, one can prove the orthogonality property

o 0, ifj#k
/ Hi()H(x)¢p(x)dx = (2.15.5)
—00 jl,oif j =k

Thus, the system {H;(x), j =0, 1, ...} of Chebychev—Hermite polynomials consti-

tutes an orthogonal base for representing every continuous, integrable function f(x)
as

@)=Y ¢jHj(x)p(x), (2.15.6)

j=0

where, according to (2.15.5),

¢ = %/w H;(x)f(x)dx, j=>0. (2.15.7)
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In particular, if f(x) is a p.d.f. of an absolutely continuous distribution, having all
moments, then, for all —oo < x < o0,

f) =)+ Y ¢; Hi(x)p(x). (2.15.8)

j=1

Moreover,
¢ = /Xf(x)dx = W1,
_ ! 2 dx = ! 1
—Ef(x - Dfx) X—E(Mz— )

1
c3 = 6(#«3 —3u1),

etc. If X is a standardized random variable, i.e., i; = 0 and u» = puj =1, then its
p-d.f. f(x) can be approximated by the formula

1 1
fx) = px) + gu;‘(ﬁ = 3000 + 52 (] — (xt — 6x2 +3)gp(x),  (2.15.9)

which involves the first f_our terms of the expansion (2.15.8). For the standardized
sample mean W, = /n(X,, — u)/o,

wi, =E{W)} = (2.15.10)

Bl

and

Wi, = E{W,} =

~3
pr=3 (2.15.11)
n

where B and B, are the coefficients of skewness and kurtosis.

The same type of approximation with additional terms is known as the Edgeworth
expansion. The Edgeworth approximation to the c.d.f. of W, is

P{W, < x} = ®(x) - ﬁ—}( 2= Do)
5 5 (2.15.12)
X P2— P 2
- [ 7 ( -3+ == 2 —10x~ + 15):| d(x).

The remainder term in this approximation is of a smaller order of magnitude than

[ 1 . N . -
—, ie.,0 —). One can obviously expand the distribution with additional terms to
n n

obtain a higher order of accuracy. Notice that the standard CLT can be proven by
taking limits, as n — oo, of the two sides of (2.15.12).
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We conclude this section with the remark that Equation (2.15.9) could serve to
approximate the p.d.f. of any standardized random variable, having a continuous,
integrable p.d.f., provided the moments exist.

2.15.2 Saddlepoint Approximation

As before, let X1, ..., X, be i.i.d. random variables having a common density f(x).

i, 1 ¢
We wish to approximate the p.d.f of X, = _in' Let M(t) be the m.g.f. of 1,
n
i=1
assumed to exist for all 7 in (—o0, t;), for some 0 < fy < co. Let K(¢) = log M(¢) be
the corresponding cumulants generating function.
We construct a family of distributions F = { f(x, ¢) : —00 < ¥ < £y} such that

Jxs ) = f(x)exp{yx — K(¥))}. (2.15.13)

The family F is called an exponential conjugate to f(x). Notice that f(x;0) = f(x),
o0
and that/ fx;¥v)du(x) =1 for all ¥ < 1.

—00
Using the inversion formula for Laplace transforms, one gets the relationship

Jx(ey) = fx(x) - expln(yx — K(¥))}, (2.15.14)

where f3(x;v) denotes the p.d.f. of the sample mean of n i.i.d. random variables
from f(x; ). The p.d.f. fx(x; ) is now approximated by the expansion (2.15.9) with
additional terms, and its modification for the standardized mean W,. Accordingly,

o N ,03(1//) pa(Yr) p3(Y)
fz,(59) = mﬂ)[ 6\/_H()+ o Hy(z) + T H()i|
(2.15.15)
_ KO
where ¢(z) is the p.d.f. of N(0, 1), z = XTIIZ()W\/E’ () = ﬁ, and

pa(¥) = KD (W) /(KD ())*. Furthermore, 1u(¥) = K'(y) and o () = K@ ().
The objective is to approximate fg(x). According to (2.15.14) and (2.15.15), we
approximate fg(x) by

fx(@) = fx(;¥)expin[K(Y) — ¢ (x)]}

\/_ p3(¥) p4(Yr)
o) [1+6IH3()+ 2an 1@ 51516

+ %Hﬁ(o} exp(nlK(¥) — vx]).
n
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The approximation is called a saddlepoint approximation if we substitute in
(2.15.16) ¥ = v/, where ¥ is a point in (—oo, ) that maximizes f(x;v). Thus, i
is the root of the equation

K'(y)=x.

As we have seen in Section 2.14, K () is strictly convex in the interior of (—o0, #j).
Thus, K'(y) is strictly increasing in (—o0, fo). Thus, if 1/7 exists then it is unique.
Moreover, the value of z at ¥ = v is z = 0. It follows that the saddlepoint approxi-
mation is

Jnc
QrK®O@)))'/2

L pal) 5 , . 1
-{1+;[ g —ﬁp3(1ﬁ)}+0<;)}.

The coefficient c is introduced on the right-hand side of (2.15.17) for normalization.
A lower order approximation is given by the formula

fr(x) = exp{n[K () — Px1}-

(2.15.17)

Jnc

Wexp{n[m% — ]} (2.15.18)

fxx) =

The saddelpoint approximation to the tail of the c.d.f., i.e., P{X,, > £} is known to
yield very accurate results. There is a famous Lugannani—Rice (1980) approximation
to this tail probability. For additional reading, see Barndorff-Nielson and Cox (1979),
Jensen (1995), Field and Ronchetti (1990), Reid (1988), and Skovgaard (1990).

PART II: EXAMPLES

Example 2.1. In this example we provide a few important results on the distributions
of sums of independent random variables.

A. Binomial

If X; and X, are independent, X| ~ B(Ny, 6), X, ~ B(N>, 6), then X| + X, ~
B(N; + N», 0). It is essential that the binomial distributions of X; and X, will have
the same value of 8. The proof is obtained by multiplying the corresponding m.g.f.s.

B. Poisson
If X;~ P and X, ~ P();) then, under independence, X;+ X, ~
P(A 4 Ay).
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C. Negative-Binomial
If X; ~ NB(y, vy) and X, ~ NB({, v,) then, under independence, X + X, ~
NB(r, vi + o). It is essential that the two distributions will depend on the same .

D. Gamma

If Xy ~G(A,vy) and X, ~ G(X, v,) then, under independence, X; + X, ~
G(A, v + o). It is essential that the two values of the parameter A will be the
same. In particular,

xivil + x3val ~ x*[vi + va]

forall vi,v, = 1,2, ...; where Xiz[v,-], i =1, 2, denote two independent ¥ 2-random
variables with v; and v, degrees of freedom, respectively. This result has important
applications in the theory of normal regression analysis.

E. Normal

If Xy ~N(u, 012) and X, ~ N(u,, 022) and if X, and X, are independent, then
X1+ X2 ~ N(u1 + pa2, 07 + 03). A generalization of this result to the case of pos-
sible dependence is given later. [ ]

Example 2.2. Using the theory of transformations, the following important result is
derived. Let X and X, be independent,

X1~ G, v) and X; ~ G(A, 1),

then the ratio R = X /(X + X») has a beta distribution, B(v;, v»), independent of
M. Furthermore, R and T = X; + X, are independent. Indeed, the joint p.d.f. of X;
and X, is

vi+v2

(X1, X5) = mxi}l_lx;r] exp{—A(x; +x2)}, 0 =<x, x2 <o0.
1 2

Consider the transformation
T =X, + X,.

The Jacobian of this transformation is J(xy, t) = 1. The joint p.d.f. of X; and T is
then

)LVH_VZ .
gxi, ) = ———x" 't —x)? Texp{—At}), 0<x <1< oo.
L)) ™!
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We have seen in the previous example that 7 = X| + X, ~ G(A, v; + vy). Thus, the
marginal p.d.f. of T is

vitv2
h(t)y = ——— T2l 0 <t < o0.
L'(vr +1v2)

Making now the transformation

r=t

r:xl/t,

we see that the Jacobian is J(r, ) = . Hence, from (2.4.8) and (2.4.9) the joint p.d.f.
ofrandris,forO0 <r <land0 <t < o0,

g = ;r""l(l — b,
’ B(vy, v2)
This proves that R ~ B(vi, v;) and that R and T are independent. [ ]

Example 2.3. Let (X, A) be random variables, such that the conditional distribution
of X given X is Poisson with p.d.f.

X

A
p(x;A) = e_k—', x=0,1,...
x!

and A ~ G(v, A). Hence, the marginal p.d.f. of X is

i > 1,—A(14+A)
- Wl MIEN gy
P = Fo fo .
_Ix+v) AV o
N Cw)x! (14 A+’ =0,1,....
Let ¥ = —— I =y = 2 Then p(x) = — (1 _ yyyr. Thus,
A . C(x+ D)

X ~ NB(, v), and we get

AV ¢ S\ A
NB(k;yr,v) = ro) / A E e m e "d,.
0 .

=0

But,

k 1

)
D¢ty =1-PlGULk+1) =i}
=0 )
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Hence,
1
NB(k; ¥, v)=1—P{G(1,k+1) < XG(L v)}

where G(1, k + 1) and G(1, v) are independent.

G(,v) .
Let R = ——— . According to Example 2.2,
G(l,k+1)

_ G(1,v)
T G(Lk+ 1D+ G(,v)

~ B, k+ 1).

R
But U ~ ———; hence,
1+ R

NB(k;yr,v) =1— P{R > A}

_i-p {u > }
1+ A
=PU<1—-9y}=1L_yWw k+1).
|
Example 2.4. Let Xy, ..., X, be i.i.d. random variables. Consider the linear and

the quadratic functions

I
sample mean: X = — ZX,-
n

i=1

1< _
X; — X)%
n_lg( )

sample variance: S =

We compute first the variance of S2. Notice first that S? does not change its value if
we substitute X = X; — p for X; (( =1, ..., n). Thus, we can assume that y; = 0
and all moments are central moments.

1 - _
Write §? = — ( E X7 — nX2> .Accordingly,
" —
i=1

1 n _ n _
V{s?) = T {v {;Xz} + n2V{X?} — 2ncov (Z X2, Xz)j| :

i=l
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Now, since X, ..., X, are i.i.d.,

v {ZX?} =nV{X}} = n(us — p3).

i=1

Also,
1 & 1 21\’
VIX}}=E (Z 2 X,) - (E {(Z Zx) })
1 ! ! 1 21\?
= —E (121 X,) —F<E{(fo) })
According to Table 2.3,
()" = [4] + 4[31] + 3[2%] + 6[21%] + [1*].
Thus,

n 4 n
(Z x,-) =D X4 3 X)X +3) ) XX
i=1 i=1

i#] i#j
+ 62 Z ZX?X_,-X,( + Z Z Z Zx,-xjxkxl.
i#j#k i# Ak

Therefore, since p; = 0, the independence implies that

" 4
E <Z X,~> =np4 + 3n(n — l)u%.
i=1

Also,

Thus,
2y (72 1 2 2.2
n“V{X*} = ;[n,lu +3n(n — Du; —n"p;l

1 2
= ;[M + (2n — Du3l.
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At this stage we have to compute
n 1 n n 2 n
cov (Z X2, X2> =—E (Z Xf) (Z X,-) —E {Zx?} E{X?}.
i=1 i=1 i=1 i=1
From Table (2.3), (2)(1)> = [4] + 2[31] + [2%] + [21?]. Hence,

n n 2
E (Z X?) (Z X,-) = nuq +n(n — Hu3
i=1 i=1

and

E {Z X,?} E{X*} = 1.

i=1

Therefore,

—2n cov (Z X2, )_(2> = 2y — ud).
i=1

Finally, substituting these terms we obtain

V(s) = Ha— B3 a3
n—1 nn—1)

Example 2.5. We develop now the formula for the covariance of X and S2.

_ 1 n B n
cov(X, §2) = ——co X?—nX% ) X;
V( ) l’l(}’l— l) v ; i n ]; J

1 n n _ _
—— | cov ZX?,ZXj —nzcov(Xz,X)
n(n —1) =1 =
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First,

n

cov iXiz,i:Xj ZZiCOV(X?,Xj)
i=1 =

i=1 j=I

n
= cov(X}, X;) = nus,

i=1

since the independence of X; and X; for all i # j implies that cov(Xiz, X;)=0.
Similarly,

cov(X?, X) = E{X%}

Thus, we obtain
= 1
cov(X, §7) = —us.
n

Finally, if the distribution function F(x) is symmetric about zero, u; = 0, and
cov(X, §?) =0. [ |

Example 2.6. The number of items, N, demanded in a given store during one week is
arandom variable having a Negative-Binomial distribution NB(yr, v); 0 < ¢ < 1 and

0 < v < oo. These items belong to k different classes. Let X = (X1, ..., X) denote
a vector consisting of the number of items of each class demanded during the week.
k

These are random variables such that ZX ; = N and the conditional distribution

i=1
of (X1, ..., Xy) given N is the multinomial M(N, @), where @ = (04, ..., ;) is the
k

vector of probabilities; 0 < 6; < 1, Zej = 1. If we observe the X vectors over
j=1

many weeks and construct the proportional frequencies of the X values in the various

classes, we obtain an empirical distribution of these vectors. Under the assumption

that the model and its parameters remain the same over the weeks we can fit to

that empirical distribution the theoretical marginal distribution of X. This marginal

distribution is obtained in the following manner.
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The m.g.f. of the conditional multinomial distribution of X* = (X, ..., X;_1)
given N is

k-1 k-1 N
Mx<n(ty, ..., tkie1) = |:Zeiet’ + (1 - 291')1| .
i—1

Hence, the m.g.f. of the marginal distribution of X* is

o0

'v+n)
Mx-(ty,...,t ={1-
x+(1 k1) = ( I//)ZF()F(I’Z—FI)
v
k—1 k—1 n -y
[wzae"'w(l—zeﬂ = 1
R e (3)
i=1
Or
k-1 v
— ZW’

i=1

MX*(tl5"'7tk—l)= k——l 9
— Zw,e”
i=1
where
0;
w; = Ld p o oi=1,...,k—1
i=1
This proves that X* has the multivariate Negative-Binomial distribution. [ ]

Example 2.7. Consider arandom variable X having a normal distribution, N (&, o?).
Let ®(u) be the standard normal c.d.f. The transformed variable ¥ = ®(X) is of
interest in various problems of statistical inference in the fields of reliability, quality
control, biostatistics, and others. In this example we study the first two moments
of Y.

In the special case of § = 0 and 0% = 1, since ®(u) is the c.d.f. of X, the above
transformation yields a rectangular random variable, i.e., ¥ ~ R(0, 1). In this case,
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obviously E{Y} = 1/2 and V{Y} = 1/12. In the general case, we have according to
the law of the iterated expectation
E{Y} = E{®(X)}
= E{P{U <X | X}}
= P{U < X},

where U ~ N(0, 1), U and X are independent. Moreover, according to (2.7.7), U —
X~N(-& 1+ 02). Therefore,

E{Y}=®¢/V(1+0?).

In order to determine the variance of Y we observe first that, if U;, U, are independent
random variables identically distributed like N(0, 1), then P{U; < x,U, < x} =
d2(x) for all —oo < x < o0o. Thus,
E{Y?) = E{®*(X))
=PU-X=<0,U,-X =<0},

where Uy, U, and X are independentand U; ~ N(0,1),i = 1,2, U; — Xand U, — X
have a joint bivariate normal distribution with mean vector (—&, —&) and covariance

matrix
V = (1 +0? o? )
o? 1+02 )
Hence,
o2
E(F'} = & ((1 +i2)1/2’ a +i2)1/2; 1+ az) '
Finally,

_ 27 H2 S
V{Y) = E{Y?) - & <—(1+02)1/2).

Generally, the nth moment of Y can be determined by the n-variate multinormal
§ §

cdf. )| ——=5,.... —=5:

<(1 +02)l2 (1402)12

off-diagonal elements R;; = o2/(1 + o?), for all k # j. We do not treat here the

problem of computing the standard k-variate multinormal c.d.f. Computer routines

are available for small values of k. The problem of the numerical evaluation is

R), where the correlation matrix R has
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generally difficult. Tables are available for the bivariate and the trivariate cases. For
further comments on this issue see Johnson and Kotz (1972, pp. 83-132). [ ]

Example 2.8. Let X, X»,..., X, be i.i.d. N(0, 1) r.v.s. The sample variance is
defined as

1 n ~ _ ln

2 _ L Y)2 P .

S_n—lEl(Xl X),whereX_nE X;.
=

i=1

Let Q0 = X(X; — X)?. Define the matrix J = 11/, where 1’ = (1, ..., 1) is a vector
1

of ones.Let A =1 — —J,and Q = X'AX. Itis easy to verify that A is an idempotent
n

matrix. Indeed,

1\? 2.1, 1
I—=J) =1-=J+=)=1—-1.
n n n n

The rank of A is » = n — 1. Thus, we obtained that §* ~ —L-x2[n — 1]. ]

Example 2.9. Let Xy,..., X,, be i.i.d. random variables having a N(§, o?) dis-

n

-1
tribution. The sample mean is X = —ZX,- and the sample variance is S?> =
n

i=l

1 < _
7 E (X; — X)*. In Section 2.5 we showed that if the distribution of the Xs
n—

i=1

is symmetric, then X and S are uncorrelated. We prove here the stronger result that,
in the normal case, X and S? are independent. Indeed,

X~&+ %I’U, where U = (U, ..., U,)
o2
is distributed like N (0, I). Moreover, S* ~ 1U/(I - %])U. But,
n—
1
1 (1 — —]) =0.
n
This implies the independence of X and S. [ ]

Example 2.10. Let X be a k-dimensional random vector having a multinormal
distribution N(AB, o2I), where A isa k x r matrix of constants, Bisanr x 1 vector;
1<r <k, 0<o? < co. We further assume that rank (A) = r, and the parameter
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vector B is unknown. Consider the vector B that minimizes the squared-norm ||X —

ABI?, where ||X||> = S X2. Such a vector B is called the least-squares estimate of
B. The vector B is determined so that

I1X]1> = [|1X — AB|> + ||ABI> = Q1 + 0>

That is, AB is the orthogonal projection of X on the subspace generated by the
column vectors of A. Thus, the inner product of (X — Af) and AB should be zero.
This implies that

B=(AA)AX.

The matrix A’ A is nonsingular, since A is of full rank. Substituting Binthe expressions
for Q; and Q,, we obtain

Q1 =X — AB|]> =X'(I — A(A'A)"'AX,
and
0, = ||ABII> = X A(A'A) ' A'X.
We prove now that these quadratic forms are independent. Both
Bi=1—A(AA)'A" and B, = A(A’A)~'A’
are idempotent. The rank of B is k — r and that of B, is r. Moreover,

BiBy = (I — A(A/A)""AHAA' A A/
=AA'A)TA — A(AA)TA =0.

Thus, the conditions of Theorem 2.9.2 are satisfied and Q; is independent of Q5.
Moreover, Q1 ~ o2x2[x — r; 1] and Qs ~ o2 x2[r; A,] where

1
= E,B’A’(l —AAA)TTANAB =0
and
1 I Al / —1 47
=§ﬁAA(AA) A'AB

1 !’ ’
= SB(A'AB.
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Example 2.11. Let Xy, ..., X,, bei.i.d. random variables from a rectangular R(0, 1)
distribution. The density of the ith order statistic is then

— ; i—1 i
= gim—iyn 7Y

0 < x < 1. The p.d.f. of the sample median, for n» = 2m + 1, is in this case

1
m =—x"(1 - m’ 0<x<l.
)= g tme . 179 .

The p.d.f. of the sample range is the S(n — 1, 2) density

1
hy(r)= ——r"2(1—r), 0<r<l.
)=o) A= 0srs

These results can be applied to test whether a sample of n observation is a realization
of i.i.d. random variables having a specified continuous distribution, F(x), since
Y =F)~ R(,1). [ ]

Example 2.12. Let X, X5, ..., X, be i.i.d. random variables having a common

exponential distribution E(1),0 < A < oo. Let X(1y < Xo) < - -+ < X, be the cor-
responding order statistic. The density of Xy is

o, (6 A) = ane M x> 0.
The joint density of X(;y and X(y) is
Fxo X (X, ¥) = n(n — DA2e P =2y 0 < x <y,
Let U = X2y — X(1). The joint density of X(;y and U is
fxop.u(x,u) = Ane " (n — Dre 2D 0 < x < o0,

and 0 < u < oo. Notice that fy, v(x,u) = fx,(x)- fu(u). Thus Xy and U are
independent, and U is distributed like the minimum of (n — 1) ii.d. E(X) ran-
dom variables. Similarly, by induction on k =2,3,...,n, if Uy = Xg) — X¢p—1)
then X1y and Uy are independent and Uy ~ E(A(n — k + 1)). Thus since Xy =

1 n ] 1
Xy + U+ + U, E{Xw)= x > = and V{Xp}= Z —2
j=n—k+1 ket
all k > 1. [ ]
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Example 2.13. Let X ~ N(u, ?), —00 < < 00, 0 < 6% < 0co. The p.d.f. of
X is

1 1 )
= e P T 22 T W

1 u? 0 1Y,
ERCIIL R =3 Bl PR W 7=) el

1 2
Let h(x)=—, A(u,0%) =¢ex {__
21 P
Yo, 0?) = _F’
as a two-parameter exponential type family. By making the reparametriza-
tion (u,0?%) — (Y1, V), the parameter space ® = {(u,0?): —00 < 4 < 00,
0 < 0% < oo} is transformed to the parameter space

fxsp, o)

1
- Elogﬂz}, Vi(p, 0?) = %,

Ui(x) =x, and Ux(x) =x%. We can write f(x;u,o?)

Q={(Y1,¥r): —00 < Y| <00, —00 < Y, < 0}.
In terms of (¥, ¥,) the density of X can be written as
s, ¥2) = h(x)A@r, ¥o) exp{Y1x + Yox?}, —00 < x < 00,

where h(x) = 1/4/7 and

A v =exp | L L4 Diog(yn)

, =expi- — + = log(— .

1, ¥2 p 49, 2 g 2

The p.d.f. of the standard normal distribution is obtained by substituting ¥, = 0,
1

Y = 5 ]

Example 2.14. A simple example of a curved exponential family is
F = {N(£, c&?), —00 < £ < 00, ¢ > 0 known}.

In this case,

1
FOs ¥, ¥o) = ﬁA*(wl, Va) exp{yrx + ¥ax?),

with ¢, = —%1&12. Y1 and v, are linearly independent. The rank is k = 2 but

@ = {1921 v = =S¥l o0 < Y1 < o].
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The dimension of Q* is 1.
The following example shows a more interesting case of a regular exponential
family of order k = 3. [ ]

Example 2.15. We consider here a model that is well known as the Model II of
Analysis of Variance. This model will be discussed later in relation to the problem
of estimation and testing variance components.

We are given n -k observations on random variables X;; (i =1,...,k;j =
1, ..., n). These random variables represent the results of an experiment performed
in k blocks, each block containing » trials. In addition to the random component rep-
resenting the experimental error, which affects the observations independently, there
is also a random effect of the blocks. This block effect is the same on all the observa-
tions within a block, but is independent from one block to another. Accordingly, our
model is

X,-jN,u—i—ai—i—e,-j, izl,...,k, j:l,...,n

where ¢;; are i.i.d. like N (0, 0?) and g; are i.i.d. like N(O, 72).
We determine now the joint p.df. of the vector X = (Xy,...,

Xiny X215 ooy Xony o ooy Xkts .-+, Xzn)'. The conditional distribution of X given
a=(ay,...,a) is the multinormal N(ul.; + &(a),o%ly), where &'(a) =
(a1, a1, ..., a1,). Hence, the marginal distribution of X is the multinormal

N(&1,k, V), where the covariance matrix V is given by a matrix composed of k equal
submatrices along the main diagonal and zeros elsewhere. That is, if J, = 1,1/, is an
n X n matrix of 1s,

V =diag{o?l, + t*J,, ..., 0%, + 12 J,}.

The determinant of V is (¢2)*"|I,, + pJ,|¥, where p = t2/02. Moreover, let H be an

orthogonal matrix whose first row vector is 71; Then,
n

Ly + pJul = |H(I, + pJy)H'| = (1 + np).

Hence, |V| = ¢ %"¥(1 + np)*. The inverse of V is
-1 . 1 —1 1 —1
14 =d1ag _Z(In +pod) .., _Z(In + o) ,
o o

where (1, + an)_l =1, — (p/(1 + np))Jy.
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Accordingly, the joint p.d.f. of X is

1 1
f&p, 0 1% = Qrf V2 exp {_E(X — ) Vo (x — N«lnk)}
1 L i) % — i)
= exp) — —(x—uly) (x—pul,
Qr Ykl + npy2 P T 2gz T Kk Hlnk
o .
- m(x — ply) diag{J,, ..., J,}(x — Mlnk)}-
Furthermore,

k n

(X — pl) (x = plg) = Z Z(x,, -
k

k n
= Z Z(xij —5) +n Z(?_Ci -’
i=1 j=1

i=1

1 n
where X; = — Y x;;,i =1,..., k. Similarly,
P y

k
(X - Mlnk)/ diag{]nv ey Jn}(x - /*Llnk) = f’l2 Z(fz -

i=1
Substituting these terms we obtain,

1
Q)2 k(1 + np)k/2

fosu, 0% ) =

n

k
- eXp { Z Z(-xlj i

k nk

202(1 +np) Zl 202(1 +np)

-y’ }
where

1
= EZ Xij-

i=1 j=1

=
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Define,

n

k k
D=y Y ai, L®=) 5, U®=4i
i=1 j=I i=1

and make the reparametrization

1 —n%p _ nku(l +2np)

Vi=—g V2= o0y T T 20t

The joint p.d.f. of X can be expressed then as

F& 0, Yo, ¥3) = exp{—nK(¥)} - exp{y1 U1 (X) + ¥ Us(X) + Y3 Us(x)}.

The functions U, (x), U,(x), and Us(x) as well as ¥ (6), ¥»(0), and ¥3(0) are linearly
independent. Hence, the order is k = 3, and the dimension of Q* is d = 3. [ ]

Example 2.16. Let X, ..., X, bei.i.d. random variables having a common gamma
distribution G(X, v), 0 < A, v < oo. For this distribution 8; = 2v and 8, = 6v.
_ 1
The sample mean X, is distributed like —G (A, nv). The standardized mean is
_ n
A X, — .
W, =4/n 220 Y The exact c.d.f. of W, is
Jv

P{W, < x} = P{G(1, nv) < nv + x+/nv}.

On the other hand, the Edgeworth approximation is

P{W, <x} = ®(x) — %(x2 — Dg(x)
_ 2
2t [2” Lo =3+ ot — 10x2 + 15)} B(x).
n 18

In the following table, we compare the exact distribution of W,, with its Edgeworth
expansion for the case of v =1, n = 10, and n = 20. We see that for n = 20 the
Edgeworth expansion yields a very good approximation, with a maximal relative
error of —4.5% at x = —2. Atx = —1.5 the relative error is 0.9%. At all other values
of x the relative error is much smaller.
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Exact Distribution and Edgeworth Approximation

n=10 n=20

X Exact Edgeworth Exact Edgeworth

—2.0 0.004635 0.001627  0.009767  0.009328
—1.5 0.042115 0.045289  0.051139  0.051603
—1.0 0.153437  0.160672  0.156254  0.156638
—0.5 0336526  0.342605  0.328299  0.328311
0 0.542070  0.542052  0.529743  0.529735

S 0719103 0.713061  0.711048  0.711052
1.0 0.844642  0.839328  0.843086  0.843361
1.5 0921395 0920579  0.923890  0.924262
2.0 0963145 0.964226  0.966650  0.966527

|
- 1
Example 2.17. Let X, ..., X, be i.i.d. distributed as G(A, v). X,, ~ —G(X, nv).
n
Accordingly,
)\’ ny
fx,(x) = —(l:i(n)v) KTl x> 0.
The cumulant generating function of G(A, v) is
14
K@) =—vlog l—x , ¥ <Al
Thus,
K@W)y=—— y<i
=y
and
K'())=———. <i
= —, < A.
(h—¥)?
Accordingly, = A — v/x and
K"() =x*/v
R R Ax\™ )
exp{n[K(¢) — ¥x]} = exp{nv — nix} - <—> . It follows from Equation
v

(2.15.18) that the saddlepoint approximation is

VZU <&>VW env . xnv—le—n)hx‘
2T v

fr(x) =
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If we substitute in the exact formula the Stirling approximation, I'(nv) =
1 . . . .
V2w (nv)™"2e™, we obtain the saddlepoint approximation. [ ]

PART III: PROBLEMS

Section 2.2

2.2.1

2.2.2

223

224

2.2.5

2.2.6

2.2.7

Consider the binomial distribution with parameters n, 6,0 < 6 < 1.
Write an algorithm for the computation of b(j | n, #) employing the
recursive relationship

1-9y J=0
b(jin,0)=
Ri(n,0)b(j — 1;n,0), j=1,...,N

where R;(n,0) = b(j;n, 0)/b(j — 1;n,0). Write the ratio R (n, 6) explic-
itly and find an expression for the mode of the distribution, i.e., xio = smallest
nonnegative integer for which b(x%n, 0) > b(j;n,0)forall j =0,...,n.

Prove formula (2.2.2).
Determine the median of the binomial distribution withn = 15 and 6 = .75.

Prove that whenn — 00,6 — 0,butnd — A, 0 < A < 00, then

lim b(i;n,0)=p@;r), i=0,1,...
nog — x

where p(i; A) is the p.d.f. of the Poisson distribution.
Establish formula (2.2.7).

Let X have the Pascal distribution with parameters v (fixed positive integer)
and 0, 0 < 6 < 1. Employ the relationship between the Pascal distribution
and the negative-binomial distribution to show that the median of X is
v + n s, where n s = least nonnegative integer n such that ly(v,n + 1) > .5.
[This formula of the median is useful for writing a computer program and
utilizing the computer’s library subroutine function that computes Iy(a, b).]

Apply formula (2.2.4) to prove the binomial c.d.f. B(j;n, 0) is a decreasing
function of 8, foreach j =0, 1, ..., n.
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2.2.8

2.2.9
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Apply formula (2.2.12) to prove that the c.d.f. of the negative-binomial
distribution, NB(, v), is strictly decreasing in ¢, for a fixed v, for each
j=0,1,....

Let X ~ B(10°,.0003). Apply the Poisson approximation to compute
P{20 < X < 40}.

Section 2.3

231

2.3.2

233

234

2.3.5

2.3.6

2.3.7

2.3.8

Let U be a random variable having a rectangular distribution R(0, 1). Let
B '(pla,b),0<p<1,0<a,b < oo denote the pth quantile of the
B(a, b) distribution. What is the distribution of ¥ = 8~1(U; a, b)?

1
Let X have a gamma distribution G <E, k), 0 < B < 00, and k be a positive
integer. Let X,% [v] denote the pth quantile of the chi-squared distribution with

1
v degrees of freedom. Express the pth quantile of G <—, k) in terms of the

corresponding quantiles of the chi-squared distributions.

Let Y have the extreme value distribution (2.3.19). Derive formulae for the
pth quantile of ¥ and for its interquartile range.

Let n(x; €, 0?) denote the p.d.f. of the normal distribution N (£, o%). Prove
that

/OO n(x;?;,az)dx =1,

oo

2

forall(g,az); —o0 <& <00,0<0” <o0.

Let X have the binomial distribution with n = 10° and # = 10~>. For large
values of A (A > 30), the N(X, A) distribution provides a good approxima-
tion to the c.d.f. of the Poisson distribution P(1). Apply this property to
approximate the probability P{90 < X < 110}.

Let X have an exponential distribution E£(X), 0 < A < co. Prove that for all
t > 0, E{exp{—tX}} > exp{—t/A}.

Let X ~ R(0,1)and Y = —log X.
(i) Show that E{Y} > log 2. [The logarithm is on the e base.]
(ii) Derive the distribution of ¥ and find E{Y} exactly.

Determine the first four camulants of the gamma distribution G(X, v),0 < A,
v < 0o. What are the coefficients of skewness and kurtosis?
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2.3.9 Derive the coefficients of skewness and kurtosis of the log-normal distribu-
tion LN (i, o).

2.3.10 Derive the coefficients of skewness and kurtosis of the beta distribution

B, q).

Section 2.4
24.1 Let X and Y be independent random variables and P{Y > 0} = 1. Assume
1
also that E{|X|} < co and E {?} < 0o. Apply the Jensen inequality and

the law of the iterated expectation to prove that

E {;} > E(X)/E{Y)., if E{X}>0,
< E{X})/E{Y), if E{X) <0.

2.4.2 Prove that if X and Y are positive random variables and E{Y | X} = bX,
0 < b < o0, then

() E{Y/X}=0b,
(i) E{X/Y} > 1/b.

2.4.3 Let X and Y be independent random variables. Show that cov(X + Y, X —
Y) =0if and only if V{X} = V{Y}.

24.4 Let X and Y be independent random variables having a common normal
distribution N (0, 1). Find the distribution of R = X /Y. Does E{R} exist?

2.4.5 Let X and Y be independent random variables having a common log-normal
distribution LN (i, 0%),i.e., log X ~logY ~ N(u, o%).
(i) Prove that XY ~ LN(2u, 202).
(i) Show that E{XY} = exp{2u + o2}
(iii) Whatis E{X/Y}?

2.4.6 Let X have a binomial distribution B(n, 8) and let U ~ R(0, 1) indepen-
dentlyof X andY = X + U.

(i) Show that Y has an absolutely continuous distribution with c.d.f.

0, ifn <0
Fy(n) = (m— jB(j;n,0)+ ifj<n<j+1,
D= A=+ HBG—1n60),  j=01,....n"
1, ifn>n+1

(ii) What are E{Y} and V{Y'}?
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24.7

24.8

249

2.4.10

24.11

24.12

24.13
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Suppose that the conditional distribution of X given 6 is the binomial B(n, ).
Furthermore, assume that 6 is a random variable having a beta distribution
B(p, q).

(i) What is the marginal p.d.f. of X?

(i) What is the conditional p.d.f. of 6 given X = x?

Prove that if the conditional distribution of X given A is the Poisson P (1), and

1
if A has the gamma distribution as G (—, v> , then the marginal distribution
T

)
,v ).
147

Let X and Y be independent random variables having a common exponential

distribution, E(A). LetU = X +Yand W =X — Y.

(i) Prove that the conditional distribution of W given U is the rectangular
R(-U,U).

(ii) Prove that the marginal distribution of W is the Laplace distribution,
with p.d.f.

of X is the negative-binomial NB (

A
glw; 1) = 5 exp{—Alw|}, —o0 <w < oo.

Let X have a standard normal distribution as N(0, 1). Let Y = ®(X). Show
that the correlation between X and Y is p = (3/)!/2. [Although Y is com-
pletely determined by X, i.e., V{Y | X} = O for all X, the correlation p is
less than 1. This is due to the fact that Y is a nonlinear function of X.]

Let X and Y be independent standard normal random variables. What is the
distribution of the distance of (X, Y) from the origin?

Let X have a x2[v] distribution. Let Y = § X, where 1 < § < oo. Express the
m.g.f. of Y as a weighted average of the m.g.f.s of Xz[v +2j,j=0,1,...,

with weights given by w; = P[J = j], where J ~ NB <1 — 3 %) [The

distribution of ¥ = 8X can be considered as an infinite mixture of x2[v +
2J] distributions, where J is a random variable having a negative-binomial
distribution. ]

Let X and Y be independent random variables; X ~ x?[v;] and Y ~

8x2[»m], 1 <& < oo. Use the result of the previous exercise to prove

1
that X +Y ~ Xz[vl + vy +2J], where J ~ NB <1 -3 %) [Hint: Mul-

tiply the m.g.f.s of X and Y or consider the conditional distribution of
X + Y given J, where J is independent of X and Y | J ~ x>*[vy +2J],

J~n(1-1 2,
52 )
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24.14 Let X,,..., X, be identically distributed independent random variables
having a continuous distribution F symmetric around p. Let M (X1, ..., X,)
and Q(X1, ..., X,) be two functions of X = (X1, ..., X,,) satisfying:

i) E{M(Xy, ..., X»)}=u;
() E{M*(X,,..., X))} < o0, E{Q*(X,,..., X,)} < 00}
Gii) M(—Xq,...,—-X,)=—-MX,,...,Xn);
Giv) M(X;+c,.... X, +c)=c+ M(X,,...,X,) for all constants c,
—00 < ¢ < 00;

v) O X1 +c,...,X,+c¢)=0Q(Xy,..., X,),allconstants ¢, —00 < ¢ <
003
(Vl) Q(_Xla ey _Xn) = Q(Xh -~~»Xn);

then coviM (X1, ..., X,), O(X4, ..., X,))=0.

k
2415 LetYy,....Y;(k>3),Y: >0, ZY[ < 1, have a joint Dirichlet distribu-
i=1
tion D(vy, va, ..., ), 0 <v; <o0,i=1,...,k.

(i) Find the correlation between Y; and Y;/, i #i'.
(ii) Let 1 < m < k. Show that

k
(Yl,...,mel)’\’D Vi, ooos Vmn—1, E V;

j=m
(iii) For any 1 < m < k, show the conditional law
k—1
Yoo Yoot | Yoy oo, Yo ~ 1—ZY]' D1, ..y V1, Wi).
j=m
Section 2.5
1 n
2.5.1 Let Xy,..., X, be ii.d. random variables. {1, = —ZXZ’ is the sample
n

i=1
moment of order r. Assuming that all the required moments of the common
distribution of X; (i =1, ..., n) exist, find

(i) E{p};
() vi{a}
(iii) cov(,,, fir,), for 1 <r; < ry.

252 LetUj, j=0,%l1,+2,..., beasequence of independent random variables,
such that E{U;} =0 and V{U;} = o? for all j. Define the random
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variables X, =B+ pUi—1 + U2+ -+ B,Ui—, + Uy,
t=0,1,2,..., where f, ..., B, are fixed constants. Derive
() E{X;},t=0,1,..;
(i) V{X,},r=0,1,..;
(iii) cov(X;, X;1n),t =0, 1,...; h is a fixed positive integer.
[The sequence {X;} is called an autoregressive time series of order p.

Notice that E{X,}, V{X,}, and cov(X,, X,1;) do not depend on ¢. Such a
series is therefore called covariance stationary.]

253 LetXy,..., X, berandom variables represented by the model X; = u; +¢;
(i=1,...,n),whereey, ..., e, are independent random variables, E{e;} =
0 and V{e;} =o? for all i =1,...,n. Furthermore, let x; be a con-
stantand u; = w1+ J; @ =1,2,...,n), where J,, ..., J, are indepen-
dent random variables, J; ~ B(1, p),i =2,...,n.Let X = (X1, ..., X,)).
Determine
(i) E{X},

(ii) ¥ (X). [The covariance matrix]

254 LetXy,...,X,bei.i.d.random variables. Assume that all required moments
exist. Find

(i E{X*}.
(i) E{(X5).
(i) E{(X — w)°}.

Section 2.6

2.6.1 Let (X, X2, X3) have the trinomial distribution with parameters n = 20,
0, =.3,6,=.6,0; =.1.
(i) Determine the joint p.d.f. of (X5, X3).
(ii) Determine the conditional p.d.f. of X; given X, =5, X3 = 7.

2.6.2 Let(Xy,..., X,) have a conditional multinomial distribution given N with
parameters N, 61, ..., 6,. Assume that N has a Poisson distribution P(}).

(i) Find the (non-conditional) joint distribution of (X1, ..., X,).
(ii) What is the correlation of X and X,?

2.6.3 Let (X, X,) have the bivariate negative-binomial distribution NB(6,, 6,, v).
(i) Determine the correlation coefficient p.
(i) Determine the conditional expectation E{X; | X»} and the conditional
variance V{X; | X»}.
(iii) Compute the coefficient of determination D?=1— E{V{X, |
X))/ V{X,} and compare D? to p>.
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2.6.4 Suppose that (Xi,..., X;) has a k-variate hypergeometric distribution
H(N, M, ..., My, n). Determine the expected value and variance of ¥ =
k

Zﬂij, where B; (j =1, ..., k) are arbitrary constants.
j=1

2.6.5 Suppose that X has a k-variate hypergeometric distribution H(N,
M, ..., M, n). Furthermore, assume that (M, ..., M) has a multino-
mial distribution with parameters N and (6, . . ., 6;). Derive the (marginal,
or expected) distribution of X.

Section 2.7

2.7.1 Let (X, Y) have a bivariate normal distribution with mean vector (&, n) and

covariance matrix
. 0% port
pot T2

Make a linear transformation (X, Y) — (U, W) such that (U, W) are inde-
pendent N (O, 1).

2.7.2 Let (X, X,) have a bivariate normal distribution N (&, ¥). Define Y =
aX, + BX,.
(i) Derive the formula of E{®(Y)}.
(ii) What is V{®(Y)}?

2.7.3 The following is a normal regression model discussed, more generally, in
Chapter 5. (xy, Y1), ..., (x,, ¥,) are n pairs in which xy, ..., x, are pre-
assigned constants and Y, ..., ¥, independent random variables. Accord-

) 2 ) B 1 n
ing to the model, ¥; ~ N(o + Bx;,0°), i =1,...,n. Let X, = —Zx,-,
e
Y, IXn:Y d
n=— i an
i

,3;1 = Xn:(xi _X)Yi/i:(xi - X)Z’ G, = Yn - anm

i=1 i=1

@, and B, are called the least-squares estimates of « and f, respectively.
Derive the joint distribution of (&;,, ,3n). [We assume that =(x; — ¥)? > 0.]

2.7.4 Suppose that X is an m-dimensional random vector and Y is an 7-dimensional
one, 1 <r < m. Furthermore, assume that the conditional distribution of X
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2.7.5

2.7.6

2.7.7

2.7.8
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given Y is N(AY, X) where A is an m x r matrix of constants. In addition,
letY ~ N(n, D).

(i) Determine the (marginal) joint distribution of X;

(i) Determine the conditional distribution of Y given X.

Let (Z,, Z,) have a standard bivariate normal distribution with coefficient
of correlation p. Suppose that Z; and Z, are unobservable and that the
observable random variables are

0, ifZ; <0
P = i=1,2.

1, ifZ >0

Let t be the coefficient of correlation between X; and X,. Prove that p =
sin(;r t/2). [t is called the tetrachoric (four-entry) correlation.]

Let (Z,, Z,) have a standard bivariate normal distribution with coefficient
of correlation p = 1/2. Prove that P{Z; > 0, Z, <0} = 1/6.

Let (Z, Z,, Z3) have a standard trivariate normal distribution with a corre-
lation matrix

1L pn pi3
R=\|pno 1 p2
ez p3 1

Consider the linear regression of Z; on Z3, namely 7, = = p13Z3 and the
linear regression of 22 on Z3, namely Z2 = p»3Z3. Show that the correla-
tion between Z; — VA 1and Z, — 22 is the partial correlation pj;.3 given by
(2.7.15).

Let (Z,, Z,) have a standard bivariate normal distribution with coefficient of
correlation p. Let ,; = E{Z}Z5} denote the mixed moment of order (r, ).
Show that
(@) pi2=pa =0;
(i) w13 = pn31 =3p;
(iii) 1o =14 2p%
(iv) w14 = g = 0;
(V) 15 = psp = 15p;
(Vi) pos = pap = 3(1 + 4p%);
(vii) p3z =33 +2p?).
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2.79

2.7.10

2.7.11

2.7.12

A commonly tabulated function for the standard bivariate normal distribution
is the upper orthant probability

L(h,k|p)=Plh=Z k< Z}

= m/h /k exp{—ﬁ(z%—2,0Z122+z§)}dz1dzz.
Show that
() Pa(h,k;p)=1—L(h,—00 | p) — L(—00,k | p) + L(h, k| p);
() L(h, k| p)= Lk, h|p);
(iii) L(=h,k | p)+ L(h, k| —p) =1 = P(k);
(iv) L(=h, =k | p) = L(h,k | p) = 1 — ®(h) — P(k);

1 1
v) LO0.0]p) = + e sin~!(p).

Suppose that X has a multinormal distribution N(§, ¥). Let X, =
max {X;}. Express the c.d.f. of X, in terms of the standard multinormal

1<i<n

cdf., ®,(Z; R).

LetZ = (Z,, ..., Z,) have a standard multinormal distribution whose cor-
relation matrix R has elements

1, ifi =j
Pii = Ahj, ifi )

where |A;| < 1( =1,...,m). Prove that

o0 m h—)\_
cbm(h;R):/ pa [To [ =22 | du,
LA

2
V147
where ¢(u) is the standard normal p.d.f. [Hint: Let Uy, Uy, ..., U,, be inde-
pendent N (0, 1) and let Z; = 4;Up +,/(l = 2)Uj, j =1,...,m.]

Let Z have a standard m-dimensional multinormal distribution with a cor-
relation matrix R whose off-diagonal elements are p, 0 < p < 1. Show
that

B, (0: R) = % / T e - danyar,

where 0 <a <oo, a’>=2p/(1 —p). In particular, for p=1/2,
®,(0; R) = (1 +m)~".
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Section 2.8
2.8.1 Let X ~ N(0,0?%) and Q = X?. Prove that Q ~ o?x?[1] by deriving the
m.g.f. of Q.

2.8.2 Consider the normal regression model (Problem 3, Section 2.7). The sum of
squares of deviation around the fitted regression line is

=1 i=1

where r is the sample coefficient of correlation, i.e.,
n n n 1/2
r=Y Yix— 2)/ [Z(x,» -5 ) (Y - Y)z] :
i=1 i=1 i=1
Prove that Qy|x ~ szz[n —2].

283 Let{Y;;i=1,...,1,j=1,...,J}beasetof random variables. Consider
the following two models (of ANOVA, discussed in Section 4.6.2).

Model I: ¥;; are mutually independent, and for each i (i =1, ..., )Y;; ~
N, o?) for all j=1,...,J.&,...,& are constants.

Model II: Foreachi (i =1, ..., I)the conditional distribution of ¥;; given§;
is N(&;, az)forallj =1, ..., J.Furthermore, given &y, ..., &, ¥;; are con-
ditionally independent. &, .. ., &; are independent random variables having

the common distribution N (0, 72). Define the quadratic forms

1 J J
Q1= Y (V-1 Y,-=§ZYU’ i=L...L
i=1 j=1

1 1
0= T - 77, y:%Zy

i=1

Determine the distributions of O and Q5 under the two different models.

2.8.4 Prove that if X; and X, are independent and X; ~ x2[vi;Ai]1i = 1,2, then
X1+ Xo ~ x*[vi +v3 A1 + A2l

Section 2.9

2.9.1 Consider the statistics Q1 and Q, of Problem 3, Section 2.8. Check whether
they are independent.
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2.9.2 Consider Example 2.5. Prove that the least-squares estimator B is indepen-
dent of Q.

293 Let(Xy, 1),...,(X,,Y,)beindependent random vectors having acommon
bivariate normal distribution with V{X} = V{Y} = 1. Let

Q)= 1_—1[)2 D X=X =2p Y (Xi = X)(¥; — V) + p?T(¥; — V)
i=1 i=1

and

0> = (X — oV,

1 —p?

where p, —1 < p < 1,is the correlation between X and Y. Prove that Q; and
Q5 are independent. [Hint: Consider the random variables U; = X; — pY;,
i=1,...,n]

294 Let X be an n x 1 random vector having a multinormal distribution
N(ul, X) where

Y=o’ o ) =o*(1 — p) +0%pJ,
o ... 1

I - _
J=11".Prove that X = — ) X, and Q = X; — X)? are independent
nZ 0=> ) p

i=1 i=1
and find their distribution. [Hint: Apply the Helmert orthogonal transforma-
tion Y = HX, where H is an n x n orthogonal matrix with first row vector

1
equal to —1".]

Jn
Section 2.10
2.10.1 Let X4,..., X, be independent random variables having a common expo-
nential distribution E(X), 0 < A < oo. Let X(j) < --- < X(,) be the order
statistics.

(i) Derive the p.d.f. of X(y).
(ii) Derive the p.d.f. of X,).
(iii) Derive the joint p.d.f. of (X (1), X))

(iv) Derive the formula for the coefficient of correlation between Xy and
X ).
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2.10.2

2.10.3

2.104

2.10.5

2.10.6

2.10.7

STATISTICAL DISTRIBUTIONS

Let Xy, ..., X,, be independent random variables having an identical con-
tinuous distribution F(x). Let X(j) < --- < X, be the order statistics. Find
the distribution of U = (F (X)) — F(X2)/(F (X)) — F(X)))-

Derive the p.d.f. of the range R = X(,) — X(1) of a sample of n = 3 inde-
pendent random variables from a common N (i, o%) distribution.

Let Xy, ..., X,, where n = 2m + 1, be independent random variables hav-
ing a common rectangular distribution R(0, #), 0 < 6 < co. Define the
statistics U = Xy — X1y and W = X,y — X(+1). Find the joint p.d.f. of
(U, W) and their coefficient of correlation.

Let X,,..., X, be i.i.d. random variables having a common continuous
distribution symmetric about xo = w. Let f{;(x) denote the p.d.f. of the ith
order statistic, i = 1, ..., n. Show that f,(u + x) = flu—r+n(t — x), all
x,r=1,...,n.

Let X(,) be the maximum of a sample of size n of independent identi-
cally distributed random variables having a standard exponential distribu-
tion E(1). Show that the c.d.f. of ¥, = X,y — logn converges, asn — oo, to
exp{—e~*}, which is the extreme-value distribution of Type I (Section 2.3.4).
[This result can be generalized to other distributions too. Under some gen-
eral conditions on the distribution of X, the c.d.f. of X(,, 4 logn converges
to the extreme-value distribution of Type I (Galambos, 1978.)

Suppose that X, 1, ..., X, are k independent identically distributed ran-

dom variables having the distribution of the maximum of a random sample
k

of size n from R(0, 1). Let V = [ [X,.;. Show that the p.d.f. of V is (David,
i=1

1970, p. 22)

k

g() = —— vl (—logv)!, 0<w <l
I (k) T

Section 2.11

2.11.1

2.11.2

Let X ~ ¢[10]. Determine the value of the coefficient of kurtosis y =
Wi/

Consider the normal regression model (Problem 3, Section 2.7 and Problem
2, Section 2.8). The standard errors of the least-squares estimates are
defined as

. 1 72 12
S P el

S.E{Bu} = Sy /(Z(x; — D',
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where S)Z,lx = Qyx/(n — 2). What are the distributions of (&, — «)/S.E.{&,}
and of (B, — B)/S-E.{B.}?

2.11.3 Let ®(u) be the standard normal integral and let X ~ (x2[1])!/2. Prove that
E{®(X)) = 3/4.

2.11.4 Derive the formulae (2.11.8)—(2.11.10).

2115 LetX ~ N(ul, ), with ¥ = o2(1 — p) (1 + LJ),Where - <

1—0p n—1
p < 1 (see Problem 4, Section 2.9). Let X and S be the (sample) mean and
variance of the components of X.

(i) Determine the distribution of X.
(i) Determine the distribution of S2.
(iii) Prove that X and S? are independent.
(iv) Derive the distribution of \/n (X — 1)/S.

2.11.6 Lett have the multivariate z-distribution #[v; &, 02 R]. Show that the covari-

ance matrix of tis X (t) = LZR’ v > 2.
U [—

Section 2.12
2.12.1 Derive the p.d.f. (2.12.2) of F[vy, v;].

2.12.2 Apply formulae (2.2.2) and (2.12.3) to derive the relationship between the
binomial c.d.f. and that of the F-distribution, namely

a+1 1-6
N —a 0

B(a;n,e):P{F[2n—2a,2a+2]§ }, a=0,...,n—1.

(2.15.1)

Notice that this relationship can be used to compute the c.d.f. of a central-F
distribution with both v; and v, even by means of the binomial distribution.
For example, P{F[6, 8] < 8/3} = B(3 ]| 6, %) = .89986.

2.12.3 Derive formula (2.12.10).

2.12.4 Apply formula (2.12.15) to express the c.d.f. of F[2m, 2k; \] as a Poisson
mixture of binomial distributions.

Section 2.13

2.13.1 Find the expected value and the variance of the sample correlation » when
the parameter is p.
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2.13.2

2.13.3
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Show that when p = 0 then the distribution of the sample correlation r is
symmetric around zero.

Express the quantiles of the sample correlation r, when p = 0, in terms of
those of t[n — 2].

Section 2.14

2.14.1

2.14.2

2.14.3

2.144

2.14.5

Show that the families of binomial, Poisson, negative-binomial, and gamma
distributions are exponential type families. In each case, identify the canon-
ical parameters and the natural parameter space.

Show that the family of bivariate normal distributions is a five-parameter
exponential type. What are the canonical parameters and the canonical
variables?

Let X ~ N(u, 012) and Y ~ N(u, 022) where X and Y are independent.
Show that the joint distribution of (X, Y) is a curved exponential family.

Consider n independent random variables, where X; ~ P(u(a’ — a'™1)),
(Poisson), (i =1, ...,n). Show that their joint p.d.f. belongs to a two-
parameter exponential family. What are the canonical parameters and what
are the canonical statistics? The parameter space ® = {(u, ) : 0 < pu < 00,
1 <a < oo}

LetT), Ty, ..., T, bei.i.d. random variables having an exponential distribu-

tion E(A). Let 0 < £y < co. We observed the censored variables X1, ..., X,
where

Xi = TI{T; < to} + toI{T; > to},

i =1,...,n. Show that the joint distribution of X, ..., X, is a curved
exponential family. What are the canonical statistics?

Section 2.15

2.15.1

2.15.2

Let Xy, ..., X,, be i.i.d. random variables having a binomial distribution
B(1, ). Compare the c.d.f. of X, for n = 10 and # = .3 with the corre-
sponding Edgeworth approximation.

Let X;,..., X, be ii.d. random variables having a Weibull distribution
G'%(), 1). Approximate the distribution of X,, by the Edgeworth approxi-
mation forn =20, = 2.5, 1 = 1.
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1
2.15.3 Approximate the c.d.f. of the Weibull, G'/%(x, 1), when o = 2.5, A = %

by an Edgeworth approximation with n = 1. Compare the exact c.d.f. to the
approximation.

2.15.4 Let X, be the sample mean of n i.i.d. random variables having a log-normal
distribution, LN(u, 0'%). Determine the saddlepoint approximation to the
p.df of X,.

PART IV: SOLUTIONS TO SELECTED PROBLEMS

2.2.2 Prove that Zb(j;n, 0)=Iy(a,n —a+1).

Jj=a

1 (4
1 n— 1) = a—1 1 — )" 4
gla,n —a+1) —B(a,n—a—l-l)_/o w1 —u) u

n!
T a-Dn—a)

n n! 0
:( )9“(1 — ) +—/ u(l —u)" " 'du
a 0

al(n —a —1)!

=bla;n,0)+ Iy(a+1,n —a)

0
/ ' —w)"du
0

=bla;n,0)+bla+1;n,0)+Lhla+2,n—a—1)

N
=---=Zb(j;n,9).
Jj=a

2.2.6 X ~ Pascal(d,v),ie.,
. J—=1\,, iy
P{X =j}= 19(1—9)1 , J=v.
v —

Letk = j — v,k > 0. Then

P{X=j}=P{X—-—v=k}

_ Tk +v)

TR 1 —0)e", k=>o0.

Lety =1— 0. Then

Lk +v)

P{X—Uzk}zw

yE =), k>0.
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Thus, X — v ~ NB(¢, v) or X ~ v + NB(4, v). The median of X is equal
to v+ the median of NB(y, v). Using the formula

NB(n | ¥r,v) =1L_y(v,n+ 1),

median of NB(y/, v) = least n > 0 such that Io(v, n + 1) > 0.5. Denote this
median by n 5. Then X s = v +n5s.

231 U~R@O1).Y~B U |a,b).For0<y <1

P[Y <yl=P[p~ (U |a,b) <y]
= P{U <B(y|a,b)} =B |a,b)
= I,(a, b).
That is, ﬁ’l(U;a, b) ~ B(a, b).

232 1] ~2G (1, %)

1 %A\ B
_ 1 B
Hence, G~! (p;E,k> = Exlz,[Zk].

239 X ~LN(u,o?).

= E{X} = E{eNWoD)) = pnto’/2
pr = E{X?) = E{eXN1o0)) = o2ut2?
s = E{X3) = E{e3NWo)y = utio’
g = E{X*} = E{eN10) = gutso’
W= V{X} =X — 1)
Wi =z — 3o + 2403
— 30t _ 3 3ut307 4 o 3utie’
_ e3u+%az(63a2 _ 3602 +2)
Wi = pa — dpspn + 6popt — 3t

2 2 2 2
= T2 (57 _ 4637 4 67 — 3).
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. u3
Coefficient of skewness | = ——=—.
G317
_ €3’ — 3¢ 42
131 - (602 _ 1)3/2 *
Coefficient of kurtosis
1
Br=—;
(M2)2
_ 9" — 43" + 6e°’ — 3
(e — 1)

2.4.1 X,Y areindependentr.v. P{Y > 0} = 1, E{|X|} < oc.

el = {5

By Jensen’s inequality,
> E{X}/E{Y}, if E{X}>0
=< E{X}/E{Y}, if E{X}=<0.

244 X,Y arei.i.d.like N(0O, 1). Find the distribution of R = X/Y.

Fr(r) = P{X/Y <r}
=P{X<rY,Y >0}
+ P{X>rY,Y <0}

= / () D(ry)dy

0

0
+ / ()1 — D(ry)dy
= /0 (V) P(ry)dy
+ /0 ()1 = O(—=ry))dy
= 2/ d()D(ry)dy

0

1 1 .
= —+ —tan” (r).
2 7

183
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This is the standard Cauchy distribution with p.d.f.

Moments of R do not exist.

249 X, Yiid EQ),U=X+Y,W=X-Y,U~GQ,2), fuu) = Aue .
(i) The joint p.d.f. of (X, Y)is f(x, y) = A2e 6,0 < x, y < co. Make
the transformations

1
Uu=x-+y x:z(u—l—w)

1
w=x-—y yzz(u—w).

The Jacobian is

~
Il
N = =
Il
|
|

)\’2
The joint p.d.f. of (U, W) is g(u,w) = ?e’“‘, 0<u<oo,|w|l<u.

The conditional density of W given U is

)\Ze—)\u
wlu=——=—I{—u<w < u}.
gw | u) 2)%ue™  2u { }

Thatis, W | U ~ R(—U, U).
(ii) The marginal density of W is

2 00 A
Jww) = ?/ e Mdy = Ee_“w‘, —00 < W < 00.
[w]

2.5.4 All moments exist. u; = E(X)),i=1,...,4.
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()
E{X*) = —E (Zx )
Z X4 S XX 430 XX
i#] i#j
+6Y Y D XX Xe+ D D Y Y XiX XX,
i#]#k i# kA
= n%[nm +dn(n — Dpspy + 3n(n — 3
+ 6n(n — 1)(n — 2papt + n(n — D)(n = 2)(n = 3)u]
=uj+- (6M2M1 - 6u1) + (4M3M1 +3u3
— 18uopt + 1) + (M4 — 4dpspy —3u3
+ 120507 — 6u)).
(ii)
E{Xs) = —E ZXS +5) > XX,
i#j
+10D D XIXTH10Y Y N XX X +15) Y Y XPX Xy
i#j ik ik
F10Y D SN XX XX+ Y Y D Y XX XX X
i#j#kAl i j#k#l£m

_ 1
E{X°} = ~s{ns + Sn(n = Duapy + 1000 = Do

+ 10n(n — D(n — 2)papi + 15n(n — D(n — 2)pzp
+ 10n(n — D(n = 2)(n = 3)pap] +n(n — Dn — 2)(n — 3)(n — 4)uj}

1

= 147+ ~(10popt] — 1047)

1 2 2 3 5
+ ﬁ(lomm + 15p5m1 — 60popy + 35u7)

1
+ $(5M4M1 + 10p3p2 — 303t — 45130
+ 1102147 — 5007)

1
+ F(MS — Spapy — 10p3pa + 20137
+30p3 141 — 603 + 2413).
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(iii) Assume p; =0,

E{(X — )% = %E DX 6D X)X,
i i#]

F15D D XIXTH15) Y N XXX+ 10) ) Xix?

i#j i#j#k i#]

+60> D D XXX 420> D> D XX XX,

i#]#k i# kA

F15D D N XXX 445 Y D Y XIXIXX,

i#]#k i# kA

H15D D DO XX X X X

i#j#k#l#m

D) HHH PR EREERS

i#j#k#lEm#~n
l * * ok *|
= ${n,u6 + 15n(n — Dl + 10n(n — DHus?
+ 15n(n — 1)(n — 2)u3?}.

_ 1 1
E{(X = )} = 51505 + — (15505 + 10057 = 4557)
1 * * % *2 *3
+ n—s(u6 — 15pyp5 — 103" + 30u57).

2.6.3 (X;,X;) has a bivariate NB(#;,6;,v). The marginals X; ~
0 0
NB( 1 ,v),X2~NB( 2 v).

1—6, 1-6,
(i)
\)6192
X, X)) = ——""—
cov(X1, X»2) =6, —6)
V0 (1 — 62)
VX)) = T
Wi =026 "oy
U92(1—01
VX, = —2 -0
Xl =0 "oy

B 616
P = =00 — 6y
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(ii) X | X, ~NB(6,, v + X>).

01
1-6
01
(1—6)%

E(X1]X2) =@+ X>3)
V(X1 | X2) =W+ X3)

_E{VIX, | X))
V{X1}

0
E{V{X| | X2}} = ﬁE{V + Xz}

0

0>
Xz""NB , V
1-6

L
1—6,—-06,
”+E{X2}=”<1+ 1—9912—92>=”1_1916i92
0,
(1 =001 — 61 —62)
voi(1 — 6,)
(1—61—6)°
E(ViXi [ Xo}} _  1-6-06,
V{Xi} (1 —61)(1 —62)
1—-6;—6, 616,
T(—61—-6) (I-6)1-6)

(iii) D> =1

E{X>} =

E{V{Xi| Xa}}=v

V{Xi} =

D? =

Notice that p§1 X, = D>,

2.7.4 (i) The conditional m.g.f. of X given Y is
/ 1 /
MX|Y(t) = exXp tAY + Et Et .
Hence, the m.g.f. of X is
l ! / / /
Mx(t) = exp Et Jt4+tAn 4+ tADA't).

Thus, X ~ N(An, ¥ 4+ ADA").
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X
(i) The joint distribution of (Y) is

G- (VIR V)

It follows that the conditional distribution of Y given X is

Y | X~ N+ DA'(E+ADA)Y (X — Ap), D — DA'(X + ADA) "' AD).

2.7.5

Z 1
()= ((, 7))
Z) o 1
{0, ifZ, <0
X, =

. i=1,2.
1, ifZ;, >0.

E{X,}ZP{X,=1}=P{2,>O}=—

1
COV(X], Xz) = E(X]Xz) — Z

E(X1X2) = P(Z, > 0,2, > 0)

«/_-/ PR ) (%)dz

_ L/‘oo e_ézz/Ml&pZ e_%yzdydz
T Jo —00

P

1 1 o0 lan’l -
=—-+— re_%rzdr/ ( ] 2) do
4 2 0 0

1 1
L (L
4 2 1_p2

=2+ Zsin(o)
=3 T 5 sin ()

1
cov(Xy, X)) = — sin_l(p).
2

The tetrachoric correlation is

5= sin~!(p)

2 “(p)
T=— Sln
1/4 p
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or
. (TT[)
=sm|\—).
p 2

1 oy
2.7.11 R = Il j=1,000,m.
Aikj
1
Let Up, Uy, ..., U, be iid. N(0,1) random variables. Define Z; =

AUo+ /1 =243 Uj, j=1,...,m. Obviously, E{Z;} =0, V{Z;} =1,

j=1,...,m,and cov(Z;, Z;) = A;A; if i # j. Finally, since Uy, ..., Uy,
are independent

PIZ\ <hi,...,Zn < hyl = PMUy++/1 =23 Ui <hi,..., U

+\/ 1 _)L,% Um = hm]

:/w¢(u)]_[<1> hi =2t g,

j=1 /1—)\3

2101 X4,...,X,areiid. E(L).
@) fx,,(x) = nie "
(i) fx,(x) = nie (1 — e My—l,
(i) fx,),x,, (X, y) =nn — DAZe M (=2 _ o= Y12 () < x < y.

As shown in Example 2.12,

1
(iv) E(Xq)) = Y

VX)) =

(n1)?

EX) =~ (142442
Y 2 n

1 1
V{X<n)}=ﬁzi—2
i=1

1 1
cov(Xy, X)) = E{X1)Xm} — a2 Z i

i=1
1

n—1
2 1
E{X0Xm} = —7 (; +y z_> .

i=1
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Thus,

X, Xon) 1 2 1 1
cov X)=—|-—-—-)=—.
(R nA2\n n nZi2

1

" 172"
' (z,.—z)
i=1

Also, as shown in Example 2.12, Xy is independent of X,y — X(1).
Thus,

PXay, Xy =

1
cov(Xy, X)) = cov( Xy, Xy + Xy — Xy) = VX)) = T

2.10.3 We have to derive the p.d.f. of R = X3y — X(1), where X, X,, X3 are i.i.d.
N(u, o?). Write R = 0(Z3) — Zy), where Zy, ..., Z3 are i.i.d. N(0, 1).
The joint density of (Z(y), Z3)) is

6 _1,2,2
Jo.e(z1,22) = 72¢ 2@ (D(z3) — D(z1)),

where —00 < 71 < 73 < 00.
Let U = Z3) — Z(). The joint density of (Z(), U) is

2
gz, u) = ie’i“2 - exp (— <z + lu) ) (P(z +u) — ©(2)),
21 2

—00 < 7 < 00,0 < u < 00o. Thus, the marginal density of U is

6 1.2 2 o0 142
Jot) = o Jé;n /m e CF (@2 + u) — ®(2)dz

N
e o) o))
=agw 75 7))
2.11.3 E{®(X)} = P{U < X},

where U and X are independent. Hence,

3
EfeX)} = Plrll] = 1} = .



CHAPTER 3

Sufficient Statistics and the
Information in Samples

PART I: THEORY
3.1 INTRODUCTION

The problem of statistical inference is to draw conclusions from the observed sample
on some characteristics of interest of the parent distribution of the random variables
under consideration. For this purpose we formulate a model that presents our assump-
tions about the family of distributions to which the parent distribution belongs. For
example, in an inventory management problem one of the important variables is the
number of units of a certain item demanded every period by the customer. This is a
random variable with an unknown distribution. We may be ready to assume that the
distribution of the demand variable is Negative Binomial N B(y, v). The statistical
model specifies the possible range of the parameters, called the parameter space,
and the corresponding family of distributions F. In this example of an inventory
system, the model may be

F={NB,v);0<¢y <1,0 <v < o0}.

Such a model represents the case where the two parameters, ¥ and v, are unknown.
The parameter space here is ® = {(¢, v);0 < ¢ < 1,0 < v < oo}. Given a sample
of n independent and identically distributed (i.i.d.) random variables X, ..., X,,
representing the weekly demand, the question is what can be said on the specific
values of ¥ and v from the observed sample?

Every sample contains a certain amount of information on the parent distribution.
Intuitively we understand that the larger the number of observations in the sample
(on i.i.d. random variables) the more information it contains on the distribution

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.
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under consideration. Later in this chapter we will discuss two specific information
functions, which are used in statistical design of experiments and data analysis. We
start with the investigation of the question whether the sample data can be condensed
by computing first the values of certain statistics without losing information. If such
statistics exist they are called sufficient statistics. The term statistic will be used
to indicate a function of the (observable) random variables that does not involve
any function of the unknown parameters. The sample mean, sample variance, the
sample order statistics, etc., are examples of statistics. As will be shown, the notion
of sufficiency of statistics is strongly dependent on the model under consideration.
For example, in the previously mentioned inventory example, as will be established

later, if the value of the parameter v is known, a sufficient statistic is the sample
n

-1
mean X = —ZX ;. On the other hand, if v is unknown, the sufficient statistic is
n
i=1
the order statistic (X(1y, - . ., X(;)). When v is unknown, the sample mean X by itself
does not contain all the information on v and v. In the following section we provide
a definition of sufficiency relative to a specified model and give a few examples.

3.2 DEFINITION AND CHARACTERIZATION
OF SUFFICIENT STATISTICS

3.2.1 Introductory Discussion

Let X = (X4, ..., X,) be arandom vector having a joint c.d.f. Fy(x) belonging to a
family F = {Fy(x);6 € ®}. Such a random vector may consist of # i.i.d. variables
or of dependent random variables. Let T(X) = (T1(X), ..., T,(X)), 1 <r <n
be a statistic based on X. T could be real (r = 1) or vector valued (» > 1). The

transformations 7;(X), j =1,...,r are not necessarily one-to-one. Let f(x;6)
denote the (joint) probability density function (p.d.f.) of X. In our notation here T;(X)
is a concise expression for T;(X1, ..., X,). Similarly, Fy(x) and f(x;0) represent
the multivariate functions Fy(xy, ..., x,) and f(xy,..., x,;6). As in the previous

chapter, we assume throughout the present chapter that all the distribution functions
belonging to the same family are either absolutely continuous, discrete, or mixtures
of the two types.

Definition of Sufficiency. Let F be a family of distribution functions and let
X = (Xy,..., Xn) be a random vector having a distribution in F. A statistic T (X) is
called sufficient with respect to F if the conditional distribution of X given T (X) is
the same for all the elements of F.

Accordingly, if the joint p.d.f. of X, f(x;8), depends on a parameter 8 and 7T (X)
is a sufficient statistic with respect to F, the conditional p.d.f. A(x | t) of X given
{T(X) = ¢t} is independent of 6. Since f(x;60) = h(x | t)g(t;6), where g(¢; 6) is the
p.d.f. of T'(x), all the information on 6 in x is summarized in 7 (x).
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The process of checking whether a given statistic is sufficient for some family
following the above definition may be often very tedious. Generally the identification
of sufficient statistics is done by the application of the following theorem. This
celebrated theorem was given first by Fisher (1922) and Neyman (1935). We state the
theorem here in terms appropriate for families of absolutely continuous or discrete
distributions. For more general formulations see Section 3.2.2. For the purposes of
our presentation we require that the family of distributions F consists of

(i) absolutely continuous distributions; or
(ii) discrete distributions, having jumps on a set of points {&}, &,, . ..} independent

o0
of 6, 1i.e., Zp(éi;G) = 1foralld € ®;or
i=1
(iii) mixtures of distributions satisfying (i) or (ii). Such families of distributions
will be called regular (Bickel and Doksum, 1977, p. 61).

The families of discrete or absolutely continuous distributions discussed in Chapter
2 are all regular.

Theorem 3.2.1 (The Neyman-Fisher Factorization Theorem). Let X be a random

vector having a distribution belonging to a regular family F and having a joint p.d.f.
f(x;0), 60 € ©. A statistic T (X) is sufficient for F if and only if

f(x:0) = K(x)g(T (x)0), (3:2.1)

where K(x) > 0 is independent of 6 and g(T (x);0) > 0 depends on x only through
T (x).

Proof. We provide here a proof for the case of discrete distributions.

(i) Sufficiency:
We show that (3.2.1) implies that the conditional distribution of X given
{T'(X) = ¢} is independent of 6. The (marginal) p.d.f. of T(X) is, according
to (3.2.1),

g (1:0) =) I{x;T(x) =1} f(x;6)
{x}

=8(:0) Y 1 T(X) = }K(x).
{x}

(3.2.2)

The joint p.d.f. of X and 7'(X) is

p(x, 1;0) = I{x; T(x) = t} K (X)g(t; 0). (3.2.3)
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Hence, the conditional p.d.f. of X, given {T'(X) = ¢} at every point ¢ such that
g*(t;0) > 0,is
p(x,t;60) _ I{x; T(x) =t} K(x)

g (t;0) Z[{y;T(y) =K@y
{y}

(3.24)

This proves that 7'(X) is sufficient for F.
(ii) Necessity:
Suppose that 7(X) is sufficient for F. Then, for every ¢ at which the
(marginal) p.d.f. of T'(X), g*(¢; 6), is positive we have,

p(x,1;0)

oo - T =15, (3.2.5)

where B(x) > 0 is independent of 8. Moreover, Z[ {y;T(y)=t} By =1
{y}
since (3.2.5) is a conditional p.d.f. Thus, for every x,

p(x,t;0) = I{x; T(x) = t}B(x)g"(¢;0). (3.2.6)

Finally, since for every x,

p(x, 1;0) = I{x; T(x) = 1} f(x;6), (3.2.7)

we obtain that
f(x;0) = B(x)g*(T(x);0), forall x. (3.2.8)
QED

3.2.2 Theoretical Formulation

3.2.2.1 Distributions and Measures

We generalize the definitions and proofs of this section by providing measure-
theoretic formulation. Some of these concepts were discussed in Chapter 1. This
material can be skipped by students who have not had real analysis.

Let (2, A, P) be a probability space. A random variable X is a finite real value
measurable function on this probability space, i.e., X : 2 — R. Let X be the sample
space (range of X), i.e., ¥ = X(2). Let 3 be the Borel o-field on X', and consider the
probability space (X, B, PX) where, for each B € B, PX{B} = P{X~!(B)}. Since
X is a random variable, BX = {A: A= X"'(B),B € B} C A.

The distribution function of X is

Fx(x) = PX{(—00, x]}, —00 <x < o0. (3.2.9)
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Let Xy, X5, ..., X, be n random variables defined on the same probability space
(2, A, P). The joint distribution of X = (X1, ..., X,,)’ is a real value function of R”"
defined as

F(xXi,...,x) =P {ﬂ[x,- < x,-]} ) (3.2.10)

i=l1

Consider the probability space (X™,B™, P™) where X™ =X x --- x X,
B™ = B x --- x B (or the Borel o-field generated by the intervals (—oo, x1] x
oo (=00, x4, (x1, ..., x,) € R") and for B € B™

P™{B} = / dF(xi, ..., x). (3.2.11)
B

A function 4 : X® — R is said to be B"-measurable if the sets 2~ ((—oo, ¢])
are in B™ for all —oo < ¢ < 0o. By the notation # € B™ we mean that 4 is B"-
measurable.

A random sample of size n is the realization of n i.i.d. random variables (see
Chapter 2 for definition of independence).

To economize in notation, we will denote by bold x the vector (xy, ..., x,), and
by F(x) the joint distribution of (X, ..., X,). Thus, for all B € B®™,

P™{B} = P{(X1,...,X,) € B} = / dF(x). (3.2.12)
B

This is a probability measure on (X, B™) induced by F(x). Generally, a o -finite
measure 1 on 3% is a nonnegative real value set function, i.e., u : B — [0, co],
such that

(i) w()=0;
(i) if { B, }Zozl is a sequence of mutually disjoint sets in B™, i.e., B; N B; = ¢

for any i # j, then

W (U Bn) = ZM(Bn);
n=1 n=1

(iii) there exists a partition of X, {By, B,, ...} for which u(B;) < oo for all
i=1,2,....

The Lebesque measure / dx is a o-finite measure on B™.
B
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If there is a countable set of marked points inR”, § = {x;, X, X3, . . .}, the counting
measure is

N(B; S) = {# of marked points in B}
=|BNS|.

N(B; S) is a o-finite measure, and for any finite real value function g(x)

/ gXAN(x; ) = Z I{x € SN B}g(x).
B X

Notice that if B is such that N(B; S) = 0 then /g(x)dN(x; S) = 0. Similarly, if B
B

is such that /

dx = 0 then, for any positive integrable function g(x), f g(x)dx = 0.
B B

Moreover, v(B) = /g(x)dx and A(B) = fg(x)dN(x; S) are o-finite measures on
B B

(X(”), B(n))_

Let v and u be two o-finite measures defined on (X, B™). We say that v is
absolutely continuous with respect to p if w(B) = 0 implies that v(B) = 0. We
denote this relationship by v <« w. If v « p and u < v, we say that v and u are
equivalent, v = . We will use the notation ¥ < p if the probability measure Pr is
absolutely continuous with respect to u. If F© < u there exists a nonnegative function
f(x), which is B measurable, satisfying

PF{B}szdF(x)szf(x)du(x). (3.2.13)

f(x) is called the (Radon—Nikodym) derivative of F with respect to u or the gener-
alized density p.d.f. of F(x). We write

dF(x) = f(x)du(x) (3.2.14)
or
dF(x)
= . 3.2.15
Jx) 4 ( )

As discussed earlier, a statistical model is represented by a family F of distribution
functions Fy on X™, 9 € ©. The family JF is dominated by a o -finite measure . if
Fy < u, foreach 6 € ©.
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We consider only models of dominated families. A theorem in measure theory
states that if 7 < u then there exists a countable sequence { Fy, }:ozl C F such that

[e.¢]

1
Frx)=>)" 2 Fo, (3.2.16)

n=1

induces a probability measure P*, which dominates F.

A statistic 7(X) is a measurable function of the data X. More precisely, let T :
X" — TW k> 1 and let C® be the Borel o-field of subsets of 7% . The function
T(X) is a statistic if, forevery C € C®, T=1(C) e B®.Let B" = {B: B =T"!(C)
for C € CM}. The probability measure P on C*, induced by P¥, is given by

PT{Cy = PX{T'(C)), CecC®. (3.2.17)

Thus, the induced distribution function of T is F (t), where t € R¥ and
FT@t) = / dF(x). (3.2.18)
T=1((—00,11]x (=00, 4])

If F < wthen FT « u”, where u”(C) = w(T~'(C)) for all C € C®. The general-
ized density (p.d.f.) of T with respect to 7 is g7 (t) where

dFTt)y = g tydu’ (t). (3.2.19)

If h(x) is B measurable and / |h(x)|d F(x) < oo, then the conditional expectation

of h(X) given {T(X) =t} is a BT measurable function, Ex{h(X) | T(X) = t}, for
which

/71 h(x)dF(x):/il Ep{h(X) | T(X)}d F(x)
T-1(C) 71O (3.2.20)

_ / Er(h(X) | T(X) = §dF (1)
C

forall C € C®.In particular, if C = 7® we obtain the law of the iterated expectation;
namely

Ep{h(X)} = EF{Er{h(X) | T(X)}}. (3.2.21

Notice that Er{h(X) | T(X)} assumes a constant value on the coset A(t) = {x:
Tx)=t)=T"'({t}), te TW,
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3.2.2.2 Sufficient Statistics

Consider a statistical model (XY™, B™ | F) where F is a family of joint distributions
of the random sample. A statistic T : (X™, B™ F) — (T®, P, FTy is called
sufficient for F if, for all B € B™, Pr{B | T(X) =t} = p(B;t)forall F € F. That
is, the conditional distribution of X given 7'(X) is the same for all F in F. Moreover,
for a fixed t, p(B;t) is B”) measurable and for a fixed B, p(B;t) is C®) measurable.
Theorem 3.2.2. Let (X™W, B™ F) be a statistical model and F < u. Let

o0

1
{Fgﬂ}:o:] C F such that F*(x) = Zz_nFO”(X) and F L P*. Then T(X) is suffi-
n=1
cient for F if and only if for each 6 € © there exists a BT measurable function
20(T (X)) such that, for each B € B™

Pg{B}:/gg(T(X))dF*(X), (3.2.22)
B

dFy(X) = 2o(T(X))d F*(x). (3.2.23)
Proof. (i) Assume that T'(X) is sufficient for F. Accordingly, for each B € B™,
Po{B | TX)} = p(B, T(X))

forall @ € ®. Fix B in B™ and let C € C®,

P{BNT'(C)) = /

p(B, T(x))d Fy(x),
r-1(0)

for each 0 € ®. In particular,
p(B, T(X)) = E*{I{X € B} | T(X)}.

By the Radon—-Nikodym Theorem, since Fy < F* for each 6, there exists a BT
measurable function gg(7 (X)) so that, for every C € C%®,

PATH(C)) = / go(T (X))d F*(x).

T-1(C)
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Now, for B € B™ and 0 € ©,

Py(B) = / p(B | TR Es()
X
_ f E*{I{X € B} | T(0}go(T () F*(x)
T-1(T®)

= /B go(T(x)d F*(x).

Hence, d Fy(x)/d F*(x) = go(T(x)), which is BT measurable.
(ii) Assume that there exists a B7 measurable function g¢(7 (X)) so that, for each
0 e,

dFy(x) = go(T(x))d F*(x).

Let A € B™ and define the o-finite measure dvif)(x) = I{x € A}d Fp(x). vﬁf) < F*.
Thus,

dvff)(x)/dF*(X) = Py{A | T(x)}go(T (x))
= P*{A | T(x)}go(T (x)).

Thus, Po{A | T(X)} = P*{A | T(X)} for all 8 € ®. Therefore T is a sufficient
statistic. QED

Theorem 3.2.3 (Abstract Formulation of the Neyman-Fisher Factorization
Theorem). Let (X", B™ F) be a statistical model with F < w. Then T(X) is
sufficient for F if and only if

dFy(x) = go(TX)h(x)du(x), 6 e€® (3.2.24)

where h > 0 and h € B™, gy € BT.

o0

1
Proof. Since F < u, EI{an }zozl C F, such that F*(x) = ZEFQ’, (x) dominates

n=1

JF. Hence, by the previous theorem, 7' (X) is sufficient for F if and only if there exists
a BT measurable function g4(7 (x)) so that

dFy(x) = go(T (x))d F*(x).
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o0
1
Let fy (x) = d Fy, (x)/du(x) and set h(x) = Zz—nf@” (x). The function h(x) € B®
n=1
and

dFy(x) = go(T (X)h(xX)d j1(x).

QED
3.3 LIKELIHOOD FUNCTIONS AND MINIMAL
SUFFICIENT STATISTICS
Consider a vector X = (X1, ..., X,,) of random variables having a joint c.d.f. Fy(x)

belonging to a family F = {Fy(x); 0 € ®}. It is assumed that F is a regular family
of distributions, i.e., F < u, and, for each 6 € O, there exists f(x;6) such that

dFy(x) = f(x;0)dpu(x).

f(x;0) is the joint p.d.f. of X with respect to w(x). We define over the parameter space
® a class of functions L(6;X) called likelihood functions. The likelihood function
of 6 associated with a vector of random variables X is defined up to a positive factor
of proportionality as

L©6:;X) «x f(X;0). (3.3.1)

The factor of proportionality in (3.3.1) may depend on X but not on 6. Accord-
ingly, we say that two likelihood functions L;(6; X) and L,(8; X) are equivalent, i.e.,
L(0;X) ~ Ly(0;X), if L(0;X) = A(X)L,(6;X) where A(X) is a positive func-
tion independent of 6. For example, suppose that X = (X1, ..., X,,)" is a vector of
i.i.d. random variables having a N(6, 1) distribution, —oo < 8 < oo. The likelihood
function of # can be defined as

L1(6;X) = exp {—%(X —01)(X — 91)}

. (3.3.2)
=exp {_EQ} exp H—g()? — 9)2} ,

.1 " _
here X =-) X;and Q=) (X, —X)’and1' =(1,...,1
where nZ and Q Z( )“ an ( ) or as

i=1 i=1

L2(6:X) = exp {—%(T(X) — 9)2} , (3.3.3)
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where T(X) = %le We see that for a given value of X, L(0;X) ~ L,(0;X).
i=1

All the equivalent versions of a likelihood function L(6;X) belong to the same

equivalence class. They all represent similar functions of 6.

If S(X) is a statistic having a p.d.f. g5(s;0), (8 € ©), then the likelihood func-
tion of @ given S(X) =s is L5(8;s) o g5(s;0). L5(9;s) may or may not have
a shape similar to L(0;X). From the Factorization Theorem we obtain that if
L(6;X) ~ L3(®; S(X)), for all X, then S(X) is a sufficient statistic for F. The
information on 6 given by X can be reduced to S(X) without changing the fac-
tor of the likelihood function that depends on 6. This factor is called the kernel
of the likelihood function. In terms of the above example, if 7(X) = X, since

- 1
X~N (9, —), LT®@;1) = exp {—%(r — 9)2}. Thus, for all x such that T'(x) = 1,
n

LX(0;1) ~ L1(0;X) ~ Ly(0;x). X is indeed a sufficient statistic. The likelihood func-
tion LT (9; T (x)) associated with any sufficient statistic for F is equivalent to the
likelihood function L(0;x) associated with X. Thus, if 7'(X) is a sufficient statistic,
then the likelihood ratio

LT(0;T(X)/L(6;X)

is independent of 6. A sufficient statistic 7(X) is called minimal if it is a function
of any other sufficient statistic S(X). The question is how to determine whether a
sufficient statistic 7'(X) is minimal sufficient.

Every statistic S(X) induces a partition of the sample space x ™ of the observable
random vector X. Such a partition is a collection of disjoint sets whose union is
x™. Each set in this partition is determined so that all its elements yield the same
value of S(X). Conversely, every partition of ™ corresponds to some function of
X. Consider now the partition whose sets contain only x points having equivalent
likelihood functions. More specifically, let x be a point in x ™. A coset of x” in this
partition is

C(x%) = {x; L(;x) ~ L(#;x")}. (3.3.4)

The partition of x™ is obtained by varying x° over all the points of x™. We call
this partition the equivalent-likelihood partition. For example, in the N (0, 1) case

—00 < 0 < 00, each coset consists of vectors x having the same mean ¥ = —1'x.

These means index the cosets of the equivalent-likelihood partitions. The stagistic
T (X) corresponding to the equivalent-likelihood partition is called the likelihood
statistic. This statistic is an index of the likelihood function L(6;x). We show now
that the likelihood statistic 7'(X) is a minimal sufficient statistic (m.s.s.).

Let x and x® be two different points and let T (x) be the likelihood statistic.
Then, T(xV) = T(x?) if and only if L(;xV) ~ L(@;x?). Accordingly, L(8;X)
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is a function of T'(X), i.e., f(X;0) = AX)g*(T'(X);0). Hence, by the Factoriza-
tion Theorem, 7'(X) is a sufficient statistic. If S(X) is any other sufficient statis-
tic, then each coset of S(X) is contained in a coset of T'(X). Indeed, if x" and
x? are such that S(x") = S(x?) and f(x?,0) > 0 (i = 1, 2), we obtain from the
Factorization Theorem that f(x(";0) = k(x(V)g(S(x(V);0) = k(x)g(S(x?);0) =
k(xM) f(x?;0)/k(x®), where k(x®) > 0. That is, L(@;XD)~ L@®;X?) and
hence T(XV) = T(X®). This proves that 7(X) is a function of S(X) and there-
fore minimal sufficient.

The minimal sufficient statistic can be determined by determining the likelihood
statistic or, equivalently, by determining the partition of x ) having the property that
Fx1;6)/f(x?;0) is independent of 6 for every two points at the same coset.

3.4 SUFFICIENT STATISTICS AND EXPONENTIAL TYPE FAMILIES

In Section 2.16 we discussed the k-parameter exponential type family of distributions.
If Xi,..., X, are i.i.d. random variables having a k-parameter exponential type
distribution, then the joint p.d.f. of X = (X1, ..., X},), in its canonical form, is

Fosv, ) = [ -
i=1

(3.4.1)
exp {wl DU+ 4+ Y ) Unlxy) — nK (Y, ...,wk)} :

i=1 i=1

It follows that 7'(X) = (ZUI(X,), e ZUk(Xi)) is a sufficient statistic. The
i=1 i=1

statistic 7'(X) is minimal sufficient if the parameters {/q, ..., ¥y} are linearly inde-

pendent. Otherwise, by reparametrization we can reduce the number of natural param-

eters and obtain an m.s.s. that is a function of 7' (X).

Dynkin (1951) investigated the conditions under which the existence of an m.s.s.,
which is a nontrivial reduction of the sample data, implies that the family of dis-
tributions, F, is of the exponential type. The following regularity conditions are
called Dynkin’s Regularity Conditions. In Dynkin’s original paper, condition (iii)
required only piecewise continuous differentiability. Brown (1964) showed that it is
insufficient. We phrase (iii) as required by Brown.

Dynkin’s Regularity Conditions

(i) The family F = {Fy(x); 6 € O} is a regular parametric family. ® is an open
subset of the Euclidean space R*.

@ii) If f(x;0) is the p.d.f. of Fy(x), then S = {x; f(x;0) > 0} is independent
of 6.
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(iii) The p.d.f.s f(x;6) are such that, for each 6 € ©, f(x;0) is a continuously
differentiable function of x over x.

(iv) The p.d.f.s f(x;6) are differentiable with respect to 6 for each x € S.

Theorem 3.4.1 (Dynkin’s). If the family F is regular in the sense of Dynkin,
and if for a sample of n > k i.i.d. random variables U,(X), ..., Ux(X) are linearly
independent sufficient statistics, then the p.d.f. of X is

k
f(x:0) = h(x)exp {Z Vi(@)Ui(x) +CO) ¢,

i=1
where the functions 1 (0), . .., Y(0) are linearly independent.

For a proof of this theorem and further reading on the subject, see Dynkin (1951),
Brown (1964), Denny (1967, 1969), Tan (1969), Schmetterer (1974, p. 215), and
Zacks (1971, p. 60). The connection between sufficient statistics and the exponential
family was further investigated by Borges and Pfanzagl (1965), and Pfanzagl (1972).
A one dimensional version of the theorem is proven in Schervish (1995, p. 109).

3.5 SUFFICIENCY AND COMPLETENESS

A family of distribution functions F = {Fy(x); 6 € O} is called complete if, for any
integrable function /(X),

fh(x)ng(x) =0 forall f € ® (3.5.1)

implies that Py[#(X) =0] = 1forall 6 € ©®.

A statistic T(X) is called complete sufficient statistic if it is sufficient for a
family F, and if the family F7 of all the distributions of T (X) corresponding to the
distributions in F is complete.

Minimal sufficient statistics are not necessarily complete. To show it, consider
the family of distributions of Example 3.6 with & = &, = &. It is a four-parameter,
exponential-type distribution and the m.s.s. is

TX,Y) = (Zx Xm: Y, sz Z Yﬁ) )
i=1 i=1 i=1 i=1

The family FTis incomplete since Ey iZX, — ZY,} = Oforall 0 = (§, 01, 07).

i=1 i=1

But Py {ZX = ZYi } = 0, all 6. The reason for this incompleteness is that when

i=1 i=1
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& = & the four natural parameters are not independent. Notice that in this case the
parameter space 2 = {Y = (Y1, Y2, V3, ¥a); ¥ = Y3/ Y4} is three-dimensional.

Theorem 3.5.1. [f the parameter space 2 corresponding to a k-parameter expo-
nential type family is k-dimensional, then the family of the minimal sufficient statistic
is complete.

The proof of this theorem is based on the analyticity of integrals of the type
(2.16.4). For details, see Schervish (1995, p. 108).

From this theorem we immediately deduce that the following families are
complete.

. B(N,6),0 <6 < 1, N fixed.

. P(L),0 < A < o0.

. NB(y,v),0 < ¢ < 1; v fixed.

.G, v),0 <A <00,0 <V <o00.

- B(p,q),0 < p,q < oo.
. N(u,az),—oo<u<oo,0<o<oo.

A Ut AW N =

7. M(N.0),0 = (01.....6),0 < Y_ 6 < I; N fixed.

i=l

8. N(u, V), u € R®; V positive definite.

We define now a weaker notion of boundedly complete families. These are
families for which if 4(x) is a bounded function and Ex{h(X)} = 0, for all § € ©,
then Py{h(x) =0} =1, for all & € ©. For an example of a boundedly complete
family that is incomplete, see Fraser (1957, p. 25).

Theorem 3.5.2 (Bahadur). IfT(X) is a boundedly complete sufficient statistic, then
T (X) is minimal.

Proof. Suppose that S(X) is a sufficient statistic. If S(X) = (T (X)) then, for any
Borel set B € B,

E{P{B|SX)} | T(X)} = P{B | SX)} as.
Define
h(T)=E{(P{B|SX)} | T(X)} — P{B | T(X)}.

By the law of iterated expectation, E4{h(T)} = 0, for all 6 € ©. But since T(X) is
boundedly complete,

E{P{B | SX)} | TX)} = P(B | SX)} = P{B | T(X)} as.
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Hence, T € BS, which means that T is a function of S. Hence T(X) is an
m.s.s. QED

3.6 SUFFICIENCY AND ANCILLARITY

A statistic A(X) is called ancillary if its distribution does not depend on the
particular parameter(s) specifying the distribution of X. For example, suppose that
X~N@®1,,1,), —00 <6 < o0o. The statistic U= (X, — Xq,..., X, — Xy) is
distributed like N(O,_1, I,—1 + J,—1). Since the distribution of U does not depend
on @, U is ancillary for the family F = {N(01, 1), —o0 < 6 < oo}. If S(X) is a
sufficient statistic for a family F, the inference on 6 can be based on the likelihood
based on S. If fs(s;0) is the p.d.f. of §, and if A(X) is ancillary for F, with p.d.f.
h(a), one could write

ps(s:0) = py(s | a)h(a), (3.6.1)

where pj (s | a) is the conditional p.d.f. of S given {A = a}. One could claim that, for
inferential objectives, one should consider the family of conditional p.d.f.s 514 =
{p;(s | a), 6 € ©}. However, the following theorem shows that if S is a complete
sufficient statistic, conditioning on A(X) does not yield anything different, since
ps(s;0) = pj(s | a), with probability one for each 6 € ©.

Theorem 3.6.1 (Basu’s Theorem). Let X = (Xy,...,X,) be a vector of i.i.d.
random variables with a common distribution belonging to F = {Fy(X), 6 € ®}. Let
T (X) be a boundedly complete sufficient statistic for F. Furthermore, suppose that
A(X) is an ancillary statistic. Then T (X) and A(X) are independent.

Proof. Let C € BA, where B# is the Borel o-subfield induced by A(X). Since the
distribution of A(X) is independent of 6, we can determine P{A(X) € C} without
any information on 6. Moreover, the conditional probability P{A(X) € C | T(X)} is
independent of 8 since T'(X) is a sufficient statistic. Hence, P{A(X) € C | T(X)} —
P{A(X) € C} is a statistic depending on T (X). According to the law of the iterated
expectation,

Ey{PIAX) e C | TX)} — P{AX) e C}} =0, all 0 €0. (3.6.2)
Finally, since T'(x) is boundedly complete,
P{AX) e C | TX)} = P{A(X) € C} (3.6.3)

with probability one for each 6. Thus, A(X) and T (X) are independent. QED
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From Basu’s Theorem, we can deduce that only if the sufficient statistic S(X) is
incomplete for F, then an inference on @, conditional on an ancillary statistic, can be
meaningful. An example of such inference is given in Example 3.10.

3.7 INFORMATION FUNCTIONS AND SUFFICIENCY

In this section, we discuss two types of information functions used in statistical anal-
ysis: the Fisher information function and the Kullback-Leibler information function.
These two information functions are somewhat related but designed to fulfill differ-
ent roles. The Fisher information function is applied in various estimation problems,
while the Kullback-Leibler information function has direct applications in the the-
ory of testing hypotheses. Other types of information functions, based on the log
likelihood function, are discussed by Basu (1975), Barndorff-Nielsen (1978).

3.7.1 The Fisher Information

We start with the Fisher information and consider parametric families of distribution
functions with p.d.f.s f(x;0), 0 € ©, which depend only on one real parameter 6. A
generalization to vector valued parameters is provided later.

Definition 3.7.1. The Fisher information function for a family F = {F(x;0);6 €
®}, where dF(x;0) = f(x;0)du(x), is

9 2
1(0) = Ey {[QIng(X;G)} } (3.7.1)

d
Notice that according to this definition, 20 log f(x;0) should exist with prob-
ability one, under Fj, and its second moment should exist. The random variable
% log f(x;0) is called the score function. In Example 3.11 we show a few cases.

We develop now some properties of the Fisher information when the density
functions in F satisfy the following set of regularity conditions.

(i) ® is an open interval on the real line (could be the whole line);
a
(ii) 30 f(x;0) exists (finite) for every x and every 0 € ©.

(iii) For each 6 in ® there exists a § < 0 and a positive integrable function G(x; 6)
such that, for all ¢ in (6 — 8,6 + 6),

FGsé) — fx;0)

50 < G(x;0). (3.7.2)
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5 2
(iv) 0 < Ey Hﬁlogf(X;G)] } < oo foreach 6 € ©.

One can show that under condition (iii) (using the Lebesgue Dominated Conver-
gence Theorem)

3 3
ﬁff(x;é))du(x)zf@f(x;e)du(x)
(3.7.3)

0
= Ey {a—elogf(X;Q)} =0,

for all & € ®. Thus, under these regularity conditions,

3
10) = V, {£log f(x;e)} .

This may not be true if conditions (3.7.2) do not hold. Example 3.11 illustrates such
a case where X ~ R(0, #). Indeed, if X ~ R(0, ) then

3 (% dx
= = _0
a0 J, 0

" 931d 1
— —dXx = ——.
o 90 0 0

d
Moreover, in that example Vj {@ log f(X ;0)} = 0 for all 6. Returning back to

cases where regularity conditions (3.7.2) are satisfied, we find that if Xy, ..., X, are
i.i.d. and I, (0) is the Fisher information function based on their joint distribution,

I,0)=Ey H:% log f(X;G)]Z} . (3.7.4)
Since X1, ..., X, are i.i.d. random variables, then
2 1og i) = 3" L log £(X,:0) (3.75)
a0 — 96
and due to (3.7.3),
LI,(0) = nl(6). (3.7.6)

Thus, under the regularity conditions (3.7.2), I(9) is an additive function.
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We consider now the information available in a statistic S = (5;(X), ..., S,(X)),
where 1 <r < n.Letg5(yy, ..., y,;60)be the joint p.d.f. of S. The Fisher information
function corresponding to S is analogously

2
1500) = E, [[aie logg5(Yy,..., Y,;e)] } . (3.7.7)

We obviously assume that the family of induced distributions of S satisfies the
regularity conditions (i)—(iv). We show now that

1,00) > 15(0), all 0 € ©. (3.7.8)
We first show that
_81 S( 0)=EFE —31 fX;0)| S = (3.7.9)
0 ;0) = 0 ; = , a.S. .

We prove (3.7.9) first for the discrete case. The general proof follows. Let A(y) =
{x; $1(X) = y1, ..., S, (X) = y,}. The joint p.d.f. of S at y is given by

g5(y:0) =Y I{xix € A} f(x:0), (3.7.10)
X
where f(x;0) is the joint p.d.f. of X. Accordingly,

0 9
E {ﬁlog fX;0)|Y = y} = ;I{x;x € A(y)) <£log f(x;0)>
- f(x:60)/8%(y:6). (3.7.11)

Furthermore, for each x such that f(x;0) > 0 and according to regularity condition

(iid),

1
g5(y;0)

ad d
Ee{£10gf(X;9)|Y=y}= D Ixix € AW} o5 f(%:6)

= %gs(y;(?)/gs(y;m (3.7.12)

0
= —log g5(y;0).
59 088 (y;0)
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To prove (3.7.9) generally, let S : (X, B, F) — (S, T, G) be a statistic and F < u
and F be regular. Then, for any C € T,

f Ey {ilogf(x;Q) | S = S} g(s;0)dA(s)
¢\ 90

0
= / (—log f(x;e>) £ 0)dp(x)
S—I (C) 89

0 d
= fs —l(c>£f(x’9)dM(X) =5 /S o fx;0)dux)  (3.7.13)

d a
= @/Cg(s,é’)d)»(S)=/C%8(5,9)01)»(8)

d
:/C<£logg(s;9)) 8(s;0)dA(s).

Since C is arbitrary, (3.7.9) is proven. Finally, to prove (3.7.8), write

9 9 2
0<E H@ log f(X;0) — — log gS<Y;e>] }

=L,0)+ I°(6) — 2E, {% log f(X;0) - %bggs(f’;@)}
(3.7.14)

0
= 1,(0)+ I5(0) — 2E, { % log g5(Y;0) -
9 s
- Ey @logf(X;e) [ Yt = 100)—1°0).
We prove now that if 7'(X)is a sufficient statistic for 7, then

IT0) = 1,(0), all 0 € ©.

Indeed, from the Factorization Theorem, if 7'(X) is sufficient for F then f(x;0) =

2
K(x)g(T(x);0), for all 8 € ®. Accordingly, 1,,(0) = Ey {[% log g(T(X);G):| }
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On the other hand, the p.d.f. of T(X) is g7 (¢;60) = A(t)g(t;6), all # € . Hence,

0 d
39 logg”(t;0) = %0 log g(t;60) for all 6 and all 7. This implies that

8 2
1"(0) = Eg H£ log gT(T(X>;9)} }
(3.7.15)
9 2
= Ey {[£ log f(T(X);G)} } = 1,(0),

for all & € ®. Thus, we have proven that if a family of distributions, F, admits a
sufficient statistic, we can determine the amount of information in the sample from
the distribution of the m.s.s.

Under regularity conditions (3.7.2), for any statistic U (X),

d
L©) =V {@wgf(x,@)}

0
v {E {ﬁlogf(X;G) | U(X)}}

+

3
E {v {ﬁlogf(x;é) | U(X)H.

By (3.7.15), if U(X) is an ancillary statistic, log gV (u; ) is independent of 6. In this
d ]
case 30 logg¥u;6) = E {@ log f(X;0) | U} = 0, with probability 1, and

1,(0) = E{I(0 | U)}.

3.7.2 The Kullback-Leibler Information

The Kullback—Leibler (K-L) information function, to discriminate between two dis-
tributions Fy(x) and Fy(x) of F = {Fy(x);0 € O} is defined as

J(X:9) } . 6,.cO. (3.7.16)

1(0; = Ey {log ——=
@) (’{Ogﬂx;w

The family F is assumed to be regular. We show now that 7(6, ¢) > 0 with equality
if and only if f(X;0) = f(X;¢) with probability one. To verify this, we remind
that log x is a concave function of x and by the Jensen inequality (see problem 8§,
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Section 2.5), log(E{Y}) > E{log Y} for every nonnegative random variable Y, having
a finite expectation. Accordingly,

F(X:0) / Forie)
—1(0, =F —l log ——dF(x;0
©.9) 9{ e ¢>} g ) )

SlOg/dF(x;¢)=

(3.7.17)

Thus, multiplying both sides of (3.7.17) by —1, we obtain that /(6, ¢) > 0. Obviously,
if Po{f(X;0)= f(X;¢)} =1, then I1(8,¢)=0.If Xy,..., X, are i.i.d. random
variables, then the information function in the whole sample is

f(x;e)} ~. f(Xi
1,0,¢) = Eg 31 =FE 1 =nl(0, ¢). 3.7.18
@9 G{ng(x;qﬁ) 9{;" f(x,,¢>} @9 GTAY

This shows that the K-L information function is additive if the random variables are
independent.

If SX) = (S1(X), ..., S (X)), 1 <r <n,is a statistic having a p.d.f. g5(yy, ...,
vr;0), then the K-L information function based on the information in S(X) is

5(v;0)
1506.4) = E {1 & } 37.19
@0 =E 18 5 G719
We show now that
150, ¢) < 1,0, ¢), (3.7.20)

for all 8, ¢ € ® and every statistic S(X) with equality if S(X) is a sufficient statistic.
Since the logarithmic function is concave, we obtain from the Jensen inequality

_ fX;) fX;0)
—In(6,¢)_E9{ e 9)} Eg{logEg{f(X;9)|S(X)“. (3.7.21)

Generally, if S is a statistic,

S:(X,B,F)— (S, T,0),
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then forany C € I’

FXsh) S
chg { 7X.0) | § = s} g°(s;0)dA(s)

fx;0) —1
/S'(C) f(x;@)f(x Jdu(s) = Pp{S—(C)}

[ s [ 8639
= /C g5(s3 §)dA(s) = /C ) DA,

This proves that

S(a- .
&6 _ {f(X,tzS)

o) = Xo0) | S(X) = s} . (3.7.22)

Substituting this expression for the conditional expectation in (3.7.21) and multiplying
both sides of the inequality by —1, we obtain (3.7.20). To show that if S(X) is sufficient
then equality holds in (3.7.20), we apply the Factorization Theorem. Accordingly, if
S(X) is sufficient for F,

fx¢) _ KXg(Sx): )
fx:0)  Kx)g(S(x);0)

(3.7.23)

at all points x at which K (x) > 0. We recall that this set is independent of 6 and has
probability 1. Furthermore, the p.d.f. of S(X) is

g5(y;:0) = A()g(y:6), all 0 € ©. (3.7.24)

Therefore,

10,91 = By (log 4 50 000 )

A(S(X)g(S(X); ¢)

B g5(Y;0) (3.7.25)
=5 {log gS(Y;qs)}

=150,¢), forall 6,¢c0®.
3.8 THE FISHER INFORMATION MATRIX
We generalize here the notion of the information for cases where f(x;#) depends on
a vector of k-parameters. The score function, in the multiparameter case, is defined

as the random vector

S(0; X) = vy log f(X;0). (3.8.1)
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Under the regularity conditions (3.7.2), which are imposed on each component
of 6,

Eq{S@; X)} = 0. (3.8.2)
The covariance matrix of S(9; X) is the Fisher Information Matrix (FIM)
1(0) = ¥g[S(O; X)]. (3.8.3)

If the components of (3.8.1) are not linearly dependent, then (@) is positive definite.
In the k-parameter canonical exponential type family

log f(X; ) =log A*(X) + ¥'UX) — K(¥). (3.8.4)
The score vector is then
SW: X) =U(X) — Vy K(¥), (3.8.5)
and the FIM is

1(y) = Ty [UX)]

’ i, j (3.8.6)
N (31//1‘3%'1('(1#)’17] = 1,...,k>.

Thus, in the canonical exponential type family, /(1) is the Hessian matrix of the
cumulant generating function K (¥).

It is interesting to study the effect of reparametrization on the FIM. Suppose that
the original parameter vector is #. We reparametrize by defining the k functions

wi=w;n....00), j=1,....k

Let
O =viwi,...,wp), Jj=1,...,k
and
D(w) = <—8‘/’i(wg’w']j z W")) .
Then,

S(w; X) = D(W)Vy log f(x; ¥ (W)).
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It follows that the FIM, in terms of the parameters w, is

I(w) = Tw[S(w; X)]

(3.8.7)
= D(W)I (Y (W))D'(w).

Notice that 7(yr(w)) is obtained from /() by substituting vr(w) for 6.

Partition @ into subvectors 8, . . ., 10 (2 <1 < k). We say that o, ..., 00 are
orthogonal subvectors if the FIM is block diagonal, with / blocks, each containing
only the parameters in the corresponding subvector.

In Example 3.14, p and o? are orthogonal parameters, while i/, and v, are not
orthogonal.

3.9 SENSITIVITY TO CHANGES IN PARAMETERS

3.9.1 The Hellinger Distance

There are a variety of distance functions for probability functions. Following Pitman
(1979), we apply here the Hellinger distance.

Let 7 = {F(x;0),0 € ©} be a family of distribution functions, dominated by a
o-finite measure w, i.e., dF(x;0) = f(x;0)du(x), for all 8 € ©. Let 6, 6, be two
points in ®. The Hellinger distance between f(x;0;) and f(x;0,) is

2 1/2
P01, 62) = ( / [\/f(x;91)—x/f(x;92)] du(x)> : (3.9.1)

Obviously, p(0;, 6,) = 0if 6; = 6,.
Notice that

p*(61,6,) = /f(x;91)du(X)+/f(x;é’z)du(x)—2/\/f(x;91)f(x;6’z) dp(x).

(3.9.2)

Thus, p(61, 62) < +/2, forall 6;, 6, € ©.

The sensitivity of p(6;, 6p) at 6y is the derivative (if it exists) of p(8, 6p), at
0 = 6.

Notice that

P*0,60 [ WT:0) =/ fx;6) )
O — 602 (0 — 6)?

du(x). (3.9.3)
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If one can introduce the limit, as & — 6y, under the integral at the r.h.s. of (3.9.3),
then

2
020, 6o) _/(% /f(x;9)|9:90) dp(x)

m —_—
660 (0 — 62
2
- [ s

= 11(90).

Thus, if the regularity conditions (3.7.2) are satisfied, then

p(0,60) 1
= —/1(6p). 3.9.5
Jm 06 2 (6o) ( )

Equation (3.9.5) expresses the sensitivity of p(6, 6y), at 8y, as a function of the
Fisher information 7(6y).

Families of densities that do not satisfy the regularity conditions (3.7.2) usually
will not satisfy (3.9.5). For example, consider the family of rectangular distributions
F ={R(0,0),0 <6 < oo}.

For 6 > 6y > 0,

1/2
06, 60) = V2 (1 -~ \/993>

—1/2
D 0,00 = —— (1- /2 e\
06T 55 0 0 o2

Thus,

0
hm —p(0, 6p) =

616 06
1 1
On the other hand, according to (3.7.1) withn =1, 1(6y) = T
0
The results of this section are generalizable to famlhes depending on k parameters
(01, ..., 6. Under similar smoothness conditions, if A = (Aq, ..., Ax) is such that
A’A =1, then

i (V f(x; 00+ Av) — /f(x;00) )

v—0 1)2

du(x) = xl(oo)x (3.9.6)

where 1(6y) is the FIM.
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PART II: EXAMPLES

Example 3.1. Let X, ..., X,, be i.i.d. random variables having an absolutely con-
tinuous distribution with a p.d.f. f(x). Here we consider the family F of all absolutely
continuous distributions. Let T(X) = (X(1), ..., X)), where Xy < --- < X(z), be
the order statistic. It is immediately shown that

1
hx|TX)=1t) = m[{x;x“) =1, Xm) = t,}.

Thus, the order statistic is a sufficient statistic. This result is obvious because the
order at which the observations are obtained is irrelevant to the model. The order
statistic is always a sufficient statistic, when the random variables are i.i.d. On
the other hand, as will be shown in the sequel, any statistic that further reduces the
data is insufficient for F and causes some loss of information. [ |

Example 3.2. Let X;,..., X, be i.i.d. random variables having a Poisson dis-
tribution, P(A). The family under consideration is F = {P(1);0 < A < oo}. Let

TX) = ZX,-. We know that T'(X) ~ P(nA). Furthermore, the joint p.d.f. of X and
i=1

T(X) is

n

Hxi !

i—1

n
ein)\ in n

P(xlau-,xn,l;)\): Ai:l i X:Z)Q:[ .
i=1

Hence, the conditional p.d.f. of X given T(X) =t is

£ "
h(x | 1,0) = — I{X:inzt};
Hx,-!n’ i=1
i=1

where x1, ..., X, are nonnegative integers and t = 0, 1, .... We see that the condi-
tional p.d.f. of X given T'(X) = ¢ is independent of L. Hence T'(X) is a sufficient
statistic. Notice that X, ..., X,, have a conditional multinomial distribution given
XX, =t. |

Example 3.3. Let X = (X4, ..., X,,)’ have a multinormal distribution N(u1,, I,,),

wherel, =(1,1,...,1).LetT = ZXi.We set X* = (X5, ..., X,,) and derive the

i=1
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joint distribution of (X*, T'). According to Section 2.9, (X*, T') has the multinormal
distribution

where

Hence, the conditional distribution of X* given 7 is the multinormal

N(ann—l s Vn—l)7

n
where X, = lZX, is the sample mean and V,_| = [, — l w—1. 1t is easy
n i1 n
to verify that V,_; is nonsingular. This conditional distribution is independent
of w. Finally, the conditional p.d.f. of X; given (X*, T) is that of a one-point
distribution

h(xp | X5 Tip) = I{x:x; =T — X1, }.

We notice that it is independent of . Hence the p.d.f. of X given T is independent
of u and T is a sufficient statistic. [ |

Example 3.4. Let(X,Y)),..., (X,,Y,) beiid. random vectors having a bivariate
normal distribution. The joint p.d.f. of the n vectors is

1
Qryoliol(l — p2y/? '

1 " xi —E\?
exp{_z(l—p%[;( o1 )

“xi—E yi—n o (vi—n\
—pp ey () )

i=1

f(xvy;Sa 7),,0,0'1,02)2
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where —co < &, n < 00; 0 < 0y, 03 < 00; —1 < p < 1. This joint p.d.f. can be
written in the form

1
QryPolol (1 — p2y/? ’

fx,y;§,n,01,00,p) =

= e\2 S evs - \2
exp{ n [(x £) _zp(x &)y n)+(y n)}

21— p?) o} 0107 o7

1 [Q(X) _2p P(x,y) n Q(y)] }

21— pY) ol 010 o3

where i = %Zx,-, y = %Zy,-, 0(x) = Z(Xi -37, 0y = Z(yi -7
i=1 i=1 i=1 i=1

P(x,y) =Y (x; = )i — ¥
i=1

Accordin_g to the Factorization Theorem, a sufficient statistic for F is
TX,Y)=(X,Y, 0X), 0(Y), PX,Y)).

It is interesting that even if o, and o, are known, the sufficient statistic is still
T(X,Y). On the other hand, if o = 0 then the sufficient statistic is T*(X,Y) =

(X, Y, 0(X), O(Y)). [ ]
Example 3.5.
A. Binomial Distributions

F={Bn,0),0 <0 < 1}, nis known. Xy, ..., X, is a sample of i.i.d. random

variables. For every point x°, at which f (XO, 0) > 0, we have

n . .0
f(x;@) B n (X,‘) 0 ;(xl xi)
F(x°;6) _U (n) < ) '

Accordingly, this likelihood ratio can be independent of 6 if and only if Zx,- =

i=1

Zx?. Thus, the m.s.s. is T(X) = in‘
i=1

i=1
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B. Hypergeometric Distributions
X;~H(N,M,S),i =1,...,n. The joint p.d.f. of the sample is

GG
p(x;N, M, S) = 1_[ u

e

The unknown parameter hereis M, M =0, ..., N. N and S are fixed known values.
The minimal sufficient statistic is the order statistic 7,, = (X, ..., X(»)). To realize
it, we consider the likelihood ratio

() (524)
p(xX; N, M, S) _ﬁ S —x;

X;
p(x% N, M,S) plin <M) <N—M0)'

xi0 S—x0

This ratio is independent of (M) if and only if x;) = x(oi), foralli =1,2,...,n.

C. Negative-Binomial Distributions
Xi~NB(W,v),i=1,....n;0<¢¥ <1,0<v < o0.

(i) If v is known, the joint p.d.f. of the sample is

Z-xi n
gy T T L)
px;yr,v)=(1 ) 4 ! l_[ romre; + 1)

i=1
n
Therefore, the m.s.s. is 7, = ZX[.
i=1
(ii) If v is unknown, the p.d.f.s ratio is

n

P l_[ I +1) T +v)
i +1) T +v)

i=1

Hence, the minimal sufficient statistic is the order statistic.
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D. Multinomial Distributions

We have a sample of n i.i.d. random vectors XD = (Xﬁi), e, X,((i)), i=1,....n
Each X@ is distributed like the multinomial M(s,#). The joint p.d.f. of the
sample is

n
@)
n J

%) ). _
p(x, ..., x ,5,9)—1—[ (,)' B (z)|1_[ J

i= 1

Accordingly, an m.s.s. is T, = (", ..., T*D), where T,” = ny)’ j=

k—1
..k — 1. Notice that T,V = ns — > "T\".
i=1

E. Beta Distributions
Xi~Bp,q), i=1,....n; 0<p, g <oo.

The joint p.d.f. of the sample is

n

1 p—1 -1
poq) = —— [ [ A —x)
f:p.q) B"<Pv4>,-11x’ (1—x)

n n
O0<x;<l1foralli=1,...,n. Hence, an m.s.s.is T,, = (nX,-, 1_[(1 — X,)). In
i=1 =l
cases where either p or g are known, the m.s.s. reduces to the component of 7, that
corresponds to the unknown parameter.

F. Gamma Distributions
Xi~GM,v), i=1,...,n; 0<A, v<oo.

The joint distribution of the sample is

n v—1 n
fx;A,v) = F):'(v) (Hx,-) exp {—k ;xi} .
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Thus, if both A and v are unknown, then an m.s.s. is 7,, = (nX,-, ZX,) If only

i=I i=1
n

v is unknown, the m.s.s. is 7, = HX,-. If only A is unknown, the corresponding

i=1
n

statistic ZX ; 1s minimal sufficient.

i=l1

G. Weibull Distributions

X has a Weibull distribution if (X — £)* ~ E(X). This is a three-parameter family,
0 = (&, A, @); where £ is a location parameter (the density is zero for all x < &); Al
is a scale parameter; and « is a shape parameter. We distinguish among three cases.

(i) & and « are known.

LetY; =X, —&,i=1,...,n. Since Y ~ E(L), we immediately obtain from
that an m.s.s., which is,

T,=) Yi=) (Xi—£)"
i=1 i=1

(ii) If @ and A are known but & is unknown, then a minimal sufficient statistic is
the order statistic.

(iii) « is unknown.

The joint p.d.f. of the sample is

Foxsg. ) =" [ — 6)%exp {—A > - s>a} L oxzE
i=1

i=I

foralli =1, ..., n. By examining this joint p.d.f., we realize that a minimal sufficient
statistic is the order statistic, i.e., T, = (X, - .., X))

H. Extreme Value Distributions
The joint p.d.f. of the sample is

f(X§)»,0l)=)\”ot"exp{—aXn:xi _Ai:eax;}_

i=1 i=l1

n
Hence, if « is known then 7,, = Ze_ax’ is a minimal sufficient statistic; otherwise,
i=1
a minimal sufficient statistic is the order statistic.
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Normal Distributions
(i) Single (Univariate) Distribution Model

Xiva(é,az), i=1,...,n, —o0o<é<oo, O0<o<oo.

The m.s.s. is T, = (ZX, ZX?) If £ is known, then an m.s.s. is
i=1 i=1

n
Z(X ;= $)2; if o is known, then the first component of 7, is sufficient.
i=1
(ii) Two Distributions Model
We consider a two-sample model according to which X, ..., X,, are i.i.d. having

a N(&, o}) distribution and Y1, ..., Y,, are i.i.d. having a N(n, 03) distribution. The
X-sample is independent of the Y-sample. In the general case, an m.s.s. is

T = ixi,iy-,ixf,iyf
i=1 j=1 i=1 j=1

n m n m
If 012 = 022 then the m.s.s. reduces to T* = in, ZY~, ZXIZ + ZYJZ . On
i=1 j=1 i=1 j=1

the other hand, if £ = 5 but o7 # o0, then the minimal statistic is 7. [ ]

2
Example 3.6. Let (X, Y)have a bivariate distribution N ? ) , (001 ;)2 )) with
2 2

—o0 < &,& < 00;0 < 01,0, < 00. The p.d.f. of (X,Y)is

f(xay;$1152701162)
1 £ & 1, 1, 1/& &
= eXpl S5X+=Sy— X" ——y -5+
w0, P{Uf o2 207" T 202 T 2\67 T 2

This bivariate p.d.f. can be written in the canonical form

1
Oy, . Ye) = EGXP{TMX + Yy + Yax? 4+ Yuy? — KW, ..., Ya)},

where
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and

=3 () e () e ()|
R <¢3+1ﬁ4 o8 2y, e PAI

Thus, if wl, 1//2, Y3, and Y4 are independent, then an m.s.s. is T(X) =

(ZX,, ZY” ZX ZY?). This is obviously the case when &, &, o1, 0 can

i=1
assume arbltrary values Notice that if & = &, but o1 # 05 then ¥y, ..., ¥y are still

independent and 7'(X) is an m.s.s. On the other hand, if & # &, but o1 = o, then an
m.s.s. is

T*(X) = (Z X, Z ;. XH:(X,-2 + Yf)) :
i=1 i=1 i=1

The case of &, = &, 01 # 02, is a case of four-dimensional m.s.s., when the parameter
space is three-dimensional. This is a case of a curved exponential family. [ ]

Example 3.7. Binomial Distributions
F ={B(n,0);0 <6 < 1}, n fixed. Suppose that E4{h(X)} = Oforall0 <6 < 1.
This implies that

th( >W—0 all v,

0 < ¥ < oo, where ¥ =6/(1 —0) is the odds ratio. Let a,; = h(j)(;f), j=
0,...,n. The expected value of A(X) is a polynomial of order n in yr. Accord-
ing to the fundamental theorem of algebra, such a polynomial can have at most n
roots. However, the hypothesis is that the expected value is zero for all ¥ in (0, c0).
Hence a, ; =0forall j =0,...,n, independently of v. Or,

Py{h(X)=0} =1, all 6.
Example 3.8. Rectangular Distributions
Suppose that F = {R(0,0);0 < 0 < oo}. Let Xy, ..., X,, be i.i.d. random vari-

ables having a common distribution from F. Let X, be the sample maximum. We
show that the family of distributions of X(,, F, , is complete. The p.d.f. of X, is

n n—1
fn(t;é’):e—,,t , 0<tr=<o.
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Suppose that Eg{h(X(,))} =0forall 0 < 6 < oo. That is

0
/ hOt"'dr =0, forall 9, 0 <6 < oo.
0

Consider this integral as a Lebesque integral. Differentiating with respect to 0 yields
h)x"''=0, as. [Py,
0 € (0, 00). ]

Example 3.9. In Example 2.15, we considered the Model II of analysis of variance.
The complete sufficient statistic for that model is

T(X) = (X, $2, 52),

k n
= 1 -
where X is the grand mean; S2 = m E E (Xi; — X;)? is the “within” sample

i=1 j=I

variance; and S; = /—12(5( i — X)? is the “between” sample variance. Employ-
i

ing Basu’s Theorem we can immediately conclude that X is independent of (82, S).
Indeed, if we consider the subfamily F, , for a fixed o and p, then Xisa complete
sufficient statistic. The distributions of S2 and S2, however, do not depend on 1.
Hence, they are independent of X. Since this holds for any o and p, we obtain the
result. [ ]

Example 3.10. This example follows Example 2.23 of Barndorff-Nielsen and Cox
(1994, p. 42). Consider the random vector N = (N, N, N3, N4) having a multino-
mial distribution M (n, p) where p = (py, ..., p4) and, for0 < 0 < 1,

1

p1 = 8(1 —0)

P2 = l(1 +0)
6

p3 = l(2 —0)
6

D4 = l(2—i-9).
6

The distribution of N is a curved exponential type. N is an m.s.s., but N is incomplete.
Indeed, E, {Nl 4N, — g} —0forall0 <6 < 1, but P {N, FN, = g} <1 for
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1
all 6. Consider the statistic Ay = Ny + N>. Ay ~ B <n, 6) Thus, A; is ancillary.
The conditional p.d.f. of N, given A| = a is

a\ (1=0\" [1+0\""
reten= () (5) (57)

(n —a) (2—9)”3 (2—!—9 nam

\m 4 4 )

forn; =0,1,...,a;n3=0,1,...,n—a;n, =a —nyandny =n — a — n3. Thus,
N, is conditionally independent of N3 given A| = a. [ ]

Example 3.11. A. Let X ~ B(n,0), n known, 0 <0 < 1; f(x;6) = (”)9*(1 —
X

0)" ™" satisfies the regularity conditions (3.7.2). Furthermore,

81 F(x:0) X n—x
2 los frigy = &
30 & 0 1-90

, 0<6 <1.

Hence, the Fisher information function is

{|:X n—X:|2}
10)=E, || = - —n/0(1—0), 0<6<1l.

0 1-06

B. Let X, ..., X,, be i.i.d. random variables having a rectangular distribution
R(0,0),0 < 8 < oo. The joint p.d.f. is

1
f(x;0) = Q—HI{X(n) <0},

where x(,) = 1r£115a<>§1{x,~}. Accordingly,

0
o5 log f(x:6) = —gl{x<n> <6}

and the Fisher information in the whole sample is

n2
I1,0) = 77 0<6 <o0.

C.Let X ~ u+ G(1,2), —00 < i < o0. In this case,

fsp) = (x — we " I(x = p).
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Thus,

3 : 1 2

—log flxsp)) =|——+1) .

ol X — U
But

1 /oo 21 (e
E,{——t= (x — ) lem W = 0.
. {<X - u)z} u

Hence, (1) does not exist. [ |

Example 3.12. In Example 3.10, we considered a four-nomial distribution with
parameters p;(0), i = 1,...,4, which depend on a real parameter 6, 0 < 6 < 1.
We considered two alternative ancillary statistics A = Ny + N, and A’ = N| + Njy.
The question was, which ancillary statistic should be used for conditional inference.
Barndorff-Nielsen and Cox (1994, p. 43) recommend to use the ancillary statistic
which maximizes the variance of the conditional Fisher information.

A version of the log-likelihood function, conditional on {A = a} is

16 ] a) = Nylog(l —0) + (a — Ny)log(1 +6)
4 N3log(2 — 0) + (n — a — N3)log(2 + 6).

This yields the conditional score function

3
SO |a)= 510 | a)

2 4 a n—a

= _N -N .
T i —eT1re 210

The corresponding conditional Fisher information is

16]a)= —— + >
Clo= gm0 ey

1
Finally, since A ~ B (n, 5) , the Fisher information is
1,(0) = E{1(6 | A)}

B 2— 62
AT 0@ —07y
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In addition,

2n
1 —62)2(4 —62)2°

VI | A)} = (

In a similar fashion, we can show that

n n 20A
2-60)1+6) (1-6%)4—6%

10 A) =

and

n6?
(1 —02)2(4 —02)2°

V{I@© AN =

Thus, V{I(0 | A)} > V{I(6 | A")} forall 0 < 6 < 1. Ancillary A is preferred. |

Example 3.13. We provide here a few examples of the Kullback-Leibler information
function.

A. Normal Distributions

Let F be the class of all the normal distributions {N (i, 02); —00 < . < 00, 0 <
o < oo} Let®, = (u1,01)and 6, = (uy, 02). We compute 1(01, 65). The likelihood

ratio is
[0y _o |1 <X—M1)2_<X—M2)2
f(x;0,) oy P12 o o) '

Thus,

log f(x;01) ~ log (0_2> 1 (x _m)Z ~ (x _M2>2
f(x;02) o 2 o o0y '

Obviously, Eg, {(X;—]’“)z} = 1. On the other hand

X — 2 2 U — )2 2 a2
Eo, r (9 g, (1 +o / 2 0_12 4 2#2) ,
(o)) o) O‘] 02 0'1

where U ~ N(0, 1). Hence, we obtain that

o2 1 a1\’ (11 — 12)?
1(01,02)=10g<0—1)+§ (;2> —1 +T .
2
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We see that the distance between the means contributes to the K-L information
function quadratically while the contribution of the variances is through the ratio

p = 02/01.

B. Gamma Distributions
Let 0; = (A;, v;), i = 1, 2, and consider the ratio

f(x;00)  T) A

FGoty — Ty m el =22,

We consider here two cases.

Case I: vj = v, = v. Since the vs are the same, we simplify by setting 6; = A;
(i =1, 2). Accordingly,

A
I(Al,kz)zEAl{vlog< )+()\2 xl)x}
2

=ofee(32)+ (1))

This information function depends on the scale parameters A;(i = 1, 2), through their
ratio p = Ay /7.

Case II: A; = A, = A. In this case, we write

1(vi, ) =log Evzi (v2 —vplogi + E, {(vi — v2)log X}.
Vi
Furthermore,
E, {logX} = / (log x)x" " le ™™ dx
g F( D g

d
= —logI'(v;) — logA.
d\}l

The derivative of the log-gamma function is tabulated (Abramowitz and Stegun,
1968). ]
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Example 3.14. Consider the normal distribution N(u, 0%); —00 < 4 < 00, 0 <

o2 < o0o. The score vector, with respect to @ = (i, 0'2), is

X—u
2
S@; X) = ?
1 (X — p)?
202 204
Thus, the FIM is
! 0
2
Iw,oH =17 .
204

We have seen in Example 2.16 that this distribution is a two-parameter expo-

1
nential type, with canonical parameters v = % and Y, = —>—. Making the

reparametrization in terms of i; and ¥,, we compute the FIM as a function of v, ;.
The inverse transformation is

Thus,

Lo
2y, 243
1
e

Substituting (3.8.9) into (3.8.8) and applying (3.8.7) we obtain

Iy w)—mp)[_wz 0 }(Dw))’
b= 0 292
v —4y3 Yy
_ 32y8 32y8
B Y 1

32y8 32y/8

w1
Notice that 1p12 — 41//23 =3 + 356 > 0. [
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Example 3.15. Let (X,Y) have the bivariate normal distribution
N (0, 02<; l;)), 0<o?<oo, —1< p < 1. This is a two-parameter
exponential type family with

1
S, y) = explynUs(x, y) + Yo la(x, y) = K1, ¥2))

where Uj(x, y) = x> + y2, Us(x, y) = xy and

1 2 2
K, ) = —3 log(4yri — ¥3).

The Hessian of K (Y, ¥») is the FIM, with respect to the canonical parameters. We
obtain

1 [4(4%2 +93) =8¢y }
@Gyt —yPL 8y, i +ys ]

Using the reparametrization formula, we get

I(Y1,92) =

1 Iy
ot C02(1-p?)
10 p) = )
P l1+p

CoX1-pd)  (1-p?P
Notice that in this example neither v, 1, nor o2, p are orthogonal parameters. M

2\/m>'

Example 3.16. Let F ={E(),0 <A < o0}. p?(Aj,Ay) =2 (1 -

A+ Ao
A A
Notice that /A1, Ay < : ; 2 forall 0 < Ay, Ay < 00. If A; = A, then p(Aq, Ap) =

0. On the other hand, 0 < p%(A;, A;) < 2 for all 0 < A;, Ay < co. However, for A;
fixed

lim ,02()\1, )\2) =2.
ly—00

|
PART III: PROBLEMS
Section 3.2
3.21 Let X;,..., X, be i.i.d. random variables having a common rectangular

distribution R(0y, 6,), —00 < 61 < 6, < 0.
(i) Apply the Factorization Theorem to prove that X(;) = min{X;} and
X = max{X;} are sufficient statistics.

(ii) Derive the conditional p.d.f. of X = (X, ..., X,,) given (X(1), X(n))-
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3.22 LetX,, X,,..., X, beii.d. random variables having a two-parameter expo-
nential distribution, i.e., X ~ u + E(A), —00 < u < 00, 0 < A < o0o. Let
X1y < -+ < X, be the order statistic.

n
(i) Apply the Factorization Theorem to prove that X ;) and § = Z(X Q) —
i=2
X(1y) are sufficient statistics.

(ii) Derive the conditional p.d.f. of X given (X(y), ).

(iii) How would you generate an equivalent sample X’ (by simulation) when
the value of (X, S) are given?

3.2.3 Consider the linear regression model (Problem 3, Section 2.9). The unknown
parameters are («, §, o). What is a sufficient statistic for F?

324 LetX,,...,X,beii.d. random variables having a Laplace distribution with
p.d.f.
. 1 lx — pl . _
fx;pu,0) = —expq— , —00 <X <00; —00< U <O
20 o

0 < 0 < o0. What is a sufficient statistic for F
(i) when u is known?
(ii) when w is unknown?

Section 3.3
33.1 LetXy,..., X, bei.id. random variables having a common Cauchy distri-
bution with p.d.f.

—1
1 X —U 2

fyu,0)=—- |1+ , —00 <X < 0Q;
o o

—00 < i < 00,0 < 0 < oo. What is an m.s.s. for F?

3.3.2 LetXy,...,X,beii.d. random variables with a distribution belonging to a
family F of contaminated normal distributions, having p.d.f.s,

fxa,n,0)=(1— a)ﬁ exp {—ﬁ(x — ,u)2}

-1
1 _ 2

+oz~—|:1+<x “)} , —00 <X <00
o o

—00 < <00;0 <0 <00;0 <& < 1072 What is an m.s.s. for F?
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333 Let Xi,..., X, be ii.d. having a common distribution belonging to the
family F of all location and scale parameter beta distributions, having the
p.d.fs

£ Y £ ) By (RS B
XU, O, ) = - )
H.0. P-4 oB(p,q) o o
—Uu<x<pu+o;—00o<pu<o0;0<o <00;0<p,qg < oo.
(i) What is an m.s.s. when all the four parameters are unknown?
(i) What is an m.s.s. when p, g are known?
(iii) What is an m.s.s. when u, o are known?

334 Let Xy,..., X, be ii.d. random variables having a rectangular R(6;, 6,),
—00 < 0y < 0, < 0o. What is an m.s.s.?

3.3.,5 Fis afamily of joint distributions of (X, Y) with p.d.f.s

glx,y;A) =exp{—Ax —y/A}, 0 <X < oco.
Given a sample of n i.i.d. random vectors (X;, ¥;),i = 1, ..., n, what is an
m.s.s. for F?
3.3.6 The following is a model in population genetics, called the Hardy—
3
Weinberg model. The frequencies Ny, N, N3, ZNi = n, of three geno-
i=1
types among n individuals have a distribution belonging to the family F of
trinomial distributions with parameters (n, p(6), p2(6), p3(6)), where
1O =6%  pO)=20(1-6), ps©) =(1-67 (33.1)
0 < 6 < 1. What is an m.s.s. for F?
Section 3.4

341 Let X,..., X, be ii.d. random variables having a common distribution

with p.d.f.

k
fsy) =y < x < ynth(x)exp {Zl/fiUi(x) - K(Iﬂ)} ;

i=3

n

—00 < Y| < Yr < 00. Prove that T(X) = (X(l), X, ZUs(Xi), <oy

i=1
ZUk(Xi)) is an m.s.s.

i=1
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342 Let {(X;,Y:),i =1,...,n} be ii.d. random vectors having a common
bivariate normal distribution

(]2 ).
n P00y 0_3

where —0co < £, 19 <c>o;0<oxz,of <oo;—l<p<l.
(i) Write the p.d.f. in canonical form.

(ii) What is the m.s.s. for F?

3.4.3 In continuation of the previous problem, what is the m.s.s.
(i) when& =n =07
(i) wheno, =0, = 1?
(iii) whené =n=0,0, =0, =17

Section 3.5

351 LetF ={G%X,1);0 <o < 00,0 < A < 0o} be the family of Weibull dis-
tributions. Is F complete?

3.5.2 Let F be the family of extreme-values distributions. Is F complete?

353 Let F ={R(0;,6;);, —oc0 < b, <0, <oo}. Let Xy, X,,...,X,,n>2,be
a random sample from a distribution of F. Is the m.s.s. complete?

3.5.4 Is the family of trinomial distributions complete?

3.5.5 Show that for the Hardy—Weinberg model the m.s.s. is complete.

Section 3.6
3.6.1 Let {(X;,Y:), i=1,...,n} be iid. random vectors distributed like

I p
N(O,(p 1)),—1<,0<1.

(i) Show that the random vectors X and Y are ancillary statistics.

(ii) What is an m.s.s. based on the conditional distribution of Y given
{(X =x}?

3.6.2 Let X;,..., X, be iid. random variables having a normal distribution
N(u, 02), where both w and ¢ are unknown.

Me - X . . .
(i) Show that U(X) = ﬁ is ancillary, where M, is the sample
_ 3— Ul
median; X is the sample mean; Q; and Q3 are the sample first and
third quartiles.
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(ii) Prove that U(X) is independent of | X |/, where S is the sample standard
deviation.

Section 3.7

371

3.7.2

3.7.3

3.74

3.7.5

Consider the one-parameter exponential family with p.d.f.s

f(x;0) = h(x) exp{U(x)¥(0) — K(0)}.
Show that the Fisher information function for 6 is
K'(0)

10)=K"(0)—y¢"(0)——.
) ) Iﬂ()w,(e)

Check this result specifically for the Binomial, Poisson, and Negative-
Binomial distributions.

Let (X;,Y:), i =1,...,n be ii.d. vectors having the bivariate standard

normal distribution with unknown coefficient of correlation p, —1 < p < 1.

Derive the Fisher information function 7,(p).

Let ¢(x) denote the p.d.f. of N(0O, 1). Define the family of mixtures
fo)=ap(x)+ (1 —a)px —1), 0<a<l

Derive the Fisher information function I ().

Let F = {f(x;¢¥), —00 < ¥ < oo} be a one-parameter exponential family,
where the canonical p.d.f. is

Jx3¥) = h(x)exp{yU(x) — K(¥)}.

(i) Show that the Fisher information function is

1) = K"().
(ii) Derive this Fisher information for the Binomial and Poisson distribu-
tions.
Let X, ..., X, beiid. N(0,0?),0 < 0% < oo.

(i) What is the m.s.s. T'?
(ii) Derive the Fisher information /(o'?) from the distribution of 7.

1 n
(iii) Derive the Fisher information / 52(02), where S% = —12(Xi —
n—
i=1

X)? is the sample variance. Show that I5"(62) < I(c2).
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3.7.6 Let (X, Y)have the bivariate standard normal distribution N { 0, ;) '(1) >> s

—1 < p < 1. X is an ancillary statistic. Derive the conditional Fisher infor-
mation /(o | X) and then the Fisher information 7(p).

3.7.7 Consider the model of Problem 6. What is the Kullback—Leibler information
function /(p;, p,) for discriminating between p; and p; where —1 < p; <
p <L

3.7.8 Let X ~ P(A). Derive the Kullback—Leibler information 7(A, A;) for 0 <
)\1, )\.2 < Q.

3.79 Let X ~ B(n,60). Derive the Kullback—Liebler information function
1(91792),0 < 9],02 < 1.

3710 Let X ~ G(\,v),0 < A < 0o, v known.
(i) Express the p.d.f. of X as a one-parameter canonical exponential type
density, g(x; V).
(ii) Find ¥ for which g(x; ) is maximal.
(iii) Figd the Kullback—Leibler information function I(, 1) and show that

d 100 _ v
902 W, ¥) = (1//)—W-

Section 3.8

3.8.1 Consider the trinomial distribution M (n, p1, p2), 0 < p1, p2, p1 + p2 < 1.
(i) Show that the FIM is

I—p2

n P1
I(p1,pr)=T—"""—
L—p1—p2 1—p

1
P2

1

(ii) For the Hardy—Weinberg model, p1(9) = 62, p»(8) = 26(1 — 8), derive
the Fisher information function

2n

10) = —0(1 o)

3.8.2 Consider the bivariate normal distribution. Derive the FIM I (§, n, o1, 03, p).

3.8.3 Consider the gamma distribution G(X, v). Derive the FIM (A, v).
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3.8.4 Consider the Weibull distribution W(A, &) ~ (G(A, 1)V/2, 0 < a, A < 00.
Derive the Fisher informaton matrix /(A, o).
Section 3.9

3.9.1 Find the Hellinger distance between two Poisson distributions with param-
eters Ay and A,.

3.9.2 Find the Hellinger distance between two Binomial distributions with param-
eters p; # p» and the same parameter n.

3.9.3 Show that for the Poisson and the Binomial distributions Equation (3.9.4)
holds.

PART IV: SOLUTIONS TO SELECTED PROBLEMS
3.2.1 Xl, ey Xn are i.i.d. ~ R(@l, 92), 0< 91 < 92 < Q.

()
1 n
Xi,...,.X0) = ——— 10 X; <0
JF(X ) (92_91)n5(1< < 6)
=—J0 <X Xy < 62).
@ o,y 01 < Xy < Xy < 02)
Thus, f(X1, ..., X,;0) = Ax)g(T(x), @), where A(x) =1V x and
(T(x);0) ! 10, < X X 65)
X);0) = —— < < Xy < 6).
§ O

T(X) = (X(), X(n)) is a likelihood statistic and thus minimal sufficient.
(il) The pdf of (X([), X(n)) is
(y—x)'2

h(x,y)=n(n — 1)m1(91 <x<y<6).

Let (X(1), ..., X)) be the order statistic. The p.d.f. of (X1, ..., Xu))
is

n!

P(X 7-"9Xn;0):—
: @ — 6"

10, < X1 <--- <X, <6y).

The conditional p.d.f. of (X(1), ..., X)) given (X1, X)) is

p(X]7"‘7XYL;0)_ (n_z)!
h(X1, X.30) (X, — X )" 2

IX1 <Xy < < X1 < X))
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That is, (X(2), ..., X@u-1) given (X, X)) are distributed like the
(n — 2) order statistic of (n — 2) i.i.d. from R(X (1), X))

3.3.6 The likelihood function of 6,0 < 6 < 1, is
L(O;n, Ny, Np) = 02NN (] — g)2Nsthz,

Since N3 =n — N; — N»,2N3 + N, =2n — 2N; — N,. Hence,

2N1+N;
L(@;n, Ny, No) = (—1 9> (1 —6)".

The sample size n is known. Thus, the m.s.s. is 7,, = 2N| + N».

341

i=3

k
fGy) =Ty <x < Yn)exp {Z YiUi(x) — Ko/f)} .

The likelihood function of v is

L;X) =y < Xy < Xy < Y2}

k n
- exp Z i Z Ui(X;) —nK()

i=3  j=I

n n
Thus | X(1), X, ZU3(X Do ZUk(X i) | is alikelihood statistic, i.e.,
=1 =1
minimal sufficient.

34.2 Thejointp.df. of (X;,Y),i=1,...,nis

1
(zn)n/Zo-lno—zﬂ(l _ p2)n/2

! S (Xi—E\ S~ Xi—& Yi—n
. — -2 .
exp{ 21— p?) [;( ox ) G A

1 i=1

=y

fX, Y;0) =
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In canonical form, the joint density is

FEYv) = )n/z (wlzxwzzywazxz

Yy VP ) XY — nK(tﬂ)) ,

i=1 i=1

where
o= & B np
o3 (1 —p?)  oxoy(l —p?)
n §p
v = -
P o2(1— ) oxoy(l—p?)
o 1
T 203(1-pY)
e 1
T 20— )
_ 1Y
V5= ror(l—p?)
and
‘520)% + 772(7)2( — 20x0ypén 1 2 2 2
K = + —1lo 1 — .

The m.s.s. for Fis T(X, Y) = (£X;, £Y;, £X2, TY2, TX,Y)).

3.5.5 We have seen that the likelihood of 0 is L(0) «x 6T™(1 — 9)>"=TM™ where
T(N) = 2N; + N,. This is the m.s.s. Thus, the distribution of 7 (N) is
B(2n, 0). Finally 7 = B(2n,0),0 < 6 < 1} is complete.

3.6.2
(i)
M, ~u+oM,(Z)
X~u+oz
03~ pn+003(2)
01~ p+001(2)
X M) -
0.0 00 -0

UX) =

independent of 1 and o.
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(ii) By Basu’s Theorem, U (X) is independent of (X, S), which is a complete
sufficient statistic. Hence, U (X) is independent of | X|/S.

3.7.1 The score function is
SO:X)=UX)W'©O)— K'©).
Hence, the Fisher information is

1(0) = Vo{S(6; X))
= (W' O)*Ve{U(X)).

Consider the equation
/h(x)eW)”(”‘K(g)dx -1

Differentiating both sides of this equation with respect to 8, we obtain that

K'(0
Eo{U(X)} = wfge;'

Differentiating the above equations twice with respect to 6, yields

K'(©)

OV EJU*X)) = (K'(0))? — v"(0)—— + K" (9).
(W' 0))*E{lU*(X)} = (K'(8)) w<>w/(9)+ ®)
Thus, we get
Vv ) = 5O g KO
’ T W0)? (W'(0))3
Therefore
10) = K"(0) — w”w)K/(@)
B Vo)

In the Binomial case,

f(x’ 9) — <n>exlog %Jrnlog(lfe).
X
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0
Thus, ¥ (6) = log o’ K@) = —nlog(1 —6)

o) — gy 201
vO=50"e VY O=ma e
K'(6) = ﬁ, K"(6) = ﬁ.
Hence, 1(0) = 50 —0)

In the Poisson case,
YA = log(/\), K() = A

1
o) =, Y = 2 K'M=1 K'G0)=0

>JI>—~ >)I

1) = —, (W) =~

8 In the Negative-Binomial case, v known,

Y(p) =log(1 — p), K(p)=—vlog(p), I(p)= 2;
p>(1—p)

372 LetQy = ZYZ Pyy = Zx Y, Ox = sz
Letl(p) denote the log- hkehhood funct1on of p, =1 < p < 1. This is

1
I(p) = —% log(l = *) = 37— (Qr = 20Pxy + 0x).

Furthermore,

n(1 = p*) = (Qx + Or)(1 +30°) + 2Pxyp(3 + p2)

I(p) = 1 — 27

Recall that 1(p) = E{—1"(p)}. Moreover,

E(Qx + Qy) =2n and E(Pxy) = np.

Thus,

n(1—p*  n(+p?

=0 ~a=
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(X,Y)NN(O,(;) ﬁ’)) d<p<l

fx,y;0) = % exp (—%)ﬂ) m exp (—2(%,02)(); — ,ox)2>
foyipy _ A=p)" {_1 ((y -’ (- sz)2>}
fG.yip) (1= pHi2 2\ 1-p} 1 — p?
og FE o) 1 (1 —p%) _Lo=—px? 16— px)?
f,yip) 2 L—pf) 2 1—p} 21— p?
Thus, the Kullback—Leibler information is

f(X,Y); p2)

1 1 — p?
:—10g< ,0§>
2 1 —p

The formula is good also for p; > p;.

3.7.7

I(p1, p2) = E,, {log

3.710 The p.d.f. of G(A,v)is

A’V
Flsa,v) = —x""le™,

I'(v)
When v is known, we can write the p.d.f. as g(x;¢¥) = h(x)exp(¥x +

v—1
vlog(—v)), where h(x) = %

¢(x, ) is ¥ = —~. The K-L information I(y, %) is
X

10, ) = W +vlog (%)

, ¥ = —A. The value of ¥ maximizing

Substituting ¥; = 1, we have

Thus,
~ . v v
=53
P =2 = 1w,
81//2 ’ wz
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3.8.2 The log-likelihood function is

1 N 2 | 2
I(§,n,01,02,p) = —Elog(l —p°)— Elog(al)— Elog(%)
_ 1 x—£& 2+ Y —n z_sz—é.Y—n
2(1—p% oy ) o1 o |

The score coefficients are

G0 X-k p Y —n
b 9E 012(1 -0 1—p?% 010
ol Y —n p X-—&
Szza—z 21— 52y 1 — o2
n oyl —p%) p* 0102
g _ o _ (X — &) p X-§& Y—-n 1
T 902 2001 —p2) 20—p?) o o0, 207
al (Y —n)? p  X—-§Y—n 1
S4 = = -

902 2001 —p2) 2(1—p2) o0, of 202

G _ p X—$2+ Y -1\’
T 1-p2 (1-p2 |\ o o
1+p> X—¢& Y—1
(1—=p%* o oy

The FIM

I:(IU)’ l,]:1,,5

1
I=V(ES) = 5—
71— p?)

In =V($) = —

oy(1 = p?)
1o = cov(Sy, $2) = %
o102(1 — p?)
2—p?
Iiz =V(S3) = ————m—
33 (83) 4031 — p?)
2 2
Ly = V(Sy) = P

4031~ p?)
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Iz=ls=15L5=0
Iy =14 =15=0

2

P
Ly =con(S3, S4) = ——————————
34 (83, S4) 402021 = p?)
Iys = cow(Ss, S5) = ———L—
35 3, Ss 2070 = )
Lis = cov(Sy, S5) = ————
205(1 — p?)
and
1+ p?
Iss =V(S5) = ————.
55 (Ss) 1= 22

3.8.4 The FIM for the Weibull parameters. The likelihood function is
L, o) = aa X% X",
Thus,

I(A, @) = log(A) + log(a) + log(X*) — A X“.

a1,

YT
al 1

Sy = — = — +1log(X) — AX*log(X)
o o

1 1 A
= — 4+ —log(X%) — — X% log(X*%).
a o« a

1
Recall that X¢ ~ E()X). Thus, E{X*} = n and E{S;} = 0. Let /(1) denote

the di-gamma function at 1 (see Abramowitz and Stegun, 1965, pp. 259).
Then,

Eflog(X®)} = —log(A) + (1)
1 1
E{X*log X*} = 7~ 5 (og) — ¥r(1)).

Thus,

11
(log(2) — ¥ (1))

o o

I 1
- (X — 5 (log(2) - w(l») =0.

o

E{S$} =

>
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1
I =V($) =V{X}= 2
Iz = cov(Sy, $2)
1 A
=cov| —X% —log X* — —X%log X“
o a
1 A
= ——cov(Y,logY)+ —cov(Y, YlogY),
o o
where Y ~ X% ~ E(A).

E{logY} = ¢ (1) — log(h)
E{(log¥)*} = ¥'(1) + (¥ (1) — log )’

E{YlogY} = %(1 + (1) — logA)
1
E{Y(logY)’} = X(w’(l) +2( (1) — log A) + (¥(1) — log 1)%)
E{Y?logY} = %(1 +2(1 + (1) — log 1))

2
E{Y*(ogY)*} = ﬁ(’ﬁ/(l) + (1 + ¢ (1) — log 1)* + ¥(1) — log A).

Accordingly,
1
cov(Y,logY) = .
2 1) —log A
cov(Y,YlogY) = M,
and
1
I, = —(1 4+ ¢¥(1) —logA).
Ao
Finally,
I =V(5)

1 A
= V(—logY——YlogY)
o o
1 A2
= ;V{log Y+ EV{Ylog Y}
A
— 207cov(10g Y,YlogY)

1
= @(w’(l) + 2%/ (1) + (1) — log 1)
+ (1 + (1) —logA)* = 2(%'(1) + ¥ (1) — log A)).
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Thus,

1
Iy = 070//(1) + (1 + ¥(1) — log ).

The Fisher Information Matix is

1 1

I, o) = |
. ;(W’(l) + (1 4+ (1) —logA)?)



CHAPTER 4

Testing Statistical Hypotheses

PART I: THEORY
4.1 THE GENERAL FRAMEWORK

Statistical hypotheses are statements about the unknown characteristics of the distri-
butions of observed random variables. The first step in testing statistical hypotheses
is to formulate a statistical model that can represent the empirical phenomenon being
studied and identify the subfamily of distributions corresponding to the hypothesis
under consideration. The statistical model specifies the family of distributions rele-
vant to the problem. Classical tests of significance, of the type that will be presented
in the following sections, test whether the deviations of observed sample statistics
from the values of the corresponding parameters, as specified by the hypotheses,
cannot be ascribed just to randomness. Significant deviations lead to weakening of
the hypotheses or to their rejection. This testing of the significance of deviations is
generally done by constructing a test statistic based on the sample values, deriving
the sampling distribution of the test statistic according to the model and the values
of the parameters specified by the hypothesis, and rejecting the hypothesis if the
observed value of the test statistic lies in an improbable region under the hypothesis.
For example, if deviations from the hypothesis lead to large values of a nonnegative
test statistic 7'(X), we compute the probability that future samples of the type drawn
will yield values of T'(X) at least as large as the presently observed one. Thus, if we
observe the value 7, of T'(X), we compute the tail probability

a(ty) = P{T(X) > 1o}.

This value is called the observed significance level or the P-value of the test. A
small value of the observed significant level means either that an improbable event

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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has occurred or that the sample data are incompatible with the hypothesis being
tested. If a(#y) is very small, it is customary to reject the hypothesis.

One of the theoretical difficulties with this testing approach is that it does not
provide a framework for choosing the test statistic. Generally, our intuition and
knowledge of the problem will yield a reasonable test statistic. However, the for-
mulation of one hypothesis is insufficient for answering the question whether the
proposed test is a good one and how large should the sample be. In order to con-
struct an optimal test, in a sense that will be discussed later, we have to formulate an
alternative hypothesis, against the hypothesis under consideration. For distinguishing
between the hypothesis and its alternative (which is also a hypothesis), we call the
first one a null hypothesis (denoted by Hy) and the other one an alternative hypoth-
esis H,. The alternative hypothesis can also be formulated in terms of a subfamily
of distributions according to the specified model. We denote this subfamily by F;. If
the family Fy or F) contains only one element, the corresponding null or alternative
hypothesis is called simple, otherwise it is called composite. The null hypothesis
and the alternative one enable us to determine not only the optimal test, but also
the sample size required to obtain a test having a certain strength. We distinguish
between two kinds of errors. An error of Type I is the error due to rejection of the
null hypothesis when it is true. An error of Type II is the one committed when the
null hypothesis is not rejected when it is false. It is generally impossible to guarantee
that a test will never commit either one of the two kinds of errors. A trivial test
that always accepts the null hypothesis never commits an error of the first kind but
commits an error of the second kind whenever the alternative hypothesis is true. Such
a test is powerless. The theoretical framework developed here measures the risk in
these two kinds of errors by the probabilities that a certain test will commit these
errors. Ideally, the probabilities of the two kinds of errors should be kept low. This
can be done by choosing the proper test and by observing a sufficiently large sample.
In order to further develop these ideas we introduce now the notion of a test function.

Let X = (X1, ..., X,) be a vector of random variables observable for the purpose
of testing the hypothesis Hj against H;. A function ¢(X) that assumes values in the
interval [0, 1] and is a sample statistic is called a test function. Using a test function
¢(X) and observing X = x, the null hypothesis Hj is rejected with probability ¢(x).
This is actually a conditional probability of rejecting Hj, given {X = x}. For a
given value of ¢(x), we draw a value R from a table of random numbers, having
a rectangular distribution R(0, 1) and reject Hy if R < ¢(x). Such a procedure is
called a randomized test. If ¢(x) is either O or 1, for all x, we call the procedure a
nonrandomized test. The set of x values in the sample space X for which ¢(x) = 1
is called the rejection region corresponding to ¢(x).

We distinguish between test functions according to their size and power. The
size of a test function ¢(x) is the maximal probability of error of the first kind, over
all the distribution functions F in Fy, i.e., « = sup{E{¢(X) | F} : F € Fo} where
E{¢(X) | F} denotes the expected value of ¢(X) (the total probability of rejecting
Hy) under the distribution . We denote the size of the test by «. The power of
a test is the probability of rejecting Hy when the parent distribution F belongs to
Fi. As we vary F over F, we can consider the power of a test as a functional
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Y (F;¢) over Fi. In parametric cases, where each F can be represented by a real
or vector valued parameter 6, we speak about a power function ¥ (0;¢), 6 € ©,
where ®; is the set of all parameter points corresponding to Fj. A test function
¢°(x) that maximizes the power, with respect to all test functions ¢(x) having the
same size, at every point 6, is called uniformly most powerful (UMP) of size «.
Such a test function is optimal. As will be shown, uniformly most powerful tests
exist only in special situations. Generally we need to seek tests with some other
good properties. Notice that if the model specifies a family of distributions F that
admits a (nontrivial) sufficient statistic, 7'(X), then for any specified test function,
#(X) say, the test function ¢(T) = E{¢(X) | T} is equivalent, in the sense that it has
the same size and the same power function. Thus, one can restrict attention only to
test functions that depend on minimal sufficient statistics.

The literature on testing statistical hypotheses is so rich that there is no point to
try and list here even the important papers. The exposition of the basic theory on
various levels of sophistication can be found in almost all the textbooks available on
Probability and Mathematical Statistics. For an introduction to the asymptotic (large
sample) theory of testing hypotheses, see Cox and Hinkley (1974). More sophisti-
cated discussion of the theory is given in Chapter III of Schmetterer (1974). In the
following sections we present an exposition of important techniques. A comprehen-
sive treatment of the theory of optimal tests is given in Lehmann (1997).

4.2 THE NEYMAN-PEARSON FUNDAMENTAL LEMMA

In this section we develop the most powerful test of two simple hypotheses. Thus,
let F = {Fy, F1} be a family of two specified distribution functions. Let fo(x) and
f1(x) be the probability density functions (p.d.f.s) corresponding to the elements
of F. The null hypothesis Hy is that the parent distribution is Fy. The alternative
hypothesis H; is that the parent distribution is F;. We exclude the problem of testing
H, at size @ = 0 since this is obtained by the trivial test function that accepts Hy with
probability one (according to Fy). The following lemma, which is the basic result of
the whole theory, was given by Neyman and Pearson (1933).

Theorem 4.2.1. (The Neyman—Pearson Lemma) For testing Hy against H,
(a) Any test function of the form

1, if i(X) > kfo(X)
o°(X) =y, if Ai(X) = kfo(X) (4.2.1)

0, otherwise

forsome 0 <k < ooand(0 <y <1 ismost powerful relative to all tests of its size.

(b) (Existence) For testing Hy against H,, at a level of significance o there exist
constants ky, 0 <ky <00 and y,, 0 <y, <1 such that the corresponding test
function of the form (4.2.1) is most powerful of size .
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(c) (Uniqueness) If a test ¢’ is most powerful of size a, then it is of the form (4.2.1),

except perhaps on the set {x; f1(x) = kfo(x)}, unless there exists a test of size smaller
than o and power 1.

Proof. (a) Let a be the size of the test function ¢°(X) given by (4.2.1). Let ¢' (x) be
any other test function whose size does not exceed «, i.e.,

Eo{o'(X)} < . 4.2.2)

The expectation in (4.2.2) is with respect to the distribution Fy. We show now that
the power of ¢!(X) cannot exceed that of ¢°(X). Define the sets

R™ = {x; filx) < kfo(x)}
R = (x; fi(x) = kfo(x)} (4.2.3)
RT = {x; fi(x) > kfo(x)}.

We notice that {R~, R%, R*}isa partition of x. We prove now that
o0
f (@' (x) — ¢°(0) fi(x)dpu(x) < 0. 4.2.4)
—00

Indeed,

/ (@' (x) — °CO(f1(x) — kfo(x))du(x)
- (4.2.5)

= ( / t fR ot fR ) (@' () = ¢ OIS (¥) = KfoCeNd ().

Moreover, since on R~ the inequality f,(x) — kfo(x) < 0 is satisfied and ¢°(x) = 0,
we have

/R (9'(0) = ¢ f1(x) = kfo()du(x) < 0. (4.2.6)
Similarly,

/R (@) = ") = kfo(x)dp(x) = 0 4.2.7)
and since on R ¢°(x) = 1,

/R +(¢‘(x> — " )(fi(x) — kfo(x)dp(x) < 0. (4.2.8)
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Hence, from (4.2.6)—(4.2.8) we obtain

f (6 () — (0 f1()dR(x) < k / (6! (6) — 6200 fol)du(x) < 0. (42.9)

The inequality on the RHS of (4.2.9) follows from the assumption that the size of
¢°(x) is exactly o and that of ¢! (x) does not exceed .. Hence, from (4.2.9),

f @' (x) fi(x)dp(x) < / ¢°(x) f1(0)d p(x). (4.2.10)

This proves (a).
(b) (Existence). Consider the distribution W(&) of the random variable
J1(X)/ fo(X), which is induced by the distribution Fy, i.e.,

4.2.11
So(X) ( )

We notice that Py{ fo(X) = 0} = 0. Accordingly W(£) is a c.d.f. The y-quantile of
W (&) is defined as

W(é)=Po{f‘(X)ss}.

W=l(y) = inf{&; W(E) > y). (4.2.12)

For a given value of &, 0 < o < 1, we should determine 0 < k, < coand0 <y, <1
so that, according to (4.2.1),

o = Eg{¢’(X)} = 1 — W(ke) + va[W(ke) — W(ky — O)], (4.2.13)
where W (k,) — W(k, — 0) is the height of the jump of W(§) at k. Thus, let
ke = W1 —a). (4.2.14)

Obviously, 0 < k, < 0o, since W(£) is a c.d.f. of a nonnegative random variable.
Notice that, for a given 0 < « < 1, k, = 0 whenever

P, { fiX)
SoX)

If W(ky) — W(ky, —0) =0 then define y, = 0. Otherwise, let y, be the unique
solution of (4.2.13), i.e.,

20}21—01.

Wk — (1 —a)
 Wiky) — Wiky — 0)

(4.2.15)

o

Obviously, 0 <y, < 1.
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(c) (Uniqueness). For a given «, let ¢°(X) be a test function of the form (4.2.1)
with k, and y, as in (4.2.14)—(4.2.15). Suppose that ¢'(X) is the most powerful test
function of size «. From (4.2.9), we have

/(¢0(X) — @' ()(f1(x) — ko fo(x))du(x) = 0. (4.2.16)
But,
/¢O(X)fo(X)dx = /d)l(X)fo(X)dM(X) (4.2.17)
and since ¢° is most powerful,

/ °(6) f1 (X)dx = / ¢ () 1 ().

Hence, (4.2.16) equals to zero. Moreover, the integrand on the LHS of (4.2.16) is
nonnegative. Therefore, it must be zero for all x except perhaps on the union of R and
aset N of probability zero. It follows that on (R* — N) U (R~ — N), ¢°(x) = ¢! (x).
On the other hand, if ¢'(x) has size less than o and power 1, then the above argument
is invalid. QED

An extension of the Neyman—Pearson Fundamental Lemma to cases of testing m
hypotheses Hj, ..., H, against an alternative H,,,; was provided by Chernoff and
Scheffé (1952). This generalization provides a most powerful test of H,, | under the
constraint that the Type I error probabilities of Hy, ..., H, donotexceed «y, ..., &y,
correspondingly where 0 < «; < 1,i =1, ..., m. See also Dantzig and Wald (1951).

4.3 TESTING ONE-SIDED COMPOSITE HYPOTHESES
IN MLR MODELS

In this section we show that the most powerful tests, which are derived according to
the Neyman—Pearson Lemma, can be uniformly most powerful for testing composite
hypotheses in certain models. In the following example we illustrate such a case.

A family of distributions F = {F(x;0),0 € O}, where O is an interval on the
real line, is said to have the monotone likelihood ratio property (MLR) if, for every
0, < 6, in O, the likelihood ratio

f(x;602)/f(x;61)

is a nondecreasing function of x. We also say that 7 is an MLR family with respect
to X. For example, consider the one-parameter exponential type family with p.d.f.

f(x;0) = h(x)exp{0U(x) — K(0)}, —oo0 <6 < o0.

This family is MLR with respect to U(X).
The following important lemma was proven by Karlin (1956).
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Theorem 4.3.1 (Karlin’s Lemma). Suppose that F = {F(x;0); —o0 < 0 < o0}
is an MLR family w.r.t. x. If g(x) is a nondecreasing function of x, then Ey{g(X)}

is a nondecreasing function of 0. Furthermore, for any 0 < 0, F(x;0) > F(x;0")
forall x.

Proof. (i) Consider two points 6, 6" such that < 6’. Define the sets

A={x;f(x;0) < f(x;0)}

4.3.1)
B = {x; f(x;0") > f(x;6)}

where f(x; 0) are the corresponding p.d.f.s. Since f(x;6")/f(x;0) is anondecreasing
function of x, if x € A and x’ € B then x < x’. Therefore,

a=supgx) < ing g(x) =0>. “4.3.2)
X€E

xeA

We wish to show that Ey {g(X)} > Ey{g(X)}. Consider,

/g(X)[f(X;éV) — f(x;0)]du(x)
(4.3.3)
= / gL (x;0") — f(x;0)]du(x) + / gOLf(x;0") — f(x30)]dp(x).
A B
Furthermore, since on the set A f(x;6") — f(x;0) < 0, we have

/Ag(X)[f(X;G’)—f(xs9)]du(X) ZafA[f(X;O')—f(X;9)]d/L(X)- (4.3.4)

Hence,

/ gCOLf(r:0) — FCr:du(x) > a / LF:6)) — fOr0)ldpu(x)
4 (4.3.5)
b / LF(x:0) — £ 0)d ().
B

Moreover, for each 0,

[A Fx;0)dp(x) + /B f;0)dux) =1— P[f(x;0) = f(x;0)].
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In particular,

/ fx0)dp(x) = —/ FO0Ndux) + 1 — Po{f(x;0) = f(x;0)},
A b (4.3.6)
—//;f(x;(?)du(x)=/Bf(X;9)dM(X)—1+Pe[f(x;0’)=f(x;9)].

This implies that

/A[f(X;O’)— f)ldu(x) = —fB[f(X;G/)— S )ldu(x).  (4.3.7)
Moreover, from (4.3.5) and (4.3.7), we obtain that

Eo{g(X)} — Ep{g(X)} = (b — a)/B[f(X;O’) — f(x:0)ldu(x) = 0. (4.3.8)

Indeed, from (4.3.2), (b — a) > 0 and according to the definition of B, / [f(x;0") —
B

f(x;0)]dpu(x) = 0. This completes the proof of part (i).

(ii) For any given x, define ¢, (y) = I{y;y > x}. ¢.(y)is anondecreasing function
of y. According to part (i) if 8’ > 6 then Ey{¢,(Y)} < Eg{¢,(Y)}. We notice that
Eo{¢,(Y)} = Po{Y > x} =1 — F(x;0). Thus, if 0 < 6’ then F(x;60) > F(x;0’) for
all x. QED

Theorem 4.3.2. If a one-parameter family F = {Fy(x); —00 < 6 < oo} admits a
sufficient statistic T(X) and if the corresponding family of distributions of T (X), F7,
is MLR with respect to T (X), then the test function

1, fTX) > ky
P'TX) ={ve, fTX) =kq (4.3.9)
0, otherwise

has the following properties.

(i) Itis UMP of its size for testing Hy : 6 < 0y against H, : 0 > 6y, where —00 <
0y < oo, provided the size of the test is not zero.

(ii) For every o, 0 < o < 1, there exist constants ky, Vo, —00 < kg < 00, 0 <
Yo < 1, for which the corresponding test function ¢°(T (X)) is UMP of size a.

(iii) The power function of $°(T (X)) is nondecreasing in 6.
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Proof. For simplicity of notation we let 7'(x) = x (real).
(i) From the Neyman—Pearson Lemma, a most powerful testof Hj : 6 = 6 against
H{ :0 =00 > 0 is of the form

. f(X;01)
if —= >k
F(X;60)
#°(X) = v if f(X:0)) (4.3.10)
f(X;60)
0, otherwise

)

provided 0 < k < oo. Hence, since F is an MLR w.r.t. X, f(X;0))/f(X;6) > k
implies that X > x¢. x¢ is determined from the equation f(xo;6)/f(x0;60) = k.
Thus, (4.3.9) is also most powerful for testing H; against H; at the same size as
(4.3.10). The constants xy and y are determined so that (4.3.9) and (4.3.10) will have
the same size. Thus, if « is the size of (4.3.10) then xp and y should satisfy the
equation

Py {X > xo} + y Py, {X = x0} = . 4.3.11)

Hence, x¢ and y may depend only on 6y, but are independent of 6;. Therefore,
the test function ¢°(X) given by (4.3.9) is uniformly most powerful for testing Hg
against Hy. Moreover, since ¢°(X) is a nondecreasing function of X, the size of the
test ¢° (for testing Hy against H;) is «. Indeed, from Karlin’s Lemma the power
function ¥(0; ¢°) = E»{¢"(X)} is a nondecreasing function of 6 (which proves (iii)).
Hence, sup Ey {q‘)O(X )} = a. Thus, ¢°(X) is uniformly most powerful for testing H
0<6
against Hlo
(i) The proof of this part is simple. Givenany &, 0 < o < 1, wesetx’ = F~!(1 —
a;6p) where F~!(y, 0) denotes the y-quantile of F(x;8). If F(x;6p) is continuous
at x°, we set y = 0, otherwise

Y= F(xp;60) — (1 — ) ' 43.12)
F(x0;00) — F(xo — 0;00)
QED

4.4 TESTING TWO-SIDED HYPOTHESES IN ONE-PARAMETER
EXPONENTIAL FAMILIES

Consider again the one-parameter exponential type family with p.d.f.s
f(x;0) = h(x)exp{0U(x) — K(0)}, —o0 <6 < o0.

A two-sided simple hypothesis is Hy : 6 = 6y, —00 < 8y < co. We consider Hj
against a composite alternative H; : 6 # 6.
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IfX =(Xy,..., X,) is a vector of independent and identically distributed (i.i.d.)
random variables, then the test is based on the minimal sufficient statistic (m.s.s.)

n
TX) = ZU (X;). The distribution of T'(X), for any 6, is also a one-parameter
i=1
exponential type. Hence, without loss of generality, we present the theory of this
section under the simplified notation 7(X) = X. We are seeking a test function
#°(X) that will have a power function, which is attaining its minimum at 6 = 6,
and Eg {¢°(X)} = a, for some preassigned level of significance o, 0 < o < 1. We
consider the class of two-sided test functions

1, ifx>c®
Vo, ifx = c&z)
#°x) =10, ifc) <x <c? 4.4.1)

v, ifx= cfll)

1, ifx <c,

where ¢ < /2. Moreover, we determine the values of ¢\, y1, ¢?), y, by considering
the requirement

(i) Eg{0"X)} =a,

9 (4.4.2)
(ii) £E9{¢°<X>}|9:90 =0.
Assume that y; = y, = 0. Then
0
£E9{¢°<X>} = —K'(0)Eo{¢°(X)} + Eo{X¢°(X)}. 4.4.3)
Moreover,
K'(0) = Ep{X). (4.4.4)
Thus,
0
=g Eol8" QO g, = —@Eq (X + Eq {X¢°(X)). (4.4.5)

It follows that condition (ii) of (4.4.2) is equivalent to

Eg(X¢°(X)} = aEg {X}. (4.4.6)
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It is easy also to check that

2

0
57 Eole X}y, = Vi, (X} (4.4.7)

Since this is a positive quantity, the power function assumes its minimum value at
6 = 0y, provided ¢°(X) is determined so that (4.4.2) (i) and (4.4.6) are satisfied. As
will be discussed in the next section, the two-sided test functions developed in this
section are called unbiased.

When the family F is not of the one-parameter exponential type, UMP unbiased
tests may not exist. For examples of such cases, see Jogdio and Bohrer (1973).

4.5 TESTING COMPOSITE HYPOTHESES WITH NUISANCE
PARAMETERS—UNBIASED TESTS

In the previous section, we discussed the theory of testing composite hypotheses when
the distributions in the family under consideration depend on one real parameter. In
this section, we develop the theory of most powerful unbiased tests of composite
hypotheses. The distributions under consideration depend on several real parameters
and the hypotheses state certain conditions on some of the parameters. The theory
that is developed in this section is applicable only if the families of distributions under
consideration have certain structural properties that are connected with sufficiency.
The multiparameter exponential type families possess this property and, therefore,
the theory is quite useful. First development of the theory was attained by Neyman
and Pearson (1933, 1936a, 1936b). See also Lehmann and Scheffé (1950, 1955) and
Sverdrup (1953).

Definition 4.5.1. Consider a family of distributions, F = {F(x;0);0 € ®}, where
0 is either real or vector valued. Suppose that the null hypothesis is Hy : 6 € ©¢ and
the alternative hypothesis is H, : 6 € ©,. A test function ¢(X) is called unbiased of
sizea if

sup Ep{p(X)} = «
ZSCN

and
Eo{lop(X)} > «, forall6 € ©,. “4.5.1)

In other words, a test function of size « is unbiased if the power of the test is not
smaller than & whenever the parent distribution belongs to the family corresponding
to the alternative hypothesis. Obviously, the trivial test ¢(X) = « with probability
one is unbiased, since Ey{¢(X)} = o for all & € ®;. Thus, unbiasedness in itself
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is insufficient. However, under certain conditions we can determine uniformly most
powerful tests among the unbiased ones. Let ®* be the common boundary of the
parametric sets ®g and ®; corresponding to Hy and H, respectively. More formally,
if ® is the closure of @ (the union of the set with its limit points) and ©; is the
closure of ®, then ®* = ©y N ©,. For example, if § = (6;, 6,), Oy = {#;6, < 0}
and ®; = {0;0, > 0}, then ®* = {#;0, = 0}. This is the 6,-axis. In testing two-sided
hypotheses, Hy : 6" < 6, < 6> (6, arbitrary) against H, : 6, < 6\" or 6, > 6 (6,
arbitrary), the boundary consists of the two parallel lines ®* = {0 : 6; = 9{1) or
6, =07},

Definition 4.5.2. For testing Hy : 0 € ©g against Hy : 6 € Oy, a test ¢p(x) is called
a-similar if Eg{0(X)} = « for all 6 € ©y. It is called a-similar on the boundary' if
Eo{d(X)} = o forall 6 € ©F.

Let F7* denote the subfamily of F, which consists of all the distributions F(x;6)
where 6 belongs to the boundary ®*, between ®( and ®,. Suppose that F* is such
that a nontrivial sufficient statistic 7(X) with respect to F* exists. In this case,
E{¢(X | T(X)} is independent of those 6 that belong to the boundary ®*. That is,
this conditional expectation may depend on the boundary, but does not change its
value when 6 changes over ®*. If a test ¢(X) has the property that

E{¢(X) | T(X)} = & with probability 1 all 6 € ©, (45.2)

then ¢(X) is a boundary a-similar test. If a test ¢(X) satisfies (4.5.2), we say that
it has the Neyman structure. If the power function of an unbiased test function
¢(X) of size « is a continuous function of € (0 may be vector valued), then ¢(X)
is a boundary «-similar test function. Furthermore, if the family of distribution of
T (X) on the boundary is boundedly complete, then every boundary «-similar test
function has the Neyman structure. Indeed, since F7 is boundedly complete and
since every test function is bounded, Ey{¢(X)} = « for all 6 € ®* implies that
E{¢(X) | T(X)} = o with probability 1 for all 6 in ®*. It follows that if the power
function of every unbiased test is continuous in 6, then the class of all test functions
having the Neyman structure with some «, 0 < @ < 1, contains all the unbiased tests
of size «. Thus, if we can find a UMP test among those having the Neyman structure
and if the test is unbiased, then it is UMP unbiased. This result can be applied
immediately in cases of the k-parameter exponential type families. Express the joint
p.d.f. of X in the form

k
f(x:0.9) = h(x)exp {0Ux) + Y wiTi(x) — K0, ) ¢, (4.5.3)

i=1

'We also call such a test a boundary a-similar test.
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where v = (v1, ..., ;) is a vector of nuisance parameters and 6 is real valued. We
consider the following composite hypotheses.

(i) One-sided hypotheses
Hy:6 <6y, v arbitrary,
against
H,:6 >0y, v arbitrary.
(ii) Two-sided hypotheses
Hy:60, <6 <6, v arbitrary
against
Hy:0 <6, or 6 >0, varbitrary.
For the one-sided hypotheses, the boundary is
O ={®,v); 6 =206y, v arbitrary}.
For the two-sided hypotheses, the boundary is
O ={@,v); 6 =06, or § =06,, v arbitrary}.
In both cases, the sufficient statistic w.r.t. F* is
TX) = (Ti(X), ..., X))

We can restrict attention to test functions ¢(U, T') since (U, T) is a sufficient statistic
for . The marginal p.d.f. of T is of the exponential type and is given by

g(t;0,v) = |:/OO k(u,t) exp{@u}dk(u):| .

oo

k
exp {va — K. v)} :
i=1

(4.5.4)
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where k(u, t) = f I{x : U(x) = u, I(x) = t}h(x)d u(x). Hence, the conditional p.d.f.
of U given T is a one-parameter exponential type of the form

h(u | t,0) = k(u, t) exp{Ou}/ / ” k(u, t) exp{Ouldi(u). 4.5.5)

According to the results of the previous section, we construct uniformly most
powerful test functions based on the family of conditional distributions, with p.d.f.s
(4.5.5). Accordingly, if the hypotheses are one-sided, we construct the conditional
test function

1, if u > &,(t)
P | ) = { yult), ifu = E(t) (4.5.6)
0, otherwise,

where &,(t) and y,(t) are determined so that
EgwloU | | TX) =t} =« 4.5.7)

for all t. We notice that since 7'(X) is sufficient for F*, y,(¢#) and &,(t) can be
determined independently of v. Thus, the test function ¢°(U | T) has the Neyman
structure. It is a uniformly most powerful test among all tests having the Neyman
structure.

In the two-sided case, we construct the conditional test function

1, ifU <& (T)orU > &(T)
¢0(U | T)=3y(T), iftU =&(T),i=1,2 (4.5.8)
0, otherwise

where &(T), &(T), y1(T), and y»(T) are determined so that
Eglo’U | T) | TX)) =«

with probability one. As shown in the previous section, if in the two-sided case
0, = 6, = 6, then we determine y;(T) and &;(T) (i = 1, 2) so that

(i) Eg{o®U |T)|Ty=a wp.l,
(4.5.9)
(i) Eq{U¢°(U |T)|T)=a Ee{U|T} wp.l,

where w.p.1 means “with probability one.” The test functions ¢’(U | T) are uniformly
most powerful unbiased ones.

The theory of optimal unbiased test functions is strongly reinforced with the
following results. Consider first the one-sided hypotheses Hy : 8 < 6, v arbitrary;
against Hj : 6 > 6, v arbitrary. We show that if there exists function W(U, T) that
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is increasing in U for each T (U is real valued) and such that W(U, T) and T are
independent under Hy, then the test function

1, ifw>(C,
P'W) = {ve, itW=C, (4.5.10)
0, otherwise

is uniformly most powerful unbiased, where C, and y, are determined so that the
size of p°(W) is a. Indeed, the power of ¢°(W) at (6, v) is a by construction. Thus,

Po, w{iWWU,T) > Cy} + Va PoywiWWU, T) = Co} =a. (4.5.11)

Since W(U, T) is independent of T at (6y, v), C, and y, are independent of 7.
Furthermore, since W(U, T) is an increasing function of U for each T, the test
function ¢° is equivalent to the conditional test function (4.5.6). Similarly, for testing
the two-sided hypotheses Hy : 0, < 8 < 6,, v arbitrary, we can employ the equivalent
test function

I, fW<CiorW >CGC,
*Wy=1y, iftwW==¢C,i=1,2 (4.5.12)
0, otherwise.

Here, we require that W (U, T) is independent of T at all the points (6;, v) and (6,, v).
When 6, = 6, = 6y, we require that W(U, T) = a(T)U + b(T), where a(T) > 0
with probability one. This linear function of U for each T implies that condition
(4.5.9) and the condition

Eg{¢o’W) | T} =«
Eo{Wo(W) | T} = o Eg{W | T},

(4.5.13)

are equivalent.

4.6 LIKELIHOOD RATIO TESTS

As defined in Section 3.3, the likelihood function L(6 | x) is a nonnegative function
on the parameter space ®, proportional to the joint p.d.f. f(x;0). We discuss here
tests of composite hypotheses analogous to the Neyman—Pearson likelihood ratio
tests. If Hy is a specified null hypothesis, corresponding to the parametric set ®( and
if ® is the whole sample space, we define the likelihood ratio statistic as

sup L@ | X,))
0eBy
AX) = ——. 4.6.1
Xa) supL(@ | X,,) ( )

fe®
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Obviously, 0 < A(x,) < 1. A likelihood ratio test is defined as

_ L AKX, < G
PXn) = {0, otherwise, (4.6.2)
where C, is determined so that
sup Po{A(X;) < Co} < . (4.6.3)

0e®q

Due to the nature of the statistic A(X,), its distribution may be discontinuous at
A = 1 even if the distribution of X, is continuous. For this reason, the test may not
exist for every «.

Generally, even if a generalized likelihood ratio test of size « exists, it is difficult
to determine the critical level C,. In Example 4.14 we demonstrate such a case.
Generally, for parametric models, the sampling distribution of A(X), under Hy, can be
approximated by simulation. In addition, under certain regularity conditions, if Hy is
a simple hypotheses and @ is a k-dimensional vector, then the asymptotic distribution
of —2log A(X,) as n — oo is like that of x2[m], where m = dim(®) — dim(®y),
(Wilks, 1962, Chapter 13, Section 13.4). Thus, if the sample is not too small, the
(1 — a)-quantile of x?[m] can provide a good approximation to —2 log C,. In cases
of a composite null hypothesis we have a similar result. However, the asymptotic
distribution may not be unique.

4.6.1 Testing in Normal Regression Theory

A normal regression model is one in which n random variables Yy, ..., Y, are
observed at n different experimental setups (treatment combinations). The vector
Y, = (Y1, ...,Y,) isassumed to have a multinormal distribution N (X8, o>I), where
X is an n x p matrix of constants with rank = p and g’ = (84, ..., B,) is a vector
of unknown parameters, 1 < p < n. The parameter space is ® = {(B1, ..., B, 0);
—o0 < i <ooforalli =1,..., pand 0 < o0 < oo}. Consider the null hypothesis

Hy:Bp1=---=B,=0, Bi,...,B, o arbitrary,

where 1| <r < p.Thus,®) = {(B1,...,5:,0,...,0,0); —00 < B; < ocoforalli =
1,...,r; 0 < 0 < oo}. This is the null hypothesis that tests the significance of the
(p —r) B-values B; (j =r + 1, ..., p). The likelihood function is

1 1

LB,o|Y,X)=—exp1—55(Y - XBY(Y - XB)|.
on 202

We determine now the values of 8 and o for which the likelihood function is maxi-

mized, for the given X and Y. Starting with 8, we see that the likelihood function is

maximized when Q(8) = (Y — XB) (Y — XpB) is minimized irrespective of o. The
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vector B that minimizes Q(p) is called the least-squares estimator of §. Differenti-
ation of Q(B) with respect to the vector $ yields

VO(B) = —2X'(Y — XPB). (4.6.4)
Equating this gradient vector to zero yields the vector
B=XX)"'X'Y. (4.6.5)

We recall that X’ X is nonsingular since X is assumed to be of full rank p. Substituting
Q(B) in the likelihood function, we obtain

. 1 1
LB, o) = — exp {—@Q(ﬂ)}, (4.6.6)

where
0B =Y - XX'X)"'X"Y, (4.6.7)

and A = I — X(X’X)~' X’ is a symmetric idempotent matrix. Differentiating L(,f? ,0)
with respect to o and equating to zero, we obtain that the value o> that maximizes
the likelihood function is

6% = %Y’AY = Q(B)/n. (4.6.8)

Thus, the denominator of (4.6.1) is

1
sup supL(B,0 | Y, X)=—exp {—E} . 4.6.9)
o B on 2

We determine now the numerator of (4.6.1). Let K =(0:1,_,)bea(p—r)xp
matrix, which is partitioned to a zero matrix of order (p — r) x r and the identity
matrix of order (p —r) x (p —r). K is of full rank, and KK’ = I,,_,. The null
hypothesis H, imposes on the linear model the constraint that K8 = 0. Let g*
and 62 denote the values of B and o2, which maximize the likelihood function
under the constraint KB = 0. To determine the value of 8*, we differentiate first the
Lagrangian

DB, 1) = (Y — XB) (Y — XB) + /KA, (4.6.10)
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where A is a (p —r) x 1 vector of constants. Differentiating with respect to 8, we
obtain the simultaneous equations

i) —2X(Y-XB)+K\r=0,
(i) KB =0.

(4.6.11)

From (i), we obtain that the constrained least-squares estimator §* is given by
* ’ -1 4 1 / ] 1 ’ —1 g7
B =(X'X) XY—EKX :'B_E(X X)) K'\. (4.6.12)
Substituting * in (4.6.11) (ii), we obtain
a 1 ’ —1 g7
Kp= EK(X X)) K'A. (4.6.13)

Since K is of full rank p — r, K(X'X)"'K' is nonsingular. Hence,
A=2[KX'X)'K'T'KB

and the constrained least-squares estimator is

B =11 - X'X)'K'[KX'X)"'K'T'K1B. (4.6.14)
To obtain o2, we employ the derivation presented before and find that
5% = Q(B")/n
= %[Y —XB+XX'X)"'K'BT'KBY (4.6.15)

Y - XB+X(X'X)"'K'BT'K B,
where B = K(X'X)~'K’. Simple algebraic manipulations yield that

52=6>+-p'K'B'KB. (4.6.16)

S| =

Hence, the numerator of (4.6.1) is

LB, 6 1Y,X)= (4.6.17)
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The likelihood ratio is then

1 R R —11/2
AY,) = (1 + Azﬂ/K’B‘lK,B) ) (4.6.18)
no

This likelihood ratio is smaller than a constant C,, if

n—

F=o _Ir]ﬁ’K’B’IKB/Q(ﬁ) (4.6.19)

is greater than an appropriate constant &, . In this case, we can easily find the exact
distribution of the F-ratio (4.6.19). Indeed, according to the results of Section 2.10,
0(B) =Y AY ~ o2x2[n — p]since A = I — X(X'X)~' X’ is an idempotent matrix
of rank n — p and since the parameter of noncentrality is

1
A= —BX'(I-XXX)'X)XB =0.
202
Furthermore,
BK'B'KB=Y'XX'X)'K'B'K(X'X)"'X'Y. (4.6.20)

Let C = X(X'X)"'K'B~'K(X'X)~' X'. It is easy to verify that C is an idempotent
matrix of rank p — r. Hence,

B'K'B'KB ~ oy [p —r;r*], (4.6.21)
where
* 1 /! p—1
A= —B'K'B” KB. (4.6.22)
202
We notice that KB = (B,41, ..., Bp), which is equal to zero if the null hypothesis is

true. Thus, under Hy, A* = 0 and otherwise, A* > 0. Finally,

CA=C—-XX'X)'K'B'KX'X)'X'X(X'X)"'Xx’'
=0.

(4.6.23)

Hence, the two quadratic forms Y'AY and Y'CY are independent. It follows that under
Hy, the F ratio (4.6.19) is distributed like a central F[p — r, n — p] statistic, and the
critical level k, is the (1 — «)-quantile Fy_,[p — r,n — p]. The power function of
the test is

Y(A") = P{F[p—r,n—p;)\*] > Fi_o[p —r,n — pl}. (4.6.24)
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A special case of testing in normal regression theory is the analysis of variance
(ANOVA). We present this analysis in the following section.

4.6.2 Comparison of Normal Means: The Analysis of Variance

Consider an experiment in which » independent samples from normal distribu-
tions are observed. The basic assumption is that all the r variances are equal, i.e.,

012 =...= 0,2 =o? (r > 2). We test the hypothesis Hy : 1 =--- = u,, o2 arbi-
trary. The sample m.s.s. is (X1, ..., X,, Slz,), where X; is the mean of the ith sample

and Sf, is the pooled “within” variance defined in the following manner. Let n; be
the size of the ith sample, v; =n; — 1; Sf, the variance of the ith sample; and let

V= ivi. Then
i=1

1 r
§r=-— § v S2. (4.6.25)
v
i=1

Since the sample means are independent of the sample variances in normal distribu-
tions, SIZJ is independent of X1, ..., X,. The variance “between” samples is

Sy =

r—1~+4

! > ni(Xi — X), (4.6.26)
i=1

where X = Zni)_(i / Z”i‘ X is the grand mean. Obviously Si and S,f are inde-

i=1 i=1
2 2

pendent. Moreover, under Hy, SIZ, ~Z x2[v] and Sg ~ 1
v r—

x2[r — 1]. Hence, the

variance ratio
F=S;/S, (4.6.27)

is distributed, under Hy, like a central F[r — 1, v] statistic. The hypothesis Hj is
rejected if F > Fy_,[r — 1, v]. If the null hypothesis H is not true, the distribu-
2

tion of Slf is like that of ] Xz[r — 1; 1], where the noncentrality parameter is

r —

given by

1 < 5
A=o— ;niwi — 1) (4.6.28)
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r r
and u = Zn,-,ui / Zn,- is a weighted average of the true means. Accordingly, the
i=1 i=1
power of the test, as a function of A, is

YA = P{F[r—1,v;A] > Fi_o[r — 1, v]}. (4.6.29)

This power function can be expressed according to (2.12.22) as

oo

A v r—1
v(A) =e* ]Z:; FII_R(E) <§, B + J) , (4.6.30)
where £ = F|_,[r — 1, v] and R(&) = %s/ (1 +0 ; lg).

4.6.2.1 One-Way Layout Experiments

The F-test given by (4.6.27) is a basic test statistic in the analysis of statistical
experiments. The method of analysis is known as a one-way layout analysis of
variance (ANOVA). Consider an experiment in which N = n - r experimental units
are randomly assigned to r groups (blocks). Each group of n units is then subjected to
a different treatment. More specifically, one constructs a statistical model assuming
that the observed values in the various groups are samples of independent random
variables having normal distributions. Furthermore, it is assumed that all the » normal
distributions have the same variance o> (unknown). The r means are represented by
the linear model

wi=pu+t, i=1,...,r (4.6.31)

,

where Z‘L’i = 0. The parameters 11, ..., 7, represent the incremental effects of the
i=1

treatments. p is the (grand) average yield associated with the experiment. Testing

whether the population means are the same is equivalent to testing whether all 7; = 0,

i =1,...,r.Thus, the hypotheses are

;
Hy : Zriz =0
i=l

against
-

H1:Zti2>0.

i=1
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We perform the F-test (4.6.27). The parameter of noncentrality (4.6.28) assumes the
value

_n ~
,\_E;g. (4.6.32)

4.6.2.2 Two-Way Layout Experiments

If the experiment is designed to test the incremental effects of two factors (drug A and
drug B) and their interaction, and if factor A is observed at | levels and factor B atr,
levels, there should be s = r; x r, groups (blocks) of size n. It is assumed that these s
samples are mutually independent, and the observations within each sample represent
i.1.d. random variables having N (4, o?) distributions, i = 1, ..., r; j=1,...,n.
The variances are all the same. The linear model is expressed in the form

A B AB . .
Wij =p+1" +17 + 157, i=1,....,r5, j=1,...,m,

r n n I
where E tiA =0, E r]B =0, and E ri?B =0foreachi =1,...,r and E ti?B =
i=1 j=1 j=1 i=1

Oforeach j =1, ..., r. The parameters tiA are called the main effects of factor A;
T ]B are called the main effects of factors B; and rl?B are the interaction parameters.
The hypotheses that one may wish to test are whether the main effects are significant
and whether the interaction is significant. Thus, we set up the null hypotheses:

@,
Hy' 1) Y @ =0,
i J
?) .
H? ) (@Y =0, (4.633)

H Y (fy =o0.
J

These hypotheses are tested by constructing F'-tests in the following manner. Let
Xijpi=1,...,r;j=1,...,m;and k =1, ..., n designate the observed random
variable (yield) of the kth unit at the (i, j)th group. Let X;; denote the sample mean
of the (i, j)th group; X;., the overall mean of the groups subject to level i of factor A;
X_;, the overall mean of the groups subject to level j of factor B; and X, the grand
mean; i.e.,

_ 1 & .
X =— Xij, i=1,...,r,
(4.6.34)
_ | R
X]:_ X,‘j, j=1,...,7'2,
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and

The sum of squares of deviations around X is partitioned into four components in the
following manner.

| r n
Z Z Z(Xijk - Xy = (Xiji — Xij)
i=1 j=1 k=1 i=1 j=1 k=1
+n (X,'j —X,'. —X.j +)=()2 (4635)
+ nry Z(Xi' — X +nn Z(Xj — X
i=1 =1

The four terms on the right-hand side of (4.6.35) are mutually independent quadratic
forms having distributions proportional to those of central or noncentral chi-squared
random variables. Let us denote by Q, the quadratic form on the left-hand side of
(4.6.35) and the terms on the right-hand side (moving from left to right) by Qw,
Qap, Qa,and Qgp, respectively. Then we can show that

Ow ~ ozxz[vw], where vy = N — 5. (4.6.36)
Similarly,
Oap ~ 02X [Vapi rapl, Where vap = (ri— 1) x(n—1) (4.6.37)

and the parameter of noncentrality is

1 r
n
hap =55 DOy @y (4.6.38)
i=1 j=1

Let S%V = Qw/vw and SiB = Quap/vap. These are the pooled sample variance
within groups and the variance between groups due to interaction. If the null hypoth-
esis Hél) of zero interaction is correct, then the F-ratio,

F=S%;/8%, (4.6.39)
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is distributed like a central F[v,p, vy ]. Otherwise, it has a noncentral F-distribution
as F[vap, vw; Aag]. Notice also that

E{S}} = o? (4.6.40)
and
E{Siz) =0 +nojy, (4.6.41)
where
1 r r
02y = " Z (1) (4.6.42)

Formula (4.6.42) can be easily derived from (4.6.38) by employing the mixing rela-
tionship (2.8.6), x*[vap; Aapl ~ x*[vap + 2J], where J is a Poisson random vari-
able, P(A4p). To test the hypotheses Héz) and Hé3), concerning the main effects of A
and B, we construct the F'-statistics

SZ
Fo= -2,
S
W
(4.6.43)
S
Fp = —,
S

where Si = Qa/va, va =1 — 1 and Slzg = Qp/vp, vg = rp — 1. Under the null
hypotheses these statistics have central F[vs, vy] and F[vg, vy] distributions.
Indeed, foreachi =1,...,r, X;. ~ N(u + rl.A, oz/nrz). Hence,

Qu =nry ) (X = X)* ~ 07 x*[va; hal (4.6.44)

i=1
with

r
nr
A = 2722 > @ (4.6.45)
i=1

Similarly,

0 ~ o*x*[vp; Al (4.6.46)
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Table 4.1 A Two-Way Scheme for Analysis of Variance

Source v Sum of Squares MS F E{MS}
S2
Factor A r—1 Oa Sf, —? o+ nrzaj
Sw
SZ
Factor B r—1 O3 s2 —f o? + nrio}
Sw
S2
Interaction ri— D=1 Oz S2, # o +nol,
w
Between groups rirp—1 0, — Ow - - -
Within groups N —rir, Ow Sz - o?
Total N -1 0o, - - -
with
nry &
1
Ap = 53 (rf)z. (4.6.47)

Jj=1

Under the null hypotheses H(gz) and H(g3) both A4 and A g are zero. Thus, the (1 — a)-
quantiles of the central F-distributions mentioned above provide critical values of
the test statistics 4 and Fz. We also remark that

E{S3} = o® + nryo;
(4.6.48)
E{S}} =0*+nriop

where

1 &
ol = ” > @
i=1
i (4.6.49)
1
olz; = — Z(TJB)Z'
VB =

These results are customarily summarized in the following table of ANOVA.
Finally, we would like to remark that the three tests of significance provided by
Fap, Fa, and Fp are not independent, since the within variance estimator S%V is used
by all the three test statistics. Moreover, if we wish that the level of significance of
all the three tests simultaneously will not exceed o, we should reduce that of each
test to «/3. In other words, suppose that H, O Héz), and Hé3) are true and we wish
not to reject either one of these. We accept simultaneously the three hypotheses in
the event of {Fap < Fi_o/3[vas, vwl, Fa < Fi—os3lva, vel, Fg < Fi—os3[ve, vwl}.
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According to the Bonferroni inequality, if E,, E,, and E; are any three
events

P{E\NE;NEs}=1— P{E\UE,UE3}>1— P{E} — P{E,} — P{E3},
(4.6.50)

where E; (i = 1, 2, 3) designates the complement of E;. Thus, the probability that all
the three hypotheses will be simultaneously accepted, given that they are all true, is at
least 1 — a. Generally, a scientist will find the result of the analysis very frustrating if
all the null hypotheses are accepted. However, by choosing the overall « as sufficiently
small, the rejection of any of these hypotheses becomes very meaningful. For further
reading on testing in linear models, see Lehmann (1997, Chapter 7), Anderson (1958),
Graybill (1961, 1976), Searle (1971) and others.

4.7 THE ANALYSIS OF CONTINGENCY TABLES

4.7.1 The Structure of Multi-Way Contingency Tables and
the Statistical Model

There are several qualitative variables Ay, ..., A;. The ith variable assumes m; levels
k

(categories). A sample of N statistical units are classified according to the M = Hm,-

combinations of the levels of the k variables. These level combinations will be (l:allled
cells. Let f(iy, ..., i) denote the observed frequency in the (iy, ..., i) cell. We
distinguish between contingency tables having fixed or random marginal frequencies.
In this section we discuss only structures with random margins. The statistical
model assumes that the vector of M frequencies has a multinomial distribution with
parameters N and P, where P is the vector of cell probabilities P(iy, ..., ;). We
discuss here some methods of testing the significance of the association (dependence)
among the categorical variables.

4.7.2 Testing the Significance of Association

We illustrate the test for association in a two-way table that is schematized below.

Table 4.2 A Scheme of a Two-Way Contingency Table

Al Am| x
B fa,n Lo f,my) fa,-)
B, fe,n L. fQ2,my) f2,)
B, flmy, 1) L fmy, my) f(my, )
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f (@, j)isthe observed frequency of the (i, j)th cell. We further denote the observed
marginal frequencies by

fG =) fG ), i=1m,

“4.7.1)
FCD=) 0G0, =1 m.
i=1
Let
P(i,) =Y PG.}j),
= 4.7.2)

P(.j)=Y_ PG, j)

i=l1

denote the marginal probabilities.

The categorical variables A and B are independent if and only if P(i, j) =
P@, )P(., j)forall (i, j). Thus, if A and B are independent, the expected frequency
at(i, j)is

E@, j)= NP3, )PC, j). (4.7.3)
Since P(i, -) and P(-, j) are unknown, we estimate E(i, j) by

=N
<. 1) N N (4.7.4)

= f@, ) fC D/N.

The deviations of the observed frequencies from the expected are tested for random-
ness by

y XA s (L) — el )Y
X2 = 21: ; ) . (4.7.5)

Simple algebraic manipulations yield the statistic

Z Zf Dy (4.7.6)

e(i, j)

We test the hypothesis of no association by comparing X? to the (1 — o)th quantile of
x2[v] with v = (m; — 1)(m; — 1) degrees of freedom. We say that the association is
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significant if X2 > Xlz_a[v]. This is a large sample test. In small samples it may be
invalid. There are appropriate test procedures for small samples, especially for 2 x 2
tables. For further details, see Lancaster (1969, Chapters XI, XII).

4.7.3 The Analysis of 2 x 2 Tables

Consider the following 2 x 2 table of cell probabilities

N F P z
R

w P(1,1) P(1,2) PQ1,)

NW P(2,1) PQ2,2) PQ2,)
z P(,1) P(,2) 1

S and R are two variables (success in a course and race, for example). The odds
ratio of F'/P for W is defined as P(1, 1)/P(1,2) and for NW itis P(2, 1)/ P(2, 2).

These odds ratios are also called the relative risks. We say that there is no inter-
action between the two variables if the odds ratios are the same. Define the cross
product ratio

_ P - P2T)  P(,DPQ2,2)

o= . = . 4.7.7)
P(1,2) - P(2,2)  P(1,2)P2, 1)

If p =1 there is no interaction; otherwise, the interaction is negative or positive
according to whether p < 1 or p > 1, respectively. Alternatively, we can measure
the interaction by

w=1logp =log P(1, 1) —log P(1,2) — log P(2, 1) + log P(2,2). (4.7.8)

We develop now a test of the significance of the interaction, which is valid for any
sample size and is a uniformly most powerful test among the unbiased tests.
Consider first the conditional joint distribution of X = f(1,1) and ¥ = f(2, 1)
given the marginal frequency 7 = f(1, 1) + f(1, 2). It is easy to prove that condi-
tional on 7, X and Y are independent and have conditional binomial distributions
B(T, P(1,1)/P(1,-))and B(N — T, P(2,1)/P(2, -)), respectively. We consider now
the conditional distribution of X given the marginal frequencies T = f(1, -) and
S=fA,D)+ f(2,1)= f(-, 1). This conditional distribution has the p.d.f.

t\(N -1\ .
A e (4.7.9)
tAS j
Zf:"(j) (s - j)"

PIX=x|T=1S=s]=
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where t A s = min(¢, s) and p is the interaction parameter given by (4.7.7). The
hypothesis of no interaction is equivalent to Hy : p = 1. Notice that for p = 1 the
p.d.f. (4.7.9) is reduced to that of the hypergeometric distribution H(N, T, S). We
compare the observed value of X to the «/2- and (1 — «/2)-quantiles of the hyper-
geometric distribution, as in the case of comparing two binomial experiments. For a
generalization to 2" contingency tables, see Zelen (1972).

4.7.4 Likelihood Ratio Tests for Categorical Data

Consider a two-way layout contingency table with m; levels of factor A and m,
levels of factor B. The sample is of size N. The likelihood function of the vector P
of s = m x m; cell probabilities, P(i, j), is

nmy nmy

L®;N. ) =[] []pa. in/ @), (4.7.10)

i=1 j=1

where f (i, j) are the cell frequencies. The hypothesis of no association, Hy imposes
the linear restrictions on the cell probabilities

P(i, j) = PG, )P(-, j), forall (i, j). 4.7.11)

Thus, ® is the parameter space restricted by (4.7.11), while ® is the whole space of
P. Thus, the likelihood ratio statistic is

mp;  nmp

sup[ [ [TePei, 0P e i/
20 =1 j=1

A, N) = . 4.7.12)

my; mp

VA ()]
sup[ T [Tcpai. i/

2 i=1 j=1

By taking the logarithm of the numerator and imposing the constraint that
my
Y PGy =1,
i=1

myp
Y Pt.p=1,
j=1

we obtain by the usual methods that the values that maximize it are

PG, )= fG,)/N, i=1,....m
P(v]):f(’.])/N’ jzlv"'vm2~

(4.7.13)
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Similarly, the denominator is maximized by substituting for P (7, j) the sample esti-
mate

PG, j)=fG, j)/N, i=1,....m j=1,...,m;. (4.7.14)

We thus obtain the likelihood ratio statistic

ny oy £G.J)
AN =] ]_[(f(]’vf)({(J)J)) . (4.7.15)

i=1 j=1

Equivalently, we can consider the test statistic — log A(f; N), which is

o\ = f( )
I 47.16
; ;f(l 7 8 ) ( )

Notice that A* is the empirical Kullback-Leibler information number to discriminate
between the actual frequency distribution f(i, j)/N and the one corresponding to the
null hypothesis £ (i, -) (-, j)/N?. This information discrimination statistic is different
from the X? statistic given in (4.7.6). In large samples, 2A* has the same asymptotic
x%[v]distribution with v = (m; — 1)(m, — 1). In small samples, however, it performs
differently.

For further reading and extensive bibliography on the theory and methods of
contingency tables analysis, see Haberman (1974), Bishop, Fienberg, and Holland
(1975), Fienberg (1980), and Agresti (1990). For the analysis of contingency tables
from the point of view of information theory, see Kullback (1959, Chapter 8) and
Gokhale and Kullback (1978).

4.8 SEQUENTIAL TESTING OF HYPOTHESES

Testing of hypotheses may become more efficient if we can perform the sampling
in a sequential manner. After each observation (group of observations) we evaluate
the results obtained so far and decide whether to terminate sampling and accept (or
reject) the hypothesis Hy, or whether to continue sampling and observe an addi-
tional (group of) observation(s). The main problem of sequential analysis then is
to determine the “best” stopping rule. After sampling terminates, the test function
applied is generally of the generalized likelihood ratio type, with critical levels asso-
ciated with the stopping rule, as will be described in the sequel. Early attempts to
derive sequential testing procedures can be found in the literature on statistical qual-
ity control (sampling inspection schemes) of the early 1930s. The formulation of
the general theory was given by Wald (1945). Wald’s book on sequential analysis
(1947) is the first important monograph on the subject. The method developed by
Wald is called the Wald Sequential Probability Ratio Test (SPRT). Many papers
have been written on the subject since Wald’s original work. The reader is referred to
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the book of Ghosh (1970) for discussion of the important issues and the significant
results, as well as notes on the historical development and important references. See
also Siegmund (1985). We provide in Section 4.8.1 a brief exposition of the basic
theory of the Wald SPRT for testing two simple hypotheses. Some remarks are given
about extension for testing composite hypotheses and about more recent develop-
ment in the literature. In Section 4.8.2, we discuss sequential tests that can achieve
power one.

4.8.1 The Wald Sequential Probability Ratio Test

Let X, X»,... be a sequence of i.i.d. random variables. Consider two simple
hypotheses Hy and H;, according to which the p.d.f.s of these random variables
are fo(x) or fi(x), respectively. Let R(X;) = fi(X;)/fo(X;) i =1,2,... be the
likelihood ratio statistics. The SPRT is specified by two boundary points A, B,
—o00 < A < 0 < B < oo and the stopping rule, according to which sampling contin-

ues as long as the partial sums S, = Z log R(X;),n =1,2,...,lie between A and
i=1

B.Assoonas S, < AorS, > B,sampling terminates. In the first case, Hy is accepted
and in the second case, H) is accepted. The sample size N is a random variable that
depends on the past observations. More precisely, the event {N < n} depends on
{X1,..., X,} but is independent of {X,, X;,42,...} foralln =1,2,.... Such a
nonnegative integer random variable is called a stopping variable. Let 53, denote the
o -field generated by the random variables Z; = log R(X;),i = 1, ..., n. A stopping
variable N defined with respectto Z;, Z,, .. . is an integer valued random variable N,
N > 1, such that the event {N > n} is determined by Zy, ..., Z,_; (n > 2). In this
case, we say that {N > n} € 5,_; and I{N > n} is B,_; measurable. We will show
that for any pair (A, B), the stopping variable N is finite with probability one. Such
a stopping variable is called regular. We will see then how to choose the boundaries
(A, B) so that the error probability « and 8 will be under control. Finally, formulae
for the expected sample size will be derived and some optimal properties will be
discussed.

In order to prove that the stopping variable N is finite with probability one, we
have to prove that

lim Py{N >n} =0, for 6=0,1. 4.8.1)
n— o0
Equivalently, for a fixed integer r (as large as we wish)

lim Py{N >mr} =0, for 6=0,1. (4.8.2)

m—0o0

For0 =0or1, let

m(0) = Epflog R(X)}, (4.83)
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and
D?(0) = Vary{log R(X)}. (4.8.4)
Assume that
0 < D*0) < oo, for 6 =0, 1. (4.8.5)

If D?(9) for some 6, then (4.8.1) holds trivially at that 6.

Thus, for any value of 6, the distribution of S, = Z log R(X;) is asymptotically
i=1
normal. Moreover, for eachm = 1, 2, ... and a fixed integer r,

PO[N > mr] =< P@[A < Sr < B, |S2r - Sr' < C, RN |Smr - Sr(m—l)' < C]a
(4.8.6)
where C = |B — A|.

The variables S,, So» — S, ..., Swr — Seu—1)- are independent and identically dis-
tributed. Moreover, by the Central Limit Theorem, if r is sufficiently large,

w(6)
)
(\/_D(G) ID(Q))

4.8.7)

o u(6)
Poll3l = b ~2 q’(fD(@) fD(@))

The RHS of (4.8.7) approaches 1 as r — 00. Accordingly for any p, 0 < p < 1,if r
is sufficiently large, then Py[|S,| < c] < p. Finally, since S, — S(;j—1) is distributed
like S, forall j =1,2,...,r,if r is sufficiently large, then

Py[N > mr] < Py[A < S, < B]p" . (4.8.8)

This shows that Py[N > n] converges to zero at an exponential rate. This property is
called the exponential boundedness of the stopping variables (Wijsman, 1971). We
prove now a very important result in sequential analysis, which is not restricted only
to SPRTs.

Theorem 4.8.1 (Wald Theorem). If N is a regular stopping variable with finite
expectation E9{N}, and if X1, X», ... is a sequence of i.i.d. random variables such
that E¢{| X | < oo, then

N
Eq [Z Xi] = £(0)Eq (N}, (4.8.9)
i=1
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where

£(9) = Ep{X;).

Proof. Without loss of generality, assume that X, X», ... is a sequence of i.i.d.
absolutely continuous random variables. Then,

N (o) n
E, {Zx} = Zf I{N =n} ijf(xn;O)dx,,, (4.8.10)
i=1 n=1 j=1

where f(x,;6) is the joint p.d.f. of X,, = (X1, ..., X,). The integral in (4.8.10) is
actually an n-tuple integral. Since Ey{|X |} < oo, we can interchange the order of
summation and integration and obtain

N 00 00
E, iz xi} =Y [ 5 S 1m0,
i=1 j=1

n=j

4.8.11)
o
=Y Eo{X;I{N = j}}.
j=1
However, the event {N > j} is determined by (X7, ..., X;_) and is therefore inde-
pendent of X;, X1, .... Therefore, due to the independence of the Xs,
N 00
Eg {in} =Y Eo{X;}Po{N = j}
i=1 =1
! (4.8.12)

=£0))_ Po{N = j}.

Jj=1

Finally, since N is a positive integer random variable with finite expectation,

Eo{N}=)_ Ps{N > j}. (4.8.13)
j=1

QED

From assumption (4.8.5) and the result (4.8.8), both (8) and Ey { N} exist (finite).
Hence, for any SPRT, Ey{Sy} = u(0)Ee{N}. Let m(6) denote the probability of
accepting Hy. Thus, if u(6) # 0,

1
Ey{N} = w[n(e)EO{Sn | Sy = A} + (1 —7(0)Eg{Sy | Sy = B}]. (4.8.14)
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An approximation to E¢{N} can then be obtained by substituting A for Eg{Sy |
Sy < A} and B for Ey{Sy | Sy > B}. This approximation neglects the excess over
the boundaries by Sy. One obtains

1
Eg{N} ~ m{n(e)A +(1 — 7(0))B). (4.8.15)

Error formulae for (4.8.15) can be found in the literature (Ghosh, 1970).
Let « and B be the error probabilities associated with the boundaries A, B and let

1—
A’ =log B’ =log ——. Let o’ and B’ be the error probabilities associated
o

l—a’
with the boundaries A’, B’.

Theorem 4.8.2. If0 <o+ 8 < 1 then
@A) o' +p <a+p
and

(i) A’ <A, B > B.

Proof. Foreachn = 1,2, ... define the sets

A, ={x;A <S <B,...,A<S,_1 <B, S, <A},
R,={x;A <S8 <B,....,A<S,_1<B,S, > B},
Ch={x;A <S8 <B,..,A<S,_1<B A <S8, <B}.

The error probability o’ satisfies the inequality

o =>" / [ ] fotepndutx))
n=1 YR j=

00 n (4.8.16)
o o /
=1-p ;/R jl:[lf'(x.f)d“(xj) =118
Similarly,
p= Z/; Hfl(xj)dpc(xj)
o 4.8.17)

B . 8 /
T« ;/A Jl:[lfO(xj)dM(xj) =10 -
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Thus,

/ /
o - a’ B - ﬂ.
1-p " 1-8 l—a 71—«

(4.8.18)

From these inequalities we obtain the first statement of the theorem. To establish (ii)
notice thatif R, = {x: A< S; < B,i=1,...,n—1,8, > B}, then

1-B= Z/R [[AGHdux) = e” ZfR [ ] fotepducx)) 45

n=1 ni=1 n=1 nj=1 -0. 9)
= O(eB.

Hence, B’ = log % > B. The other inequality is proven similarly. QED

It is generally difficult to determine the values of A and B to obtain the specified
error probabilities « and 8. However, according to the theorem, if & and 8 are small
then, by considering the boundaries A’ and B’, we obtain a procedure with error
probabilities o’ and S’ close to the specified ones and total test size o’ + B’ smaller
than o + B. For this reason A’ and B’ are generally used in applications. We derive
now an approximation to the acceptance probability 7 (0). This approximation is
based on the following important identity.

Theorem 4.8.3 (Wald Fundamental Identity). Let N be a stopping variable asso-
ciated with the Wald SPRT and My(t) be the moment generating function (m.g.f.) of
Z =log R(X). Then

Eo{e"™N(My() ™M} =1 (4.8.20)

for all t for which My(t) exists.

Proof.

Eg{e"™ (Mp(t) ™} =Y Eo{I{N = n}e'S(My(t))™")
- (4.8.21)
= lim Y CE(U{N = n} — I{N = n+ 1})e'S (My(t)™").
n=1

Notice that I{N > n} is B,_| measurable and therefore, for n > 2,

Eo{I{N > n}e">(Mp(t))™"} = E¢{I{N > n}e'"5" ' (My(1))""""}  (4.8.22)
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and Eg{I{N > 1}e'"S'(My(t))~'} = 1. Substituting these in (4.8.21), we obtain

Egle">"(M@) "} =1— lim E{I{N = m + e S"(M(1))™"}.

Notice that E{e’S"(M())™™} =1 for all m = 1,2, ... and all ¢ in the domain of
convergence of My (t). Thus, {€'S"(My(¢))™™, m > 1} is uniformly integrable. Finally,
since lim P{N > m} =0,

m— 00

lim E{I{N > m + 1}e">"(M(t))™™} = 0.

QED

Choose € > 0 so that,
P=P{Z>¢€¢}>0 (4.8.23)
and
P, = Py{Z < —€} > 0.

Then fort > 0, My(t) = Eg{e'?} > Pie'. Similarly, fort < 0, My(t) > Pre~'¢. This
proves that ‘ }im My(t) = oo. Moreover, for all # for which M (¢) exists,
t|—>00

d
— My(t) = Ep{Ze'?),
T o(t) o{Ze' "}

) (4.8.24)

d 2 tZ
WMG(I) = EQ{Z e } > 0.

Thus, we deduce that the m.g.f. My(¢) is astrictly convex function of z. The expectation
w(0)is M,(0). Hence, if £(8) > 0 then My(¢) attains its unique minimum at a negative
value t* and My(t*) < 1. Furthermore, there exists a value fy, —00 < fy < t* < 0,
at which My(#y) = 1. Similarly, if u(8) < 0, there exist positive values #* and ¢°,
0 < t* < 1Y < 00, such that My(t*) < 1 and M,(t°) = 1. In both cases 7* and 7, are
unique.

The fundamental identity can be applied to obtain an approximation for the accep-
tance probability 7(0) of the SPRT with boundaries A" and B’. According to the
fundamental identity

T(0)Eg{e® P | Sy < A’y + (1 — () Egfe™ ™V | S, > By =1, (4.8.25)
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where 79(0) # 0 is the point at which My(¢) = 1. The approximation for () is
obtained by substituting in (4.8.25)

l -«

ﬁ 10(6)
Eg{e"@ | Sy < A’} = 0 = ( )

and

1— /3 10(6)
Eg{e"?* | Sy = B} = <—> :
o

This approximation yields the formula

NG
(") -
7(0) = ad (4.8.26)

1_[3 10(6) ﬂ 1(0)’
(=) -(F)

for all 6 such that u(0) # 0. If 6y is such that u(6y) = 0, then

log L= F
0g
7(6y) = o ) (4.8.27)
1P B
og —log
o l—«a

The approximation for Ey{N} given by (4.8.15) is inapplicable at 6,. However, at 8y,
Wald’s Theorem yields the result

Eg,(Sy} = Eo (N)Ea{Z?). (4.8.28)
From this, we obtain for 6,

1-5

2
) + (1 — (b)) (log
Eg{Z%}

7 (6y) (log

)2
I« . (4.8.29)

Eg{N} =

In Example 4.17, we have illustrated the use of the Wald SPRT for testing two
composite hypotheses when the interval ®, corresponding to H is separated from
the interval ®; of H,. We obtained a test procedure with very desirable properties by
constructing the SPRT for two simple hypotheses, since the family F of distribution
functions under consideration is MLR. For such families we obtain a monotone 7 (9)
function, with acceptance probability greater than 1 — « forall @ < 6y and 7 () < B
forall & > 6, (Ghosh, 1970, pp. 100-103). The function 7 () is called the operating
characteristic function O.C. of the SPRT. The expected sample size function Ey{N}
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increases to a maximum between 6, and 6, and then decreases to zero again. At
6 = 6p and at & = 0, the function Ey{N} assumes the smallest values corresponding
to all possible test procedures with error probabilities not exceeding o and 8. This is
the optimality property of the Wald SPRT. We state this property more precisely in
the following theorem.

Theorem 4.8.4 (Wald and Wolfowitz). Consider any SPRT for testing the two
simple hypotheses Hy : 0 = 0y against H, : 0 = 6y with boundary points (A, B) and
error probabilities o and B. Let Eg{N}, i =0, 1 be the expected sample size. If s
is any sampling procedure for testing Hy against H, with error probabilities a(s)
and B(s) and finite expected sample size Eq{N(s)} (i =0, 1), then a(s) <« and
B(s) < B imply that Eg {N} < E¢{N(s)}, fori =0, 1.

For the proof of this important theorem, see Ghosh (1970, pp. 93-98), Siegmund
(1985, p. 19). See also Section 8.2.3.

Although the Wald SPRT is optimal at 6 and at 6; in the above sense, if the
actual € is between 6y and 6, even in the MLR case, the expected sample size
may be quite large. Several papers were written on this subject and more general
sequential procedures were investigated, in order to obtain procedures with error
probabilities not exceeding o and B at 8y and 6, and expected sample size at 6y <
0 < 0; smaller than that of the SPRT. Kiefer and Weiss (1957) studied the problem
of determining a sequential test that, subject to the above constraint on the error
probabilities, minimizes the maximal expected sample size. They have shown that
such a test is a generalized version of an SPRT. The same problem was studied
recently by Lai (1973) for normally distributed random variables using the theory
of optimal stopping rules. Lai developed a method of determining the boundaries
{(A,, B,), n > 1} of the sequential test that minimizes the maximal expected sample
size. The theory required for discussing this method is beyond the scope of this
chapter. We remark in conclusion that many of the results of this section can be
obtained in a more elegant fashion by using the general theory of optimal stopping
rules. The reader is referred in particular to the book of Chow, Robbins, and Siegmund
(1971). For a comparison of the asymptotic relative efficiency of sequential and
nonsequential tests of composite hypotheses, see Berk (1973, 1975). A comparison
of the asymptotic properties of various sequential tests (on the means of normal
distributions), which combines both the type I error probability and the expected
sample size, has been provided by Berk (1976).

PART II: EXAMPLES

Example 4.1. A new drug is being considered for adoption at a medical center. It is
desirable that the probability of success in curing the disease under consideration will
be at least 6y = .75. A random sample of n = 30 patients is subjected to a treatment
with the new drug. We assume that all the patients in the sample respond to the
treatment independently of each other and have the same probability to be cured,
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6. That is, we adopt a Binomial model B (30, 8) for the number of successes in the
sample. The value 6y = .75 is the boundary between undesirable and desirable cure
probabilities. We wish to test the hypothesis that 6 > .75.

If the number of successes is large the data support the hypothesis of large 6
value. The question is, how small could be the observed value of X, before we should
reject the hypothesis that 6 > .75. If X = 18 and we reject the hypothesis then
a(18) = B(18;30,.75) = .05066. This level of significance is generally considered
sufficiently small and we reject the hypothesis if X < 18. [ ]

Example 4.2. Let X, X5, ..., X, be ii.d. random variables having a common
rectangular distribution R(0, 0), 0 < 6 < co. We wish to test the hypothesis H :
6 < 6y against the alternative H; : 6 > 6p. An m.s.s. is the sample maximum X ).
Hence, we construct a test function of size o, for some given « in (0, 1), which
depends on X,). Obviously, if X(,) > 6y we should reject the null hypothesis. Thus,
itisreasonable to construct a test function ¢ (X)) thatrejects Hy whenever X,y > C,,.
C, depends on « and 6, i.e.,

if X(n) > Cy
otherwise.

1
¢(X(n)) = {O:

C, is determined so that the size of the test will be o. At 0 = 6,

0o C\"
POO{X(H) > Co} = l/ " ldr=1— <—a> .
Co 0,

oy o

Hence, we set C, = 6y(1 — a)!/". The power function, for all 8 > 6y, is

9 n
Y (0) = Po{ Xy > 00(1 —a)'/"} =1 — (1 — ) (50) .

We see that r(0) is greater than « for all & > 6. On the other hand, for 6 < 6,, the
probability of rejection is

Eg{¢(X(n))} = 1 — min {1, (%) 1- oz)} .

Accordingly, the maximal probability of rejection, when Hy is true, is o and if 6 < 6,
the probability of rejection is smaller than «. Obviously, if & < 6y(1 — «)'/", then the
probability of rejection is zero. [ ]

Example4.3. Let X, ..., X, bei.i.d.random variables having a normal distribution
N(u, 0%). According to the null hypothesis Hy : i = 11, 0 = o7. According to the
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alternative hypothesis H; : u = wy, 0 = 03; 0, > o;. The likelihood ratio is
n 1 n - 2 - 2
[ <g> expl L3 <x Mz) a <x m)
Jo(x) 02 2= 02 ol
(m)" 1 o} =0} ( o142 +<72M1>
=\ ) Py 5 T 22 Xi— ——————
Iop) 2 ofoy “ o1+ 02

(xi 4 O azm)} _
0y — 0]

We notice that the distribution function of f1(X)/fo(X) is continuous and therefore
Yo = 0. According to the Neyman—Pearson Lemma, a most powerful test of size
« is obtained by rejecting Hy whenever f1(X)/fo(X) is greater than some positive
constant k. But, since o, > o1, this is equivalent to the test function that rejects Hy
whenever

n
(o + o o — 0
Z(Xf—u> ()HM) - c,
o1+ o2 02 — 0]

i=l1

where C, is an appropriate constant. Simple algebraic manipulations yield that Hj
should be rejected whenever

an(x,» - )’ = C,
i=1

where
w = (031 — 01 102)/ (03 — 7).
We find C} in the following manner. According to H,

X; —w~ N(@,ob)

with 8 = o2(iua — j11)/(07 — o). It follows that Z(X,» —)? ~ o x*[n;n8*)207]
i=1
and thus,

Cy = allez_a[n;nﬁz/Zalz],

where Xlz_a[v; A] is the (1 — a)th quantile of the noncentral x2. We notice that if
1 = uo but oy # o, the two hypotheses reduce to the hypotheses Hj : u; = u,
0% = 012 versus H{ : uy =, 0o # o01. In this case, § =0 and C} = 012)(127&[11]. If

o] = o but wy > g (or wy < wy), the test reduces to the ¢-test of Example 4.9. ®
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Example 4.4. In this example, we present a case of testing the shape parameter
of a Weibull distribution. This case is important in reliability life testing. We show
that even if the problem is phrased in terms of two simple hypotheses, it is not a
simple matter to determine the most powerful test function. This difficulty is due
to the fact that if the shape parameter is unknown, the minimal sufficient statistic
is the order statistic. Let Xy, ..., X,, be i.i.d. random variables having a common
Weibull distribution G'/¥(1, 1). We wish to test the null hypothesis Hy : v = 1 against
the simple alternative H; : v =1 4 §; § is a specified positive number. Notice that
under Hy, X; ~ E(1), i.e., exponentially distributed with mean 1. According to the
Neyman—Pearson Lemma, the most powerful test of size « rejects Hy whenever

n 6 n
(1 +8)" (]—[ X,») exp {— > !t — X,»)} > ke,

i=1 i=1

where k, is determined so that if Hj is correct, then the probability is exactly
«. Equivalently, we have to determine a constant ¢, so that, under Hy, the
probability of

n

> |:10g X; — % (X}~ X[)} > Cq

i=1

is exactly a. Let W;(8) = log X; — 5(X/™ — X;) and §,,(8) = ZW,-((S). The prob-
i=1

lem is to determine the distribution of S,,(§) under Hy. If n is large, we can approximate

the distribution of S,(8) by a normal distribution. The expected value of W($) is

1 1
n1(d) = 3 +I'(1) - EF(Z +9),
where I''(1) is the derivative of I'(x) at x = 1. The second moment of W (8) is
2 4 2 ’ /
12(8) = 3 + (D + 5(1“ 2)-T"2+9))
1
+ 8_2(F(3 +28) —2I'(3 + 9)).
Thus, according to the Central Limit Theorem, if n is sufficiently large, then
. 1
lim P {—(&(8) —npi(8)) < x[p2(8) — u%(a)]”z} = O(x).
n—o00 \/;7;

Accordingly, for large values of n, the critical level C, is approximately

Co = i (8) + z1_av/n {12(8) — p3(8)}/%.
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For small values of n, we can determine C, approximately by simulating many
replicas of S,(§) values when X1, ..., X, are E(1) and determining the (1 — )th
quantile point of the empirical distribution of S,,(8). [ ]

Example 4.5. Consider an experiment in which n Bernoulli trials are performed. Let
K denote the number of successes among these trials and let & denote the probability
of success. Suppose that we wish to test the hypothesis

Hy : 0 <6y against H; : 0 > 0y,

at level of significance «. 6y and « are specified numbers. The UMP (randomized)
test function is

1, ifK > &(6)

O(K) = {Var if K =6&,(6p)
0, otherwise

where &,(6p) is the (1 — «)-quantile of the binomial distribution B(n, 6y), i.e.,

£,(6p) = least nonnegative integer, k,

k
such that " b(jin,6) > 1 —a.
Jj=0

Furthermore,

Vo = B(£,(60); 1, 6p) — (1 — a)
- b(Ea(B0); 1, O0)

Accordingly, if the number of successes K is larger than the (1 — «)-quantile of
B(n, 6y), we reject Hy. If K equals &,(6y), the null hypothesis Hj is rejected only
with probability y,. That is, a random number R having a R(0, 1) distribution is
picked from a table of random numbers. If K = &,(6y) and R < y,, Hj is rejected;
if K =&,(6p) and R > y,, then Hy is accepted. If K < &,(0y), Hp is accepted. It is
easy to verify that if 6 = 6, then the probability of rejecting H is exactly «. If 6 < 6,
this probability is smaller than « and, on the other hand, if 6 > 6, the probability
of rejection is greater than «. The test of this one-sided hypothesis Hj can be easily
performed with the aid of tables of the cuamulative binomial distributions. The exact
power of the test can be determined according to the formula

Y(0) =1— B(a(t)in, 0) + Vo - b(Ea(60); n, ),

where 6 > 6. If the hypotheses are one-sided but to the other direction, i.e., Hy :
0 > 6y against H; : 6 < 6p, the UMP test is similar. ]
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Example 4.6. Consider the family F of Poisson distributions P(6),0 < 6 < co. The
p.d.f.s are

1
f(x;0)=e%0%/x! = —exp{xlogf —6), x=0,1,....
x!
Thus, if we make the reparametrization w = log 6, then

1
f(x;a))z—‘exp{xa)—e‘“}, x=0,1,...; —o0<w< 00.
x!

This is a one-parameter exponential type family. The hypotheses Hy : 6 = 6, against
H,:0#6y (0 <6y <oo) are equivalent to the hypotheses Hj : w = wy against
H, : w # wy where wy = log6y. The two-sided test ¢°(X) of size « is obtained by
(4.4.1), where the constants are determined according to the conditions (4.4.2) and
(4.4.6). Since F is Poisson, Eg {X} = 6. Moreover, the p.d.f. of P(6) satisfies the
relation

jp(j;0) =06p(j —1;0) forall j=1,2,....
We thus obtain the equations, for x; = c¢{") and x; = ¢{?, y; and y»:
(i) P(xy — 1;60) + y1p(x1560) + v2p(x2560) + 1 — P(x2;6p) = a,
(i) P(x1 —2;60) + yip(x1 — 1560) + v2p(xa — 1;600) + 1 — P(x2 — 156p) = .
Here P(j;0) is the Poisson c.d.f. The function is zero whenever the argument j is
negative. The determination of xi, y, X2, ¥» can be done numerically. We can start

with the initial solution x1, y; and x;, y» corresponding to the “equal-tail” test. These
initial values are determined from the equations

P(x1 — 1;00) + y1p(x1;00) = /2,
v2p(x2;00) + 1 — P(x2;6p) = /2.

This initial solution can then be modified so that both equations (i) and (ii) will be
satisfied simultaneously. [ ]

Example 4.7. Suppose that X ~ N(6, 1). The null hypothesis is Hy : 8 = 0. The
alternative is H; : 6 # 0. Thus, x; and x, should satisfy simultaneously the two
equations

O P +1—-Pxy) =«

an /XI x¢p(x)dx + /ooxqﬁ(x)dx =0.

—0Q X2
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Notice that x¢(x) = —¢'(x). Accordingly, equation (II) can be written as

D) —¢(x1) + ¢(x2) = 0.

If we set x| = zj_q/2 and x, = —x;| where z, = ®~!(y) then, due to the symmetry
of the N(0, 1) distribution around 6 = 0, we obtain that these x; and x, satisfy
simultaneously the two equations. The “equal-tail” solution is the desired solution in
this case. ]

Example 4.8. A. Testing the Significance of the Mean in Normal Samples

The problem studied is that of testing hypotheses about the mean of a normal dis-
tribution. More specifically, we have a sample X, ..., X, of i.i.d. random variables
from a normal distribution N(u, o). We test the hypothesis

Hy: = o, o2 arbitrary

against

Hy : @ # o, o arbitrary.

_ _ 1 & “ _
The m.s.s.is (X, Q,), where X,, = —ZX,- and Q, = Z(X,- — X,,)%. Consider the
g i=1
t-statistic t = \/n(X, — u)/S,, where S,% = 0, /(n — 1). The t-test of H, against H;
is given by

oo 1R RIR, = ol/S, = foapln — 1]
(X, Sp) = {0, otherwise.

ti—ap2[n — 1] is the (1 — a/2)-quantile of the ¢-distribution with n — 1 degrees of
freedom. It is easy to verify that this 7-test has the size «. Its power function can be
determined in the following manner. If u # © then

|Xn _M0|
P’“’“’”{ﬁS— > t—apln —1]

n

= P{tln — 1;8/n] < —t1_gpln — 11}
+ Pltln — 1:83/n] = ti_gpaln — 113,

where § = (i — (to)/o. According to (2.12.22), this power function can be computed
according to the formula

00 no2Vj
e (387 Lo
YO =1-e Yy e (55 )
= I



290 TESTING STATISTICAL HYPOTHESES

where v=n —1, ¢ = tj_4p2[n — 1] and R(c) = ¢*/(v + ¢*). We notice that the
power function depends on 82 and is therefore symmetric around 8y, = 0. We prove

nd?
now that the ¢-test is unbiased. Rewrite the power function as a function of A = —

1
and a mixture of Poisson P()\) with [ <§ + J, %), where J ~ P()\) and R(c) =

1
c?/(v + ¢?). The family P () is MLR in J. Moreover, Iz (5 + 7/, g) is a decreas-

2 2
an increasing function of A. Moreover, ¥ (0) = «. This proves that the test is unbiased.

1 v
ing function of j. Hence, by Karlin’s Lemma, (1) = 1 — E; { Ig( (— +J, —)} is

B. Testing the Significance of the Sample Correlation

Xy, 1), ..., (X,,Y,) are i.i.d. random vectors having a bivariate normal dis-
tribution. Let r be the sample coefficient of correlation (formula 2.13.1). Consider
the problem of testing the hypothesis Hy : p < 0, (i1, /2, 01, 02) arbitrary; against
Hy:p >0, (u, Lo, 01, 07) arbitrary. Here we have four nuisance parameters. As
shown in Section 2.15, the distribution of r is independent of the nuisance param-
eters (U1, U2, 01, 02) and when p = 0 (on the boundary between ®( and ®)), it is
independent of all the parameters. Moreover, according to (2.13.11), the following
test is boundary «-similar.

,
1, if ———=vn—2>1t1_4[n—2]
V1 =72 :

0, otherwise.

¢(r) = {

The power function depends only on the parameter p and is given by

1/2
2 n—2] ) !

W(p):Pp r = (n—2+t12a[n—2]

According to (2.13.12), this is equal to

n—4

. S A
llf(p)—n(n_3)!(l 0%

. A
j—1 41 2p)/ i+ 1
.ZF(IH-J >F<J+ )F(Q_I)QIIML,E_Q,

= 2 2 2 j! 2 2

where R(t) = (n —2)/(n — 2 + tlz_a [n — 2]). To show that this power function is a
monotone nondecreasing function of p, one can prove that the family of densities of
r under p (2.13.12) is an MLR with respect to r. Therefore, according to Karlin’s
Lemma, E,{¢(r)} is a nondecreasing function of p. Thus, the test function ¢(r) is
not only boundary «-similar but also unbiased. [ ]
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Example 4.9. Let X and Y be independent r.v.s having Poisson distributions with
means A; and A,, respectively. We wish to test the hypotheses Hy : 1| = A, against
Hy: X # Ay. Let T = X 4+ Y. The conditional distribution of X given T is the
binomial B(T, p) where p = A;/(A| + Az). The marginal distribution of T is P(v)
where v = A| + A,. We can therefore write the joint p.d.f. of X and T in the form

T\ 1
px,T;0,1)= < )Fexp{ex +tT — v},
where 0 = log(X;/X;) and T = log A,. Thus, the hypotheses under consideration are
equivalent to Hy : 6 = 0, t arbitrary; against H; : § # 0, t arbitrary.
Accordingly, we consider the two-sided test functions

1, it X <&(T)or X > &(T)
QX | T)={y(T), ifX =£(T),i=12
0, otherwise.

This test is uniformly most powerful unbiased of size « if the functions &;(T") and
yi(T),i = 1, 2, are determined according to the conditional distribution of X given T,
under Hy. As mentioned earlier, this conditional distribution is the binomial B(T, %).

This is a symmetric distribution around X¢ = 7/2. In other words, b(i; T, %) =
b(T —i;T, %), foralli =0, ..., T. Conditions (4.5.9) are equivalent to

) Zb(i;ﬂi)m (é., , )+V2b< >+ S b ( ) o

i=6+1

&—1
(ii) Zib (i;T, %) +néb (51 >+V2$2b( )+ Z lb( ) g

i=0 i=E+1

It is easy to verify that, due to the symmetry of the Binomial B(7, %), the functions

that satisfy (i) and (ii) are
1
a(M=8"(%:7.5),
2 2

E(T) =T —&(T),

¢ - BE(T) - LT, D)
(T)= 2 ?
" bE(T):T. 1)

and  y(T) = yi (D).

Here B~'(%; T, §)is the %-quantile of B(T, 3) and B(j; T, 1) is the c.d.f. of B(T, 1)
at X = j. |
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Example 4.10. In a clinical trial we test the effect of a certain treatment, in compar-
ison to some standard treatment, at two different stations. The null hypothesis is that
the effect of the two treatments relative to the control is the same at the two stations.
For this objective, a balanced experiment is conducted in which 2 patients are tested
at each station, n patients with the new treatment and n with the standard one. The
observed random variables, X;; (i = 1,2; j = 1, 2) are the number of successes in
each sample of n. There are four independent binomial random variables. Let 6;;
(7, j = 1, 2) denote the probability of success. i = 1, 2 denotes the station index and
j =1, 2 denotes the treatment index (j = 1 for the standard treatment and j = 2 for
the new treatment). Thus X;; ~ B(n, 6;;). Let T; = X;; + X;» (i = 1,2) and

61 1—6;
pi =t 2 i=1,2.
O 1—0;

Let Y; = X;; (i = 1, 2). The conditional p.d.f. of ¥; given T; is the confluent hyper-
geometric function

p(yIT,:t)—

where generally <Z> = 0if b > a. We notice that when p; = 1 (i.e., 6;1 = 6;3), then

the p.d.f. is the hypergeometric p.d.f. A(y | 2n, n, t) as given by (2.3.6). Thus, since
Y1 and Y, are independent, the joint conditional p.d.f. of (Y1, ¥») given 7; = ¢ and

T, = v under (p1, p2) is
CICICD)G )
P1 P;
Yi)\W2/\f=y1/\v—=—»
n n ko
X;, ,;(’ﬂ)(kz) (f —k1>(V - kz)p1 &

yvi=0,...,¢ y»=0,...,v

pOL T =t,Th=v)=

We consider the problem of testing the hypotheses:

Hy : p1 = py against Hj : p1 # pa.

Our hypothesis Hy means that there is no interaction between the effect of the
treatment and that of the station. We notice now that under Hy, S =Y, + Y, is a
sufficient statistic for the family of joint conditional distributions given 7} and 75.
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Furthermore, the conditional p.d.f. of Y| given T, 75, and S is

(62 )
SO )

py I Th=t,T,=v,S=k) =

y=0,...,k

where w = p;/p,. The family of all the conditional distributions of Y; given
(Ty, T», S) is an MLR family w.r.t. Y;. The hypotheses Hy : p; = p, against H; :
p1 # py are equivalent to the hypotheses Hy : w = 1 against H; : w # 1. Accord-
ingly, the conditional test function

1, ifY, <&(T\,Th,S)orY, >&(T, T, S)
oY | T, T2, ) =3y, it =&, 1, S),i=12
0, otherwise,

is uniformly most powerful unbiased of size «, if the functions &(Ty, T, S) and
y;(Ty, T», S) are determined to satisfy conditions (i) and (ii) of (4.5.9) simultaneously.
To prove it, we have to show that the family of conditional joint distributions of S given
(T, T») is complete and that the power function of every test function is continuous
in (011, 612, 621, 822). This is left to the reader as an exercise. For the computation of
the power function and further investigation, see Zacks and Solomon (1976). [ ]

Example 4.11. A. In this example we show that the ¢-test, which was derived in
Example 4.9, is uniformly most powerful unbiased. An m.s.s. for the family of normal
distributions F = {N(u, 0%); —00 < u < 00,0 < 0 < oo}is(TX;, EXiz).LetU =

1
—-2XX;and T = EXI-Z. We notice that T is an m.s.s. for F* (the family restricted to
n

1 1/2
the boundary, u = 0). Consider the statistic W = \/n U/ (—1T - nU2)> .
n—

We notice that if =0, then W ~ t[n — 1] independently of 0. On the other
hand, T ~ o2 Xz[n] when p = 0. Therefore, according to Basu’s Theorem, W and
T are independent for each § € ®* (the boundary) since the family F7 is complete.
Furthermore, W is an increasing function of U for each T. Hence, the 7-test is
uniformly most powerful unbiased.

B. Consider part (B) of Example 4.9. The m.s.s. is (XX, ZXI-Z, XY;,
EY,.Z, Y X;Y;). If we denote by F* the family of all bivariate normal distributions
with p = 0 (corresponding to the boundary), then 7 = (X X;, ZXiz, XY;, EY[Z) is an
m.s.s. for F*. Let U = ¥ X;Y;. The sample correlation coefficient r is given by

r=WU,T)=[nU — (EX)(ZYD/[nEX; — (ZX)*'? - [n2Y? — (ZY)*1V2
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This function is increasing in U for each 7. We notice that the distribution of r
is independent of v = (u, K2, o1, 02). Therefore, r is independent of T for each v
whenever p = 0. The test function ¢(r) of Example 4.9 is uniformly most powerful
unbiased to test Hy : p < 0, v arbitrary, against H; : p > 0, v arbitrary. [ ]
Example 4.12. Consider again the components of variance Model II of Analysis of
Variance, which is discussed in Example 3.9. Here, we have a three-parameter family
of normal distributions with parameters i, o2, and 72. We set p = 72/0°2.
A. For testing the hypotheses
Hy: <0, v= (02, p) arbitrary,
against

H:pn>0 v= (02, p) arbitrary,

the ¢-test

1, if Vr X 7
W) = " %, — X)
¢ (r_ll;(x, X))

0, otherwise

= tl—ot[r - 1]

is a uniformly most powerful unbiased one. Indeed, if we set U = T3(X) = X , T =
- 172
(T\(X), T»(X)), then W(U, T) = /nr U/ [le(’_‘i - X)Z} is distributed
r—
i=1
when = 0, as ¢[r — 1] for all (2, p). The exponential family is complete. Hence,
W(U, T)and T are independent for each (62, p) when v = 0. Furthermore, W(U, T)

is an increasing function of U for each T.
B. For testing the hypotheses

Hy:p <1, (02, W) arbitrary
against

H:p>1, (%W arbitrary
the test function

1, ifW=>F_,r—1,r(n—1)]
0, otherwise

PW) = {
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is uniformly most powerful unbiased. Here
W=nrin—1) (X = XP/r = DY Y (Xi; — X%,
i=1 i=1 j=1

and F|_q[r — 1, r(n — 1)] is the (1 — «)-quantile of the central F-distribution with
(r — 1) and r(n — 1) degrees of freedom. ]

Example4.13. Let X ~ N(6, 1). We consider the two simple hypotheses Hy : 6 = 0
versus H; : 0 = 1. The statistic A(X) is

f(X;0) — 1/max(1, X172),

AX) = XX 00, £ )

Obviously, A(X) = 1 ifand only if X < % It follows that, under 6 = 0, Py[A(X) =
1] = CID(%) = .691. Therefore, in this example, the generalized likelihood ratio test
can be performed only fora < 1 —.691 = .309 or for @ = 1. This is a restriction on
the generalized likelihood ratio test. However, generally we are interested in small

values of «, for which the test exists. [ ]
Example4.14. Let X4, ..., X, bei.i.d. random variables having a common Laplace
distribution with p.d.f.

f(x;0)= %exp{—|x -0}, —oo0<x < o0,
where the parameter space is ® = {—00 < 6 < 0o}. We wish to test
Hy:06=0
against

H :6 0.

The sample statistic 0, which minimizes Z|xi — 6|, is the sample median
i=1

X(m-H)’ ifn=2m + 1

1 .

E(X(m) + X)), ifn=2m.
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Thus, the generalized likelihood statistic is

MX,) = exp !— (Z il = D lxi — Mel)} :
i=1 i=1

A(X,) is sufficiently small if

n n
TX)) =Y |Xi| =Y _|X; — M,|
i=1 i=1

is sufficiently large. To obtain a size o test, we need the (1 — «)-quantile of the
sampling distribution of 7(X,) under 6 = 0. M = 1000 simulation runs, using
S-PLUS, gave the following estimates of the .95th quantile of 7'(X,,).

Notice that —2log A(X,,) = 2 - T'(X,,) and that x3s[1] = 3.8415. Also 2T 05, =
x5s[11.

n 20 50 100
Tos, 19815 20013 1.9502

Example 4.15. Fleiss (1973, p. 131) gave the following 2 x 2 table of G-6-P D
deficiency (A) and type of schizophrenia (B) among N = 177 patients.

B Catatonic ~ Paranoid P
A
Deficient 15 6 21
Non-deficient 57 99 156
z 72 105 177

We test whether the association between the two variables is significant. The
X? statistic for this table is equal to 9.34. This is greater than x3:[1] = 3.84 and
therefore significant at the « = .05 level. To perform the conditional test we compute
the hypergeometric distribution H(N, T, S) with N = 177, T =21,and S =72. In
Table 4.3, we present the p.d.f. A(x; N, T, S) and the c.d.f. H(x; N, T, S) of this
distribution.

According to this conditional distribution, with ¢ = .05, we reject Hy whenever
X <4orX > 14.If X = 5 we reject Hy only with probability y; = .006. If X = 13
we reject Hy with probability y, = .699. In this example, X = 15 and therefore we
conclude that the association is significant. [ ]
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Table 4.3 The Hypergeometric Distribution H(177, 21, 72)

X h(x;N,T,S) Hx;N,T,S)
0 0.000007 0.000007

1 0.000124 0.000131

2 0.001022 0.001153

3 0.005208 0.006361

4 0.018376 0.024736

5 0.047735 0.072471

6 0.094763 0.167234

7 0.147277 0.314511

8 0.182095 0.496607

9 0.181006 0.677614
10 0.145576 0.823190
11 0.095008 0.918198
12 0.050308 0.968506
13 0.021543 0.990049

Example 4.16. Let X, X,, ... be a sequence of i.i.d. random variables having

a common normal distribution N(8, 1), —oo < 6 < oco. Suppose that for testing
the hypothesis Hy : 6 < 0 against H; : 6§ > 1, we construct the Wald SPRT of the
two simply hypotheses Hj : & = 0 against H; : 0 = 1 with boundaries A’ and B’
corresponding to @ = .05 and g = .05.

Notice that

S1(X)

Z=loe

= —%[(x -1’ =-X1=Xx-1)2.

Accordingly,

The m.g.f. of Z at 0 is

12 1
Mo(t) = Egfe’* D} =expl — + (0 — = ) ¢}.
2 2
Thus, #(#) = 1 — 26, and from (4.8.26)—(4.8.27), the acceptance probabilities are
191720 -1

w(0) = { 191-20 _ 1920—1° 0#.5
S 0 =.5.
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In the following table we present some of the 7 (6) and Eg{N} values, determined
according to the approximations (4.8.15) and (4.8.26).

0 -1 -5 0. 25 .50 75 1 1.5 2.0
() 299985 .99724 95000 .81339 .50000 .18601 .05000 .00276 .00015
E¢{N} 2.0 29 53 74 8.7 7.4 53 29 2.0

The number of observations required in a fixed sample design for testing H; :
6 = Oagainst H;" : § = 1 witha = 8 = .05is n = 16. According to the above table,
the expected sample size in a SPRT when 6 = 0 or 8 = 1 is only one third of that
required in a fixed sample testing. [ ]

PART III: PROBLEMS

Section 4.1

4.1.1 Consider Example 4.1. It was suggested to apply the test statistic ¢(X) =
I{X < 18}. What is the power of the test if (i) 6 = .6; (ii) 8 = .5; (iii)
6 = .47 [Hint: Compute the power exactly by applying the proper binomial
distributions.]

4.1.2 Consider the testing problem of Example 4.1 but assume that the number of
trials is n = 100.
(i) Apply the normal approximation to the binomial to develop a large
sample test of the hypothesis Hy : 6 > .75 against the alternative H, :
6 < .75.
(i) Apply the normal approximation to determine the power of the large
sample test when 6 = .5.
(iii) Determine the sample size n according to the large sample formulae so
that the power of the test, when 6 = .6, will not be smaller than 0.9,
while the size of the test will not exceed o = .05.

4.1.3 Suppose that X has a Poisson distribution with mean A. Consider the hypothe-
ses Hy : A = 20 against H, : A # 20.
(i) Apply the normal approximation to the Poisson to develop a test of H
against H; at level of significance o = .05.

(i) Approximate the power function and determine its value when A = 25.

Section 4.2

421 Let X,,...,X, be iid. random variables having a common negative-
binomial distribution N B(yr, v), where v is known.
(i) Apply the Neyman—Pearson Lemma to derive the MP test of size « of
Hy : ¢ < g against H; : ¥ > v, where 0 < ¥p < ¥ < 1.
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4.2.2

4.2.3

424

4.2.5

(ii) What is the power function of the test?

(iii) What should be the sample size n so that, when 1y = .05 and o = .10,
the power at = .15 willbe 1 — 8 = .80?

Let X, X5,..., X, be iid. random variables having a common dis-
tribution Fy belonging to a regular family. Consider the two sim-
ple hypotheses Hy:6 =6, against H;:0 =0;; 0y #6;. Let o =
varg, {log(f(X1;61)/f(X1;60))}, i =0,1, and assume that 0 < ol.z < 00,
i =0, 1. Apply the Central Limit Theorem to approximate the MP test and its
power in terms of the Kullback—Leibler information functions 1(6y, ;) and
1(61, 6y), when the sample size n is sufficiently large.

Consider the one-parameter exponential type family with p.d.f. f(x;v¥) =
h(x)exp{¥x; — K(i)}, where K () is strictly convex having second deriva-
tivesatall Y € Q,i.e., K”"() > O forall ¢ € Q, where  is an open interval
on the real line. For applying the asymptotic results of the previous problem
totest Hy : ¢ < v against H; : Y > vy, where ¥y < ¥, show

(@) Ey,{log(f(X;¥1)/f(Xs¥o))} = K'(Yi) - (Y1 — Yo) — (K (Y1) —
K(o));i =0, 1.
(ii) Vary, (log(f(X;¥1)/f(X; %)} = (Y1 — Y0)* K" (Yi); i =0, 1.
(iii) If Z; =log(f(X;; ¥ 1)/ f(Xj590));j =1,2,... where X1, Xo, ..., X,
areii.d.and Z, = %ZZ/" then the MP test of size « for H : ¥ = v

=1
against H : ¥ =y is asymptotically of the form ¢(Z,) = I{Z, >

Iy}, where I, = K'(Yo)(¥1 — o) — (K(¥1) — K (¥0)) + Zj; (W —
Vo) K"(Yo))/? and z1_q = (1 — a).

(iv) The power of the asymptotic test at ¥ is approximately

K// 1/2
(K@) — K'Wo) = 210 ( KEZT;) ) .

1
o J/n——-
( (K" ()72
(v) Show that the power function given in (iv) is monotonically increasing

in 1//1.

Let X, X5, ..., X,, be i.i.d. random variables having a common negative-
binomial distribution N B(p, v), v fixed. Apply the results of the previous
problem to derive a large sample test of size o of Hy : p < po against H; :
P=p0<po<p <l

Let X, X», ..., X, beii.d. random variables having a common distribution
with p.d.f. f(x;u,0) =1 —0)p(x) +0p(x — ), —00 < x < 00, where p
is known, u > 0; 0 < 6 < 1; and ¢(x) is the standard normal p.d.f.
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(i) Construct the MP test of size o of Hy:0 =0 against H, : 6 =6,
0< 91 < 1.

(ii) What is the critical level and the power of the test?

4.2.6 Let X,..., X, beii.d. random variables having a common continuous dis-
tribution with p.d.f. f(x;8). Consider the problem of testing the two simple
hypotheses Hy : 6 = 6y against H; : 0 = 61, 6y # 6,. The MP test is of the

form ¢(x) = I{S, > c}, where §, = Zlog(f(Xi;Gl)/f(Xi;Go)). The two

i=1
types of error associated with ¢, are

€o(c) = Po{Sy = ¢} and €1(c) = Pi{Sy < c}.

A test ¢ is called minimax if it minimizes max(eo(c), €;(c)). Show that ¢
is minimax if there exists a ¢* such that €y(c*) = €;(c*).

Section 4.3
4.3.1 Consider the one-parameter exponential type family with p.d.f.s
f(x:0) = h(x)exp{QO)U(x) + CO)}, 6 €O,
where Q’(9) > 0 forall @ € ©; Q(9) and C(0) have second order derivatives

atall 6 € ©.
(i) Show that the family F is MLR in U (X).
(ii) Suppose that Xy, ..., X, are i.i.d. random variables having such a dis-

tribution. What is the distribution of the m.s.s. 7' (X) = ZU (X;)?
j=1

(iii) Construct the UMP test of size o of Hy : 0 < 6, against H, : 6 > 6.

(iv) Show that the power function is differentiable and monotone increasing
in 6.

4.3.2 Let Xy,..., X, bei.i.d. random variables having a scale and location param-
eter exponential distribution with p.d.f.

1 1
fp, o) = —eXp{——(x—u)}I{x > j};
o o
O<o<oo;, —00<u<oo0.

(i) Develop the a-level UMP test of Hy : v < o, against u > o when o
is known.

(i) Consider the hypotheses Hj : u = o, 0 = oy against H; : u < po,
o < 0p. Show that there exists a UMP test of size « and provide its
power function.
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4.3.3 Consider n identical systems that operate independently. It is assumed that the
time till failure of a system has a G rk 1 | distribution. Let Yy, Y>, ..., 7Y,

be the failure times until the rth failure.

(i) Show that the total life 7, , = ZY; + (n — r)Y, is distributed like
i=1
0
3 x2[2r].
(ii) Construct the o-level UMP testof Hy : 6 < 6 against H; : 6 > 6, based
onT,,.

(iii) What is the power function of the UMP test?

4.3.4 Consider the linear regression model prescribed in Problem 3, Section 2.9.
Assume that « and o are known.

(i) What is the least-squares estimator of §?
(i) Show that there exists a UMP test of size o for Hy : 8 < By against
B > Po.
(iii) Write the power function of the UMP test.

Section 4.4

441 Let X,,..., X, be ii.d. random variables having an N (0, o'2) distribution.
Determine the UMP unbiased test of size o of Hy : 02 = 002 against Hj :
o? # 002, where 0 < 002 < 00.

44.2 Let X ~ B(20,60),0 < 6 < 1. Construct the UMP unbiased test of size o =
.05 of Hy : 6 = .15 against H : 0 # .15. What is the power of the test when
0 = .05, .15, .20, .25

44.3 Let Xy,..., X, bei.i.d. having a common exponential distribution G(é, 1),
0 < 6 < oco. Consider the reliability function p = exp{—t/6}, where ¢ is
known. Construct the UMP unbiased test of size o for Hy : p = pp against
Hi : p # py, for some 0 < py < 1.

Section 4.5

1
4.5.1 Let Xy,..., X, bei.i.d. random variables where X; ~ & + G(—, 1), —oc0 <
o3

& < 00, 0 < 0 < 00. Construct the UMPU tests of size o and their power
function for the hypotheses:

(i) Hy : & <&, o arbitrary; H| : £ > &y, o arbitrary.
(i) Hy : 0 = 0y, & arbitrary; H; : 0 # oy, & arbitrary.

452 LetX;,..., X, beiid. random variables distributed like N(u;, %) and let
Y1, ..., Y, bei.i.d. random variables distributed like N (w2, 0?); —00 < Ui,
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Uy < o0; 0 < 0% < oco. Furthermore, the X -sample is independent of the
Y-sample. Construct the UMPU test of size o for

(i) Hy: uy = o, o arbitrary; Hy : u # o, o arbitrary.
(ii) What is the power function of the test?

453 LetX,,..., X,beii.d. random variables having N (u, o2) distribution. Con-
struct a test of size « for Hy : £ + 20 > 0 against u + 20 < 0. What is the
power function of the test?

4.5.4 In continuation of Problem 3, construct a test of size « for

Hy:pp+5u, <10, o arbitrary;
Hy:py+5u; > 10, o arbitrary.

4.5.5 Let (X, X») have a trinomial distribution with parameters (1, 6,, 8,), where
0<6,0, <1, and 0; + 6, < 1. Construct the UMPU test of size o of the
hypotheses Hy : 6y = 6,; H, : 01 # 6,.

4.5.6 Let X, X5, X3 be independent Poisson random variables with means A;, A,,
A3, respectively, 0 < A; < 0o (i = 1, 2, 3). Construct the UMPU test of size
OlOfH()Z)»l:)xz:)g;Hl 1)»1 >)\.2>)\,3.

Section 4.6

4.6.1 Consider the normal regression model of Problem 3, Section 2.9. Develop the
likelihood ratio test, of size €, of
(i) Hy: ¢ =0, B, o arbitrary; H, : « # 0; 8, o arbitrary.
(i) Hy : B =0, «, o arbitrary; H, : 8 # 0; a, o arbitrary.
(iii) o > 0y, a, B arbitrary; H; : 0 < 0p; o, B arbitrary.

4.6.2 Let(X,, Slz), oo (X, S,f) be the sample mean and variance of k independent

random samples of size ny, ..., ng, respectively, from normal distributions
N(ui, aiz), i=1,...,k Develop the likelihood ratio test for testing Hj :
o] =---=0}; WUi,..., Mg arbitrary against the general alternative H :
Oy enny

2

or and wy, ..., i arbitrary. [The test that rejects Hy when Z"i log S_Z >
i=1 i

X12 ok — 1], where S2 Z(n, — l)S2 and N = Zni, is known

as the Bartlett test for the equahty of variances (Hald, 1952 p 290).]
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4.6.3

4.6.4

4.6.5

4.6.6

4.6.7

Let (Xy,..., X;) have a multinomial distribution MN(n, ), where 0 =

k
©@1,...,60), 0<6; <1, ZG,- = 1. Develop the likelihood ratio test of
i=1
Hy:0,=---=6; = % against H; : @ arbitrary. Provide a large sample
approximation for the critical value.

Let (X;,Y:),i =1,...,n, beiid. random vectors having a bivariate normal

R . . . 1
distribution with zero means and covariance matrix ¥ = 02<p "1) ), 0<

02 <00, —1 < p < 1. Develop the likelihood ratio test of Hy: p =0, o

arbitrary against H; : p # 0, o arbitrary.

Let (x11, Y11), ..., (X1a, Y1) and (xo1, Y1), ..., (x2., Y2,) be two sets of

independent normal regression points, i.e., Yij ~ N(aj + Bixj,0%), j =

1,...,nandYs; ~ N(az + Boxj;02), wherex) = (xyy, ..., x1,) andx? =

(x21, ..., X2,) are known constants.

(i) Construct the likelihood ratio test of Hy : oy = o, B1, B2, o arbitrary;
against H; : o) # ay; B1, B, o arbitrary.

(ii) Ho : B1 = By, a1, o arbitrary; against H; : 81 # B»; a1, oz, o arbitrary.

The one-way analysis of variance (ANOVA) developed in Section 4.6 corre-
sponds to model (4.6.31), which is labelled Model I. In this model, the incre-
mental effects are fixed. Consider now the random effects model of Example
3.9, which is labelled Model II. The analysis of variance tests Hy : 2 =0,
o arbitrary; against H; : 7> > 0, o' arbitrary; where 7 is the variance of the
random effects ay, .. ., a,. Assume that all the samples are of equal size, i.e.,
n=---=n, =n.

(i) Show that Sg = }ZSIZ and S} = V”TIZ()_( ; — X)? are independent.
i=1 i=1
(ii) Show that S7 ~ (02 + nt®)x*[r — 11/(r — 1).
(iii) Show that the F-ratio (4.6.27) is distributed like (1 + n;—z) Flr —1,
r(n — 1)].
(iv) What is the ANOVA test of Hy against H;?
(v) What is the power function of the ANOVA test? [Express this function

in terms of the incomplete beta function and compare the result with
(4.6.29)—(4.6.30).]

Consider the two-way layout model of ANOVA (4.6.33) in which the incre-

mental effects of A, r{!,..., 7/, are considered fixed, but those of B,
rlB e r,B are considered i.i.d. random variables having a N (0, ag) distribu-

9

tion. The interaction components ri/,*.B are also considered i.i.d. (independent
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of ‘EJB ) having a N (0, ai ) distribution. The model is then called a mixed
effect model. Develop the ANOVA tests of the null hypotheses

(1. —
Hy' 105, =0,

I

Héz) : Z(riA)2 =0,

What are the power functions of the various F-tests (see Scheffé, 1959,
Chapter 8)?

Section 4.7

4.7.1 Apply the X2-test to test the significance of the association between the
attributes A, B in the following contingency table

A| Az A3 Sum

B, 150 270 500 920
B, 550 1750 300 2600
Sum 700 2020 800 3520

At what level of significance, «, would you reject the hypothesis of no
association?

4.7.2 The X-test statistic (4.7.5) can be applied in large sample to test the equal-
ity of the success probabilities of k Bernoulli trials. More specifically, let
fi, .-, fr be independent random variables having binomial distributions
Bn;,0,),i =1, , k. The hypothesis to testis Hy: 0, =--- =6, =6, 6
arbltrary against H | : the s are not all equal Notice that if Hy is correct, then

T = Z fi ~ B(N,6) where N = an Construct the 2 x k contingency
i=1 i=1

table
E] cee Ek Total
S fi Je T
F n—fi o m—fi N-=T
Total np ng N

This is an example of a contingency table in which one margin is fixed
(n1, ..., n)and the cell frequencies do not follow a multinomial distribution.
The hypothesis H) is equivalent to the hypothesis that there is no association
between the trial number and the result (success or failure).
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4.7.3

(i) Show that the X? statistic is equal in the present case to

(i) Show that if n; — oo forall i =1,...,k sothat & — 4,0 <; <1
foralli =1, ..., k, then, under Hy, X? is asymptotically distributed like
2
Xk —1].

The test statistic X2, as given by (4.7.5) can be applied to test also whether a
certain distribution Fy(x) fits the frequency distribution of a certain random
variable. More specifically, let Y be a random variable having a distribution
over (a, b), where a could assume the value —oo and/or b could assume
the value +o00. Let ng < n; < --- < n with no = a and n; = b, be a given
partition of (a, b). Let f; (i = 1, ..., k) be the observed frequency of ¥ over

n
(ni—1, n;) among N i.i.d. observationson Yy, ..., Y,, ie., f; = Zl{n,-_l <
j=1

Y; <n},i=1,...,k. We wish to test the hypothesis Hy : Fy(y) = Fo(y),
where Fy(y) denotes the c.d.f. of Y. We notice that if H is true, then the
expected frequency of Y at [n;_1, n;] is e; = N{Fo(n;) — Fo(n;—1)}. Accord-
ingly, the test statistic X* assumes the form

k
X* =" f2/NIFo(n;) — Foni-)1 — N.

i=1

The hypothesis Hy is rejected, in large samples, at level of significance « if
X? > x? [k — 1]. This is a large sample test of goodness of fit, proposed in
1900 by Karl Pearson (see Lancaster, 1969, Chapter VIII; Bickel and Dok-
sum, 1977, Chapter 8, for derivations and proofs concerning the asymptotic
distribution of X? under Hp).

The following 50 numbers are so-called ‘“random numbers” generated by
a desk calculator: 0.9315, 0.2695, 0.3878, 0.9745, 0.9924, 0.7457, 0.8475,
0.6628, 0.8187, 0.8893, 0.8349, 0.7307, 0.0561, 0.2743, 0.0894, 0.8752,
0.6811, 0.2633, 0.2017, 0.9175, 0.9216, 0.6255, 0.4706, 0.6466, 0.1435,
0.3346, 0.8364, 0.3615, 0.1722, 0.2976, 0.7496, 0.2839, 0.4761, 0.9145,
0.2593, 0.6382, 0.2503, 0.3774, 0.2375, 0.8477, 0.8377, 0.5630, 0.2949,
0.6426, 0.9733, 0.4877, 0.4357, 0.6582, 0.6353, 0.2173. Partition the interval
(0, 1) to k = 7 equal length subintervals and apply the X? test statistic to test
whether the rectangular distribution R(0, 1) fits the frequency distribution of
the above sample. [If any of the seven frequencies is smaller than six, combine
two adjacent subintervals until all frequencies are not smaller than six.]
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4.7.4 In continuation of the previous problem, if the hypothesis Hj specifies a

distribution F'(x; @) that depends on a parameter § = (6, ...,6,),i <r, but
the value of the parameter is unknown, the large sample test of goodness of fit
compares

k
X* =" f/NIF(;:0) — Fri-1:0)1 - N

i=1

with Xlz_a [k — 1 — r] (Lancaster, 1969, p. 148), where 6 are estimates of 0
obtained by maximizing

k
Q=Y filoglF(n;;0) — F(n;_1;0)].

i=1

(i) Suppose that ny=0<n <---<mp=o00 and F(x;0)=1-—
exp{—x/o}, 0 <o < oo. Given ny,...,n—1 and fi, ..., fi, N, how
would you estimate o ?

(ii) What is the likelihood ratio statistic for testing Hy against the alternative
that the distribution F is arbitrary?

(iii) Under what conditions would the likelihood ratio statistic be asymptot-
ically equivalent, as N — oo, to X 2 (see Bickel and Doksum, 1977, p.
394)?

4.7.5 Consider Problem 3 of Section 2.9. Let (Xy;, X»;),i = 1, ..., n be a sample
of n i.i.d. such vectors. Construct a test of Hy : p = 0 against H; : p # 0, at
level of significance «.

Section 4.8

4.8.1 Let X|, X5, ... be a sequence of i.i.d. random variables having a common
binomial distribution B(1,6),0 < 6 < 1.
(i) Construct the Wald SPRT for testing Hy : 6 = 6y against H, : 6 = 6,
0 < 6y < ) < 1, aiming at error probabilities & and 8, by applying the
approximation A’ = log 8(1 — @) and B’ = log(1 — 8)/«.
(ii) Compute and graph the OC curve for the case of 6y = .01, 6; = .10,
a = .05, B = .05, using approximations (4.8.26)—(4.8.29).
(iii) What is E4{N} for 6 = .08?

4.8.2 Let X, X, ... be a sequence of i.i.d. random variables having a N (0, a?)
distribution. Construct the Wald SPRT to test Hy : 0> = 1 against H; : 6> =2
with error probabilities = .01 and 8 = .07. Whatis 7 (o) and E,2{N} when
o2 =1.5?
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4.1.2 The sample size is n = 100.
(i) The large sample test is based on the normal approximation

(X)) = I{X <100 x 0.75 — Z;_o~/100 x 0.75 x 0.25}
= I{X <75 — Z,_44.33}.

(ii) The power of the test when 6 = 0.50 is

¥(0.5) = Pos(X <75 —Z1_,4.33)

C o <75 — 4337, — 50)
N V100 x 5x .5

4.33
_o (5 - —zla) .
5
(iili) We have to satisfy two equations:

. C—nx0.75
i) @ ( ) < 0.05
vn x 0.75 x 0.25

. C—-—nx06
(i) P —————=) =0.9.
vn x0.6x0.4

The solution of these 2 equations is n = 82, C = 55. For these values
n and C we have o = 0.066 and 1(0.6) = 0.924.

4.2.1 Assumethatv =2. Them.s.ss.is T = in ~ NB(y, 2n).
i=1

(i) This is an MLR family. Hence, the MP test is

1, if7T > NB™'(1 —a;v0,2n)
¢UT)= Ve, T =NB'(1—a;¢0,2n)
0, T < NB~'(1 - o; Yo, 2n).

Let Ti_o (Vo) = NB~'(1 — a;2n, ). Then

_l—a—P{T <Tia(¥o) — 1}
o P{T = Tl—a(wO)}

Yo

(ii) The power function is

Power(y) = Py{T > Ti—o(¥0)} + va Py{T = Ti_o(0)}.
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We can compute these functions with the formula
P,/,{T <t} = IH,,(Zn, t+1).

(iii) We can start with the large sample normal approximation

Py T <1)= o (—t —2ny/d - w))
B V2ny /(1 — ¢r)?

=¢(w).

2ny
For ¢ =0.05, « =0.10, ¢ =0.15, 1 -8 =0.8, we get the
equations

(i) 0.95¢ —2n x 0.05 = 1.2816+/2n x 0.05.
(ii) 0.85t —2n x 0.15 = —0.8416+/2n x 0.15.

The solution of these equations is n = 15.303 and ¢ = 3.39. Since
n and ¢ are integers we take n = 16 and r = 3. Indeed, Py os(T < 3) =
195(32,4) = 0.904. Thus,

1, if7T >3
o%T)=140972, ifT =3
0, if T < 3.

The power at y = 0.15 is

POWCI‘(O.lS) = P0_15{T > 3} + O.972P().15{T = 3}

= (0.8994.
423 FX:9) = h(x)exp(f X — K()).
For ¥ > vy,
ﬁx Z‘; exp{(¥1 — Yo)X — (K(¥1) — K (o))

SX;54)
E; {lo = E; _ XV — (K _K
() { f(X Wo)} {1 — Yo)X} — (K1) o)}

= (Y1 — Yo K'(Yi) — (K1) — K(¥o)).
Since E;{X} = K'(¥;),i =0, 1.

fl( )} 2
vi o = (1 — Yo VAX
(i) { f(X) (W1 — ¥o) Vi{X}

=W — )K", i=0,1.
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(iii) The MP test of H versus H; is asymptotically (large n)
¢(Zy) = H{Zy = (Y1 — Y0)K'(%o) — (K (Y1) — K(¥))

1

ﬁwl — Vo) (K" (Y0))'/?}.

+ Zlfot

(iv)
Power(y) = Py, Z, > I,}

((1//1 = Yo)(K'(Yo) = K' (Y1) + Z1« ﬁ(l//l = Yo)v K”(Wo))
=1-9 ;
W = YoV K" (W)

K'(y1) = K'(4) [ K" (%)
- S A Ay A .
(ﬁ V') 1 K"w.))

4.3.1 Since Q'() > 0,if 6, < 0, then Q(6,) > Q(6))

f[(X360) _
f(X;61)

(i) F={f(X;0),0 e®} is MLR in U(X) since exp{(Q(6)—
QONUX)} /1 UX).

T(X) = Z UX))
j=1

exp{(Q(62) — QO)U(X) + C(62) — C(61)}.

(ii)
fX:0)=[[rx)-exp{0® ) UX)+ nC(e)] .

j=1 j=1
Thus, the p.d.f. of T(X) is

f(t:6) = exp(Q(0) + nC(0))A(t;0)
exp(Q0)r)
/GXP(Q(G)t)d?»(t)

= exp(QO)t — K(9)),

where
K(9) =log </ exp{Q(G)t}dk(r)) .

This is a one-parameter exponential type density.
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(iii) The UMP test of Hy : 6 < 6, versus Hy : 0 > 6 is
1, if T > C,(6p)
¢°%T) = { Vu. if T = Cqolbh)
0, ifT < Cu(6y),

where Cy(6p) is the (1 — «) quantile of 7 under 6. If T is discrete then

1 —a— Py{T < Cy(60) — 0}
Voo = Py {T = Cul(60)}

(iv)
Power(0) = Eq{¢°(T)}

= / exp{Q0)r — K(0)}dA(t) + yoPo{T = Co(60)}.
Calbo)+

By Karlin’s Lemma, this function is increasing in 6. It is differentiable
w.rt. 6.

0
433 () T, 1, ..., T, are iid. 6G(1,1) ~ 5)(2[2]. Define the variables
Yi,.... Y, where for 7)) < -+ < Ty
Y,‘ ’\’T([), I = 1,...,]’1
0
Y1 ~-G(1,1)
n

P .
s — ¥p) ~ — G(1. 1) independent
n increments.

6
Y,— Y )~ —— G(.1
( 1) n—r+1( )

Accordingly,

0
nYi+m—DY=Y) 4+ n—r+ DY =Y~ 5x2[2r].

a 0
The left-hand side is equal to ZYi +(m —r)Y,. Thus T, , ~ 5x2[2r].
i1

(ii) Since the distribution of 7}, , is MLR in 7}, ,, the UMP test of size « is

(T, =1 {T > %x%_a[zr]} :
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(iii) The power function is

0 0
V() =P {Exz[Zr] > —Oxf_a[Zr]}

=P {Xz[Zr] > Z—Oxfa[zr]} )

442 X ~ B(20,60). Hy:0 = .15, H, : 0 # .15, @ = .05. The UMPU test is

I, X > Cy(b)
y2, X = Cy(b)
" (X) =140, Ci(6) < X < Ca(60)
vi, X = Ci(6p)
1, X < Cl(e()).

The test should satisfy the conditions
(i) E.5{¢°(X)} =« = 0.05.
(ii) E1s{X¢"(X)} = ¢E 5{X} = .15.

20 ,x Ry 20! X1 _ p\20-X
X(x)9°(1 UG e ST

19
= 206, X711 — 9y)0X
O(X _ 1) 0 ( 0)

= 3b(X — 1; 19, 6p).

Thus, we find Cy, y;, C», y» from the equations
@) Z b(j;20, .15) + C1b(Cy; 20, .15)

J<Xi

+2b(C2: 20, .15) + Y b(;j; 20, .15) = .05.

J>X>

@) ) b(j:19,.15) + 71b(C1319, .15)

j<X

+1ab(C2:19,.15) + Y b(j:19,.15) = 0.15.

J>X>
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We start with C; = B~1(.025;20,.15) =0, C, = B~'(.975;

20..15) =6
025
B(0:20, .15) = 0.3875, = ——0" — 6452
0.03875
975 — 9327
B(6:20. .15) = 9781, _ 2= Pl
( )=29 YI'= 9781 — 9327

B(5;20, .15) = .9327, y; = .932.
These satisfy (i). We check now (ii).
y1B(0; 19, .15) 4+ v»b(6; 19, .15) + (1 — B(6; 19, .15)) = 0.080576.
We keep C|, yi1, and C, and change y» to satisfy (ii); we get
y, = 0.1137138.

We go back to 1, with y; and recompute y,. We obtain y| = .59096.
With these values of y| and y,, Equation (i) yields 0.049996 and
Equation (ii) yields 0.0475. This is close enough. The UMPU test is

1. X >6
oo 01137, ifx =6
¢ (X) =19, if0< X <6

0.5909, if X =0.

451 X;,...,X, areiid. ~u+0G(,1), —oc0o < u <00, 0 <o < oo. The
m.s.s. is (nX (), U), where

U=> (X¢y— Xa) ~oG(,n—1)

i=2
nXqyy ~npu+0oG(,1)
X1y is independent of U.

(i) Find the UMPU test of size o of
Hy:p < py, o arbitrary
against

H, : > o, o arbitrary.
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The m.s.s. for F*is T = ZX,- = U + nX(yy. The conditional distribu-

i=1
tion of nX (1) given T is found in the following way.
(ii) T ~ u+o0G(1,n). That is,

N 1 t—u\"! t—u .
fT<>—UF(n)(T> exp(— - ) -

The joint p.d.f. of nX(;y and U is

1 Yy H 1 n—2 _—ujo
Juxau(y, u) = p CXP<— - ) ot e I(y = )
1 y—u u
= — —  — — ) I(y > .
o"T'(n —1) xp ( o a> =

We make the transformation

y=y y=y s=| 1 04
t=y+4+u u=t-—y )

The joint density of (nX ), T) is

1
Guxo, (¥, 1) = m(t — Y)W (1 > ),

Thus, the conditional density of nX), given T, is

&nxa),7(¥s 1)
Sfr(®)

_ =D —yy?
& —py-!
e O Gl e R )
(t— (t — )2

n—1 (1 y—,u)"2 .
= — , p<y<t.
(t—w r—pu

hﬂX(an(y | 1) =

It > Wiy > w)

It >y>nwn

The c.df. of n Xy | T, at pu = o is

Y~ Ho
I — o

n—1
Ho(ylt)=<1 > , Mo <y <t
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The (1 —a)-quantile of Hy(y|t#) is the solution y of
n—1
(1 - M) =1 — o, which is Cu(pto. 1) = jto + (t — o)1 —

t— o
(1 — )@=y, The UMPU test of size « is

1, ifnXq) > Co(po, T)
0 . (1) a\M0
¢ Xy | T) = {o, otherwise.

The power function of this test is

Y(n) = P {nXq) = Co(po, T)}

n—1
—1-E, :<1 - —C“(p;”_T;_ “) } .

T — uw~oG(l,n).Hence, for&§ =1 — (1 — )/,

yw=1-— [ (1 B —5>"_1 ey
L) Jo o y

=1-(1—-we’Pn—1;9),
where 6§ = (u — 1p)/o). This is a continuous increasing function of .
(iii) Testing
Hy: o0 =o0p, p arbitrary

H):0 # o0y, p arbitrary.

The m.s.s. for F*is X(y). Since U is independent of X(y), the conditional
test is based on U only. That is,

1, U = Cy(0op)
»°(U)=1{0, C,<U<C
1, U < Ci(op).

. 00 - 00 »
We can start with C;(op) = ?X£[2n —2] and Cy(x) = ?Xl_g
2 2
[2n —2].
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4.54

(i) Xy,..., X, areiid. N(/L, o?), —OO</L<OO 0 < 0 < 0o0.Them.s.s.

(i)

is (X, Q), where X = —ZX and Q = Z(X X)2 X and Q are

i=1
independent. We have to construct a test of

Hy: u+20>0
against
H :p+20 <0.

Obviously, if u > 0 then Hj is true. A test of Hy : > 0 versus H|" :
n<0is

X
1, i V" < —to[l,n—1]

0, otherwise.

¢(X,0)=

where §? = Q/(n — 1) is the sample variance. We should have a more
nX?
stringent test. Consider the statistic ~ ~ F[1,n — 1;A] where A =

2
‘2‘—” Notice that for F*, 2 = 402 or Ay = 2n. Let 0 = (u, o). If

0 € O, then A > 2n and if 6 € ®¢, A < 2n. Thus, the suggested test is

XZ
SRS =11 1f— > Fi_o[l,n — 1;2n]

0, otherw1se
The power function is
Y() = P{F[l,n — ;1] = Fi_[l,n — 1;2n]}.

The distribution of a noncentral F[1,n — 1;)] is like that of (1 +
2J)F[1 4+ 2J,n — 1], where J ~ Pois()) (see Section 2.8). Thus, the
power function is

Y =Ef{P{(1+2)F[1+2J,n—1]> Fi_4[1,n—1;2n] | J}}.

The conditional probability is an increasing function of J. Thus, by
Karlin’s Lemma, W () is an increasing function of A. Notice that

P{F[1,n — 1;A] <x}—e—*Z—P{(1 +2/)F[1+2j,n—1] <x).
Jj= 0

Thus, Fi_g[1,n — 1;A] 7 A.
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4.6.2 The GLR statistic is

sup L(ul,...,uk,o2)

AX)
SupL(l’Lla coes Mk 0121 ) a]?)
o2

k ni/2
0,
(s

N

k
where N = Zn,-, Qi = (n; — 1)S%. 52 ZQl/(N k).

i=1 i=1

N —k)S? k 2
_210gA(X)=N10g<( ) > Zn log <(n’ I)S)

k .
Zn logSZ—i—Zn log<i 1)

n;

k k
1—
Notice that if n; =--- = n; =n, then E nlog 1 ];] = 0. Thus ,for

i=1 n

k
large samples, as n — oo, the Bartlett test is: reject Hy if Zn,- log
i=1 i

is unknown.

2
14
= >
2_

X12_a [k — 1]. We have k — 1 degrees of freedom since o>

w o)

Let Q=) (X} +Y}) and P = X;¥;. Hy: p =0, o arbitrary; H :
i=1 i=1

o # 0, 0% arbitrary. The MLE of o under Hy is 6° = 22 The likelihood
n
of (p, 6?)is

L( = ; ! Q — =2 ﬂ
ST TE o Tl WD) Pl
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4.6.6

1
Thus, sup L(O, o?) = — exp(—n). We find now 62 and p that
0<o2<00 (Q/Zn)"

maximize L(p, o0?). Let I(p, 0?) = log L(p, o)

al n

1
. .  (0—2pP
907 = o2 T 201 = 1) @ 72D

8l np  p(Q—=2pP)—P(1—p?
p  1-—p? (1 — p2)20? '

Equating these partial derivatives to zero, we get the two equations

0—2pP
RS i
P P
) np + — = m(g —2pP).

2P
Solution of these equations gives the roots 6% = 22 and p = E Thus,
n

sup L(p,0) =

e
pP,o ¥ 2 n/2
8 (1-(2))
It follows that

AKX, Y) =

2P\?
A(X,Y) is small if (6) is small or P is close to zero.
Model IT of ANOVA is
Xijj=pn+a+ej, i=1,....,r j=1,...,n

where ¢;; e N(0, 6%), a; Sy N(O, 72), {eij} independent of {g;}.

St =) (X = X)*/(n = 1.

j=1
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Notice that X;; | @; ~ N(1 + a;, o). Hence, X;; ~ N(u, o2 + t2). More-
over,

S?ai~o’)’n—11/(n—=1), i=1,...,r

and

$2 = %Z St~ o x*[r(n — D1/r(n — 1).

i=l1

r _ _ _ 1 r _ _
(i) Slf = rnTl;(X[ — X)?, where X = ;;Xi. Given q;, X; and Sl.2
are conditionally independent. Since the distribution of S? does not
depend on q;, X; and Si2 are independent for all i = 1, ..., r. Hence

S is independent of .

2
(i) X; ~N (u, < —I—‘L’2) foralli =1, ..., r. Hence,
n

r _ 2
(& - X7~ (% + r2> Kl =11,
i=1

Thus,

Y& = 0~ @+ el - 1/ = .
i=1

F_S_,fwaz—i—ntz' x*r—11/r = 1)

(i) s T o7 - Dlri— 1)

S

1.2
~ <1 +n—2) Flr —1,r(n — D).
o

(iv) The ANOVA test of Hy : 7> =0, o arbitrary against H, : > > 0, ¢
arbitrary is the F test

¢(F)=H{F = Fio[r — 1,r(n — D]}.

(v) The power function is

2
¥ <T—2) =P {(1 +n<£>2) Flr —1,r(n — D] > Fi_o[r — 1,r(n — 1)]}
o o

1
—— F . r—1r(n—-1];.
ren(ey }

P{F[r—l,r(n— D] >
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Let

T\2 1
&q <<;> ) = Wﬂw[r -1, r(n — D]

v ((2)2> =1=F {F[r —Lrn =D <& ((5)2)}

—1) -1
FIr =1 rtn = ] ~ "0 X?[zr[(rn - 1])]

_rin=1) G (1.5
r—1  G(1, %)

r(n—1)

-1
where G, (1, rT> and G, (1, ) are independent.

1, =t _ _
r—Gl2 ( — ) r(n—1) ~ Beta (r la ”(” 1)> .
Gy (1. 55) + Gi (L ) 2 2

Hence,

G2 (1.57) /G (1. 25%) NBeta< ,
1+G2 (1551 /G (1, #452) 27 2

—1 _1
Let W = G, (1, r . )/G1 (1, r("z )).Thus,

—1 —1
P{W§$}=P{ﬂ<r2 ,r(”z ))5 1is}

(r -1 r(n— 1))
=1 s .
T+ 2 2

r—1 r(n—l))

319
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-1 2
Leté = — ¢, (1) . Then
r(n —1) o
T2 r—1 r(n—1)
— =1-1
H(G) =1 ()

<r(n—1) r—l)
=1 , .
T+& 2 2




CHAPTER 5

Statistical Estimation

PART I: THEORY
5.1 GENERAL DISCUSSION

Point estimators are sample statistics that are designed to yield numerical estimates of
certain characteristics of interest of the parent distribution. While in testing hypotheses
we are generally interested in drawing general conclusions about the characteristics
of the distribution, for example, whether its expected value (mean) is positive or
negative, in problems of estimation we are concerned with the actual value of the
characteristic. Generally, we can formulate, as in testing of hypotheses, a statisti-
cal model that expresses the available information concerning the type of distribu-
tion under consideration. In this connection, we distinguish between parametric and
nonparametric (or distribution free) models. Parametric models specify parametric
families of distributions. It is assumed in these cases that the observations in the
sample are generated from a parent distribution that belongs to the prescribed family.
The estimators that are applied in parametric models depend in their structure and
properties on the specific parametric family under consideration. On the other hand,
if we do not wish, for various reasons, to subject the estimation procedure to strong
assumptions concerning the family to which the parent distribution belongs, a distri-
bution free procedure may be more reasonable. In Example 5.1, we illustrate some
of these ideas.

This chapter is devoted to the theory and applications of these types of estimators:
unbiased, maximum likelihood, equivariant, moment equations, pretest, and robust
estimators.

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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5.2 UNBIASED ESTIMATORS

5.2.1 General Definition and Example

Unbiased estimators of a characteristic #(F) of F in F is an estimator 6(X)
satisfying

Er{0(X)} = 6(F), forall F e F, (5.2.1)

where X is a random vector representing the sample random variables. For example,
if 6(F) = Er{X}, assuming that E{|X|} < oo for all F € F, then the sample mean

- 1
X, = —Y_ X; is an unbiased estimator of 6(F). Moreover, if Vp{X} < oo for all
n

1 _
F € F, then the sample variance Srzl =—>(X;— X,)? is an unbiased estimator

of Vp{X}. We note that all the examples of unbiased estimators given here are
distribution free. They are valid for any distribution for which the expectation or the
variance exist. For parametric models one can do better by using unbiased estimators
which are functions of the minimal sufficient statistics. The comparison of unbiased
estimators is in terms of their variances. Of two unbiased estimators, the one having
a smaller variance is considered better, or more efficient. One reason for preferring
the unbiased estimator with the smaller variance is in the connection between the
variance of the estimator and the probability that it belongs to a fixed-width interval
centered at the unknown characteristic. In Example 5.2, we illustrate a case in which
the distribution-free estimator of the expectation is inefficient.

5.2.2 Minimum Variance Unbiased Estimators

In Example 5.2, one can see a case where an unbiased estimator, which is not a
function of the minimal sufficient statistic (m.s.s.), has a larger variance than the one
based on the m.s.s. The question is whether this result holds generally. The main
theorem of this section establishes that if a family of distribution functions admits a
complete sufficient statistic then the minimum variance unbiased estimator (MVUE)
is unique, with probability one, and is a function of that statistic. The following is
the fundamental theorem of the theory of unbiased estimation. It was proven by Rao
(1945, 1947, 1949), Blackwell (1947), and Lehmann and Scheffé (1950).

Theorem 5.2.1 (The Rao-Blackwell-Lehmann-Scheffé Theorem). Let F =
{F(x;0);0 € O} be a parametric family of distributions of a random vector X =
(X1, ..., X,). Suppose that = g(0) has an unbiased estimator §(X). If F admits a
(minimal) sufficient statistic T (X) then

o = E{¢g(X) | T(X)} (5.2.2)

is an unbiased estimator of w and

Vary{®} < Varg{g(X)}, (5.2.3)
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for all 6 € ©. Furthermore, if T (X) is a complete sufficient statistic then & is essen-
tially the unique minimum variance, unbiased (MVU) estimator, for each 0 in ©.

Proof. (i) Since T(X) is a sufficient statistic, the conditional expectation
E{g(X) | T(X)} does not depend on 8 and is therefore a statistic. Moreover, according
to the law of the iterated expectations and since g(X) is unbiased, we obtain

8(0) = Ep{§(X)}
= E{E{gX) | TX)}} (5.2.4)
= Eypl{w}, forall 0 €®.

Hence, @ is an unbiased estimator of g(6). By the law of the total variance,
Varg {g(X)} = Eg{Var{g(X) | T(X)}} + Varg{E{g(X) | T(X)}}.  (5.2.5)

The second term on the RHS of (5.2.5) is the variance of @. Moreover, Var{g(X) |
T(X)} > 0 with probability one for each 6 in ®. Hence, the first term on the RHS of
(5.2.5) is nonnegative. This establishes (5.2.3).

(ii) Let T(X) be a complete sufficient statistic and assume that & = ¢(T (X)).
Let @(X) be any unbiased estimator of w = g(0), which depends on T(X), i.e.,
A(X) = ¢o(T(X)). Then, Eg{®} = Ep{®(X)} for all 6. Or, equivalently

Eo{(T) —o(T)} =0, all 6 € ©. (5.2.6)

Hence, from the completeness of T (X), ¢1(T) = ¢»(T') with probability one for each
0 € ©. This proves that ® = ¢;(T) is essentially unique and implies also that & has
the minimal variance at each 6. QED

Part (i) of the above theorem provides also a method of constructing MVUE:s.
One starts with any unbiased estimator, as simple as possible, and then determines
its conditional expectation, given 7 (X). This procedure of deriving MVUE:s is called
in the literature “Rao-Blackwellization.” Example 5.3 illustrates this method.

In the following section, we prove and illustrate an information lower bound for
variances of unbiased estimators. This lower bound plays an important role in the
theory of statistical inference.

5.2.3 The Cramér-Rao Lower Bound for the One-Parameter Case

The following theorem was first proven by Fréchet (1943) and then by Rao (1945)
and Cramér (1946). Although conditions (i)—(iii), (v) of the following theorem coin-
cide with conditions (3.7.8) we restate them. Conditions (i)—(iv) will be labeled the
Cramér-Rao (CR) regularity conditions.
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Theorem 5.2.2. Let F be a one-parameter family of distributions of a random vector
X = (X4, ..., X,), having probability density functions (p.d.f.s) f(x;0), 6 € ©. Let
w(0) be a differentiable function of 0 and &(X) an unbiased estimator of w(0). Assume
that the following regularity conditions hold:

(i) © is an open interval on the real line.
(ii) %f(x;@) exists (finite) for every x and every 6 in ©, and {x : f(x;0) > 0}
does not depend on 9.

(iii) Foreach® in ®, there exists a § > 0 and a positive integrable function G(x; 6)
such that for all ¢ € (0 — 8,6 + 6)
. _ -0
fx¢) — f(x:0) < G(x:6).
¢—0

(iv) Foreach® in ®, there exists a8’ > 0 and a positive integrable function H(x;0)
such that, forall g € (0 — 8,60 + &)

fx¢) — f(x;0)

() e~

< H(x;0).

2
v) 0<1,0)=Ey {[% log f(X;G)i| } < oo foreach 0 € ©.

Then,

(@'(0))

Varg{o(X)} = 0%

forall 6 € ©. (5.2.7)

0
Proof. Consider the covariance, for a given 6 value, between ﬁlog f(X;0)
and ®(X). We have shown in (3.7.3) that under the above regularity conditions

d
Ey {% log (X 9)} = 0. Hence,

9 0
cov <£ log f(X;0), (?)(X)) =Ep {@ log f(X;0) - ‘?’(X)}

= /00 % log f(x;0) - o(x) f(x;0)dx  (5.2.8)

o0

% N &) f(x;0)dx = o' (6).
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The interchange of differentiation and integration is justified by condition (iv). On
the other hand, by the Schwarz inequality

2
(cov (% log £(X;0), d)(X))) < Var{®(X)} - 1,(0), (5.2.9)

0
since the variance of 30 log f(X;0) is equal to the Fisher information function 7, (),

0
and the square of the coefficient of correlation between ®(X) and 20 log f(X;6)

cannot exceed 1. From (5.2.8) and (5.2.9), we obtain the Cramér—Rao inequality
(5.2.7). QED

We show that if an unbiased estimator 8(X) has a distribution of the one-parameter
exponential type, then the variance of 6(X) attains the Cramér—Rao lower bound.
Indeed, let

£(8;0) = h(@) exp{dy(6) — K(0)}, (5.2.10)
where ¥ (0) and K (0) are differentiable, and ¥'(6) £ 0 for all 6 then

K'(©)

Eg{0} = 5.2.11
{0} +W’(9) ( )
and
~ =YK O)+ ¥'(6)K"(©H)

Vo{0) = ) 5.2.12
9{0} @) ( )

Since §(X) is a sufficient statistic, 7,,(6) is equal to
L(©) = (¥ (0))* Vo {0(X)}. (5.2.13)

Moreover, 8(X) is an unbiased estimator of g(9) = +K’(6)/v¥’'(9). Hence, we readily
obtain that

A [V"(O)K'©®) — ¥'O)K"©O)] w2
Vo{0(X)} = — = 0))°/1,(6). 5.2.14
p{0(X)} OVl X)) (8O /1,0).  ( )

We ask now the question: if the variance of an unbiased estimator 6(X) attains the
Cramér-Rao lower bound, can we infer that its distribution is of the one-parameter
exponential type? Joshi (1976) provided a counter example. However, under the right
regularity conditions the above implication can be made. These conditions were given
first by Wijsman (1973) and then generalized by Joshi (1976).

Bhattacharyya (1946) generalized the Cramér—Rao lower bound to (regular) cases
where w(0) is k-times differentiable at all 6. This generalization shows that, under
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further regularity conditions, if w”(8) is the ith derivative of w(6) and V isa k x k
positive definite matrix, for all 6, with elements

Vi =E L@ X0 Lo X: 6
ij = g{f(X,G)wf( > )f(X,Q)Wf( > )}’

then
Varg{®(X)} = (0"©0), ..., 0P @)V 0P ®), ..., 0®®)). (5.2.15)

Fend (1959) has proven that if the distribution of X belongs to the one-parameter
exponential family, and if the variance of an unbiased estimator of w(6), &(X),
attains the kth order Bhattacharyya lower bound (BLB) for all 6, but does not attain
the (k — 1)st lower bound, then ®(X) is a polynomial of degree k in U (X).

5.2.4 Extension of the Cramér-Rao Inequality to Multiparameter Cases

The Cramér—Rao inequality can be generalized to estimation problems in k-parameter
models in the following manner. Suppose that F is a family of distribution functions
having density functions (or probability functions) f(x; @) where § = (61, ..., 6;)
is a k-dimensional vector. Let 1(#) denote a k x k Fisher information matrix, with
elements

0 d
1;(0) = Ey {ﬁlogf(X;O)‘ ﬁlogf(X;O)}

J

i,j=1,..., k. We obviously assume that for each @ in the parameter space ©,
1;;(0) is finite. It is easy to show that the matrix /(@) is nonnegative definite. We will
assume, however, that the Fisher information matrix is positive definite. Furthermore,
let g1(0), ..., g.(0) be r parametric functions r = 1, 2, ..., k. Define the matrix of
partial derivatives

D@)={(D;0); i=1,....r; j=1,...,k}, (5.2.16)

where D;(0) = EYN gi(0). Let §(X) be an r-dimensional vector of unbiased estimators

J
of g1(0),...,g0),1i.e., &X)=(g:(X),..., & (X)). Let (&) denote the variance—
covariance matrix of g(X). The Cramér—Rao inequality can then be generalized,
under regularity conditions similar to those of the theorem, to yield the inequality

%(&) = DO)1(9)"'D'(6), (5.2.17)
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in the sense that X (8) — D(6)(1(#))~' D'() is a nonnegative definite matrix. In the
special case of one parameter function g(8), if § X) is an unbiased estimator of g(@)
then

Varg{2(X)} > (vg(0))(1(6))~" v g(0), (5.2.18)

d 0 '
where vg(0) = (a—glg(e), e a—ekg(0)> .

5.2.5 General Inequalities of the Cramér-Rao Type

The Cramér—Rao inequality is based on four stringent assumptions concerning the
family of distributions under consideration. These assumptions may not be fulfilled
in cases of practical interest. In order to overcome this difficulty, several studies
were performed and various different general inequalities were suggested. Blyth and
Roberts (1972) provided a general theoretical framework for these generalizations.
We present here the essential results.

Let Xy, ..., X, be independent and identically distributed (i.i.d.) random variables
having a common distribution F that belongs to a one-parameter family F, having
p.d.f. f(x;6),6 € ©. Suppose that g(¢) is a parametric function considered for esti-
mation. Let 7 (X) be a sufficient statistic for F and let (7") be an unbiased estimator
of g(0). Let W(T'; 0) be a real-valued random variable such that Vary{W(7T';60)} > 0
and finite for every 6. We also assume that 0 < Vary{g(T")} < oo for each 0 in ©.
Then, from the Schwarz inequality, we obtain

. (covg(§(T), W(T, 0))*
Varg{8(T)} > Ve (WT.0)] (5.2.19)

for every 6 € ®©. We recall that for the Cramér—Rao inequality, we have used
0 0
W(T;0) = 30 log f(X;0) = 29 log h(T';0), (5.2.20)

where h(t;0) is the p.d.f. of T at 6.
Chapman and Robbins (1951) and Kiefer (1952) considered a family of random
variables Wy(T;0), where ¢ ranges over ® and is given by the likelihood ratio

hT; o)
Wo(T:0) = hET'z)

. The inequality (5.2.19) then becomes

((¢) — 8(0))

Vare{§(T)} = Var, (W(T.0)) (5.2.21)



328 STATISTICAL ESTIMATION

One obtains then that (5.2.21) holds for each ¢ in ®. Hence, considering the supremum
of the RHS of (5.2.21) over all values of ¢, we obtain

_ 2
Varp{g(T)} > sup M, (5.2.22)

pc0 AP, 0)

where A(0, ¢) = Vary{Wy(T';6)}. Indeed,

cov(g(T), Wy(T, 0)) = Eg{8(T)} — Eo{8(T)} - Eg{Wy(T;0)}

(5.2.23)
= g(p) — g(O).

This inequality requires that all the p.d.f.s of T, i.e., h(z;60), 0 € ©, will be positive
on the same set, which is independent of any unknown parameter. Such a condition
restricts the application of the Chapman—Robbins inequality. We cannot consider it,
for example, in the case of a life-testing model in which the family F is that of location-
parameter exponential distributions, i.e., f(x;6) = I{x > 08}exp{—(x — 6)}, with
0 < 0 < oo. However, one can consider the variable Wy(T'; 0) for all ¢ values such
that h(t; @) = 0 on the set Ny = {¢ : h(¢;0) = 0}. In the above location-parameter
example, we can restrict attention to the set of ¢ values that are greater than ®. If we
denote this set by C(0) then we have the Chapman—Robbins inequality as follow:

_ 2
Varg{g(T)} > sup M. (5.2.24)

secioy A0, )

The Chapman—Robbins inequality is applicable, as we have seen in the previous
example, in cases where the Cramér—Rao inequality is inapplicable. On the other hand,
we can apply the Chapman—Robbins inequality also in cases satisfying the Cramér—
Rao regularity conditions. The question is then, what is the relationship between
the Chapman—Robbins lower bound and Cramér—Rao lower bound. Chapman and
Robbins (1951) have shown that their lower bound is greater than or equal to the
Cramér-Rao lower bound for all 6.

5.3 THE EFFICIENCY OF UNBIASED ESTIMATORS
IN REGULAR CASES

Let 1(X) and g,(X) be two unbiased estimators of g(f). Assume that the den-
sity functions and the estimators satisfy the Cramér—Rao regularity conditions. The
relative efficiency of g;(X) to ,(X) is defined as the ratio of their variances,

o} 6)
a2 )

Eo (81, 82) = (5.3.1)
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where 02(9) (i =1,2) is the variance of g;(X) at 6. In order to compare all the

unblased estimators of g(6) on the same basis, we replace o; (9) by the Cramér—Rao
lower bound (5.2.7). In this manner, we obtain the efﬁc1ency function

(g'©)

59@) = W,

(5.3.2)

for all & € ®. This function assumes values between zero and one. It is equal to one,
for all 6, if and only if agz(ﬁ)) attains the Cramér—Rao lower bound, or equivalently, if
the distribution of ¢(X) is of the exponential type.

Consider the covariance between 2(X) and the score function S(X;6) =

0
2 log f(x;60). As we have shown in the proof of the Cramér—Rao inequality that
(&'O) = p; @, H1B)0;), (5.3.3)

where py(g, S) is the coefficient of correlation between the estimator ¢ and the score
function, S(X; ), at 6. Hence, the efficiency function is

Eo(®) = pp (8, S). (5.3.4)

Moreover, the relative efficiency of two unbiased estimators g; and g, is given by

Eo(81, &) = pp(81, 8)/pp(82. S). (5.3.9)

This relative efficiency can be expressed also in terms of the ratio of the Fisher
information functions obtained from the corresponding distributions of the estimators.
That s, if 7(g;;60),i = 1, 2, is the p.d.f. of g; and 1% (9) = EG{[% log h(g;;6)]%} then

1816
E(81, &) = Iﬁz—EG;’ 0ec0. (5.3.6)

It is a straightforward matter to show that for every unbiased estimator ¢ of g(6) and
under the Cramér—Rao regularity conditions

130) = (g'(0))/o;(6), forall 6 € ©. (5.3.7)

Thus, the relative efficiency function (5.3.6) can be written, for cases satisfying the
Cramér—Rao regularity condition, in the form

(g](0)* 3,0
@O o2 )

& (81, 82) = (5.3.8)
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where g;(X) and g,(X) are unbiased estimators of g;(f) and g,(9), respectively. If
the two estimators are unbiased estimators of the same function g(9) then (5.3.8)
is reduced to (5.3.1). The relative efficiency function (5.3.8) is known as the Pit-
man relative efficiency. It relates both the variances and the derivatives of the bias
functions of the two estimators (see Pitman, 1948).

The information function of an estimator can be generalized to the multiparameter
regular case (see Bhapkar, 1972). Let @ = (6, ..., 6;) be a vector of k-parameters
and /(#) be the Fisher information matrix (corresponding to one observation). If
g10),...,8-(0), 1 <r <k, are functions satisfying the required differentiability
conditions and g;(X), ..., &,(X) are the corresponding unbiased estimators then,
from (5.2.18),

1
|Zo(8)| > ;|D<0>1*1(0>D’<o>|, (5.3.9)

where n is the sample size. Note that if r = k then D(#) is nonsingular (the parametric
functions g(#), ..., gx(#) are linearly independent), and we can express the above
inequality in the form

|D@)I”

1(0 _—
0= 5@

forall @ € ©. (5.3.10)

Accordingly, and in analogy to (5.3.7), we define the amount of information in the
vector estimator g as

|D(9)
Z.(0) = — (5.3.11)
¢ 1 Z6(2)|
If 1 <r < kbut D(@) is of full rank r, then
|D(6)D'(6)]
Z,0) = ——. (5.3.12)
¢ [Zo(2)l

The efficiency function of a multiparameter estimator is thus defined by DeGroot and
Raghavachari (1970) as

7,0
Eo(8n) = Igio;‘ (5.3.13)

In Example 5.9, we illustrate the computation needed to determine this efficiency
function.
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5.4 BEST LINEAR UNBIASED AND LEAST-SQUARES ESTIMATORS

Best linear unbiased estimators (BLUEs) are linear combinations of the observations
that yield unbiased estimates of the unknown parameters with minimal variance. As
we have seen in Section 5.3, the uniformly minimum variance unbiased (UMVU)
estimators (if they exist) are in many cases nonlinear functions of the observations.
Accordingly, if we confine attention to linear estimators, the variance of the BLUE
will not be smaller than that of the UMVU. On the other hand, BLUEs may exist

when UMVU estimators do not exist. For example, if X1, ..., X,, and i.i.d. random
variables having a Weibull distribution G'/#(X, 1) and both A and 8 are unknown
0 < A, B < oo, the m.s.s. is the order statistic (X(jy, ..., X(;)). Suppose that we wish
to estimate the parametric functions 4 = — log A and 0 = —. There are no UMVU

estimators of u and o. However, there are BLUEs of these parameters.

5.4.1 BLUE:s of the Mean

We start with the case where the n random variables have the same unknown mean, i
and the covariance matrix is known. Thus, let X = (X4, ..., X,,)’ be arandom vector;
E{X}=ul,1'=(1,1,...,1); u is unknown (real). The covariance of X is . We
assume that X is finite and nonsingular. A linear estimator of w is a linear function
= A'X, where A is a vector of known constants. The expected value of i is u if,
and only if, A’1 = 1. We thus consider the class of all such unbiased estimators and
look for the one with the smallest variance. Such an estimator is called best linear
unbiased (BLUE). The variance of 2 is V{A'X} = A’ A. We, therefore, determine
AY that minimizes this variance and satisfies the condition of unbiasedness. Thus, we
have to minimize the Lagrangian

LA, 7)=2Th+t(1 —1'1). (54.1)

It is simple to show that the minimizing vector is unique and is given by

2 = 1?;:;_1111 (5.4.2)
Correspondingly, the BLUE is
a=1%'X/1%7'1. (5.4.3)
Note that this BLUE can be obtained also by minimizing the quadratic form
Q) = (X — pu1y 7' (X — pl). (5.4.4)

In Example 5.12, we illustrate a BLUE of the form (5.4.3).
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5.4.2 Least-Squares and BLUEs in Linear Models

Consider the problem of estimating a vector of parameters in cases where the means
of the observations are linear combinations of the unknown parameters. Such models
are called linear models. The literature on estimating parameters in linear mod-
els is so vast that it would be impractical to try listing here all the major studies.
We mention, however, the books of Rao (1973), Graybill (1961, 1976), Anderson
(1958), Searle (1971), Seber (1977), Draper and Smith (1966), and Sen and Srivastava
(1990). We provide here a short exposition of the least-squares theory for cases of
full linear rank.
Linear models of full rank. Suppose that the random vector X has expectation

E{X} = AB, (5.4.5)

where X is an n x 1 vector, A is an n X p matrix of known constants, and 8 a p x 1
vector of unknown parameters. We furthermore assume that 1 < p <nand A is a
matrix of full rank, p. The covariance matrix of X is I = 021, where o2 is unknown,
0 < 02 < 0o. An estimator of 8 that minimizes the quadratic form

0(B) = (X — ABY(X — AB) (5.4.6)

is called the least-squares estimator (LSE). This estimator was discussed in Exam-
ple 2.13 and in Section 4.6 in connection with testing in normal regression models.
The notation here is different from that of Section 4.6 in order to keep it in agree-
ment with the previous notation of the present section. As given by (4.6.5), the LSE
of B is

B=AATAX. (5.4.7)

Note that B is an unbiased estimator of B. To verify it, substitute AB in (5.3.7)
instead of X. Furthermore, if BX is an arbitrary unbiased estimator of § (B a
p x n matrix of specified constants) then B should satisfy the condition BA = I.
Moreover, the covariance matrix of BX can be expressed in the following manner.
Write B =B — ST'A’ + S7'A’, where S = A’A. Accordingly, the covariance matrix
of BX is

(BX) = X(CX) + I(B) + 2X(CX, B), (5.4.8)

where C = B — S7'A/, B is the LSE and ¥ (CX, fi) is the covariance matrix of CX
and B. This covariance matrix is

T(CX, B) = 6X(B — ST1AHAS!

(5.4.9)
=o2(BAS~! — S =0,
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since BA = I. Thus, the covariance matrix of an arbitrary unbiased estimator of §
can be expressed as the sum of two covariance matrices, one of the LSE, ﬁ , and one
of CX. X(CX) is a nonnegative definite matrix. Obviously, when B = S~'A’ the
covariance matrix of CX is 0. Otherwise, all the components of [9 have variances
which are smaller than or equal to that of BX. Moreover, any linear combination of
the components of B has a variance not exceeding that of BX. It means that the LSE,
B, is also BLUE. We have thus proven the celebrated following theorem.

Gauss—-Markov Theorem. IfX = AB + €, where A is a matrix of full rank, E{€} =
0 and X(¢) = o*I, then the BLUE of any linear combination ' is \' B, where X is
a vector of constants and B is the LSE of B. Moreover,

Var{A'B} = o2A/S 7', (5.4.10)
where S = A’ A.

Note that an unbiased estimator of o2 is

A2 1 ! —1 47
6% = X'(I —AS~'ANHX. (5.4.11)
n—p

If the covariance of X is 02V, where V is a known symmetric positive definite
matrix then, after making the factorization V = DD’ and the transformation Y =
D~'X the problem is reduced to the one with covariance matrix proportional to 1.
Substituting D~'X for X and D~ A for A in (5.3.7), we obtain the general formula

B=AV'ATAVIX. (5.4.12)

The estimator (5.4.12) is the BLUE of B and can be considered as the multidimen-
sional generalization of (5.4.3).

As is illustrated in Example 5.10, when V is an arbitrary positive definite matrix,
the BLUE (5.3.12) is not necessarily equivalent to the LSE (5.3.7). The conditions
under which the two estimators are equivalent were studied by Watson (1967) and
Zyskind (1967). The main result is that the BLUE and the LSE coincide when the
rank of Ais p, 1 < p < n, if and only if there exist p eigenvectors of V which form

a basis in the linear space spanned by the columns of A. Haberman (1974) proved
P

the following interesting inequality. Let 8 = Zci Bi, where (cy, ..., cp) are given
i=1

constants. Let 6 and 6* be, correspondingly, the BLUE and LSE of . If 7 is the ratio

of the largest to the smallest eigenvalues of V then

Var{} 4t
> > .
~ Var{6*} — (1 +1)?

(5.4.13)
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5.4.3 Best Linear Combinations of Order Statistics

Best linear combinations of order statistics are particularly attractive estimates when
the family of distributions under consideration depends on location and scale parame-
ters and the sample is relatively small. More specifically, suppose that F is a location-
and scale-parameter family, with p.d.f.s

1 _
fsp,0)=—¢ (x M)
o

o

where —0co < u < o0 and 0 < o < o0o. Let U = (X — )/o be the standardized
random variable corresponding to X. Suppose that X, ..., X, are i.i.d. and let
X* = (X, ..., X)) be the corresponding order statistic. Note that

X(i)’VM—FO'U(,‘), i=1,...,l’l,

where Uy, ..., U, are i.i.d. standard variables and (Uyyy, . . ., U,) the corresponding
order statistic. The p.d.f. of Uis ¢(u). If the covariance matrix, V, of the order statistic
Way, - ., Uyy) exists, and if ¢ = (ay, . .., &) denotes the vector of expectations of
this order statistic, i.e., o; = E{U;)},i = 1, ..., n, then we have the linear model

X* = [1, «] (g) + €, (5.4.14)

where E{e*} = 0 and Je*) = V. This covariance matrix is known. Hence, according
to (5.3.12), the BLUE of (u, o) is

i vt rv-le\ T/ rvoixe
— . (5.4.15)
& Ve «'V ' ' VIX*
Let
A=AV "DV ie)— AV 'e)
and
C=v'de —al)V7'/x,

then the BLUE can be written as

(5.4.16)
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The variances and covariances of these BLUES are

0.2
vipl = T(a’C_'a),
(5.4.17)
0_2
Vi6) = 7(1/c—11),

and
2
cov(fL, 6) = —%(1’\/—1«).

As will be illustrated in the following example the proposed BLUE, based on all the
n order statistics, becomes impractical in certain situations.

Example 5.11 illustrates an estimation problem for which the BLUE based on
all the n order statistics can be determined only numerically, provided the sample is
not too large. Various methods have been developed to approximate the BLUEs by
linear combinations of a small number of selected order statistics. Asymptotic (large
sample) theory has been applied in the theory leading to the optimal choice of selected
set of k, k < n, order statistics. This choice of order statistics is also called spacing.
For the theories and methods used for the determination of the optimal spacing see
the book of Sarhan and Greenberg (1962).

5.5 STABILIZING THE LSE: RIDGE REGRESSIONS

The method of ridge regression was introduced by Hoerl (1962) and by Hoerl
and Kennard (1970). A considerable number of papers have been written on the
subject since then. In particular see the papers of Marquardt (1970), Stone and
Conniffe (1973), and others. The main objective of the ridge regression method is
to overcome a phenomenon of possible instability of least-squares estimates, when
the matrix of coefficients S = A’A has a large spread of the eigenvalues. To be more
specific, consider again the linear model of full rank: X = A + €, where E{e} =0
and X(e) = o2I. We have seen that the LSE of B, [3 = S7'A’X, minimizes the
squared distance between the observed random vector X and the estimate of its
expectation AB, i.e., ||[X — ABJ|%. ||a|| denotes the Euclidean length of the vector a,

n
ie., ||a]| = (Za?) . As we have shown in Section 5.3.2, the LSE in the present
i=1

model is BLUE of 8. However, if A is ill-conditioned, in the sense that the positive
definite matrix S = A’A has large spread of the eigenvalues, with some being close
to zero, then the LSE f may be with high probability very far from S. Indeed, if
L> = ||B — BII” then

E{L* = o*tr{S7"}. (5.5.1)
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Let P be an orthogonal matrix that diagonalizes S, i.e., PSP’ = A, where A is
a diagonal matrix consisting of the eigenvalues (A1, ...,A,) of § (all positive).
Accordingly

V4
1
E{L*} =06>) —. 5.5.2
{ G,:ZIM (5.5.2)

We see that E {L2} > o2 L p , where An;, is the smallest eigenvalue. A very large

value of E{L?} means that at least one of the components of § has a large variance.
This implies that the corresponding value of 8; may with high probability be far from
the true value. The matrix A in experimental situations often represents the levels
of certain factors and is generally under control of the experimenter. A good design
will set the levels of the factors so that the columns of A will be orthogonal. In this
case S=1,A=...=X,=1and E{L?} attains the minimum possible value po?
for the LSE. In many practical cases, however, X is observed with an ill-conditioned
coefficient matrix A. In this case, all the unbiased estimators of B are expected to
have large values of L. The way to overcome this deficiency is to consider biased
estimators of 8 which are not affected strongly by small eigenvalues. Hoerl (1962)
suggested the class of biased estimators

Br(k) = [A'A +kIT'A'X (5.5.3)

with k > 0, called the ridge regression estimators. It can be shown for every k > 0,
B*(k) has smaller length than the LSE B, i.e., ||f*(k)|| < ||B]|. The ridge estimator is
compared to the LSE. If we graph the values of B (k) as functions of k we often see
that the estimates are very sensitive to changes in the values of k close to zero, while
eventually as k grows the estimates stabilize. The graphs of (k) fori =1,...,k
are called the ridge trace. It is recommended by Hoerl and Kennard (1970) to choose
the value of k at which the estimates start to stabilize.

Among all (biased) estimators B of 8 that lie at a fixed distance from the origin the
ridge estimator B*(k), for a proper choice of k, minimizes the residual sum of squares
[|X — ABJ|2. For proofs of these geometrical properties, see Hoerl and Kennard
(1970). The sum of mean-squared errors (MSEs) of the components of ff *(k) is

p P 2

E{L*(k)} = E{||f*(k) — BIP*) = o Z i k)2 CY o 659

i=1 i=1

where y = HB and H is the orthogonal matrix diagonalizing A’A. E{L?(k)}
is a differentiable function of k, having a unique minimum k®(y). Moreover,
E{L?*(k°(B))} < E{L?*(0)}, where E{L?(0)} is the sum of variances of the LSE com-
ponents, as in (5.4.2). The problem is that the value of k() depends on y and if k is
chosen too far from k°(y), E{L*(k)} may be greater than E{L?(0)}. Thus, a crucial
problem in applying the ridge-regression method is the choice of a flattening factor
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k. Hoerl, Kennard, and Baldwin (1975) studied the characteristics of the estimator
obtained by substituting in (5.4.3) an estimate of the optimal k°(y). They considered
the estimator

pé?

k=—"—,
18117

(5.5.5)

where B is the LSE and &2 is the estimate of the variance around the regression line,
as in (5.4.11). The estimator ﬁ*(l@) is not linear in X, since k is a nonlinear function
of X. Most of the results proven for a fixed value of k£ do not necessarily hold when
k is random, as in (5.5.5). For this reason Hoerl, Kennard, and Baldwin performed
extensive simulation experiments to obtain estimates of the important characteristics
of B*(k). They found that with probability greater than 0.5 the ridge-type estimator

ﬁ*(l%) is closer (has smaller distance norm) to the true 8 than the LSE. Moreover,
this probability increases as the dimension p of the factor space increases and as the
spread of the eigenvalues of S increases. The ridge type estimator B (k) are similar to
other types of nonlinear estimators (James—Stein, Bayes, and other types) designed
to reduce the MSE. These are discussed in Chapter 8.

A more general class of ridge-type estimators called the generalized ridge regres-
sion estimators is given by

B=AA+0O)'AX, (5.5.6)

where C is a positive definite matrix chosen so that A’A 4+ C is nonsingular. [The
class is actually defined also for A’A + C singular with a Moore—Penrose generalized
inverse replacing (A’A 4+ C)~'; see Marquardt (1970).]

5.6 MAXIMUM LIKELIHOOD ESTIMATORS

5.6.1 Definition and Examples

In Section 3.3, we introduced the notion of the likelihood function, L(6;x) defined
over a parameter space ®, and studied some of its properties. We develop here an
estimation theory based on the likelihood function.

The maximum likelihood estimator (MLE) of 6 is a value of 6 at which the
likelihood function L(8; x) attains its supremum (or maximum). We remark that if
the family F admits a nontrivial sufficient statistic 7'(X) then the MLE is a function of
T (X). This is implied immediately from the Neyman—Fisher Factorization Theorem.
Indeed, in this case,

f(x:0) = h(x)g(T (x);0),

where A(x) > 0 with probability one. Hence, the kernel of the likelihood function
can be written as L*(6;x) = g(T(x);6). Accordingly, the value 6 that maximizes it
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depends on T (x). We also notice that although the MLE is a function of the sufficient
statistic, the converse is not always true. An MLE is not necessarily a sufficient
statistic.

5.6.2 MLEs in Exponential Type Families

Let Xy,..., X, be i.i.d. random variables having a k-parameter exponential type
family, with a p.d.f. of the form (2.16.2). The likelihood function of the natural
parameters is

k
LX) =expi Yy wiTi(X)—nK@)t, (5.6.1)
i=1
where
T.(X) = ZU,»(X,»), i=1,... k.
j=1
The MLEs of v, ..., ¥y are obtained by solving the system of k equations

B I
3_1//1 K@) = . ;Ul(xj%

(5.6.2)
0

1 n
Fr K@) =~ ; Ur(X ).

Note that whenever the expectations exist, Ey{U;(X)} = dK(¥)/0y; for each
0 n
i=1,...,k Hence, if X;,..., X, are i.id. Ey {WK(III)} = 0K ()/0y;, for

eachi =1, ..., k, where 1/} is the vector of MLEs. For all points ¥ in the interior of

2
KW)i, j=1, ...,k) exists and is

the parameter space n, the matrix (—

0V 9Y; X
positive definite for all ¥ since K (¢) is convex. Thus, the root ¥ of (5.6.2) is unique
and is a m.s.s.

5.6.3 The Invariance Principle

If the vector @ = (6, ..., 6;) is reparametrized by a one-to-one transformation ¥, =
g1(0), ..., Y = gr(0) then the MLEs of ; are obtained by substituting in the g-
functions the MLEs of 6. This is obviously true when the transformation § — ¥
is one-to-one. Indeed, if 6; = g L), ....6, = 8 !(y) then the likelihood function
L(0;x) can be expressed as a function of ¥, L(gfl(lﬁ), R g,:l(wlf); x).If @, ..., 60



PART I: THEORY 339

is a point at which L(#, x) attains its supremum, and if 1/} = (g @, ..., 8k (6)) then,
since the transformation is one-to-one,

sup L (8:x) = L@O:;x)=Lg ' W), ... @)ix) = L") = sup L*(¥3x),
(5.6.3)

where L*(¥;x) is the likelihood, as a function of . This result can be extended to
general transformations, not necessarily one-to-one, by a proper redefinition of the
concept of MLE over the space of the ¥-values. Let ¥ = g(6) be a vector valued
function of @; i.e., ¥ = g(@) = (g1(9), ..., gk(#)) where the dimension of g(@), r,
does not exceed that of 0, k.

Following Zehna (1966), we introduce the notion of the profile likelihood function
of y = (Y1, ..., ¥,). Define the cosets of #-values

G) =1{6:8(0) =¥}, (5.6.4)

and let L(0;x) be the likelihood function of § given x. The profile likelihood of ¥
given x is defined as

L*(¥;x) = sup L(0;x). (5.6.5)
0eG(¥)

Obviously, in the one-to-one case L*(0;x) = L(gl_'(0), e 8 L0);x,). Generally,
we define the MLE of ¥ to be the value at which AL*(w//; X) attainsAits supremum. It is
easy then to prove that if  is an MLE of § and ¥ = g(@), then ¢ is an MLE of ¢,
ie.,

sup L*(¥;%) = L*(¥; x). (5.6.6)
12

5.6.4 MLE of the Parameters of Tolerance Distributions

Suppose that k-independent experiments are performed at controllable real-valued
experimental levels (dosages) —o0o0 < x; < ... < xx < 00. At each of these levels
n; Bernoulli trials are performed (j = 1, ..., k). The success probabilities of these
Bernoulli trials are increasing functions F'(x) of x. These functions, called tolerance
distributions, are the expected proportion of (individuals) units in a population whose
tolerance against the applied dosage does not exceed the level x. The model thus
consists of k-independent random variables Ji, . .., J; suchthat J; ~ B(n;, F(x;;8)),
i=1,...,k,where® = (6,,...,6,),1 <r < k,is a vector of unknown parameters.
The problem is to estimate 6. Frequently applied models are

P(x + Bx), normal distributions;
F(x;0) = { (1 +exp{—(a + Bx))~', logistic distributions; (5.6.7)

exp{— exp{—(a + Bx)}}, extreme-value distribution.
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We remark that in some of the modern literature the tolerance distributions are called
link functions (see Lindsey, 1996). Generally, if F(x + Bx;) is the success proba-
bility at level x;, the likelihood function of («, B), given Ji, ..., Jy and xy, ..., Xz,
nl,...,nk,is

k

F ; J ok
L gllxm=]] [%} JI0 = Fle+ g1, (5.6.8)
i=1 i=1

and the log-likelihood function is

F(a + Bx;)

ST @t o + Zn log(1 — F(a + Bx))).

k
lOgL(Ol, ﬂ | J9 X, l'l) = Z Ji 10
i=l

The MLE of « and 8 are the roots of the nonlinear equations

i fle+ Bx)) i fla+ Bx))
JF(a+,3xj)F(a+,ij) = JF(a+,3xj) (5.69)
fla+ Bx)) . f(a+ Bx;) -
Z xjJj Z”Jx/—
- F(a + Bxj)F(a + Bx)) o F(a + Bx))

where f(z) = F'(z) is the p.d.f. of the standardized distribution F(z) and F(z) =
1 — F(2).
Let p; = J;/n;, i =1, ..., k, and define the function

G(z;p) = % —00 < 7 < 00. (5.6.10)

Accordingly, the MLEs of o and g are the roots @ and $ of the equations
k
> niG@ + Pxiz pi) =0 (5.6.11)
i=1
and
k
> _xiniG@ + fxis pi) = 0.
i=1

The solution of this system of (generally nonlinear) equations according to the
Newton—Raphson method proceeds as follows. Let &, and fy be an initial solution.



PART I: THEORY 341

The adjustment after the jth iteration (j =0,1,...) is &4 =@&; + da; and
Bj+1 = Bj + 8B, where dcr; and §B; are solutions of the linear equations

k k
i=

ZW,'U) ixi VVi(j) S ZYi(j)
J

! i=1 =1 , (5.6.12)

k k | «
. ) . 58 .
E X; ‘/Vl(j) E xi VVIU) IBJ E X; Yl'(j)
i=1 i=1

i=1
where

WY = n:G'@; + Bixi; pi) (5.6.13)
and

Yi(j) = —n;G(@; + B;xi; pi)

and G'(z; p) = %G(z; p). The linear equations (5.6.12) resemble the normal
equations in weighted least-squares estimation. However, in the present problems the
weights depend on the unknown parameters o and 8. In each iteration, the current
estimates of o and § are substituted. For applications of this procedure in statistical
reliability and bioassay quantal response analysis, see Finney (1964), Gross and
Clark (1975), and Zacks (1997).

5.7 EQUIVARIANT ESTIMATORS

5.7.1 The Structure of Equivariant Estimators

Certain families of distributions have structural properties that are preserved under

transformations of the random variables. For example, if X has an absolutely con-

tinuous distribution belonging to a family F which depends on location and scale
X —

.. . 1
parameters, i.e., its p.d.f. is f(x;u,0) = —¢ , where —00 < < 00 and
o

0 < 0 < oo, then any real-affine transformation of X, given by
[, B]1X =a+ X, —-o0o<a<oo, 0<B<ox

YR

G
A =o -+ Buand 6 = Bo. Thus, the distribution of Y belongs to the same family F.

The family F is preserved under transformations belonging to the group G = {[«, B1;
—00 < o < 00,0 < B < oo} of real-affine transformations.

In this section, we present the elements of the theory of families of distributions
and corresponding estimators having structural properties that are preserved under

1
yields arandom variable Y = o 4+ X withp.d.f. f(y; u,0) = —¢ , Where
G
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certain groups of transformations. For a comprehensive treatment of the theory and
its geometrical interpretation, see the book of Fraser (1968). Advanced treatment
of the subject can be found in Berk (1967), Hall, Wijsman, and Ghosh (1965),
Wijsman (1990), and Eaton (1989). We require that every element g of G be a
one-to-one transformation of X onto X. Accordingly, the sample space structure
does not change under these transformations. Moreover, if B is the Borel o-field on
X then, for all g € G, we require that Py[gB] will be well defined for all B € B
and 6 € ©. Furthermore, as seen in the above example of the location and scale
parameter distributions, if 6 is a parameter of the distribution of X the parameter of
Y = gX is g0, where g is a transformation on the parameter space ® defined by the
relationship

Py|B] = PylgB], forevery B e B. (5.7.1)

In the example of real-affine transformations, if ¢ = [, B] and 6 = (u, o), then
g(u, o) = (e + Bu, Bo). We note that g® = O for every g corresponding to g in

G. Suppose that X1, ..., X, are i.i.d. random variables whose distribution F' belongs
to a family F that is preserved under transformations belonging to a group G. If
T(Xi,...,X,)is a statistic, then we define the transformations g on the range 7 of
T(Xy,...,Xp,), corresponding to transformations g of G, by
8T (xy,...,xy)=T(gxy, ..., 8gxy). (5.7.2)
A statistic S(X1, ..., X,) is called invariant with respect to G if
88Xy, ..., X)) =SX,,...,X,) forevery g €g. (5.7.3)

A coset of x” with respect to G is the set of all points that can be obtained as images
of x%, ie.,

C(x% ={x:x =gx° forall geg).

Such a coset is called also an orbit of G in X through x*. If x° = (x¥, ..., x0) is a
given vector, the orbit of G in X through x" is the coset

Cx)={x:x= (gx?, ceey gx,?), forall g € G}.

If x( and x® belong to the same orbit and S(x) = S(xy, ..., x,) is invariant with
respect to G then S(x) = §(x?). A statistic U(X) = U(X, ..., X,) is called max-
imal invariant if it is invariant and if XV and X® belong to two different orbits then
UXD) £ U(X?®). Every invariant statistic is a function of a maximal invariant
statistic.
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If (X, ..., X,) is an estimator of 6, it would be often desirable to have the
property that the estimator reacts to transformations of G in the same manner as the
parameters 6 do, i.e.,

O(gx) = gH(x), forevery g € G. (5.7.4)

5.7.2 Minimum MSE Equivariant Estimators

Estimators satisfying (5.7.4) are called equivariant. The objective is to derive an
equivariant estimator having a minimum MSE or another optimal property. The
algebraic structure of the problem allows us often to search for such optimal estimators
in a systematic manner.

5.7.3 Minimum Risk Equivariant Estimators

A loss function L(8(X), 6) is called invariant under G if
L(g0(X), g0) = L(0(X), 6), (5.7.5)

forall® € ® and all g € G.

The coset C(6y) = {6;0 = gby, g € G} is called an orbit of G through 6, in ®. We
show now that if é(X) is an equivariant estimator and L(é(X), 0) is an invariant loss
function then the risk function R(é ,0)=FE {L(é(X), 0)} is constant on each orbit of
G in ©. Indeed, for any g € G, if the distribution of X is F(x;0) and the distribution
of Y = gX is F(y; g0), then if § is equivariant

R, 0) = fL(é(x),e)dF(x;e)

_ / L(0(x), §0)d F(x:0)

= / L(@(gx), §0)dF(x;0) (5.7.6)

= / L@(y), §0)dF(y; go)
= R, g0), forallgeg.

Thus, whenever the structure of the model is such that ® contains only one orbit
with respect to G, and there exist equivariant estimators with finite risk, then each
such equivariant estimator has a constant risk function. In Example 5.23, we illustrate
such cases. We consider there the location and scale parameter family of the normal
distributions N(u, o). This family has a parameter space ®, which has only one orbit
with respect to the group G of real-affine transformations. If the parameter space has
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various orbits, as in the case of Example 5.24, there is no global uniformly min-
imum risk equivariant estimator, but only locally for each orbit. In Example 5.26,
we construct uniformly minimum risk equivariant estimators of the scale and shape
parameters of Weibull distributions for a group of transformations and a correspond-
ing invariant loss function.

5.7.4 The Pitman Estimators

We develop here the minimum MSE equivariant estimators for the special models
of location parameters and location and scale parameters. These estimators are
called the Pitman estimators.

Consider first the family F of location parameters distributions, i.e., every p.d.f.
of F is given by f(x;0) = ¢(x —0), —00 < 6 < 00. ¢(x) is the standard p.d.f.
According to our previous discussion, we consider the group G of real translations.
Leté(X) be an equivariant estimator of 8. Then, writing T = (é s Xy — 0 v Xy —
é), where Xy <... < X, for any equivariant estimator, d(X), of 0, we
have

dX)=0+¢Xa)—0,...,Xw —0).

Note that U = (X (1) — 0,..., Xy — é) has a distribution that does not depend on 6.
Moreover, since 6(X) is an equivariant estimator, we can write

0(X) =6 + F(Y), whereY =X —61.
Thus, the MSE of d(X) is
MSE{d} = E{[F(Y) + ¥ (X1) = 0, ..., Xy — DI*}. (5.7.7)

It follows immediately that the function y(U) which minimizes the MSE is the
conditional expectation

vOU) = —E{F(Y) | U}. (5.7.8)
Thus, the minimum MSE equivariant estimator is
d°(X) = 6(X) — E{F(Y) | U}. (5.7.9)

This is a generalized form of the Pitman estimator. The well-known specific form
of the Pitman estimator is obtained by starting with A(X) = X(1y. In this case,
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F(Y) = Y1), where Y(y is the minimum of a sample from a standard distribution.
Formula (5.7.9) is then reduced to the special form

d°X) = Xy — E{Yq) | Xo) — Xty - -+ Xy — X))

/ up@)] [6(Ye) + wdu
-0 i=2

(5.7.10)
=X - —3 " ;
| sw[Totro + wdu
- i=2
where Y;y = Xy — X1y, i =2, ..., n. In the derivation of (5.7.9), we have assumed

that the MSE of d(X) exists. A minimum risk equivariant estimator may not exist.
Finally, we mentioned that the minimum MSE equivariant estimators are unbiased.
Indeed

Eg{d’(x)} =60 + E{F(Y) — E{F(Y) |u}} =60, —oco <6 <oo. (57.11)

If F is a scale and location family of distribution, with p.d.f.s of the form

X —
(o2

1
f(x;u,0)=—¢(
o

>, —co<x<oo, —oo<pu<oo, 0<o<oo,

where ¢(u) is a p.d.f.,, then every equivariant estimator of p with respect to the group
G of real-affine transformations can be expressed in the form

AX) = X0y + (Xo) — X (2), (5.7.12)

where X(1) < ... < X is the order statistic, Xy — X1y > OandZ = (Z3, ..., Z,),
with Z,‘ = (X(i) — X(l))/(X(z) — X(l))~ The MSE of ﬂ(X) is given by

MSE{a(X); u, 0} = 02 Eo{[X (1) + (X2 — XY (Z)])*}
(5.7.13)
= 02E{Eof[ Xy + (X — X))V (D)I* | Z}},

where Eof{-} designates an expectation with respect to the standard distribution
(u =0, 0 =1). An optimal choice of y/(Z) is such for which Eo{[X1) + (X2 —
Xa)¥(Z))? | Z} is minimal. Thus, the minimum MSE equivariant estimator of . is

AX) = Xa) + Xo) — Xa)¥(Z), (5.7.14)

where

_ Eo{X(y(Xo) — X)) | Z}
Eof{(Xe) — X1)* | Z}

vOZ) = (5.7.15)
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Equivalently, the Pitman estimator of the location parameter is expressed as

AX) = Xy — (X — Xqy) -

/ Zud)(u) fo Tl + ollow+vzovan o

/ ) / Vi@ + )] J¢ +vZ)dvdu
—00 0 i=3

In a similar manner, we show that the minimum MSE equivariant estimator for o is
60X,) = Xy — Xa¥(Zs, ..., Z,), where

B | Zs,.... Z,)

NZs, ..., Z) = .
vz ) E{U2| Zs, ..., Zn}

(5.7.17)

Indeed, ¥°(Z) minimizes Eo{(U,¥(Z) — 1)? | Z}. Accordingly, the Pitman estimator
of the scale parameter, o, is

/ $(ur) / Wy p(uy + )] [dCur + uzZi)dusdu,
00 0 i=3

/ ¢(M1)/ uyp(uy + M2)1_[¢(ul +usrZ;)durdu,
o] 0

i=3

60(X,) = X2y — X1y) -

(5.7.18)
5.8 ESTIMATING EQUATIONS
5.8.1 Moment-Equations Estimators
Suppose that F is a family of distributions depending on k real parameters, 6, . . ., 6,

1 < k. Suppose that the moments w,, | <r <k, existand are given by some specified
functions

/’LI‘:M}“(Qla"-’Qk)a 15"5/{.

If X,,..., X, are i.i.d. random variables having a distribution in F, the sample

1
moments M, = — XX ; are unbiased estimators of u,(1 < r < k) and by the laws of
n

large numbers (see Section 1.11) they converge almost surely to i, as n — 0o. The
roots of the system of equations

~

M, =M,0b,...,60), 1<r<k, (5.8.1)

are called the moment-equations estimators (MEEs) of 6y, .. ., 6.
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In Examples 5.28-5.29, we discuss cases where both the MLE and the MEE can
be easily determined, but the MLE exhibiting better characteristics. The question is
then, why should we consider the MEEs at all? The reasons for considering MEEs
are as follows:

1. By using the method of moment equations one can often easily deter-
mine consistent estimators having asymptotically normal distributions. These
notions of consistency and asymptotic normality are defined and discussed in
Chapter 7.

2. There are cases in which it is difficult to determine the MLEs, while the MEEs
can be readily determined, and can be used as a first approximation in an
iterative algorithm.

3. There are cases in which MLEs do not exist, while MEEs do exist.

5.8.2 General Theory of Estimating Functions

Both the MLE and the MME are special cases of a class of estimators called estimating
functions estimator. A function g(X;0),X € X ™ and 6 € O, is called an estimating
function, if the root 6(X) of the equation

gX,0)=0 (5.8.2)

belongs to ®; i.e., é(X) is an estimator of 0. Note that if 6 is a k-dimensional vector
then (5.8.2) is a system of k-independent equations in 6. In other words, g(X, 6) is a
k-dimensional vector function, i.e.,

gX,0) = (8:1(X,0), ..., (X, 0)).

0 (X) is the simultaneous solution of

51X, 0) =0,
(X, 0)=0,

: (5.8.3)
gk(X, 0) = 0

In the MEE case, g;(X, 0) = M;(0y,...,6,) —m; (i =1, ..., k). Inthe MLE case,
0 .
gi(X,G)zﬁlogf(X;O), i=1,..., k.

In both cases, Eg{g(X, #)} = 0 for all 8, under the CR regularity conditions (see
Theorem 5.2.2).
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An estimating function g(X, ) is called unbiased if Ey{g(X;6)} = 0 for all 6.
The information in an estimating function g(X, 0) is defined as

9 2
o om0
L,0) = B (5.8.4)

For example, if g(X, 0) is the score function S(X, 6), then under the regularity
d
conditions (3.7.2), E {%g(X;G)} = —1(0) and Ep{S*(X;6)} = I(0), where 1(0)

is the Fisher information function. A basic result of is that I,(8) < I(f) for all
unbiased estimating functions.

The CR regularity conditions are now generalized for estimating functions. The
regularity conditions for estimating functions are as follows:

@ ag(x, 6)

exists for all 8, for almost all x (with probability one).

(ii) / g(x,0)dF(x,0) is differentiable with respect to 6 under the integral sign,
for all 6.

0
(iii) Ey { ﬁg(X, «9)} # 0 and exists for all 6.

(iv) E¢{g%(X,0)} < oo for all 6.

Let T be a sufficient statistic for a parametric family J. Bhapkar (1972) proved
that, for any unbiased estimating function g, if

g"(T,0)=E{g(X,0) | T}

then I,(9) < I,-(9) for all & with equality if and only if g* € F7. This is a gen-
eralization of the Blackwell-Rao Theorem to unbiased estimating functions. Under

]
the regularity conditions, the score function S(X, 6) = 30 log f(X, 6) depends on

X only through the likelihood statistic 7'(X), which is minimal sufficient. Thus, the
score function is most informative among the unbiased estimating functions that
satisfy the regularity conditions. If @ is a vector parameter, then the information
in gis

I,(0) = GT )%, (0)G (), (5.8.5)
where
G(0)=<Ee{%§0)}, i,jzl,...,k) (5.8.6)
J
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and

X,(0) = Eg{g(X, 0)g" (X, 0)}, (5.8.7)

where g(X, 0) = (g1(X, ), ..., gr(X, 0)) is a vector of k estimating functions, for
estimating the k components of 6.

We can show that /(8) = I,(f) is a nonnegative definite matrix, and /(0) is the
Fisher information matrix.

Various applications of the theory of estimating functions can be found in Godambe
(1991).

5.9 PRETEST ESTIMATORS

Pretest estimators (PTEs) are estimators of the parameters, or functions of the param-
eters of a distribution, which combine testing of some hypothesis (es) and estimation
for the purpose of reducing the MSE of the estimator. The idea of preliminary testing
has been employed informally in statistical methodology in many different ways and
forms. Statistical inference is often based on some model, which assumes a certain
set of assumptions. If the model is correct, or adequately fits the empirical data, the
statistician may approach the problem of estimating the parameters of interest in a
certain manner. However, if the model is rejectable by the data the estimation of
the parameter of interest may have to follow a different procedure. An estimation
procedure that assumes one of two alternative forms, according to the result of a test
of some hypothesis, is called a pretest estimation procedure.

PTEs have been studied in various estimation problems, in particular in various
least-squares estimation problems for linear models. As we have seen in Section 4.6,
if some of the parameters of a linear model can be assumed to be zero (or negligible),
the LSE should be modified, according to formula (4.6.14). Accordingly, if 8 denotes
the unconstrained LSE of a full-rank model and 8* the constrained LSE (4.6.14), the
PRE of B is

Ba = BI{A} + B*I{A)}, (5.9.1)

where A denotes the acceptance set of the hypothesis Hy : ;11 = Bri2=... =
B, = 0; and A the complement of A. An extensive study of PREs for linear models,
of the form (5.8.5), is presented in the book of Judge and Bock (1978). The reader is
referred also to the review paper of Billah and Saleh (1998).

5.10 ROBUST ESTIMATION OF THE LOCATION AND SCALE
PARAMETERS OF SYMMETRIC DISTRIBUTIONS

In this section, we provide some new developments concerning the estimation of
the location parameter, p, and the scale parameter, o, in a parametric family, F,
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X —

1
whose p.d.f.s are of the form f(x;u,0)=—f ,and f(—x) = f(x) for
o

all —oo < x < o0o. We have seen in various examples before that an estimator of u,
or of o, which has small MSE for one family may not be as good for another. We
provide below some variance comparisons of the sample mean, X, and the sample
median, M,, for the following families: normal, mixture of normal and rectangular,
t[v], Laplace and Cauchy. The mixtures of normal and rectangular distributions will
be denoted by (1 — @) N + o R(—30, 30’). Such a family of mixtures has the standard
density function

|l -« 1, o
fx) = expy—=x"t+—I{-30 <x <30}, —o00o<x<o0.

V2 2 60

The ¢[v] distributions have a standard p.d.f. as given in (2.13.5). The asymptotic
(large sample) variance of the sample median, M,, is given by the formula (7.9.3)

o2

Y= i

(5.10.1)

provided f(0) > 0, and f(x) is continuous at x = 0.

In Table 5.1, we provide the asymptotic variances of X and M, and their ratio
E = AV{X}/AV{M,}, for the families mentioned above. We see that the sample
mean X which is a very good estimator of the location parameter, 1, when F is the
family of normal distributions loses its efficiency when F deviates from normality.
The reason is that the sample mean is very sensitive to deviations in the sample of the
extreme values. The sample mean performs badly when the sample is drawn from a
distribution having heavy tails (relatively high probabilities of large deviations from
the median of the distribution). This phenomenon becomes very pronounced in the
case of the Cauchy family. One can verify (Fisz, 1963, p. 156) that if X, ..., X, are
i.i.d. random variables having a common Cauchy distribution than the sample mean
X has the same Cauchy distribution, irrespective of the sample size. Furthermore,
the Cauchy distribution does not have moments, or we can say that the variance of
X is infinite. In order to avoid such possibly severe consequences due to the use of
X as an estimator of u, when the statistician specifies the model erroneously, several

Table 5.1 Asymptotic Variances of X and M,

Family X M, E
Normal o?/n wa?/2n 0.6366
0.9N + 0.1R(—30, 30) 1.202/n 1.7762/n 0.6776
0.5N + 0.5R(—30, 30) 1.56%/n 3.125802%/n 0.4799
1[4] 20%/n 1662/9n 1.125
Laplace 20%/n o?/n 2.000

Cauchy - o’n?/4 00
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types of less sensitive estimators of ; and o were developed. These estimators are
called robust in the sense that their performance is similar, in terms of the sampling
variances and other characteristics, over a wide range of families of distributions. We
provide now a few such robust estimators of the location parameter:

1. o -Trimmed Means: The sample is ordered to obtain X() <... < X(n). A
proportion ¢ of the smallest and largest values are removed and the mean of
the remaining (1 — o)n of the values is determined. If [n«] denotes the largest
integer not exceeding no and if p = 1 + [na] — na then the a-trimmed mean
is

_ PX(nar)) + X(ner+2) + -+ + PXn—fan)

fla = = 20) (5.10.2)

The median, M, is a special case, when o« — 0.5.

2. Linear Combinations of Selected Order Statistics: This is a class of estimates
which are linear combinations, with some specified weights of some selected
order statistics. Gastwirth (1977) suggested the estimator

LG = 3Xquyny + 4M, + 3X@—2))- (5.10.3)
Another such estimator is called the trimean and is given by

TRM = O.ZSX([%]_H) +0.5M, + 0.25X(,,_[%]).

3. M -Estimates: The MLE estimates of y and o are the simultaneous solutions

of the equations
Xi—p
/
()

H Y ———<=0 (5.10.4)
i=1

&=

and

In analogy to the MLE solution and, in order to avoid strong dependence on a
particular form of f(x), a general class of M-estimators is defined as the simultaneous
solution of

ZK”(Xi(,_M) —0 (5.10.5)
i=1
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and

n X —
(P
i=1

for suitably chosen ¥/ (-) and y (-) functions. Huber (1964) proposed the M -estimators
for which

—k, z<-—k,
() =12  —k<z<k, (5.10.6)
k, >k,
and
x(2) = ¥i(z) — Bk, (5.10.7)
where

1 o 1.2
k)= —— 2(2)e”" 2% dz.
Bk) mf_mwk(z)e :

The determination of Huber’s M -estimators requires numerical iterative solutions. It
is customary to start with the initial solution of u = M, and o0 = (Q3 — Q;)/1.35,
where Q3 — Q; is the interquartile range, or X[z} — Xz +1). Values of k are
usually taken in the interval [1, 2].

Other M-estimators were introduced by considering a different kind of v(-) func-
tion. Having estimated the value of y by 7, use the estimator

outer-mean, if y <2,

A7) — X, if2 <y <4,
Y= s, if4<p <45,
LG, ifp < 4.5,

where the “outer-mean” is the mean of the extreme values in the sample. The reader
is referred to the Princeton Study (Andrews et al., 1972) for a comprehensive exam-
ination of these and many other robust estimators of the location parameter. Another
important article on the subject is that of Huber (1964, 1967).

Robust estimators of the scale parameter, o, are not as well developed as those of
the location parameter. The estimators that are used are

61 = (03— 01)/1.35,
Medlan (IXiy— M., i=1,...,n)/0.6754,

=_Z|x M,|.
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Further developments have been recently attained in the area of robust estimation of
regression coefficients in multiple regression problems.

PART II: EXAMPLES

Example 5.1. In the production of concrete, it is required that the proportion of
concrete cubes (of specified dimensions) having compressive strength not smaller
than &, be at least 0.95. In other words, if X is a random variable representing the
compressive strength of a concrete cube, we require that P{X > &} = 0.95. This
probability is a numerical characteristic of the distribution of X.Let X, ..., X,, bea
sample of i.i.d. random variables representing the compressive strength of n randomly
chosen cubes from the production process under consideration. If we do not wish
to subject the estimation of pg = P{X > &} to strong assumptions concerning the
distribution of X we can estimate this probability by the proportion of cubes in the
sample whose strength is at least &; i.e.,

1'1
p=— I{X; = &}
p ng{ > £}

We note that np has the binomial distribution B(n, pg). Thus, properties of the
estimator p can be deduced from this binomial distribution.

A commonly accepted model for the compressive strength is the family of log-
normal distributions. If we are willing to commit the estimation procedure to this
model we can obtain estimators of py which are more efficient than p, provided the

_ 1
model is correct. Let ¥; =log X;,i =1,...,andlet Y, = — ) Y;, §? = Y, —
X 2 S =2

Yn)z/(n — 1). Let no = log &. Then, an estimator of py can be

~ Yn_n()
=& s
P ( i )

where ®(u) is the standard normal c.d.f. Note that ¥,, and S, are the sample statistics
that are substituted to estimate the unknown parameters (£, o). Moreover, (¥,,, S,) is
a m.s.s. for the family of log-normal distributions. The estimator we have exhibited
depends on the sample values only through the m.s.s. As will be shown later the
estimator p has certain optimal properties in large samples, and even in small samples
it is a reasonable estimator to use, provided the statistical model used is adequate for
the real phenomenon at hand. [ ]

Example 5.2. Let X1, ..., X, bei.i.d. random variables having a rectangular distri-
bution R(0, 6), 0 < 6 < oo. Suppose that the characteristic of interest is the expec-
tation u = 6/2. The unbiased estimator fi = X,, has a variance

92

Vo{X,} = Ton
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On the other hand, consider the m.s.s. X(,) = max {X;}. The expected value of X,
. <i<n
is

0.

91’1

n [
Eo{Xn) = — t"dt =

. . n+1 . . . .
Hence, the estimator ji = 2—X (n) 1s also an unbiased estimator of 1. The variance
n
of il is

92

Vol = ———.
=T

Thus, Vy{} < Vy{X,} for all n > 2, and /1 is a better estimator than X,. We note

that & depends on the m.s.s. X(,), while X, is not a sufficient statistic. This is the

main reason for the superiority of 2 over X,,. The theoretical justification is provided

in the Rao-Blackwell Theorem. ]

Example 5.3. Let Xy,..., X,, be i.i.d. random variables having a common nor-
mal distribution, i.e., F = {N(&, 0?); —o0 < & < 00,0 < 0o < 00}. Both the mean
£ and the variance o> are unknown. We wish to estimate unbiasedly the probabil-
ity g(€§,0) = Pe o{X < &}. Without loss of generality, assume that &, = 0, which

. . _ 1 n 1 n _

implies that g(£, o) = ®(£ /o). Let X, = ;;Xi and §2 = m2(}(,- — X)be
1= =

the sample mean and variance. (X, S?) is a complete sufficient statistic. According

to the Rao—Blackwell Theorem, there exists an essentially unique unbiased estimator

of ®(&/0) that is a function of the complete sufficient statistic. We prove now that

this UMVU estimator is

0, ifw(X, $) <0,
24X =1 LxsE—1L5—1, if0<wX 8 <1,
1, ifw(X, $) > 1,

where

. 5) 1 [ Xn N 1]
wlX,S) =< | ——— .
21J/(m—1)S
The proof is based on the following result (Ellison, 1964). If U and V are independent

random variables U ~ B(*5%, *51) and V ~ (x*[v])"/? then (2U — 1)V ~ N(0, 1).
Letv=n—1and V = +/n —1§/o. Accordingly

§X.9=PlB(5-1.5-1)=wE X9},
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where (5 — 1, 5 — 1) is independent of (X, S). Thus, by substituting in the expres-
sion for w(X, S), we obtain

Eeo{g(X.8) = P {0 (2,3 (% 1,2 1) _ 1) V<

s ]

n—1

—P{o—N(o = —2 N0 1)<i5}
B e N R o

with N;(0, 1) and N,(0, 1) independent standard normal random variables. Thus,

E:{8(X,S)} =P {N(O, 1)< %}
= o /o), forall (§,0).

We provide an additional example that illustrates the Rao—Blackwellization
method. u

Example 54. Let X, ..., X, bei.i.d. random variables, having a common Poisson
distribution, P(1), 0 < A < co. We wish to estimate unbiasedly the Poisson proba-
bility p(k; 1) = ek / k! An unbiased estimator of p(k; 1) based on one observation
is

;X)) =1{X, =k}, k=0,1,....

Obviously, this estimator is inefficient. According to the Rao—Blackwell Theorem
the MVUE of p(k; ) is

pk;T,) = E{I{X, =k} | T,,}
= P[X, =k |T,],
where T, = ) X; is the complete sufficient statistic. If 7, > 0 the conditional dis-
1
tribution of X, given 7, is the binomial B <Tn, —). Accordingly, the MVUE of
n
pk; ) is

I{k =0}, if T, =0,

Pl Tn) = b<k | T, 1), if 7, > 0,

n

1 1
where b (k | Ty, —) is the p.d.f. of the Binomial distribution B (Tn, —). -
n n

Example 5.5. We have seen in Section 3.6 that if the m.s.s. S(X) is incomplete, there
is reason to find an ancillary statistic A(X) and base the inference on the conditional
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distribution of S(X), given A(X). We illustrate in the following example a case where
such an analysis does not improve.
Let Xy, ..., X, bei.i.d. random variables having a rectangular distribution in
F={RO—-1,0+1);—00 < < o0}.
A likelihood function for 6 is

1
L(@,X) = 2_nI{X(n) —1<6< X(l) + 1},

where X() <--- < X(,) is the order statistic. A m.s.s. is (X(), X(,y). This

-2
statistic, however, is incomplete. Indeed, Ej {X(n) - X —2% =0, but
n
Py L X = Xy = 2221 0 for each 6
) — = = 0 for each 0.
0 (n) (Y] n+1

Writing R@ — 1,0 +1) ~60 —1+2R(0, 1) we have X(;) ~0 — 1+ 2U(;) and
Xy ~ 0 — 142U, where Uqy and Uy, are the order statistics from R(0, 1).
Moreover, E{U} = nlﬁ and E{Up)} = ;47 It follows immediately that 6=
%(X ) + X)) is unbiased. By the Blackwell-Rao Theorem it cannot be improved
by conditioning on the sufficient statistic.

We develop now the conditional distribution of §, given the ancillary statistic

W= X(n) — X(l). The pdf of Wis

fw(r) = —”(”2: D2y, 0<r<a.

The transformation (X (1), X)) — (8, W) is one to one. The joint p.d.f. of @, W)is

nn—1) ,_, r r
fé,w(hr;Q):Tr" I{0+§_l§t§9_§+l}'

Accordingly,

1 r r
- =—1{9 I 1<i<o-"L 1}.
Poyw( | 1) T +2 <t< 2+

N w w
Thatis,@|W~R<9+7—1,9—?+1>.Thu5,

E{f | W}=06, forall —oo <6 < o0,

and

2-wy

VIO | W)= o
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We have seen already that § is an unbiased estimator. From the law of total variance,
we get

2

W = e

for all —0o < @ < co. Thus, the variance of § was obtained from this conditional
analysis. One can obtain the same result by computing V{U(1y + Uy} ]

Example 5.6. Consider the MVUE of the Poisson probabilities p(k;A), derived in
Example 5.4. We derive here the Cramér—Rao lower bound for the variance of this
estimator. We first note that the Fisher information for a sample of » i.i.d. Poisson
random variables is I,(1) = n/\. Furthermore, differentiating p(k; 1) with respect

d
to A we obtain that a—)\p(k;)\) = —(p(k; 1) — p(k — 1; 1)), where p(—1;1) =0. If
pk; T,) is the MVUE of p(k; 1), then according to the Cramér—Rao inequality

A AV
—p =k —1;2) ;_1 , k=1,
Var, {(p(k; T,)} > § "

Ze k=0.

n
Strict inequality holds for all values of A, 0 < A < oo, since the distribution of
p(k; T,,) is not of the exponential type, although the distribution of 7,, is Poisson.
The Poisson family satisfies all the conditions of Joshi (1976) and therefore since
the distribution of p(k; T,) is not of the exponential type, the inequality is strict.
Note that V{p(k; T,} = E{(b(k; Tn%))z} — p%(k;A). We can compute this variance
numerically. [ ]

Example 5.7. Consider again the estimation problem of Examples 5.4 and 5.5, with
T;I

1

k =0. The MVUE of w(A) = e is &(T,) = (1 — —) . The variance of &(T,)
n

can be obtained by considering the probability generating function of 7, ~ P(nA) at

1
t = <1 — —). We thus obtain
n

Var, {&(T,)} = 6—2}\(8)\/” — .

Since w(A) is an analytic function, we can bound the variance of ®(T},) from below by

2 2
using BLB of order k = 2 (see (5.2.15)). We obtain, V|| = %, Vio=0, Vo = %
Hence, the lower bound for k = 2 is

A A
Ly(A\) = =e (1 + —> , 0<A<oo.
n 2n

This lower bound is larger than the Cramér—Rao lower bound forall0 < A < co. B
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Example 5.8. Let (X, Y)),...,(X,,Y,) beii.d. vectors having a common bivari-

1

ate normal distribution N (0, o2 '(1) ),—1 <p<1,0<0? < oco.The complete

sufficient statistic for this family of bivariate normal distributions is 77(X, Y) =
n

n
Z(Xiz + Yf) and (X, Y) = ZX ;Y;. We wish to estimate the coefficient of cor-
i=1 i=1
relation p.

n n
An unbiased estimator of p is given by p = ZX Y/ ZXIZ Indeed

i=1 i=1

X 1
E{p|X}=

S XE X

i i=1

But E{Y; | X} = pX; foralli =1,...,n.Hence, E{p | X} = p w.p.1. The unbiased
estimator is, however, not an MVUE. Indeed, g is not a function of (77(X,Y),
T>(X,Y)). The MVUE can be obtained, according to the Rao—-Blackwell Theorem
by determining the conditional expectation E{p | Ty, T»}.

The variance of § is

The Fisher information matrix in the present case is

= -

ot o1 —p?)
—p 1+ p?

*(1=p)  (1-p?P

(0 p)=n

The inverse of the Fisher information matrix is

n

4 1 2 2 1— 2
(1(0211)))_121 o' (1+p°) o“p(—p7) .
o?p(l—p?) (1 —p?)?

The lower bound on the variances of unbiased estimators of p is, therefore, (1 —
p2)?/n. The ratio of the lower bound of the variance of p to the actual variance is

1—pHn—2
w ~ 1 — p? for large n. Thus, p is a good unbiased estimator only if
n

p? is close to zero. u



PART II: EXAMPLES 359

Example 5.9.

A. Let X,..., X, be iid. random variables having a common location-
parameter exponential distribution with a p.d.f.

f(x;0) = I{x > 0}exp{—(x —0)}, —00 <6 < o0.

The sample minimum Xy is a complete sufficient statistic. X(y) is distributed
1 A
like 6 + G(n, 1). Hence, E{X(1)} = 8 + — and the MVUE of 0 is 6(X(;)) =
n
|
X1y — —. The variance of this estimator is
n
A 1
Varg{0(X 1))} = = forall —oo <6 < o0.
n

In the present case, the Fisher information 7(6) does not exist. We derive now
the modified Chapman—Robbins lower bound for the variance of an unbiased
estimator of 6. Notice first that Wy (X(1);0) = I{X 1) > ¢}e" @, where T =
Xy, for all ¢ > 6. It is then easy to prove that

A, ¢) =expln(@ —0)}"', ¢ >6.

Accordingly,

N —0)?
Varp{0(X(1))} > sup @ ) .
¢=0 exp{n(¢ —0)} — 1
The function x?/(¢"* — 1) assumes a unique maximum over (0, co) at the root

l.
of the equation ¢"*(2 — nx) = 2. This root is approximately xo = ——. This
n

approximation yields

A 0.6476
Varp{6(X1))} = e

B. Consider the case of a random sample from R(0, #),0 < 6 < oco. As shown in
2
A 1
Example 3.11 A, 1,(6) = %. The UMVU estimator of 6 is §, = ~—— X,y.
n
2

The variance of 8, is Vg{é,,} = Thus, in this nonregular case

nn+2)

N 1
Vol0,} < —— forall 0 <6 < oo.
1,(6)

n
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However,
lim Vy{6,}1,(0) =1 forall 6.
n—oo
|
Example 5.10. Let X;,...,X, be ii.d. random variables having the nor-
mal distribution N(6,02) and Y,,...,Y, iid. random variables having the

normal distribution N(y6?%,02), where —oo <6, y <00, and 0 <o < oo.
The vector X = (Xy,..., X,) is independent of Y =(Yy,...,Y,). A ms.s.
n

_ _ 1< _ 1< _
is (X,,Y%,,0,), where X, =~ X;, Y,=-Y Y;, and Q, = X, — X))+
( Q) > n; 0 ;< )

i=1
n

Z(Yi — 17)2. The Fisher information matrix can be obtained from the likelihood
i=1
function

o 1 _ i} .
L©.y. 0% | Xy, Vo, Q) = expl— (%, =072+ (7 — yorr+ 2|1
202 n

The covariance matrix of the score functions is
1 +4y%0% 2y03 0
3 4
nl@,y.0h == " 00
o
0 0 —

Thus,

T,0,y.0%) = n1©, y.0%)| = .
o

Consider the reparametrization g,(0,y,0) =0, g(@,y,0%) =y6> and

230, y,0) = o2. The UMVU estimator is § = (X,,, ¥,,, Q,,/2(n — 1)). The variance
covariance matrix of g is

™
~
[
N
I
(=)

and

D®) = | 2y0 62
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D D/ 4.2 _ 2

Thus, 7, = [PODOL_ 870 —2)
5 | Z(@) o

=1--. [
n n

. The efficiency coefficient is &(8) =

n—2

Example 5.11. Let (X, Y)), ..., (X,, Y,) be a sample of » i.i.d. vectors having a
joint bivariate normal distribution

2
v (B} Goe 72):
I poT T
where —co < 4 < 00,0 <7 <00,0 <0 <o0,and -1 < p < 1. Assume that o2,

72, and p are known. The problem is to estimate the common mean . We develop
the formula of the BLUE of u. In the present case,

E_l o2 pot
“n\por 7

and

E_l _ n T2 —poT
T o221 — p2)\ —por o )

The BLUE of the common mean p is according to (5.3.3)

o wX, 47,
m= wo+1 "’

where X, and ¥, are the sample means and

2
t —
w= z—/m, provided pt # 0.
0% —pot
Since ¥is known, i is UMVU estimator. |
Example 5.12. Let Xy,..., X, be i.i.d. Weibull variables, i.e., X ~ GYB(, 1),

where 0 < A, 8 < oc. Both A and 8 are unknown. The m.s.s. is (X(1), ..., X()). Let
Y, = IOg Xi,i=1,...,n, and Y(,') = IOgX(,'). ObViously, Y(l) < Y(z) <...< Y(,,).
‘We obtain the linear model

Y(,'):,lL—{-OlOgG(,'), i=1,...,n,
where 4 = +logi and o = %; G is the ith order statistic of n i.i.d. variables

distributed like G(1, 1). BLUEs of u and o are given by (5.4.16), where « is the
vector of Ef{log G;)} and V is the covariance matrix of log G ;.
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The p.d.f. of G is

n'

(i — Dli(n—i)!

(1 _ e*X)i*lefx(n*l?Fl)’

Jox) =

0 < x < o00. Hence,

i—1

n ; i! o0 ) o
i =E{logGp}=| . -1y — —u—(n—i+l+pe™ g,
o {log G} <Z)Z( ) j!(i—l—j)!/,ooue u

Jj=0

The integral on the RHS is proportional to the expected value of the extreme value
distribution. Thus,

i—1

l = JliG—1—- ! n—i+1+]

where y = 0.577216... is the Euler constant. The values of ¢; can be determined
numerically for any n and i = 1, ..., n. Similar calculations yield formulae for the
elements of the covariance matrix V. The point is that, from the obtained formulae
of o; and Vj;, we can determine the estimates only numerically. Moreover, the matrix
V is of order n x n. Thus, if the sample involves a few hundreds observation the
numerical inversion of V becomes difficult, if at all possible. [ ]

Example 5.13. Consider the multiple regression problem with p = 3, 0> = 1, for
which the normal equations are

1.07 0.27 0.66 Bi 1.05
0.27 1.07 0.66 B | = —-0.06
0.66 0.66 0.68 B3 0.83

By employing the orthogonal (Helmert) transformation

Sl-

1 1
3 V3
1 1
H=17% -5 0 |
4 L 2
NN V6
we obtain that
20 O 0
HAAH =| 0 08 0
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That is, the eigenvalues of A’A are A; = 2, A, = 0.8 and A3 = 0.02. The LSEs of
B are B = —4.58625, B, = —5.97375, and B3 = 11.47. The variance covariance
matrix of the LSE is

A 9.125 7.875 —16.5
TP =(AA"'=| 7875 9125 —165 |,
—-16.5 —16.5 33.5

having a trace E{L*(0)} =51.75 = DA ' In order to illustrate numerically the
effect of the ridge regression, assume that the true value of § is (1.5, —6.5,0.5). Let
y = H . The numerical value of y is (—2.59809, 5.65685, —2.44949). According
to (5.4.4), we can write the sum of the MSEs of the components of ,3 (k) by

)

3 2
Vi
E(LA0) = Z (Ai +k)2 k22(xi+k)z'
i=1

The estimate of k is k£ = 0.249. In the following table, we provide some numerical
results.

k 0 0.05 0.075 0.10 0.125 0.15

B (k) —4.58625 0.64636  —0.24878  —0.02500 0.11538 0.209518
Ba(k) —-597375 —1.95224 —-1.51735 —1.25833 —1.08462  —0.958900
Bs(k) 11.47000 3.48641 2.64325 2.15000 1.82572 1.59589

E{L*(k)}  51.75000 8.84077 7.70901 7.40709 7.39584 7.51305

We see that the minimal E{L?(k)} is minimized for k° around 0.125. At this value

of k, B(k) is substantially different from the LSE B(0). (]
Example 5.14.
A. Let Xy, ..., X, be ii.d. random variables having a rectangular distribution

R(0,0), 0 < 6 < oo. A m.s.s. is the sample maximum X,). The likelihood
function is L(0; X)) = 07"1{6 > X(,)}. Accordingly, the MLE of 0 is § =
Xy

B. Let Xy, ..., X,, be i.i.d. random variables having a rectangular distribution
R(0, 360), where 0 < 6 < oo. The likelihood function is

L(O:;X) = 26)™"I{0 < X(]), X(n) < 36}

1
=™ {§X<n> <0< X(l)}’

where X(;) = min{X;} and X,y = max{X;}. The m.s.s. is (X(j), X(,)). We
note that according to the present model X,y < 3X(y). If this inequality is not
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satisfied then the model is incompatible with the data. It is easy to check that
the MLE of 0 is § = %X - The MLE is not a sufficient statistic.

C. Let Xy,..., X, be i.i.d. random variables having a rectangular distribution
R(0,60 + 1), —00 < 0 < oo. The likelihood function in this case is

LO:X)=1{0 < X)) < Xy <6 +1).
Note that this likelihood function assumes a constant value 1 over the 6 interval
[ X — 1, X(1y]l. Accordingly, any value of 0 in this interval is an MLE. In the

present case, the MLE is not unique. [ ]

Example 5.15. Let X, ..., X, bei.i.d. random variables having a common Laplace
(double-exponential) distribution with p.d.f.

lx —
B

1
f(x;u,ﬂ)=ﬁexp{—

}, —00 < X < 00,

—00o< U <00,0< B <o0.
A m.s.s. in the present case is the order statistic X(;) < ... < X,. The likelihood
function of (u, B), given T = (X(1), ..., X)), 18

1 1 <
L(u, B;T) = Eexp{—E;LX@ —/,L|}

n
The value of y which minimizes ZlX(,-) — | is the sample median M,. Hence,

i=1

sup, L(u, B;T) = L(M,, B;T,)
1 1
= ECXP {_E Yo X — Me|} .

Finally, by differentiating log L(M,, B; T) with respect to §, we find that the value
of B that maximizes L(M,, B;T) is

In the present case, the sample median M, and the sample mean absolute devia-
tion from M, are the MLEs of u and B, respectively. The MLE is not a sufficient
statistic. ]

Example 5.16. Consider the normal case in which Xy, ..., X, are i.i.d. random
variables distributed like N(u, 02); —00 < i1 < 00, 0 < 02 < 0o. Both parameters
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_ N - _
are unknown. The m.s.s.is (X, Q), where X = _in and Q = Z(Xi — X)%. The
n
i=1 i=1

likelihood function can be written as

- 1 0 no_
L(p, 0% X, Q) = WGXP{_W - F(X —M)z}-

Whatever the value of o is, the likelihood function is maximized by /i = X. It is
easy to verify that the value of > maximizing (5.5.9) is 6> = Q/n.

The normal distributions under consideration can be written as a two-parameter
exponential type, with p.d.f.s

1
F& v, vn) = S5 exp{yn T + Ty — nK (Y, ¥2)),
(2900

where
=) X, Th=) X, Y1=p/o’, Yo=-1/20",

and K (Y1, ¥2) = =i /49, + 5 log(—1/2y). Differentiating the log-likelihood
partially with respect to i; and ¥, we obtain that the MLEs of these (natural)
parameters should satisfy the system of equations

L _ T
2 n
i _.n

We note that ) /n = ji and T»/n = 62 + 1> where i = X and 6% = Q/n are the
MLEs of u and o2, respectively. Substituting of u and o 4+ 2, we obtain U =
Q)62 Jn = —1 /2672, In other words, the relationship between the MLEs ¥y and ¥
to the MLEs /1 and 62 is exactly like that of v and ¥, to u and o2 |

Example 5.17. Consider again the model of Example 5.9. Differentiating the log-
likelihood

10, y,0%| X, 7, Q) = —nlog(c?) — % [(X — 0 4 (¥ — p07 + Q} :
(o}

n

with respect to the parameters, we obtain the equations
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and

LI S-S S S )
62 262 n

The unique solution of these equations is

0 =X,
y=Y/X?
and
=2
2n

It is interesting to realize that E{}} does not exist, and obviously y does not have a
finite variance. By the delta method one can find the asymptotic mean and variance
of p. [ ]

Example 5.18. Let X, ..., X,, be i.i.d. random variables having a log-normal
distribution LN (1, 0%). The expected value of X and its variance are

£ =exp{u+0°/2}
and

D2 =% — ).

1 _
We have previously shown that the MLEs of x and 02 are i = — ) . Y; =¥ and
n

1 i}

62 ==Y (Y; — Y)?, where ¥; = log X;,i = 1, ..., n. Thus, the MLEs of £ and D?
n

are

£ = expl +6%/2)
and

D? =625 — 1.
n

Example 5.19. Let X, X5,..., X,, be ii.d. random variables having a normal
distribution N(u, 02), —00 < . < 00, 0 < 6% < 0o. The MLEs of p and o2 are

ft =X, and 62 = £, where 0 = Z(X,- — X,)*. By the invariance principle, the
i=1

MLE of 6 = &(£) is = d(X). =
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Example 5.20. Consider the Weibull distributions, G'/#(A, 1), where 0 < X, 8 < o0
are unknown. The likelihood function of (A, 8) is

n B n
L(x, B:X) = 0" (H X,-> exp {—A > X?} :
i=1

i=1

Note that the likelihood is equal to the joint p.d.f. of X multiplied by l_[X i» which
i=1

is positive with probability one. To obtain the MLEs of A and 8, we differentiate the

log-likelihood partially with respect to these variables and set the derivatives equal

to zero. We obtain the system of equations:

—1
s ln B
=)

1< 8

—E X: log X;

ni:llog liloX
—_; g A

n
o e
l
n i=1

=
I

We show now that B is always positive and that a unique solution exists.
Let x=(x1,...,x,), where O <x; <oo, i=1,...,n, and let F(B;x) =

n n
inﬂ log x;/ leﬂ . Note that, for every x,

i=1 i=1

n n n 2
fo(log xi)* - leﬂ — (leﬁ logx,-)
i=1 i=1

ad ) , ,
—F(B;x) = >0
TGRS O >
(=)
i=1
with a strict inequality if the x; values are not all the same. Indeed, if w; = )ci‘9 and 7] =

n n a n n
Zwi logxi/Za)i then %F(ﬂ;x) = Zwi(log X; — F;)Z/Za)i. Hence, F(B;x) is
i=1 i=1

i=1

i=1
1

strictly increasing in 8, with probability one. Furthermore, éin}) F(B;x) = — Z log x;
- n

and ﬂlim F(B;x) = log x(,y. Thus, the RHS of the B-equation is positive, decreasing
1 n

function of B, approaching oo as f — 0 and approaching (log x(,) — —Z logx;)~!

n

i=1
as § — oo. This proves that the solution f is unique.
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The solution for 8 can be obtained iteratively from the recursive equation
1 n R 1 n . 1 n -1
3j+1 = [;;xiﬂ/logxi/ (;;xiﬁf)_;;logxi] ,

starting with By = 1. [ ]

Example 5.21. The present example was given by Stein (1962) in order to illustrate
a possible anomalous property of the MLE.
Let F be a scale-parameter family of distributions, with p.d.f.

f(x§9)=é¢(g), 0 <6 < oo,

where

1 1\* _
b(x) = B;exp{—SO(l—)—C)}, if0<x <b,

0, otherwise,

where

bl 1 2
0<b<oo and B! =/ —exp _5()<1_ _> dx.
0o X X

> 1\?
Note that / — exp {—50 (1 — —) } dx = 00. Accordingly, we choose b suffi-
0o X X

b
ciently large so that [ ¢(x)dx = 0.99. The likelihood function of & corresponding

10
to one observation is thus
exp{—50(6 — x)2/x2}, if% <6 < oo,

if0<6 < 3

The MLE of 0 is § = X. However, according to the construction of ¢(x),
. bo b
Py{60 > 100} = f(x;0)dx = / ¢(x)dx = 0.99, forall 6.
00 10

1

The MLE here is a bad estimator for all 6. |
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Example 5.22. Another source for anomality of the MLE is in the effect of nuisance
parameters. A very well-known example of the bad effect of nuisance parameters is
due to Neyman and Scott (1948). Their example is presented here.

Let (X1, 7Y)),...,(X,,Y,) be n ii.d. random vectors having the distributions
N(uily, 0%h), i =1, ..., n. In other words, each pair (X;, ¥;) can be considered
as representing two independent random variables having a normal distribution with

mean j; and variance o 2. The variance is common to all the vectors. We note that D; =
n

1
X; —Y; ~N(0,20?% for all i =1, ..., n. Hence, 6,12 = on Di2 is an unbiased
n

estimator of o2. The variance of 62 is Var{6?} = 20*/n. Thus, 62 approaches the
value of o2 with probability 1 for all (i1;, o). We turn now to the MLE of 2. The

parameter space is ® = {{t1, ..., U, 02 —00 < y; <00,i=1,...,n;0 <0? <
00}. We have to determine a point (i1, ..., iy, 0>) that maximizes the likelihood
function

1 1 «
L1, - o, 05X, Y) = ~an &P [_ﬁ Z[(xi —w)* + (i — Mi)z]] .
i—1

We note that (x; — ;)> + (y; — w;)? is minimized by fi; = (x; + y;)/2. Thus,
L.\ 0%, Y) = — exp —an:D?
s ey Mns s Ay 02" 40_2 o i .

n
The value of o2 that maximizes the likelihood is 52 = % X:Dl2 Note that Eg¢ {62} =
i=1
02 /2 and that by the strong law of large numbers, 6> — o2/2 with probability one
for each o'2.

Thus, the more information we have on o2 (the larger the sample is) the worse
the MLE becomes. It is interesting that if we do not use all the information available
then the MLE may become a reasonable estimator. Note that at each given value
of 62, M; = (X; + Y;)/2 is a sufficient statistic for u;. Accordingly, the conditional
distribution of (X, Y) given M = (M, ..., M,) is independent of p. If we consider
the semi-likelihood function, which is proportional to the conditional p.d.f. of (X, Y),
given M and o2, then the value of o that maximizes this semi-likelihood function
coincides with the unbiased estimator &2 u

Example 5.23. Consider the standard logistic tolerance distribution, i.e.,

Fo) 1 et
= = , -0 < < OQ.
YN e T 1te <
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The corresponding p.d.f. is

4
o= ivear
The corresponding function G(z; p) given by (5.6.10) is
G(z;p)=p— F(z), —00<z<o0.

The logit, F~'(z), is given by

_1 ( F(2) )
z =log T—Fro)

Let p; be the observed proportion of response at dosage x;. Define {; = log(l_lﬁ), if
0<p; <1
According to the model

( Fla + Bxi)
log

_rem P ) =1k
l—F(a+/3xi)> @+ pri, i

We, therefore, fit by least squares the line

8 :log( bi_ ) —a+px, i=1,... .k
L —pi

to obtain the initial estimates of @ and 8. After that we use the iterative procedure

(5.6.12) to correct the initial estimates. For example suppose that the dosages (log

dilution) are x; = —2.5,x, = —2.25,x3 = —2,x4 = —1.75, and x5 = —1.5. Ateach

dosage a sample of size n = 20 is observed, and the results are

xp =25 —2.25 -2 —1.75 -1.5
Di 0.05 0.10 0.15 0.45 0.50
Zi  —2.9444 21972 —1.7346 —0.2007 0

Least-squares fitting of the regression line Z; = & + Ax; yields the initial estimates
@ = 4.893 and 8 = 3.154. Since G'(z; p) = — f(z), we define the weights

) exp(@) + BUx;)
T=n; 5 ~
(1 +exp(@) + fDx;))?

i

and

v — <ﬁ~ exp@Y) + g9x) )
i i i 1+ exp(&(j) + 5(j)xi) .
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We solve then equations (5.6.12) to obtain the corrections to the initial estimates. The
first five iterations gave the following results:

j &b B
0 4.89286 3.15412
1 493512 3.16438
2 493547 3.16404
3 493547 3.16404
4 493547 3.16404
|
Example 5.24. X,,..., X, are i.i.d. random variables distributed like N(u, o?),

where —00 < u < 00,0 < o < 0o. The group G considered is that of the real-affine

_ _ 1 n n B
transformations. A m.s.s. is (X, Q), where X = _in and Q = Z(X,- - X2 If
n
i=1 i=1
[«, B] is an element of G then

_[(x,,B]xi =a+Bx;, i=1,...,n,
[, B, 0) = (o + B, Bo),

and

[a, BI(X, Q) = (@ + BX, B20).

If fi(X, Q) is an equivariant estimator of y then

e+ BX, B70) = a + (X, Q) = [w, BIA(X, Q)

for all [a, B] € G. Similarly, every equivariant estimator of o> should satisfy the
relationship

le, Bl62(X, Q) = B*64(X, Q),

for all [, B] € G. The m.s.s. (X, Q) is reduced by the transformation [—X, 1]
to (0, Q). This transformation is a maximal invariant reduction of (X, Q) with
respect to the subgroup of translations G; = {[«, 1], —00 < @ < oo}. The difference
DX, 0) = i(X, Q) — X is translation invariant, i.e., [«, 1]D(X, Q) = D(X, Q) for
all [«, 1] € G;. Hence, D(X, Q) is a function of the maximal invariant with respect
to G;. Accordingly, every equivariant estimator can be expressed as

X, Q) =X+ f(Q),
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where f(Q) is a statistic depending only on Q. Similarly, we can show that every
equivariant estimator of o> should be of the form

A S
69X, 0) =10,
where A is a positive constant. We can also determine the equivariant estimators of p

and o2 having the minimal MSE. We apply the result that X and Q are independent.
The MSE of X + f(Q) for any statistic f(Q) is

E{[X + f(Q) — ul*} EEE{[X —u+ f(QF] 0}

“7 + E{fXQ)).

Hence, the MSE is minimized, by choosing f(Q) = 0. Accordingly, the sample
mean, X is the minimal MSE equivariant estimator of . Similarly, one can verify
that the equivariant estimator of o2, which has the minimal MSE, is 6> = Q/(n + 1).
Note that this estimator is biased. The UMVU estimator is Q/(n — 1) and the MLE

is Q/n. [ ]
Example 5.25. Let X;,..., X, be ii.d. random variables having a common
N(u,crlz) distribution. Let Y, ..., Y, be i.i.d. random variables distributed as

N(u, 022). The X and the Y vectors are independent. The two distributions have
a common mean @, —00 < i < 00, and possibly different variances. The variance
ratio p = 0} /o} is unknown. A m.s.s. is (X, Q(X), ¥, Q(Y)), where X and ¥ are
the sample means and Q(X) and Q(Y) are the sample sums of squares of deviations
around the means. X, Q(X), ¥, and Q(Y) are mutually independent. Consider the
group G of affine transformations G = {[«, B] : —00 < o < 00, —00 < 8 < 00}. A
o) - o) ) Let W = (X, 7 — X).
X =Yy (X-Y)?
The vector (W, V) is also a m.s.s. Note that

maximal invariant statistic is V = (

[, AW, V) = (@ + BX, B(Y — X), V),

forall [a, B] € G. Hence, if (W, V) is an equivariant estimator of the common mean
w it should be of the form

where (V) is a function of the maximal invariant statistic V. Indeed, ¥ # X with
probability one, and (A(W, V) — X)/(¥Y — X) is an invariant statistic, with respect to

G. We derive now the MSE of (W, V). We prove first that every such equivariant
estimator is unbiased. Indeed, for every 6 = (u, 012, p)

Eo{u(W, V)} = Eg{X + (¥ = X)Y(V)} = pu + Eo{(Y — X)y(V)}.



PART II: EXAMPLES 373

Moreover, by Basu’s Theorem (3.6.1), V is independent of (X, V). Hence,

Eo{(Y = X)y(V) | |Y = X|} = E{¢(V)}Eo{(Y — X) | |Y — X[} =0,
with probability one, since the distribution of ¥ — X is symmetric around zero. This
implies the unbiasedness of (W, V). The variance of this estimator is

2
VolX + (Y = Xy (V) = 6:1—1 + 2covp(X, (Y — X)y (V)

+ Vo{(Y = X)y(V)).
Since Eg{(Y — X)¥(V)} = 0, we obtain that
covg(X, (Y — X)¥(V)) = Eg{(X — (¥ — X)y(V)}.

The distribution of X — ,u depends only on o?. The maximal invariant statistic V' is
independent of u and Ul It follows from Basu’s Theorem that (X — 1) and ¥(V)
are independent. Moreover, the conditional distribution of X — 11 given ¥ — X is the
1 2
normal distribution N [ —— (¥ — X), Tz _r . Thus,
1—p n l4+p

cove(X, (Y = X)y(V) = Eo{yy (V)(Y — X)Eo{(X — ) | ¥ — X})

— ! V Y )2
= 13, BV (V¥ — X)),

The conditional distribution of (¥ — X)? given V is the gamma distribution G(X, v)
with

1 n 1
= — +7Z+ and v=n— -,
20.2(1+p : p) 2

where Z; = Q(X)/(Y — X)? and Z, = Q(Y)/(Y — X)>. We thus obtain the expres-
sion

2
Vol(W, V)} = %‘(1 +@2n - 1)Ep<[¢f2(21, Z3)

2 1+p
- I//(ZI5ZZ)i| ))
Zi 1+p Z
1+p 1+(1+,0)7]+—'0~—2

0 n

We see that in the present example the variance divided by o2/n depends not only on
the particular function ¥/(Z;, Z,) but also on the (nuisance) parameter p = o /a1 .
This is due to the fact that o is invariant with respect to G. Thus, if p is unknown
there is no equivariant estimator having minimum variance for all 6 values. There are
several papers in which this problem is studied (Brown and Cohen, 1974; Cohen and
Sackrowitz, 1974; Kubokawa, 1987; Zacks, 1970a). |
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Example 5.26. Let X, ..., X, bei.i.d. random variables having a common Weibull
distribution G'/2(A=#, 1), where 0 < A, B < oo. Note that the parametrization here
is different from that of Example 5.20. The present parametrization yields the desired
structural properties. The m.s.s. is the order statistic, T (X) = (X, ..., X(n)), where
Xa) <...< X Let i(T) and ,3(T) be the MLEs of A and B, respectively. We
obtain the values of these estimators as in Example 5.20, with proper modification of
the likelihood function. Define the group of transformations

G ={la,b]; O<a, b< o},

where

1/b

[a,b]X; =aX;”", i=1,...,n

Note that the distribution of [a, b]X is as that of ax'/?G'/Fb(1, 1) or as that of
G/Bb((an\/B)y=b 1), Accordingly, if X — [a, b]X then the parametric point (X, 8)
is transformed to

[, DIGh, B) = (ar!"”, bP).
It is easy to verify that
la, b[c, d] = [ac'”, bd]

and

_ 1 1
[a,b] ]: |:a_b7l_)i|

The reduction of the m.s.s. T by the transformation [A, ]! yields the maximal
invariant U (T)

A% BB A% B8
UXtys oo X)) = <X> Gl (§> G,

where Gy < ... < Gy is the order statistic of n i.i.d. E(1) random variables. The
distribution of U(T') does not depend on (A, B). Thus, (%)ﬂ is distributed indepen-
dently of (, B) and so is that of A/p.

Leti = F(&, B, U(T))and B = G(4, B, U(T)) be equivariant estimators of A and
B respectively. According to the definition of equivariance
(A, B FGL B UT)) = (FG., B, UT)E /i
= F(&, B4, 4, B17' B, U(T))
= F(1,1,U(T)) = y(U(T)).
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Accordingly, every equivariant estimator of A is of the form
k=i wmy”.
Similarly, every equivariant estimator $ is of the form
B =BHU()).

Note that the relationship between the class of all equivariant estimators (X, 8) and
the MLEs (4, #). In particular, if we choose y(U(T)) = 1 w.p.l and H(U(T)) = 1
w.p.l we obtain that the MLEs A and f are equivariant. This property also follows
from the fact that the MLE of [a, b](, B) is [a, bI(A, B) for all [a, b] in G. We
will consider now the problem of choosing the functions H(U(T)) and ¢ (U(T))
to minimize the risk of the equivariant estimator. For this purpose we consider a
quadratic loss function in the logarithms, i.e.,

T\P 2 3\ 2
s i
LG, B). O, B) = (log (X) ) +(10g3> .

It is easy to check that this loss function is invariant with respect to G. Furthermore,
the risk function does not depend on (X, 8). We can, therefore, choose 1 and H to
minimize the risk. The conditional risk function, given U(T'), when ¥(U(T)) = ¢
and HU(T)) = H, is

(s (552)) 0] oo ()
R(y. H)=E 1 (log [ UV +E 1og7 U

A

B A 2
A
= H?E { | log (X) +logy | |U} +E [logg + log H:| | U

Since (%)B and g are ancillary statistics, and since T is a complete sufficient statistic,

we infer from Basu’s Theorem that (1)3 and % are independent of U(T). Hence,
the conditional expectations are equal to the total expectations. Partial differentiation
with respect to H and v yields the system of equations:

A 2
@ HE{|lo ’Eﬁ+1o v +iE lo é +logH |} =0
gl g 7o els g =0.

A

B
A
(I E log<x> +logy®t =0.
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From equation (II), we immediately obtain the expression

A\ B
A
YO =exp{—E {log <X>

Substituting this 1 in (I), we obtain the equation

B .
A
(H?V {log (X) +log H' + E {log g} =0.
This equation can be solved numerically to obtain the optimal constant H°. Thus,
by choosing the functions (U) and H(U) equal (with probability one) to the con-
stants ¥° and HY, respectively, we obtain the minimum MSE equivariant estima-

tors. We can estimate ¥* and H° by simulation, using the special values of A = 1
and B = 1. [ |

Example 5.27. Asin Example 5.15,let X, ..., X, bei.i.d random variables having
a Laplace distribution with a location parameter o and scale parameter 8, where
—00 < u <ooand 0 < B < oo. The two moments of this distribution are

po=p pp =284 u’

_ 1 ¢
The sample moments are M; = X and M, = —ZX 12 Accordingly, the MEEs of p
n
i=1

and B are

PN

p=X B=6/v2.

n
where 6% = M, — M} = %Z(Xi — X)%. It is interesting to compare these MEEs
i=I
to the MLEs of u and § that were derived in Example 5.15. The MLE of p is the
sample median M,, while the MEE of 4 is the sample mean X. The MEE is an unbi-
ased estimator of 4, with variance V{X} = 282/n. The median is also an unbiased
estimator of w. Indeed, let n = 2m + 1 then M, ~ u + BYu+1), Where Y, 41y is the
(m + 1)st order statistic of a sample of n = 2m + 1 i.i.d. random variables having a
standard Laplace distribution (u = 0, B = 1). The p.d.f. of Y41 is

_Cm+ 1)

g(y) e

FOYF" W[l — F()I", —o0 <y < o0,
where

1
fy= Eexp{—lyl}, —00 <y <00
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and

1

—e”, if y <0,
Fiy)=432

I—Ee’y, if y > 0.

It is easy to verify that g(—y) = g(y) for all —oo < y < oo. Hence, E{Y(,+1)} =0
and E{M,} = u. The variance of M,, form > 1, is

ViM.} = 02V {¥us1)}
2m + 1)'/ _ 1 _A\"
o2 2 —(m+1l)y 1= 2™ d
27 (m )2 re 2¢ Y
2(2m +1)! « 1 /OO yze—(m+j+1)ydy
2’”(m‘)z 0

2(2m+1)' 1
2m(m1? Z( ) < >(1+1+m>*

Thus, for 8 = 1, one obtains the following values for the variances of the estimators:

Estt m=1 m=2 m=3 m=10 m=20

M, 03194 0.1756 0.1178 0.0327  0.0154
X, 0.6666 04000 02857 0.0952  0.0488

We see that the variance of M, in small samples is about half the variance of X,.
As will be shown in Section 5.10, as n — o0, the ratio of the asymptotic variances
approaches 1/2. It is also interesting to compare the expectations and MSE of the
MLE and MEE of the scale parameter f. [ ]

Example 5.28. Let X, ..., X, be i.i.d. random variables having a common log-
normal distribution LN (i, 0%), —00 < p < 00, and 0 < 0% < oo. Let ¥; = log X;,

. _ 1 A | — - A

i=1,...,n;Y, = ;ZY, and anz = ;X;(Yi — Y)2. Y, and onz are the MLEs of u
i=

and o2, respectively. We derive now the MEEs of x and 2. The first two moments

of LN(u, 0?) are

pi=exp{p+07/2} oy =exp{2u +20%}.

Accordingly, the MEEs of u and o2 are

1
fa=2logM; — ElogMz 5% =log M, — 2log M,
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B 1 n
where M| = X,, and M, = —ZX f are the sample moments. Note that the MEEs
n
i=1
and &2 are not functions of the minimal sufficient statistics ¥,, and 62, and therefore
are expected to have larger MSESs than those of the MLEs. [ ]

Example 5.29. In Example 5.20, we discussed the problem of determining the
values of the MLEs of the parameters A and § of the Weibull distribution, where
X1, ..., X, are i.i.d. like G/A(x, 1) where 0 < B, & < oo. The MEEs are obtained
in the following manner. According to Table 2.2, the first two moments of GYB(x, 1)
are

i =TA+ 1B/ py =T +2/8)/37.
Thus, we set the moment equations
M, =T +1/B)/AE My =T(1+2/B)/3P.
Accordingly, the MEE § is the root of the equation

2 M
Ly M,

The solution of this equation can be obtained numerically. After solving for B, one

obtains X as follows:
A\ B
= ra+1/p)
= —M1 .

We illustrate this solution with the numbers in the sample of Example 5.14. In that

sample, n =50, ) X; = 46.6897, and Y X7 = 50.9335. Thus, M; = 9338 and
i=1

i=1
M, = 1.0187. Equation (5.8.9) becomes
" 11
1.711958 = B (—M 7) .
B B

The solution should be in the neighborhood of B =2, since 2 x 1.71195 =
3.4239 and B(5, 5) = m = 3.14195.. ... In the following table, we approximate the
solution:

11
2° 2
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B T(p B 1711958

25 221815 4.22613 4.2798
26 230936 4.44082 4.4510
2.7 240354 4.66284 4.6222

Accordingly, the MEE of 8 is approximately 8 = 2.67 and that of A is approximately
A = 0.877. The values of the MLE of 8 and A, obtained in Example 5.20, are 1.875
and 0.839, respectively. The MLEs are closer to the true values, but are more difficult

to obtain. [ ]

Example 5.30.
A. Let (Xy,Y)),...,(X,, Y,) be iid. random vectors having a bivariate nor-
mal distribution N (0, R), where R = <; '(1) ) —1 < p < 1. Accordingly, an

B.

LO,y, 0| X,Y,0) =

n
estimator of p is the sample mixed moment M;; = —ZX ;Y;. This is also an
n
i=1
unbiased estimator of p. There is no UMVU estimator of p, since the family
of all such distributions is incomplete.
The likelihood function of p is

L(p;X,Y) = [Ox + Oy — 2pry]} ,

1 1
(1= p2yrn P { 20— p?)
where Qx = £X?, Qy = ZY?, and Pyy = £X,Y;. Note that the m.s.s. is

T = (Qx + Qy, Pxy). The maximal likelihood estimator of p is a real solution
of the cubic equation

np® — p*Pyy + (S —n)p — Pxy =0,

where § = Q. + Q,. In the present example, the MEE is a very simple esti-
mator. There are many different unbiased estimators of p. The MEE is one
such unbiased estimator. Another one is

1
:5:1_2_(5_2PXY)-
n

Consider the model of Example 5.10. The likelihood function is

exp{—i |:()_( — 0+ (Y —y6>)* + %“ ,

202

(a2)"



380 STATISTICAL ESTIMATION

—00 <0,y <00,0 < 0? < o0o. The MEE of 02 is 62 = 22 Similarly, we
n

find that the MEEs of 6 and y are

D>

Il

et

<>

Il
5 =

The MLE:s are the same. n

Example 5.31. Let Xi,..., X, be ii.d. random variables having a common
N(u, 0%) distribution. The problem is to estimate the variance o2. If ;1 = 0 then

1 n
the minimum MSE equivariant estimator of o2 is 63 = +ZZX1’2' On the

other hand if w is unknown the minimum MSE equivariant estimator of o2 is
1
612 = Z(X X,)%, where X, = —ZX One could suggest to test first the
n+1

hypothesis Ho n =0, o arbitrary, against H; : © # 0, 0 arbltrary, at some level of
significance «. If Hy is accepted the estimator is 002, 0therw1se itis & Suppose that

the preliminary test is the -test. Thus, the estimator of o> assumes the form:

VXl

n

VX,
S,

6% = 651{X, S*:

< t_gpln —11}

GTI{X. S

> t_gp[n — 11},

where S,f is the sample variance. Note that this PTE is not translation invariant,
since neither the ¢-test of Hy is translation invariant, nor is 602. The estimator o2
may have smaller MSE values than those of &02 or of 612, on some intervals of
(1, 0?) values. Actually, 6% has smaller MSE than that of 67 for all (u,0?) if

n—1

t_apln —1] = ~ 1. This corresponds to (when n is large) a value of o

approximately equal to « = 0.3173. [ ]

Example 5.32. Let Xy, ..., X, beasample of i.i.d. random variables from N (i, 012)
and let Yy, ..., Y, be a sample of i.i.d. random variables from N(u, 022). The X and
Y vectors are independent. The problem is to estimate the common mean px. In
Example 5.24, we studied the MSE of equivariant estimators of the common mean
w. In Chapter 8, we will discuss the problem of determining an optimal equivariant
estimator of ¢ in a Bayesian framework. We present here a PTE of . Let p = o 2/ Ul

If p = 1 then the UMVU estimator of 1 is fi; = (X + Y)/2, where X and ¥ are the
sample means. When p is unknown then a reasonably good unbiased estimator of ©
is ir = (XR + Y)/(R + 1), where R = S} /S% is the ratio of the sample variances
S? to S%. A PTE of 1 can be based on a preliminary test of Hy : p = 1, p, o1, 02
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arbitrary against H, : p # 1, u, 01, o, arbitrary. If we apply the F-test, we obtain the
PTE

A= HR<Fi_on—1,n—11}+arl{R > Fi_o[n—1,n—1]}.

This estimator is unbiased, since X and Y are independent of R. Furthermore,

2
1
ﬂ-%, ifR < Fioln—1,n— 1],
CIE RS
G PR R > Fialn—1,n—1].
7 (It R

Hence, since E{{1 | R} = u for all R, we obtain from the law of total variance that
the variance of the PTE is

2 /1 1
Vi) = %‘(%P{F[n ~Ln=11S Figln—1n 1]

(o) + R2
+ fR * —(’]’ - R)pr(de),

where R* = Fi_4[n —1,n — 1], and f,(R) is the p.d.f. of pF[n —1,n — 1] at R.
Closed formulae in cases of small n were given by Zacks (1966). [ ]

PART III: PROBLEMS

Section 5.2
5.2.1 Let Xy,..., X, bei.i.d. random variables having a rectangular distribution
R0, 6,), —00 < 6) < 6, < 0.
(i) Determine the UMVU estimators of 6, and 6,.
(ii) Determine the covariance matrix of these UMVU estimators.

5.2.2 LetXy,..., X, beii.d.random variables having an exponential distribution,
EM),0 < X < 0.

(i) Derive the UMVU estimator of A and its variance.
(ii) Show that the UMVU estimator of p = e™* is

SCIR

where T = ZX,- and a™ = max(a, 0).

i=1
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(iii) Prove that the variance of p is

) 1 (S (2n=2 N .
V{/O}Zm(;(—)»)( ; )(n—l—l).P(n—z—l,A)
2n—2

i 2n —2 . St
+i§( x)< ; )H(z n+l|k)) e

o]

where P(j;A) is the c.d.f. of P(A) and H(k | x) :/ e " /utdu.

[H(k | x) can be determined recursively by the relation *

1 e ™
H(k|x)=m<xkl—H(k—1|x)>, k>2

and H(1|x) is the exponential integral (Abramowitz and Stegun, 1968).

523 LetXy,..., X, bei.i.d.random variables having a two-parameter exponen-
tial distribution, X; ~ u + G(A, 1). Derive the UMVU estimators of © and
A and their covariance matrix.

524 LetX,,...,X,beiid. N(u, 1) random variables.
(i) Find a A(n) such that ®(A(n)X) is the UMVU estimator of ®(u).
(ii) Derive the variance of this UMVU estimator.

5.2.5 Consider Example 5.4. Find the variances of the UMV U estimators of p(0; 1)
and of p(1;A). [Hint: Use the formula of the p.g.f. of a P(nA).]

5.2.6 Let Xy,..., X, be i.i.d. random variables having a NB({, v) distribution;
0 < ¢ < oo (v known). Prove that the UMVU estimator of v is

. T “
= —— wh T = X;.
v T 1 where ;
5.2.7 Let Xy,..., X, be i.i.d. random variables having a binomial distribution

B(N,0),0 <0 < 1.

(i) Derive the UMVU estimator of # and its variance.

(i) Derive the UMV U estimator of o2(8) = 6(1 — 6) and its variance.
(iii) Derive the UMVU estimator of b(j; N, 0).

5.2.8 LetXy,..., X, beiid. N(u,1)random variables. Find a constant b(#) so
that
&) 1 { L )‘02}
X)) = —exp{—— (6§ —
V2 /b(n) P1™ 260
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5.2.9

5.2.10

5.2.11

5.2.12

5.2.13

5.2.14

5.2.15

5.2.16

5.2.17

is a UMVU estimator of the p.d.f. of X at &, i.e, «/;27 exp{—%(&‘ — )%
[Hint: Apply the m.g.f. of (X — £)%.]

Let Ji, ..., J, be ii.d. random variables having a binomial distribution
- 1

B(1,e 2/%),0 < 6 < 1 (A known). Let p, = (Zfi + 5) /(n + 1). Con-
i=1

sider the estimator of 0

~

0, = —A/log(py).
Determine the bias of §, as a power-series in 1/n.

Let X, ..., X, be i.i.d. random variables having a binomial distribution
B(N,0),0 < 6 < 1. What is the Cramér—Rao lower bound to the variance
of the UMVU estimator of w = 6(1 — 0)?

Let Xy, ..., X, be i.i.d. random variables having a negative-binomial dis-
tribution NB(, v). What is the Cramér—Rao lower bound to the variance of
the UMVU estimator of yr? [See Problem 6.]

Derive the Cramér—Rao lower bound to the variance of the UMVU estimator
of § = ¢~ in Problem 2.

Derive the Cramér—Rao lower bound to the variance of the UMVU estimator
of ®(u) in Problem 4.

Derive the BLBs of the second and third order for the UMVU estimator of
®(w) is Problem 4.

Let Xy, ..., X, be i.i.d. random variables having a common N (1, ?) dis-
2

tribution, —00 < u < 00,0 < 0° < 0.
(i) Show that & = exp{X} is the UMVU estimator of @ = exp{u +
o?/2n}.
(ii) What is the variance of ®?
(iii) Show that the Cramér—Rao lower bound for the variance of & is

2 2
o 2 o
2u+oc/n
—e 1+ —.
n ( 2n2>

Let Xy, ..., X, be i.i.d. random variables having a common N (, ?) dis-
tribution, —o00 < u < 00, 0 < 0 < 00. Determine the Cramér—Rao lower
bound for the variance of the UMVU estimator of w = u + z,,0, where
Zy = o l(y),0<y < 1.

Let Xi,..., X, be i.i.d. random variables having a G(A, v) distribution,
0 <A <o0,v >3 fixed.
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(i) Determine the UMVU estimator of A2.
(ii) Determine the variance of this UMVU.
(iii) What is the Cramér—Rao lower bound for the variance of the UMVU
estimator?
(iv) Derive the BLBs of orders 2, 3, and 4.

5.2.18 Consider Example 5.8. Show that the Cramér—Rao lower bound for the
4

o
variance of the MVU estimator of cov(X, ¥) = po? is —(1 + p?).
n

5.2.19 Let Xy,..., X, be ii.d. random variables from N(u1, 012) and Yy,..., Y,
i.1.d. from N(u,, 022). The random vectors X and Y are independent and
n>3.Lets =0?/ol.

(i) What is the UMVU estimator of § and what is its variance?
(ii) Derive the Cramér—Rao lower bound to the variance of the UMVU
estimator of §.

5.220 Let Xy,..., X, be ii.d. random variables having a rectangular distribu-
tion R(0, 0), 0 < 6 < oo. Derive the Chapman—Robbins inequality for the
UMVU of 6.

5.2.21 Let X;,...,X, be ii.d. random variables having a Laplace distribu-
tion L(u,0), —00 < u < 00, 0 < 0 < 0o. Derive the Chapman—Robbins
inequality for the variances of unbiased estimators of .

Section 5.3

5.3.1 Show that if #(X) is a biased estimator of 6, having a differentiable bias
function B(#), then the efficiency of 6(X), when the regularity conditions

hold, is
" (1 + B'(6))?
Ep(0) = —————.
In(@)VG{G}
53.2 Let X,,..., X, be i.i.d. random variables having a negative exponential

distribution G(A, 1), 0 < A < oo.
(i) Derive the efficiency function £(A) of the UMVU estimator of A.
(ii) Derive the efficiency function of the MLE of A.

5.3.3 Consider Example 5.8.
(i) What are the efficiency functions of the unbiased estimators of o> and

1 n
p. where p = BX;Y;/SX? and 6 = — > (X7 + 7).
2n P

(ii) What is the combined efficiency function (5.3.13) for the two estimators
simultaneously?
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Section 5.4

541

5.4.2

543

544

Let Xi,..., X, be equicorrelated random variables having a common
unknown mean w. The variance of each variable is ¢ and the correlation
between any two variables is p = 0.7.

(i) Show that the covariance matrix of X =(Xy,...,X,) is ¥ =
02(0.31, +0.7J,) = 0.302(I, + %J,,), where I, is the identity matrix
of order n and J, is an n x n matrix of 1s.

(ii) Determine the BLUE of pu.
(iii) What is the variance of the BLUE of ?
(iv) How would you estimate o>?

Let X, X,, X3 be i.i.d. random variables from a rectangular distribution
R(w—o,u+0),—00 < u < 00,0 <o < oo. Whatis the best linear com-
bination of the order statistics X;), i = 1, 2, 3, for estimating 1, and what
is its variance?

Suppose that X1, ..., X, are i.i.d. from a Laplace distribution with p.d.f.
1 X — U

fspu,0)=—y (
o o

1 < 00,0 < o < oo. What is the best linear unbiased combination of Xy,
M,, and X for estimating p, whenn = 57

,—00 < x < 00, where ¥/(z) = 3¢~ Fl; —o0 <

T
Let Y (T) = Z’k'
=1

(i) Show that

P
> (p N 1>wk(T> = (T + 1 -1,

k=0 k

(i) Apply (i) to derive the following formulae:

mﬂ
[

1
~T(T + 1),
ZTT+1)

“
Il
-

éT(T + DQT + 1),

1~
-~
[
I

-
Il

Pﬂﬂ
Il

1
3 ZTz(T +1)%,

-
Il

1
= %T(T + DQT + D3T? 43T — 1),

-

~
Il
—_
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54.5

5.4.6

STATISTICAL ESTIMATION
a 1
2;5 = ETZ(T + 1D*QT? +2T — 1),
=1

T
1
Zt(’ = ET(T + DQT + D@BT*+ 6T — 3T +1).
=1

T T
[Hint: To prove (i), show that both sides are Z(t + Dt — Zt”“
=1 =1

(Anderson, 1971, p. 83).]

Let X; = f(t) 4+ e, wheret =1, ..., T, where

p
fO=> B, t=1,...T;
i=0

e, are uncorrelated random variables, with E{e,} =0, V{e,} = o for all
t=1,...,T.
(i) Write the normal equations for the least-squares estimation of the poly-
nomial coefficients 8; (i =0, ..., p).
(ii) Develop explicit formula for the coefficients g; in the case of p = 2.
(iii) Develop explicit formula for V{g;} and o for the case of p = 2.[The
above results can be applied for a polynomial trend fitting in time series
analysis when the errors are uncorrelated.]

The annual consumption of meat per capita in the United States during the
years 1919-1941 (in pounds) is (Anderson, 1971, p. 44)

t 19 20 21 22 23 24 25 26 27
X, 1715

167.0 1645 1693 1794 1792 1726 170.5 168.6

t 28 29 30 31 32 33 34 35 36
X, 1647

163.6 162.1 1602 161.2 1658 163.5 146.7 160.2

t 37 38 39 40 41
X, 156.8 156.8 1654 1747 178.7

(i) Fit a cubic trend to the data by the method of least squares.

(ii) Estimate the error variance o' and test the significance of the polyno-
mial coefficients, assuming that the errors are i.i.d. N (0, o?).
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54.7 Let(xy, Y;),i=1,...,ny, and (xy;, Y2;),i = 1,..., ny, be two indepen-
dent sets of regression points. It is assumed that

Yji = Boj + Bixji +eji J=L2 i=1...,n;

where xj; are constants and e;; are i.i.d. N(0, 02). Let
nj
SDXJ = Z(Xj,’ - )fj)z,
i=1

SPD; = (xji = E)(Y; = ¥p),  j=1,2,
i=1

l‘l/'

SDY; = Z(in -7,
i=1

where %; and ¥; are the respective sample means.
(i) Show that the LSE of g is

PN

2
> spp,
B = =

-2
> SDX;
j=1

and that the LSEs of By; (j =1, 2) are

Boj =Y, — Bi%;.

(i) Show that an unbiased estimator of o2 is

2 2
1 R
2
S = N3 > SDY; — iy _SPD; ¢,
j=1 j=1

where N = n; + n».
(iii) Show that

3 2 2 5 o? n;x
ViBi) =0/ _SDX;; V{Bo;} = it
=1

2
! > "SDX;
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Section 5.5
5.5.1 Consider the following raw data (Draper and Smith, 1966, p. 178).

Y 785 743 1043 87.6 959 109.2 1027 72,5 93.1 1159 83.8 113.3 1094
X, 7 1 11 11 7 11 3 1 2 21 1 11 10
X, 26 29 56 31 52 55 71 31 54 47 40 66 68
X; 6 15 8 8 6 9 17 22 18 4 23 9 8
X4 60 52 20 47 33 22 6 44 22 26 34 12 12
(i) Determine the LSE of By, ..., B4 and of ¢? in the model ¥ = 8y +
Bi1X1+ ...+ BsX4+ e, where e ~ N(O, o?).
(i) Determine the ridge-regression estimates SB;(k), i =0, ...,4 for k =

0.1,0.2,0.3.
(iii) What value of k would you use?

Section 5.6

5.6.1 Let Xy,..., X, be iid. random variables having a binomial distribution
B(1,0),0 < 6 < 1. Find the MLE of
() o> =6(1-06);
(i) p=e?;
(i) w =e /(1 + 7
(iv) ¢ =log(l +6).
5.6.2 Let Xy,..., X, beiid. P(A),0 <A < oco. What is the MLE of p(j;\) =
e A /jL,j=0,1,...2
563 LetX,,...,X,beiid. N(u,c?),—00 < it < 00,0 <o < o0o. Determine
the MLESs of
) u+Z,0,where Z, = (), 0<y <1;
(i) w(p, 0) = ®(u/o) - [1 — d(1/0)].
5.6.4 Using the delta method (see Section 1.13.4), determine the large sample
approximation to the expectations and variances of the MLEs of Problems
1, 2, and 3.
5.6.5 Consider the normal regression model
Yi=Bo+Bixi+e (=1,...,n),
where x1, ..., x,, are constants such that Z(xi — X)z >0,and e, ..., e,

i=1

are i.i.d. N(0, o?).
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5.6.6

5.6.7

(i) Show that the MLEs of B and ; coincide with the LSEs.
(ii) What is the MLE of ¢2?

Let (x;, T;),i =1, ..., n be specified in the following manner. x, ..., x,
n n
1 .
are constants such that Z(x,« — JZ)2 >0,x= —in, Ti, ..., T, are inde-
i=1 "

1
pendent random variables and 7; ~ G < , 1), i=1=1,..n.
o+ Bx;

(i) Determine the maximum likelihood equations for « and .

(ii) Set up the Newton—Raphson iterative procedure for determining the
MLE, starting with the LSE of « and 8 as initial solutions.

Consider the MLE of the parameters of the normal, logistic, and extreme-
value tolerance distributions (Section 5.6.6). Let x; < ... < x; be controlled
experimental levels, ny, . .., n; the sample sizes and Ji, . .., J; the number
of response cases from those samples. Let p; = (J; + 1/2)/(n; + 1). The
following transformations:

1. Normit: ¥; = & !(p;),i =1,...,k;

2. Logit: Y¥; =log(p;/(1 — pi), i =1,...,k;

3. Extremit: Y; = —log(—log p;),i =1, ..., k; are applied first to deter-
mine the initial solutions. For the normal, logistic, and extreme-value
models, determine the following:

(i) The LSEs of 0; and 0, based on the linear model Y; = 0; + 6>x; + ¢;
(i=1,...,k).
(ii) The MLE of 9, and 6,, using the LSEs as initial solutions.

(iii) Apply (i) and (ii) to fit the normal, logistic, and extreme-value models
to the following set of data in which k = 3; n; =50 (i =1, 2, 3);
X1 = —l,x2 :0,X3 = 1; J] = 15, J2 = 34, J3 = 48.

(iv) We could say that one of the above three models fits the data better
than the other two if the corresponding statistic

k
W2 = "nip}/F(x:6)

i=1

is minimal; or

k
D* =) "n;pilog F(x;0)

i=1

is maximal. Determine W2 and D? to each one of the above models,
according to the data in (iii), and infer which one of the three models
better fits the data.
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5.6.8 Consider a trinomial according to which (J;, J,) has the trinomial distribu-
tion M(n, P(0)), where

Pi(6) =67, Py(0)=20(1—10), Py0)=(1—-06).
This is the Hardy—Weinberg model.
(i) Show that MLE of 9 is
A 2J1 + J.
g, ==t
2n
(ii) Find the Fisher information function 7,,(6).

(iii) What is the efficiency in small samples £ (é,,) of the MLE?

5.6.9 A minimum chi-squared estimator (MCE) of 0 in a multinomial model
M(n, P(0)) is an estimator 6, minimizing

k
X* = "(Ji = nP(0))’/nPi®).

i=1
For the model of Problem 8, show that the MCE of 0 is the real root of the

equation

2QJF — I3 +203)0° — 3@} — IHO* + (1207 — J5H0 — 4J7 = 0.

Section 5.7

5.71 Let X;,..., X, be i.i.d. random variables having a common rectangular
distribution R(0, 6),0 < 0 < oo.

(i) Show that this model is preserved under the group of transformations
of scale changing, i.e., G = {gg : g8 X = BX,0 < B < oo}

2
(i) Show that the minimum MSE equivariant estimator of 6 is %X n)-
n

5.7.2 Let X,...,X, be iid. random variables having a common location-
1
parameter Cauchy distribution, i.e., f(x;u) = —(1 + (x — u)*>)~!, —oc0 <
T
X < 00; —00 < U < o0. Show that the Pitman estimator of u is

i=Xa — {/ u(l 4+ u?)~! ]_[(1 + (Y + u)z)ldu} /

i=2

{/ A+ T]a+ ¥ +u>2>—‘du} ,
- i=2
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where Yy = X4y — X1y, i =2, ..., n. Or, by making the transformation
® = (1 4+ u?)~! one obtains the expression

=Xy +

PR o) T i (o752 ] o

i=2

el A

This estimator can be evaluated by numerical integration.

5,73 Let X,,..., X, be ii.d. random variables having a N(u, o?) distribution.
Determine the Pitman estimators of i and o, respectively.

5.74 LetXy,..., X, beii.d. random variables having a location and scale param-
1 _
eterp.df. f(x;p0,0) = —% (x
o
and ¥ (z) is of the form
i) v = %exp{—lzl}, —00 < 7 < oo (Laplace);
(i) Y(z) =6z(1 —2),0 <z <1.(B8(2,2)).
Determine the Pitman estimators of x and o for (i) and (ii).

n
,where —00 < u < 00,0 <0 < 00
o

Section 5.8
5.8.1 LetX,,..., X, beii.d. random variables. What are the MEEs of the param-
eters of

(i) NB(y,v);0 <y < 1,0 <v < 00;
(i) G(A,v);0 <A <00,0 <V < 00;
(i) LN, 0?); —00 < . < 00,0 < 02 < 00;
iv) GVP(r,1);0 < A < 00,0 < B < oo (Weibull);

(v) Location and scale parameter distributions with p.d.f. f(x;u, o) =

1 X — U .
— ; —00 < U < 00,0 <o < oo; with
o o

(a) ¥(z) = § exp{—|z|}, (Laplace),

v+l
2

1 2\
b)) v@)=—— (1 + Z—) , v known,
B Iy Jv Y
2’2
1
(© V@) = ——2""1(1-2)2"1,0 <z <1, v and v, known.

B(Ul ) U2)
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5.8.2

5.8.3

5.84
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It is a common practice to express the degree and skewness and kurtosis
(peakness) of a p.d.f. by the coefficients

Bi = 13/(u3)*?  (skewness)

and

Br = wi/(u3)*  (kurtosis).

Provide MEE:s of /8 and B, based on samples of n i.i.d. random variables
X1, .., X

Let Xi,..., X, be iid. random variables having a common distribu-
tion which is a mixture «cG(A, v1) + (1 —a)G(A, 1), 0 <a <1, 0 < A,
V1, vp < o0o. Construct the MEEs of «, A, v, and v,.

Let X, ..., X, beii.d. random variables having a common truncated nor-
mal distribution with p.d.f.

fxsp,0,6) = [n(x | w,0%)/ (1 - ((5%‘)))} (x> &),

here  n(x | D) ! e : (x—,u)z 00 00
w n(x | w,o?) = xpl——=(——) }, —oo0<ux<o0.
. o2 P 2 o

Determine the MEEs of (u«, o, ).

Section 5.9

5.9.1

5.9.2

Consider the fixed-effects two-way ANOVA (Section 4.6.2). Accordingly,
Xijt,i=1,...,r5j=1,...r,k=1,...,n,areindependent normal ran-
dom variables, N (u;, o), where

A B AB. .
wi=p+1 +1 +150 i=1,....,rn, j=1,...,m.

Ti,A
tf i=1,...,r;j=1,...,r). [The estimation is preceded by a test of
significance. If the test indicates nonsignificant effects, the estimates are
zero; otherwise they are given by the value of the contrasts.]

Construct PTEs of the interaction parameters B and the main-effects riA,

Consider the linear model Y = AB + e, where Yisan N x 1 vector, A is an
N x p matrix (p < N) and B a p x 1 vector. Suppose that rank (A) = p.
Let B' = (B, B(z), Where By is a k x 1 vector, 1 <k < p. Construct
the LSE PTE of B(1). What is the expectation and the covariance of this
estimator?
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59.3 Let S7 be the sample variance of n; i.i.d. random variables having a
N(uy, 012) distribution and S% the sample variance of n, i.i.d. random vari-
ables having a N (i1, 07) distribution. Furthermore, S7 and S5 are indepen-
dent. Construct PTEs of o7 and 0. What are the expectations and variances
of these estimators? For which level of significance, «, these PTEs have a
smaller MSE than Sf and S% separately.

Section 5.10

5.10.1 What is the asymptotic distribution of the sample median M, when the i.i.d.
random variables have a distribution which is the mixture

0.9N(i, 6%) + 0.1L(1, o),

L(u, o) designates the Laplace distribution with location parameter p and
scale parameter o.

5.10.2 Suppose that X(;) < ... < X(g) is the order statistic of a random sample of
size n = 9 from a rectangular distribution R(u — o, u + o). What is the
expectation and variance of

(i) the tri-mean estimator of (;
(ii) the Gastwirth estimator of £?

5.10.3 Simulate N = 1000 random samples of size n = 20 from the distribution of
X ~ 10+ 5¢[10]. Estimate in each sample the location parameter © = 10
by X, M., GL, .19 and compare the means and MSEs of these estimators
over the 1000 samples.

PART IV: SOLUTIONS OF SELECTED PROBLEMS

5.21

(i) The m.s.s. is (X(1y, X(n)), Where Xy < --- < X(,). The m.s.s. is com-
plete, and

Xy ~ 01 + (6 — 01U,
Xy ~ 01 + (0, — 0)U,,

where U(jy < -+ < Uy, are the order statistics of n i.i.d. R(0, 1) ran-
dom variables. The p.d.f. of Uy, i =1,...,nis

n'

(i — Di(n—i)!

w1 — )

S, () =
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Thus, U; ~ Beta(i, n — i + 1). Accordingly

1
E(X =0 6, — 0)——,
Xy 1+ (62 l)n+1

n
E(Xy) =0 6, —0)——.
(X)) 1+ (62 l)n+1

Solving the equations

0, + @b, —0 =X
1+ (6> 1)nle (o)
b+ —6)——=x
1 p) 1 il )
for §, and 0,, we get UMVU estimators
b =" x X
S R
and
. n
O =———7Xn+ X

(ii) The covariance matrix of 8, 6, is
(02 — 61)? n 1
n+D2m+2)\1 n)

. 1 .
5.2.3 The m.s.s. is I’lX(]) and U = Z(X(,’) —X(l)). U~ XG(I,I’Z — 1) A=
i=2
n—2

U

s

R }Ln—l) 00
EG)=(n—2)——— f e M
T—1)J

= A.

Thus A is UMVU of A, provided n>2. Xq ~pu+G@mr,l).

U -1
Thus, E {X(l) — m} = u, since E{U} = nT Thus, it = Xy —
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U
— isaUMVU.
nn—1)

E L _ An—l /‘OO 4 —Axd _ )\.2
[T Tta-n) " ¢ T u2n-3)

Thus,

« 2<n—2 > A2
n—3

provided n > 3. Since X(;y and U are independent,

A U
viagy =V {X(l) - m}
1
= V{X(1)}+mV{U}
1 1 n—1

n2\2 + n2(n —1)2 A2

(Y
T on2a2 n—1)  nn— 1Kz

forn > 1.

G ) n—2 X U
Cov(A, = COV . _
H O m—1)

I
|
e}
o
P
Y
S
S
[\
S
=
S
1<
—
N
—

5.2.4
_ 1

() Xi,..., X, iid N(u, 1). X, ~ N (u -). Thus,
n

An)p
14 20

n

E{®(A(n)X)} = @

395
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A e 1
Set — 1 2y =1+ 2y = — s am) =
1 4 X n 1=-1
vi+=- "
. , X
. The UMVU estimator of ®(u1) is &
1-1 1-1
. . X .
(ii) The variance of ® | —— | is
1-1
X
E @2 — d(p).
1-1

IfY ~ N(, t%) then

E(@X(Y)) = &, ( a v )

I+ VT2 1412
In our case,
X N
Vio =&y | p, 5= ) — P ().
1-1 n

526 Xi,...,X,~iid. NB(y,v),0 < < oo vis known. The m.s.s.is T =
in ~ NB(r, nv).

i=1

'(nv +1) t ; .
E{nv—i—T—l} p t!'(nv) .nv—i—t—ll//(l_l//)
_ - (nv+t t—=1c1 _ nv
B ; (t = DIT(n v)I/f (=¥
. > (nv+t) n
= ;0 rRA L2
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528 (X—-&~N </L —&, l) Hence, (X —&)> ~ l)(2[1;)L], where A =
n n
n€ — p)°
2

. Therefore,
E{g’X”;“/”}z )‘Z)\’j< 2I) i

(-5) “ar (o)

1
Sett = ———, t
e 2500 we ge

2
exp —(M —§) : ! = e 187,
2b(n) 1+ #(n)

1 1 -1
Thus,b(n)—l——:10rb(n)=1——=n .
n n

n
529 The probablhty of success is p = e~ 2/%. Accordingly, 6 = —A/log(p).

npn+1/2
Let n = Jl . Th s Pn = —————.
et p ;21 /n us, p P

A N 1 1
—A /log(p,). The bias of 6, is B(6,) = —A (E { — } — —) Let
logpn ) log(p)

. Taylor expansion around p yields

The estimator of 6 is 6, =

g(pn) = log(ﬁn)

1
E{g(pn)} = g(p)+ & (P)E{p. — p} + Eg”(p) .
1
- E{(pn — P’} + gg“)(p)E{(p* - p’}

where |p* — p| < |p, — p|. Moreover,

1
gp)=———,
plog*(p)
g//(p) = w
p*log’(p)’
3log(p) + 3 + log*(p)
g(3)(p) -2 gp g (p _

p3log4(p)
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Furthermore,
2p—1
E{pn—p) = ——0,
n=P)= =307
. (n—1p(l—p)+1/4
E{(p, — p)*} =
{(hn — P) P
Hence,
A 2p—1 L (n—Dp(l—p)+1/4
B@®,) = — 4+ . -
2(n + Dplog’(p) 2 (n+1)
2+ 1 1
j_;f(p) 0 (—) , asn — oo.
p~log’(p) n

5217 X4,...,X,~ GO, v), v > 3 fixed.
- 1
(i) X ~ —G(A, nv). Hence
n

1 nZ)\'nv 00 nv—3 —Aix
E {1 — = — X e dx
X2 C'(nv) Jo

AZn?
T v =D —2)

The UMVU of 2 is 2 = V= Dw=2) - 1

n? X2
2(2nv —5)
(nv —3)(nv —4)
(ii) 7,(A) = ’;—]2) The Cramér—Rao lower bound for the variance of the
UMVU of A? is

(i) V{32 =24

40202 4

CRLB = =,

nv nv
nv nv
iv) /(M) =— —T,I"0) = ——.
@iv) I'(2) . ) 2

w(r) = A2, w/(L) =24, w’(L) = 2.

oA o
2r,2)V <2>_4(x,1)v (1)
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The second order BLB is

4% my + 1)
(nv)?

and third and fourth order BLB do not exist.

5.3.3 This is continuation of Example 5.8. We have a sample of size n of

X
vectors (X, Y), where <Y> ~N (0, 02<[l) ’T)) We have seen that

1—p?
n—2

where QX::E:X?zmd Qy==§:n% Note that Qy | Qx ~ o2(1 —

i=1 i=1

V{p} = . We derive now the variance of 6% = (Qx + Qy)/2n,

2

22|, P
PIX [”;mQY}-HeHCC,

E(Qy | Qx) = o?n(l — p*) + *p* Qx

and

2
V(Qy | 0x) = o1 — p (20 + 4225 ).
1—p?

It follows that

V@%:gﬁiﬁg
n
Finally, since (Qx + Qy, Pxy) is a complete sufficient statistic, and since p
is invariant with respect to translations and change of scale, Basu’s Theorem
implies that 62 and p are independent. Hence, the variance—covariance
matrix of (62, ) is

2041 — p?) 0

V=— l—p

2

Thus, the efficiency of (62, p), according to (5.3.13), is

o (1 + p»)(1 — p»)? — ot p*(1 — p?)?
2041 — p2)?/(1 — %)

—11 1—1—}-01 — 00
) n) 2 n,asn ’

eff. =




400 STATISTICAL ESTIMATION

54.3

1 X —
X1, ..., Xsarei.i.d. having a Laplace distribution with p.d.f. —¢ ( M),
o

1
where —00 < i < 00, 0 < o < 00, and ¢(x) = Ee“’", —00 < X < 00.
The standard c.d.f. (u =0,0 = 1) 1is

1 x
_ )3t -0 <x <0,
F(x)_{l—%e_x, 0<x < oo.

Let X1y < Xy < X3y < X4 < X(5) be the order statistic. Note that M, =

X3y Also Xy =pn+oUg,i =1,...,5, where Uy are the order statistic
from a standard distribution.

The densities of Uy, Uy, Us) are

5
pay(u) = EeXp(—IuD(l — F(u))*, —o0<u< oo,

Pe(u) = 15 exp(—|u)(F(u)*(1 — F(w)),

—00 < U < 00,

5
psy(u) = ECXP(—|M|)(F(M))4, —00 < U < 0.

Since ¢(u) is symmetric around u = 0, F(—u) = 1 — F(u). Thus, ps)(u) is

symmetric around u = 0, and Ujy ~ —Ujs). It follows that oy = E{U()} =
—a5 and oz = 0. Moreover,

5 O u 1 u ! 5 * —u 1 —Uu N
o = — ue'" |1 — =e du + — ue —e du
2 J_ o 2 2 Jo 2

= —1.58854.

Accordingly, o = (—1.58854, 0, 1.58854), V{Un} = V{Ups)) =
1.470256, V{U)} = 0.35118.
COV(U(]), U(3)) = E{U(UU@)}
5! [

s ) xe™M! / " yexp(—IyD(F () — F)
(1 — F(y))*dy dx = 0.264028
cov(Uqy, Ugsy) = cov(Uqyy, —Uqy) = =V{Uq)} = —1.470256
cov(U), Us)) = E{Ug), —Uqy} = —0.264028.
Thus,
1.47026  0.26403  —1.47026

V=1 026403 035118 —0.26403
—1.47026 —0.26403 1.47026
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Let
1 —1.58854
A=]1 0
1 1.58854
The matrix V is singular, since Uiy = —U(). We take the generalized
inverse

0.7863 —0.5912 0
Vo= -05912 32920 O
0 0 0

We then compute

= AN=1 /=1 0 1 0
(AV-A)T AV _<—0.6295 0.6295 0)

According to this, the estimator of u is ft = X(3), and that of o is 6 =
0.63X 3y — 0.63X(1y. These estimators are not BLUE. Take the ordinary
LSE given by

~
A

Xa
(f) —waria xs | = < 3K + Xo) + Xo) )
F o —0.31775X 1) + 2.31475X s

then the variance covariance matrix of these estimators is

0.0391  —0.0554
—0.0554  0.5827

Thus, V{i} =0.0391 < V{a} =0.3512, and V{6} =0.5827 > V{6} =
0.5125. Due to the fact that V is singular, [ is a better estimator than /1.

566 (:,T),i=1,....n.T, ~(+px)G,1),i=1,....n

1
L(e, B;x,T) = H ﬂx xp{—“ﬁx,n}

n

1
l(a, p) =log L(e, f: X, T) = — ; <10g(01 +BXi) + mﬂ)

n n

0 ! 1
—agl@ B = §a+ﬂX,- _i; @By

n

__ﬁl(“ P = Za+ﬁX _Z(a+ﬂX)2
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The MLEs of « and § are the roots of the equations:

n 1 n T
@ Za + ﬂX- - Z(a T BX,)?

an Z +ﬂX _Z(a+,3X)2

The Newton—Raphson method for approximating numerically («, §) is

n

T; — (e + BX))
G, )= ) ———————,
; (0 + BX;)?

2": T X; — Xi(a + BX))

Ga(a, B) = 2
— (x+BXi)
The matrix
361 8Gl
B Ey p . Yw; Xw; X;
D(Ol, :3)_ 8G2 8G2 - (EW[Xi EWIXIZ ’
o B
a+ BX; —2T;
where w; = ——————
(@ + BX;)?

ID(a, B)| = (Zw)(Zw; X7) — (Zw; X;)?

" Swi X\
= (Zw;) ( w; <Xi - ;> ) .
; EW,‘

We assume that |D(«, )| > O in each iteration. Starting with (1, B1), we
get the following after the /th iteration:

) _ (o) —1f Gileu, Br)
(m)‘(&) (D, ) <G2(dz,ﬂz)>'

The LSE initial solution is

ET(X; — X)
(X — X)?
o =T-pX.

B =
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k
Ji —nPi(9))y>
569 X?= Zﬂ For the Hardy—Weinberg model,

i)

3
. PO
X6 ‘Z nP.6)

_ i=n8?? (L =200 -0)7 (S5 —n(l —6)*)?

no?2 2n0(1 — 6) n(l — 0)?
d N@®)
EX ©)= 2m03(1 — )3

where
N©) = 2Q2JF +2(n — J; — J)* — JHo*
—3(4JE = JHO? + (1202 — DO — 4J2.
Note that J; = n — J; — J,. Thus, the MCE of 6 is the root of N(6) = 0.

571 X,,...,X,arei.id. R(0,60),0 <0 < oo.
(i) ¢X ~ R(0, cf) for all 0 < ¢ < oo. Thus, the model is preserved under

the scale transformation G.
(ii) The m.s.s. is X(,y. Thus, an equivariant estimator of 6 is

O(X ) = Xy ¥ (D).

Consider the following invariant loss function:
. 0 — 0)?
L@®,0)= —
There is only one orbit of G in ©. Thus, find v to minimize

Q) = E{(Y X — 1)’} = ¥’ E(X(,) — 20 E(X,) + 1,

Q'(¥) = 2P E(X(,)) — 2E(X(w)-
EX) computed at & = 1. Note thatunder§ = 1, X,) ~

E(X(n))
Bet . o_n+ 2
an, ) EXy) = il E(X<n)) pnEY Yo = 1

Thus, y° =
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5.7.3

(i) The Pitman estimator of the location parameter in the normal case,
according to Equation (5.7.33), is

n
o0 —%(uz-‘rZ(Y(i)-Hl)z)

ue i=2 du
po=Xa—— ;
O L+ Y (Yo +u)?)
e i=2 du
—0oQ

u? + Z(Y(i) +uy =u’+ Zuz +2u Z Y
=2 =2 i=

2
n 1 n 1 n

i=2
1 n 2 n
— (Z Y(,»)> + Z Y5
i=2 i=2

Moreover,

2
*° n 1 «
\/ﬁ‘/, exp —5 (M—i‘;iz_z:Y([)) du = V2n

[e¢]

and

2
o n | 1 o
\/E/ u exp —5 (u—i—;ZY(i)) du:—v2n;ZY(,-).
- i=2 i=2

The other terms are cancelled. Thus,

. (RS
=X+ o Z(X(i) = Xw)
i=2

1 1 < ,
= Xo+- Y Xi =X,
i=2

This is the best equivariant estimator for the squared error loss.
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(ii) For estimating o in the normal case, let (X, S) be the m.s.s., where

. 12
S = <ﬁZ(X =X )2> . An equivariant estimator of o, for the
i=1
translation-scale group, is

X, - X X,— X
T g .

6=Sw<

(XI—X X,— X
u=

T TS
of u. We find ¥ (u) by minimizing E{(Sv¥ — 1)’} under o = 1. E(S? |
Y) = Ei{8?} = land E{{S | ¥} = E{{S}.Here,y" = E|{S}/E{S%}.

). By Basu’s Theorem, § is independent



CHAPTER 6

Confidence and Tolerance Intervals

PART I: THEORY
6.1 GENERAL INTRODUCTION

When 6 is an unknown parameter and an estimator 6 is applied, the precision of
the estimator @ can be stated in terms of its sampling distribution. With the aid of
the sampling distribution of an estimator we can determine the probability that the
estimator 6 lies within a prescribed interval around the true value of the parameter 6.
Such a probability is called confidence (or coverage) probability. Conversely, for
a preassigned confidence level, we can determine an interval whose limits depend
on the observed sample values, and whose coverage probability is not smaller than
the prescribed confidence level, for all 6. Such an interval is called a confidence
interval. In the simple example of estimating the parameters of a normal distribution
N(u, %), a minimal sufficient statistic for a sample of size n is (X,,, Snz). We wish to
determine an interval (u(X,,, S,f), a(X,, S,%)) such that

Puolp(Xn, S < < Xy, SD} = 1 — e, (6.1.1)

for all u, o. The prescribed confidence level is 1 — o and the confidence interval is
(p, ). It is easy to prove that if we choose the functions

_ _ S

X, SZ =X, —t-q -1 _n,
u( ) 1—a2[n ]ﬁ
Sn

N

then (6.1.1) is satisfied. The two limits of the confidence interval (u, 1) are called
the lower and upper confidence limits. Confidence limits for the variance o in

6.1.2)

(X, S2) = X, + t1_gpaln — 1]

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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the normal case can be obtained from the sampling distribution of S2. Indeed, since
2

§2 ~ 1 x2[n — 1]. The lower and upper confidence limits for o> are given by
n—
2 _ (n—1)82
o X%,a/z[n —1] '
(6.1.3)
L, (=DS?
Xapln — 117

A general method to derive confidence intervals in parametric cases is given in
Section 6.2. The theory of optimal confidence intervals is developed in Section 6.3
in parallel to the theory of optimal testing of hypotheses. The theory of tolerance
intervals and regions is discussed in Section 6.4. Tolerance intervals are estimated
intervals of a prescribed probability content according to the unknown parent distri-
bution. One sided tolerance intervals are often applied in engineering designs and
screening processes as illustrated in Example 6.1.

Distribution free methods, based on the properties of order statistics, are developed
in Section 6.5. These methods yield tolerance intervals for all distribution functions
having some general properties (log-convex for example). Section 6.6 is devoted to
the problem of determining simultaneous confidence intervals for several parameters.
In Section 6.7, we discuss two-stage and sequential sampling to obtain fixed-width
confidence intervals.

6.2 THE CONSTRUCTION OF CONFIDENCE INTERVALS
We discuss here a more systematic method of constructing confidence intervals.

Let F = {F(x;0), 6 € O} be a parametric family of d.f.s. The parameter 6 is real
or vector valued. Given the observed value of X, we construct a set S(X) in ® such
that

Py € S(X)} > 1 —«a, forall 6. (6.2.1)

S(X) is called a confidence region for 6 at level of confidence 1 — «. Note that

the set S(X) is a random set, since it is a function of X. For example, consider the

multinormal N(@, I) case. We know that (X — 6Y (X — @) is distributed like x2[k],
where k is the dimension of X. Thus, define

SX) = {0 : (X —8)(X—8) < x_,[k]}. (6.2.2)

It follows that, for all 6,

Py{0 € SX)} = P{(X—0)(X—0) < x2 [k} =1—a. 6.2.3)
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Accordingly, S(X) is a confidence region. Note that if the problem, in this multinormal
case, is to test the simple hypothesis Hy : § = 6, against the composite alternative
Hi : 0 # 6y we would apply the test statistic

Ty =X —00)(X—0)), (6.2.4)

and reject Hy whenever T (6p) > xfﬁa[k]. This test has size «. If we define the
acceptance region for Hy as the set

A(80) = {X; (X — 00) (X — 00) < xi_,[k1}, (6.2.5)

then Hj is accepted if X € A(0y). The structures of A(fy) and S(X) are similar. In
A(bp), we fix 6 at 6y and vary X, while in S(X) we fix X and vary 6. Thus, let
A = {A(09); 0 € O} be a family of acceptance regions for the above testing problem,
when 6 varies over all the points in ®. Such a family induces a family of confidence
sets S = {S(X) : X € X} according to the relation

SX)={0:X € A(9); A(8) € A}. (6.2.6)

In such a manner, we construct generally confidence regions (or intervals). We first
construct a family of acceptance regions, A for testing Hy : 6 = 6, against Hj :
0 # 6y at level of significance «. From this family, we construct the dual family
S of confidence regions. We remark here that in cases of a real parameter 6 we
can consider one-sided hypotheses Hy : 8 < 6, against H; : 6 > 6y; or Hy : 0 > 6
against H; : 6 < 6y. The corresponding families of acceptance regions will induce
families of one-sided confidence intervals (—oo, 8(X)) or (8(X), 00), respectively.

6.3 OPTIMAL CONFIDENCE INTERVALS

In the previous example, we have seen two different families of lower confidence
intervals, one of which was obviously inefficient. We introduce now the theory of
uniformly most accurate (UMA) confidence intervals. According to this theory, the
family of lower confidence intervals @, in the above example is optimal.

Definition. A lower confidence limit for 6, (X) is called UMA if, given any other
lower confidence limit 6*(X),

Py{0(X) < 0"} < Py{0*(X) < 6"} (6.3.1)
forall 0’ < 0, and all 6.
That is, although both the 6(X) and 6*(X) are smaller than 6 with confidence

probability (1 — «), the probability is larger that the UMA limit §(X) is closer to
the true value 6 than that of 9*(X). Whenever a size « uniformly most powerful
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(UMP) test exists for testing the hypothesis Hy : 8 < 6, against H; : 6 > 6, then
a UMA (1 — a)-lower confidence limit exists. Moreover, one can obtain the UMA
lower confidence limit from the UMP test function according to relationship (6.2.6).
The proof of this is very simple and left to the reader. Thus, as proven in Section 4.3,
if the family of d.f.s F is a one-parameter MLR family, the UMP test of size o, of
Hy : 0 < 6y against H : 0 > 6, is of the form

1’ if Tn > Cot(eO)’
OU(T) = { yur  if T, = Cu(Bp), (63.2)

0, if otherwise,

where T, is the minimal sufficient statistic. Accordingly, if 7}, is a continuous random
variable, the family of acceptance intervals is

A = {(—00, Cy(0)),0 € B}. (6.3.3)
The corresponding family of (1 — «)-lower confidence limits is
§=1{O,, 00T, =Co(0,), 6e€0O} (6.3.4)
In the discrete monotone likelihood ratio (MLR) case, we reduce the problem to
that of a continuous MLR by randomization, as specified in (6.3.2). Let 7, be the
minimal sufficient statistic and, without loss of generality, assume that 7,, assumes
only the nonnegative integers. Let H,(¢;6) be the cumulative distribution function
(c.d.f.) of T,, under 6. We have seen in Chapter 4 that the critical level of the test
(6.3.2)is

C,(6p) = least nonnegative integer ¢ such that H,(t;6p) > 1 —«. (6.3.5)

Moreover, since the distributions are MLR, C, () is a nondecreasing function of 6.
In the continuous case, we determined the lower confidence limit ¢, as the root, 6,
of the equation 7,, = C(6). In the discrete case, we determine 6, as the root, 8, of
the equation

Hn(T;I - 1’9) + R[Hn(Tnae) - Hn(Tn - 1,0)] =1- a, (636)

where R is a random variable independent of 7,, and having a rectangular distribution
R(0, 1). We can express Equation (6.3.6) in the form

If UMP tests do not exist we cannot construct UMA confidence limits. However,
we can define UMA-unbiased or UMA-invariant confidence limits and apply the
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theory of testing hypotheses to construct such limits. Two-sided confidence intervals
(0,(X), 0,(X)) should satisfy the requirement

Py{6,(X) <6 < 0,(X)} = 1 —a, forall 6. (6.3.8)

A two-sided (1 — «) confidence interval (8 ,(X), 0,(X)) is called UMA if, subject to
(6.3.8), it minimizes the coverage probabilities

Py{0(X) < 60 <0,(X)}, forall 6, #6. (6.3.9)

In order to obtain UMA two-sided confidence intervals, we should construct a UMP
test of size « of the hypothesis Hy : 6 = 6, against H; : 6 # 6. Such a test generally
does not exist. However, we can construct a UMP-unbiased (UMPU) test of such
hypotheses (in cases of exponential families) and derive then the corresponding
confidence intervals.

A confidence interval of level 1 — « is called unbiased if, subject to (6.3.8), it
satisfies

Py{0,(X) <6, <0,(X)} <1 —a, forall 6, # 6. (6.3.10)

Confidence intervals constructed on the basis of UMPU tests are UMAU (uniformly
most accurate unbiased) ones.

6.4 TOLERANCE INTERVALS

Tolerance intervals can be described in general terms as estimated prediction inter-
vals for future realization(s) of the observed random variables. In Example 6.1,
we discuss such an estimation problem and illustrate a possible solution. Consider
a sequence X, X, ... of independent and identically distributed (i.i.d.) random
variables having a common distribution F(x;6), § € ©®. A p-content prediction
interval for a possible realization of X, when 6 is known, is an interval (/,,(8), u ,(6))
such that Py[X € (1,(0), u,(8))] = p. Such two-sided prediction intervals are not
uniquely defined. Indeed, if F~!(p;0) is the pth quantile of F(x;®) then for every
0<e<1,l,=F el = p);0) and u, = F~'(1 — (1 — €)(1 — p);6) are lower
and upper limits of a p-content prediction interval. Thus, p-content two-sided pre-
diction intervals should be defined more definitely, by imposing further requirement
on the location of the interval. This is, generally, done according to the specific
problem under consideration. We will restrict attention here to one-sided prediction
intervals of the form (—oo, F~'(p;8)] or [F~(1 — p;0), 00).

When 6 is unknown the limits of the prediction intervals are estimated. In this sec-
tion, we develop the theory of such parametric estimation. The estimated prediction
intervals are called tolerance intervals. Two types of tolerance intervals are dis-
cussed in the literature: p-content tolerance intervals (see Guenther, 1971), which
are called also mean tolerance predictors (see Aitchison and Dunsmore, 1975);
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and (1 — «) level p-content intervals, also called guaranteed coverage tolerance
intervals (Aitchison and Dunsmore, 1975; Guttman, 1970). p-Content one-sided tol-
erance intervals, say (—oo, L,(X,)), are determined on the basis of n sample values
X, = (X1, ..., X,) so that, if Y has the F(x;6) distribution then

PylY < L,(X,)] > p, forall 6. 6.4.1)
Note that
PolY < L,(X))] = Eg{PlY < L,(X,) | X;1}. (6.4.2)

Thus, given the value of X,,, the upper tolerance limit L ,(X,,) is determined so that the
expected probability content of the interval (—oo, L,(X,,)] will be p. The (p, 1 — «)
guaranteed coverage one-sided tolerance interval (—oo, Ly, (X)) are determined so
that

PolF7 (p;6) < Lo p(X)1 > 1 —a, (6.4.3)

for all 6. In other words, L ,(X,) is a (1 — o)-upper confidence limit for the pth
quantile of the distribution F'(x; 6). Or, with confidence level (1 — «), we can state that
the expected proportion of future observations not exceeding L, ,(X,) is at least p.
(p, 1 — a)-upper tolerance limits can be obtained in cases of MLR parametric families
by substituting the (1 — o)-upper confidence limit 6, of  in the formula of F~'(p;0).
Indeed, if F = {F(x;0);6 € ®}is afamily depending on a real parameter 6, and F is
MLR with respect to X, then the pth quantile, F I p;0), is an increasing function of
0, for each 0 < p < 1. Thus, a one-sided p-content, (1 — «)-level tolerance interval
is given by

Lo (X)) = F~'(p;0,(X,)). (6.4.4)

Moreover, if the upper confidence limit ,(X,) is UMA then the corresponding
tolerance limit is a UMA upper confidence limit of F~!(p;6). For this reason such a
tolerance interval is called UMA. For more details, see Zacks (1971, p. 519).

In Example 6.1, we derive the (8, 1 — o) guaranteed lower tolerance limit for
the log-normal distribution. It is very simple in that case to determine the 8-content
lower tolerance interval. Indeed, if (¥,,, S,f) are the sample mean and variance of the
corresponding normal variables ¥; =log X; (i = 1, ..., n) then

_ _ / 1
1(Y,,S) =Y, —tgln — 118,/ 1 + — (6.4.5)
n
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is such a -content lower tolerance limit. Indeed, if a N(u, o) random variable Y is
independent of (¥, S2) then

~ ~ 1 1/2
PM,G{Y = lﬂ(an Sn)} = PM,U{(Y - Yn)/ (S : (1 + ;) ) > _tﬂ[n - 1]} = ﬂv
(6.4.6)

21 — 11\ /2

Ll]) . It is interesting
n—

to compare the S-content lower tolerance limit (6.4.5) with the (1 — «, 8) guaranteed

coverage lower tolerance limit (6.4.6). We can show that if 8 = 1 — « then the two

limits are approximately the same in large samples.

_ 1
since Y — Y, ~ N(O,a2 <1 + —)) and S, NO‘(
n

6.5 DISTRIBUTION FREE CONFIDENCE AND
TOLERANCE INTERVALS

Let F be the class of all absolutely continuous distributions. Suppose that X, ..., X,
are i.i.d. random variables having a distribution F(x) in F. Let X(;) < --- < X, be
the order statistics. This statistic is minimal sufficient. The transformed random
variable Y = F(X) has a rectangular distribution on (0, 1). Let x,, be the pth quantile
of F(x),ie., x, = F~'(p), 0 < p < 1. We show now that the order statistics X
can be used as (p, y) tolerance limits, irrespective of the functional form of F(x).
Indeed, the transformed random variables Y(;y = F(X;)) have the beta distributions
B,n—i+1),i=1,...,n. Accordingly,

PlYs > pl=PlXyy = F'(pl=L_,n—i+1,i), i=1,....,n. (6.5.1)

Therefore, a distribution free (p, y) upper tolerance limitis the smallest X ; satisfying
condition (6.5.1). In other words, for any continuous distribution F(x), define

i® =least j > l'suchthat I;_,(n — j + 1, j) > y. (6.5.2)

Then, the order statistic X0, is a (p, y)-upper tolerance limit. We denote this by
L, ,(X). Similarly, a distribution free (p, y)-lower tolerance limit is given by

L, ,(x) = X0, where 0= largest j > 1 suchthat I,_,(j,n —j+1)>y.
(6.5.3)

The upper and lower tolerance intervals given in (6.5.2) and (6.5.3) might not exist if
n is too small. They could be applied to obtain distribution free confidence intervals
for the mean, p, of a symmetric continuous distribution. The method is based on the
fact that the expected value, u, and the median, F ~1(0.5), of continuous symmetric
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distributions coincide. Since Iys(a, b) =1 — Iy5(b,a) for all 0 < a, b < co, we
obtain from (6.5.2) and (6.5.3) by substituting p = 0.5 that the (1 — «) upper and
lower distribution free confidence limits for u are i, and M, where, for sufficiently
large n,

fla = X(j), where j = least positive integer,k, such that

Ipsn —k+1,k+1)>1—a/2;

(6.5.4)

and

m, = X, where i = largest positive integer, k, such that
(6.5.5)
Iysn—k+1,k+1) <a/2.

Let F be a log-convex distribution function. Then for any positive real numbers
ag, ..., ara

—log (1 —F (Z a[X(i)>) < =) ailog(l — F(X). (6.5.6)
i=1 i=1

or equivalently
F (Z a,‘X(,')> <1—exp {Za,‘ log(1 — F(X(l)))} . (6.5.7)
i=1 i=1
Let
G(Xg) = —log(l — F(X@)), i=1,....r (6.5.8)

Since F(X) ~ R(0, 1) and —log(1 — R(0, 1)) ~ G(1, 1). The statistic G(X;) is dis-
tributed like the ith order statistic from a standard exponential distribution. Substitute
in (6.5.7)

r r

D aiXs =) AilXa — Xg-n)
i=1 i=1

and

D aG(X) = Ai(G(X4) — G(X-1)).
i=1 i=1
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-
where A; = Zai, i=1,...,rand X = 0. Moreover,

j=i
1
G(X(i)) — G(X(,'fl)) ~ mG(l, ), i=1,...,r (659)

Hence, if we define

_ 2log1 —p)

mn—i+1), i=1,...,r,
Xi—ql2r]

then, from (6.5.7)

P{L, (T, ) <F '(p)y=P{F (Z Ai(Xqy — X(il))) < P}

i=1

v
~

i=1

1 —exp {— ZAi(G(X(i>) — G(X(i—l)))} < P}

=P > Ai(G(X) — G(Xi-1)) < —log(1 — p)}

i=1
= P{}*[2r] < x} 2r} =1 —a,
(6.5.10)

since ZZ(n — i+ D(GXy) — GX =) ~ %2[2r). This result was published first

i=1
by Barlow and Proschan (1966).

6.6 SIMULTANEOUS CONFIDENCE INTERVALS

It is often the case that we estimate simultaneously several parameters on the basis of
the same sample values. One could determine for each parameter a confidence interval
atlevel (1 — «) irrespectively of the confidence intervals of the other parameters. The
result is that the overall confidence level is generally smaller than (1 — o). For
example, suppose that (X, ..., X,) is a sample of n i.i.d. random variables from
N(u, o?). The sample mean X and the sample variance S? are independent statistics.
Confidence intervals for p and for o, determined separately for each parameter, are

_ _ S - S
L(X,S$) = (X — H_apln — l]ﬁ’ X +ti_qpln — Hﬁ)



PART I: THEORY 415

172 1/2
L(S) s n—1 s n—1
2 = T T —— s 5 - 4 s
X apln — 1] Xigln =11

respectively. These intervals are not independent. We can state that the probability
for u to be in I;(X, §) is (1 — ) and that of ¢ to be in I,(S) is (1 — «). But, what
is the probability that both statements are simultaneously true? According to the
Bonferroni inequality (4.6.50)

and

\Y

Pioln € (X, 8),0 € L(H}=1— P, {n & L(X, ) — Pu{o & DL(S)
1 —2«, forall u,o. (6.6.1)

We see that a lower bound to the simultaneous coverage probability of (u, o)
is according to (6.6.1), 1 — 2. The actual simultaneous coverage probability of
I(X, S) and I,(S) can be determined by evaluating the integral

Xlz—a/z[n_l] oXx
P(o) = 2/ ® <t1_a/2[n - 1]—) g (0)dx — (1 —a), (6.6.2)
12 ln—11 n(n —1)

where g, (x) is the probability density function (p.d.f.) of x2[n — 1] and ®(-) is the
standard normal integral. The value of P (o) is smaller than (1 — «). In order to make it
atleast (1 — «), we can modify the individual confidence probabilities of I;(X, S) and
of I,(S) to be | — «/2. Then the simultaneous coverage probability will be between
(1 — @) and (1 — «/2). This is a simple procedure that is somewhat conservative.
It guarantees a simultaneous confidence level not smaller than the nominal (1 — «).
This method of constructing simultaneous confidence intervals, called the Bonferroni
method, has many applications. We have shown in Chapter 4 an application of this
method in a two-way analysis of variance problem. Miller (1966, p. 67) discussed
an application of the Bonferroni method in a case of simultaneous estimation of k
normal means.

Consider again the linear model of full rank discussed in Section 5.3.2, in which the
vector X has a multinormal distribution N(Af, o%l). Aisann x p matrix of full rank
and B is a p x 1 vector of unknown parameters. The least-squares estimator (LSE)
of a specific linear combination of 8, say A = o', is A = /B = a/(A’A) ' A’X. We
proved that A ~ N(a'B, o2a’(A’A)~' o). Moreover, an unbiased estimator of o2 is

A2 1 / / —1 47
62 = X'(I — A(A’A)TA)X,
n—p
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2

where 62 ~ x2[n — pl. Hence, a (1 — o) confidence interval for the particular

parameter A is
AL tigpln — plé@' (A A) )2, (6.6.3)

Suppose that we are interested in the simultaneous estimation of all (many) linear

combinations belonging to a certain 7-dimensional linear subspace 1 < r < p. For
4

example, if we are interested in contrasts of the f-component, then A = Zaiﬂi

i=1
where X«; = 0. In this case, the linear subspace of all such contrasts is of dimension
r=p —1.Let L be an r x p matrix with » row vectors that constitute a basis for
the linear subspace under consideration. For example, in the case of all contrasts, the
matrix L can be taken as the (p — 1) x p matrix:

Every vector « belonging to the specified subspace is given by some linear combina-
tiona’ = y’L. Thus, a’(A’A)'a = y’L(A’A)~' L'y . Moreover,

LB~ N(LB,o>L(A’A)~'L)) (6.6.4)
and
(B—BYL'(LA'A'LY LB - B) ~ o*x°Ir], (6.6.5)
where r is the rank of L. Accordingly,
%(ﬁ — BYL'(L(A'A)"' L)' L(B — B) ~ rFlr,n — p] (6.6.6)
and the probability is (1 — «) that 8 belongs to the ellipsoid

E.(B,6% L)y={B:(B—B)YL(L(AA)'L'Y'L(B — B) < r6*F\_4[r,n — pl}.
(6.6.7)

E,(B, o2, L)isasimultaneous confidence region for all &’ B at level (1 — o). Consider
any linear combination A = o’f§ = y’L . The simultaneous confidence interval for



PART I: THEORY 417

A can be obtained by the orthogonal projection of the ellipsoid E, (8, 62, L) on the
line / spanned by the vector y. We obtain the following formula for the confidence
limits of this interval

A Fi_glr.n — pD'?6(y' LA AL/ y)' 2, (6.6.8)

where A = y/Lf’ = a’fB. We see that in case of r = 1 formula (6.6.8) reduces to
(6.6.3), otherwise the coefficient (r Fi_q[r, n — p])'/? is greater than t,_ypo[n — pl.
This coefficient is called Scheffés S-coefficient. Various applications and modifica-
tions of the S-method have been proposed in the literature. For applications often used
in statistical practice, see Miller (1966, p. 54). Scheffé (1970) suggested some mod-
ifications for increasing the efficiency of the S-method for simultaneous confidence
intervals.

6.7 TWO-STAGE AND SEQUENTIAL SAMPLING FOR FIXED WIDTH
CONFIDENCE INTERVALS

We start the discussion with the problem of determining fixed-width confidence
intervals for the mean y of a normal distribution when the variance o 2 is unknown and
can be arbitrarily large. We saw previously that if the sample consists of n i.i.d. random
variables X, ..., X,, where n is fixed before the sampling, then a UMAU confidence
o L 5 S
limit for u are given, in correspondence to the ¢-test, by X & #1_q2[n — 1]7, where
n
X and S are the sample mean and standard deviation, respectively. The width of this
confidence interval is

S
A" =2t _gp[n —1]

ﬁ. (6.7.1)

Although the width of the interval is converging to zero, as n — 00, for each fixed
n, it can be arbitrarily large with positive probability. The question is whether there
exists another confidence interval with bounded width. We show now that there is no
fixed-width confidence interval in the present normal case if the sample is of fixed
size. Let I5(X, S) be any fixed width interval centered at (X, S), i.e.,

I(X,8) = (uX,S) -8, uX, S)+ ). (6.7.2)
We show that the maximal possible confidence level is

supinf P, ,{u € Is(X, S)} = 0. (6.7.3)
a e
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This means that there is no statistic (X, S) for which I3(X, S) is a confidence
interval. Indeed,

supinf P, ,{u € Is(X, S)} < lim infsup P, ,{u € Is(X, S)}.  (6.7.4)
o Mo o001 g

In Example 9.2, we show that (X, S) = X is a minimax estimator, which maximizes
the minimum coverage. Accordingly,

) _ _ 8
infsup Py o{p € I{(X,8) = P{X —6 <pu <X +8} = 2c1>( ﬁ) —1.
L)

o
(6.7.5)

Substituting this result in (6.7.4), we readily obtain (6.7.3), by letting ¢ — co.

Stein’s two-stage procedure. Stein (1945) provided a two-stage solution to this
problem of determining a fixed-width confidence interval for the mean w. According
to Stein’s procedure the sampling is performed in two stages:

Stage I:

(i) Observe a sample of n; i.i.d. random variables from N (i, o2).
(ii) Compute the sample mean X », and standard deviation S,,,.
(iii) Determine

S2
N=1+ [;f_a/z[nl - 1]8—2} , (6.7.6)

where [x] designates the integer part of x.
(iv) If N > n; go to Stage II; else set the interval

18()_(;1[) = (an - 87 an + 8)
Stage I1:

(i) Observe N, = N —n; additional i.i.d. random variables from N(u,o?);
Yi,...,Yn,.

(ii) Compute the overall mean Xy = (n;X,, + N2¥y,)/N.
(iii) Determine the interval Iy(Xy) = (Xy — 8, Xy + 8).

The size of the second stage sample N, = (N — n1)* is a random variable, which
is a function of the first stage sample variance S,%l . Since X,,, and S,%] are independent,
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X,, and N, are independent. Moreover, Yy, is conditionally independent of S,%l , given
N>. Hence,

PuallXy =l < 8) = EPuo(IXy =l <3| N})
=E{zq> (gm) _1}
> 2FE {(I) <£ . %tl—aﬂ[nl _ 1])} 1 (677)
o 4

V2 —11/(n — 1)

< ti—apln — 1]} —1=1-a.

This proves that the fixed width interval I5(X y) based on the prescribed two-stage
sampling procedure is a confidence interval. The Stein two-stage procedure is not
an efficient one, unless one has good knowledge of how large n; should be. If o2 is
known there exists a UMAU confidence interval of fixed size, i.e., Is(X n%(s)) Where

2
O8) =1+ [Xl(;;[l]az] . (67.8)

If n; is close to n°(8) the procedure is expected to be efficient. n°(8) is, however,
unknown. Various approaches have been suggested to obtain efficient procedures of
sampling. We discuss here a sequential procedure that is asymptotically efficient.
Note that the optimal sample size n°(8) increases to infinity like 1/6% as § — 0.
Accordingly, a sampling procedure, with possibly random sample size, N, which
yields a fixed-width confidence interval I5(X ) is called asymptotically efficient if

m-5G = (6.7.9)

Sequential fixed-width interval estimation. Let {a, } be a sequence of positive num-
bers such that a,, — Xlz—oz [1]asn — oo. We can set, for example, a, = Fi_,[1, n] for
alln > nj and a, = oo forn < n;.Consider now the following sequential procedure:

1. Starting with n = n; i.i.d. observations compute X, and S2.
2. Ifn > a,S? /8 stop sampling and, estimate by I5(X,,); else take an additional

independent observation and return to (i). Let

N(8) = leastn > ny, such thatn > a,S>/8%. (6.7.10)
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According to the specified procedure, the sample size at termination is N (5). N(§)
is called a stopping variable. We have to show first that N (8) is finite with probability
one, i.e.,

lim P, ,{N(8) > n} =0, 6.7.11)
n—oo

for each § > 0. Indeed, for any given n,

n

LS
Puo{N@) >n}=Puo{ () {Sj > —}

i—n aj
j=n (6.7.12)
<p 2 né?
o >
— T u n a,
But
52 §2 82
P{S,f>” }:P{—”>—}. (6.7.13)
n n an
SZ

a.s.
o — 0 as n — o0, therefore

sz 52
limP{—">—}: lim P

n—00 n a, n—00

21, 1 62
xn =11 - —0 (6.7.14)
n—1 o2xi_o[1]
asn — 00. Thus, (6.7.11) is satisfied and N (§) is a finite random variable. The present
sequential procedure attains in large samples the required confidence level and is also
an efficient one. One can prove in addition the following optimal properties:

(i) Ifa, = aforalln > n; then E;{N(8)} < no(§) +n; + 1, for all o2 (6.7.15)

This obviously implies the asymptotic efficiency (6.7.9). It is, however, a much
stronger property. One does not have to pay, on the average, more than the equivalent
of n; + 1 observations. The question is whether we do not tend to stop too soon and
thus lose confidence probability. Simons (1968) proved that if we follow the above
procedure, n; > 3 and a, = a for all n > 3, then there exists a finite integer k such
that

PuollXnsx —pl <8} = 1 —a, (6.7.16)
for all i, o and §. This means that the possible loss of confidence probability is not

more than the one associated with a finite number of observations. In other words, if
the sample is large we generally attain the required confidence level.
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We have not provided here proofs of these interesting results. The reader is referred
to Zacks (1971, p. 560). The results were also extended to general classes of dis-
tributions originally by Chow and Robbins (1965), followed by studies of Starr
(1966), Khan (1969), Srivastava (1971), Ghosh, Mukhopadhyay, and Sen (1997),
and Mukhopadhyay and de Silva (2009).

PART II: EXAMPLES

Example 6.1. It is assumed that the compressive strength of concrete cubes fol-
lows a log-normal distribution, LN (i, 0?), with unknown parameters (u, o). It is
desired that in a given production process the compressive strength, X, will not
be smaller than & in (1 — 8) x 100% of the concrete cubes. In other words, the
B-quantile of the parent log-normal distribution should not be smaller than &,, where
the B-quantile of LN(u,o?) is xg = exp{u + zgo}, and zg is the B-quantile of
N(0, 1). We observe a sample of n i.i.d. random variables X1, ..., X, and should
decide on the basis of the observed sample values whether the strength requirement
is satisfied. Let ¥; = log X; (i = 1, ..., n). The sample mean and variance (¥,,, S,%),

 J— _
where Sfl = —]Z(Yi — Y,,)z, constitute a minimal sufficient statistic. On the
n—
i=1
basis of (¥, S,%), we wish to determine a (1 — «)-lower confidence limit, x, pto the
unknown B-quantile xg. Accordingly, x,, ; should satisfy the relationship

Puolx,p <xp} =1 —a, forall (u,o).

X, p is called a lower (1 —a, 1 — ) guaranteed coverage tolerance limit. If
X, 5 = €0, we say that the production process is satisfactory (meets the specified
standard). Note that the problem of determining x, 4 is equivalent to the problem
of determining a (1 — o)-lower confidence limit to p + zgo. This lower confidence
limit is constructed in the following manner. We note first that if U ~ N (0, 1), then

U+ Vnzi_g
On = 11/(n = )2

ValY, — (u+ 250)1/8, ~ ~tln — 1;/n 214,

where #[v; 8] is the noncentral 7-distribution. Thus, a (1 — «)-lower confidence limit
for u + zgo is

n

-,

] S,
=Y, —tioln — 1;\/zzl—ﬁ]
n

7

and x, , = exp{ﬁa ﬂ} is a lower (1 — «, 1 — B)-tolerance limit. |
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Example 6.2. Let X, ..., X, bei.i.d. random variables representing the life length
1
of electronic systems and distributed like G (5, 1). We construct two different

(1 — a)-lower confidence limits for 6.
(i) The minimal sufficient statistic is 7, = X X;. This statistic is distributed like

0
5 x2[2n]. Thus, for testing Hy : 6 < 6y against H; : 0 > 6, at level of significance
o, the acceptance regions are of the form

0
A(Bp) = {T ST, < 30)(,2_0,[2111}, 0 <6 < 0.

The corresponding confidence intervals are

S(T,) = 9'9>i
T T oaxdenl )

The lower confidence limit for 6 is, accordingly,

0, = 2T,/ xi_ol2n].

0
(ii) Let X (1) = 1min {X;}. X is distributed like o %2[2]. Hence, the hypotheses
n

<i<n

Hy:0 <6 against_ H, : 0 > 6, can be tested at level o by the acceptance regions
’ . o 2
A(Oy) =1Xqy: Xy < EXI_”D] , 0<6y < oo.

These regions yield the confidence intervals

2I/lX(1)
SXy)=[6:0>="1.
v ( x%_a[z])

The corresponding lower confidence limit is 8/, = 2nX,/x?_,[2]. Both families
of confidence intervals provide lower confidence limits for the mean-time between
failures, 6, at the same confidence level 1 — «. The question is which family is
more efficient. Note that 8, is a function of the minimal sufficient statistic, while

0., is not. The expected value of 9, is Ep{0,} = . This expected value is

xi_,[2n]
approximately, as n — o0,

Ee{Qa}=9/(1+Z\1/_§>%9(1—Z\1/; +O<rl_z>>’ as n — oo.
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Thus, E{6,} is always smaller than 6, and approaches 6 as n grows. On the other
hand, the expected value of Q& is

ZI/IX(U 260 6
Ey [ S =— = :
Xi-ol2] Xi—ql2]  —loga

This expectation is about 6/3 when o = 0.05 and 6/4.6 when « = 0.01. It does
not converge to 6 as n increases. Thus, Q; is an inefficient lower confidence

limit of 6. [ |
Example 6.3.
A. LetX,,..., X, beiid. N(0, o) random variables. We would like to construct

the UMA (1 — «)-lower confidence limit of o-2. The minimal sufficient statistic
is 7, = £ X2, which is distributed like 6% x2[n]. The UMP test of size a of
Hy:0%< a against Hj : 0% > O'O is

(T, = I{T, > odxi_,[nl}.

Accordingly, the UMA (1 — «)-lower confidence limit a(f is

Qi = ,1/)(127&[1’[]

B. Let X ~ B(n,0), 0 <6 < 1. We determine the UMA (1 — a)-lower confi-
dence limit of the success probability 6. In (2.2.4), we expressed the c.d.f.
of B(n, 0) in terms of the incomplete beta function ratio. Let R be a random
number in (0, 1), independent of X, then 0, is the root of the equation

Rll_Qa(I’l—X,X—i—1)+(1—R)[1_QQ(H—X+1,X)=1—0{,

provided 1 < X <n — 1. If X = 0, the lower confidence limit is 8,(0) = 0.
When X = n the lower confidence limit is 6,(n) = «!/". By employing the
relationship between the central F-distribution and the beta distribution (see
Section 2.14), we obtain the following for X > 1 and R = 1:

X
0 = .
=X+ 1D+ XF_2X,2(n — X + 1)]

If X > 1and R = 0the lower limit, Q"y is obtained from (6.3.11) by substituting
(X — 1) for X. Generally, the lower limit can be obtained as the average
RO, + (1 — R)9.,. In practice, the nonrandomized solution (6.3.11) is often
applied.

|
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Example 6.4. Let X and Y be independent random variables having the normal
distribution N(0, ') and N(0, po?), respectively. We can readily prove that

1
1#(0 p) = azp{X2+Y2<1}_1_ {P<J§F)}’

11
where J has the negative binomial distribution NB ( - — 5) P(j;A) designates
e

the c.d.f. of the Poisson distributions with mean A. ¥ (c2, p) is the coverage probability
of a circle of radius one. We wish to determine a (1 — «)-lower confidence limit for
1//(02, p), on the basis of n independent vectors, (X, Yi), ..., (X,, Y,), when p

is known. The minimal sufficient statistic is T», = X X? + —XY?. This statistic is
o

distributed like o2 x2[2n]. Thus, the UMA (1 — a)-upper confidence limit for o>
5'5 = T2n/X§[2n]~

The Poisson family is an MLR one. Hence, by Karlin’s Lemma, the c.d.f. P(j;1/20?)

is an increasing function of o2 for each j=0,1,.... Accordingly, if ol < 63 then
1 1
P(j;1/202)§P(j;1/26(3).Itf0110wsthatE PlJ,— <EjiP|(J,— )}.
202 257

From this relationship we infer that

B 1
waj,p):l—E{P(J;g_g)}

is a (1 — a)-lower confidence limit for (a2, p). We show now that w(&g, p)is a
UMA lower confidence limit. By neganon if w( , p) is not a UMA, there exists
another (1 — «) lower confidence limit, w say, and some 0 < ' < ¥ (o2, p) such
that

PG, p) <Y} > Pl <),

1
The function P ( Js F) is a strictly increasing function of o-2. Hence, for each p
o

there is a unique inverse o () for ¥ (o2, p). Thus, we obtain that
Po2{ag = 0, (Y} > Porlo,(F ) = o, (¥},

where 03(1//’) < o2, Accordingly, apz(ﬁa )is a (1 — a)-upper confidence limit for o2.
But then the above inequality contradicts the assumption that 53 is UMA. [ ]
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Example 6.5. Let X, ..., X,, be i.i.d. random variables distributed like N (u, o?).
The UMP-unbiased test of the hypotheses

Hy: = o, o arbitrary

against
Hy : ju # po, o arbitrary
is the ¢-test
o 1 X — polv/n
- 1, if————— _e[n—1
POX.5=1" 1 S > ti—e[n — 1],

0, otherwise,

where X and S are the sample mean and standard deviation, respectively. Corre-
spondingly, the confidence interval

_ S - S
<X —ti—ap2ln — l]ﬁ’ X +ti_gpln — l]ﬁ)

is a UMAU at level (1 — ). [ |

Example 6.6. In Example4.11, we discussed the problem of comparing the binomial
experiments in two clinics at which standard treatment is compared with a new (test)
treatment. If X;; designates the number of successes in the jth sample at the ith clinic
(i=1,2;j=1,2), we assumed that X;; are independent and X;; ~ B(n, 6;;). We
consider the cross-product ratio

o= O1(1 —012) [62(1 —622)
(1 =010/ (1 —62)02

In Example 4.11, we developed the UMPU test of the hypothesis Hy : p = 1 against
H, : p # 1. On the basis of this UMPU test, we can construct the UMAU confidence
limits of p.

Let Y =X11, Th = X1+ X2, T = X51 + X200, and S = X1 + X»;. The con-
ditional p.d.f. of Y given (7}, T», S) under p was given in Example 4.11. Let
H(y | T1, T, S) denote the corresponding conditional c.d.f. This family of condi-
tional distributions is MLR in Y. Thus, the quantiles of the distributions are increasing
functions of p. Similarly, H(y | T1, T», S) are strictly decreasing functions of p for
eachy =0,1,..., min(7}, S) and each (71, T», S).

As shown earlier one-sided UMA confidence limits require in discrete cases
further randomization. Thus, we have to draw at random two numbers R; and R,
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Table 6.1 0.95—Confidence Limits for the Cross-Product Ratio

n N] ny N2 Y T] Tz S P ﬁ

32 112 78 154 5 15 17 18 .1103 2.4057
20 40 20 40 5 20 30 20 .0303 1.2787
25 50 25 50 15 25 27 22 5.8407 169.4280
20 50 20 50 15 25 27 22 5.6688 164.2365
40 75 30 80 33 43 25 48 9049 16.2156

independently from a rectangular distribution R(0, 1) and solve simultaneously the
equations

RVH(Y:T, T, S, p)+ (1 — ROH(Y — 13T, T3, S, p) = 1 — €1,
RZH(Y - I;Tl’ T27 S$ 15)+(1 - RZ)H(Y’ T17 T2a S7 15) = €3,

where €| + €, = «. Moreover, in order to obtain UMA unbiased intervals we have
to determine p, p, €; and €, so that the two conditions of (4.4.2) will be satisfied
simultaneously. One can write a computer algorithm to obtain this objective. However,
the computations may be lengthy and tedious. If 7, 7, and S are not too small we
can approximate the UMAU limits by the roots of the equations

HY;T\, T2, S, p)=1-0a/2,
HY;T\,T», S, p) =a/2.

These equations have unique roots since the c.d.f. H(Y; T, T, S, p) is a strictly
decreasing function of p for each (Y, T1, T, S) having a continuous partial derivative
with respect to p. The roots p and p of the above equations are generally the
ones used in applications. However, they are not UMAU. In Table 6.1, we present
a few cases numerically. The confidence limits in Table 6.1 were computed by
determining first the large sample approximate confidence limits (see Section 7.4)
and then correcting the limits by employing the monotonicity of the conditional c.d.f.
H(Y;T), T, S, p)in p. The limits are determined by a numerical search technique on
a computer. |

Example 6.7. Let X, X5,..., X,, be i.i.d. random variables having a negative-
binomial distribution NB(¥, v); v is known and 0 < ¥ < 1. A minimal sufficient

statistic is T, = in’ which has the negative-binomial distribution NB(, nv).
i=1

Consider the S-content one-sided prediction interval [0, G’l(ﬂ;w, v)], where

G~ '(p; ¥, v) is the pth quantile of NB(y, v). The c.d.f. of the negative-binomial
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distribution is related to the incomplete beta function ratio according to formula
(2.2.12),1i.e.,

Gx;y,v)=hL_y(w,x+1), x=0,1,....
The pth quantile of the NB({, v) can thus be defined as
G~ Y(p; ¥, v) = least nonnegative integer j such that ILi_y,j+1)=>p.

This function is nondecreasing in ¢ for each p and v. Indeed, F = {NB(, v); 0 <
¥ < 1}is an MLR family. Furthermore, since 7, ~ NB(y, nv), we can obtain a UMA
upper confidence limit for v, v, at confidence level y = 1 — . A nonrandomized
upper confidence limit is the root v, of the equation

Li_g, v, T, +1)=1-a.

If we denote by B~!(p; a, b) the pth quantile of the beta distribution 8(a, b) then v,
is given accordingly by

Vo =1—B (00, T, +1).
The p-content (1 — «)-level tolerance interval is, therefore, [0, G ™' (p; ¥y, v)]. M

Example 6.8. In statistical life testing families of increasing failure rate (IFR) are
often considered. The hazard or failure rate function /(x) corresponding to an
absolutely continuous distribution F'(x) is defined as

h(x) = f(x)/(1 = F(x)),

where f(x) is the p.d.f. A distribution function F(x) is IFR if 4(x) is a nondecreasing
function of x. The function F(x) is differentiable almost everywhere. Hence, the
failure rate function A(x) can be written (for almost all x) as

d
hx) = ———log(l = F(x)).

Thus, if F(x) is an IFR distribution, — log(l — F(x)) is a convex function of x. A
distribution function F(x) is called log-convex if its logarithm is a convex function
of x. The tolerance limits that will be developed in the present example will be
applicable for any log-convex distribution function.
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Let X(1y < --- < X(») be the order statistic. It is instructive to derive firsta (p, 1 —

1
a)-lower tolerance limit for the simple case of the exponential distribution G <5, 1) ,

1
0 < 6 < o0. The pth quantile of G (5, l) is

F'(p;0)=—0log(l —p), 0<p<Il.

LetT,, = Z(n — i+ D(Xu — X@—1) be the total life until the rth failure. 7, , is

i=1

0
distributed like 3 x2[2r]. Hence, the UMA-(1 — «)-lower confidence limit for 6 is

2T,
b, =
X]_a[zr]

The corresponding (p, 1 — «) lower tolerance limit is

L (T,,) log(1 — p) 2Mns
nr) = —10 - p)—.
=p,a , g p Xlzia[zr]

Example 6.9. The MLE of o in samples from normal distributions is asymptotically
normal with mean o and variance o2/2n. Therefore, in large samples,

X — p)? S—0o)?
P,s {n( azlu) +2n( 02) 5)(12_0[[2]}%1—0[,

for all u, o. The region given by

_ X—pu 2 S—o\? oy
CO((Xv S): (M70)9n< o ) +2n (T) §X17a[2]

is a simultaneous confidence region with coverage probability approximately (1 — «).
The points in the region C, (X, ) satisfy the inequality

12
_ oZx2 12
|X—M|<|:XIT“[]—2(S—J)2:| .
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Hence, the values of o in the region are only those for which the square root on the
RHS of the above is real. Or, for all n > X127a [2]/2,

S S

<o < .
12 =Y = 12
Xi_ol2] Xi_ol2]
1+ —— 11— —
2n 2n

Note that this interval is not symmetric around S. Let o, and 6, denote the lower and
upper limits of the o interval. For each o within this interval we determine a y interval
symmetrically around X, as specified above. Consider the linear combination A =
ajp + a,o, where a; + a, = 1. We can obtain a (1 — «)-level confidence interval for
A from the region C.(X, S) by determining two lines parallel to a; u + a0 = 0 and
tangential to the confidence region C, (X, S). These lines are given by the formula
ajt +ayo = A, and ajp = apo = A,. The confidence interval is (A, Ay). This
interval can be obtained geometrically by projecting C, (X, S) onto the line / spanned
by (a1, @));ie., | = {(pai, paz); —o0 < p < oo} ]

PART III: PROBLEMS

Section 6.2

6.2.1 Let Xy,..., X, bei.i.d. random variables having a common exponential dis-
tribution, G((%, 1), 0 < 6 < oco. Determine a (1 — «)-upper confidence limit
fors =e?.

6.2.2 Let X;,...,X, be iid. random variables having a common Poisson

distribution P(X), 0 < A < 00. Determine a two-sided confidence inter-
val for A, at level 1 — . [Hint: Let 7, = ¥X;. Apply the relationship
P {T, <t} = P{x?[2t +2] > 2nA}, t =0, 1,... to show that (A, Ay) is

1 _
a (1 — a)-level confidence interval, where 1, = o X§ /2[2Tn +2]and A, =
n

1 2
Ao p2T, + 2],

2n
6.2.3 Let Xy,..., X, beii.d. random variables distributed like G(A, 1),0 < A <
oo; and let Yi, ..., Y, be ii.d. random variables distributed like G(n, 1),

0 < n < 0co. The X-variables and the Y -variables are independent. Determine
a (1 — a)-upper confidence limit for @ = (1 + n/A)~! based on the statistic

ZXi/ZYi-
i1 il

6.2.4 Consider a vector X of n equicorrelated normal random variables, having zero
mean, ;1 = 0, and variance o2 [Problem 1, Section 5.3]; i.e., X ~ N(0, X),
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6.2.6
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—1
where ¥ = o2(1 — p)I +0%pJ;0 < 0% < 00, — < p < 1. Construct a
n—
(1 — a)-level confidence interval for p. [Hint:

(i) Make the transformation Y = HX, where H is a Helmert orthogonal
matrix;

(i) Consider the distribution of ¥? /ZY?.

i=2
Consider the linear regression model
Yi=Bo+pBixi+e, i=1...,n,

where e, ..., e, are i.i.d. N0, 62), x1, ..., Xn specified constants such that
¥ (x; — ¥)*> > 0. Determine the formulas of (I — «)-level confidence limits
for By, B1, and o%. To what tests of significance do these confidence intervals
correspond?

Let X and Y be independent, normally distributed random variables, X ~
N(E,02)and Y ~ N(n, 03); —00 < & < 00,0 < 1 < 00, 07 and o3 known.
Let § = &/n. Construct a (1 — «)-level confidence interval for §.

Section 6.3

6.3.1

6.3.2

6.3.3

6.3.4

Prove that if an upper (lower) confidence limit for a real parameter 6 is based
on a UMP test of Hy : 0 > 6y (6 < ) against H; : 0 < 6y (6 > 6y) then the
confidence limit is UMA.

Let Xy, ..., X, beii.d. having a common two parameter exponential distri-
bution, i.e., X ~ u + G(%, 1); —o0o < u < 00,0 < B < o0.

(i) Determine the (1 — «)-level UMAU lower confidence limit for .

(ii) Determine the (1 — «)-level UMAU lower confidence limit for 8.

[Hint: See Problem 1, Section 4.5.]

Let Xy, ..., X, be ii.d. random variables having a common rectangular
distribution R(0, 0); 0 < 6 < oo. Determine the (1 — a)-level UMA lower
confidence limit for 6.

Consider the random effect model, Model II, of ANOVA (Example 3.9).
Derive the (1 — a)-level confidence limits for o2 and 72. Does this system of
confidence intervals have optimal properties?

Section 6.4

6.4.1

Let Xy, ..., X, beii.d. random variables having a Poisson distribution P(A),
0 < A < co. Determine a (p, 1 — «) guaranteed coverage upper tolerance
limit for X.
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6.4.2

Consider the normal simple regression model (Problem 7, Section 5.4).

Let £ be a point in the range of controlled experimental levels x, ..., x,

(regressors). A p-content prediction limit at & is the point n, = o + B1€ +

7p0.

(i) Determine a (p, 1 — «) guaranteed upper tolerance limit at £, i.e., deter-
mine [, 4(§) so that

P, <By+ B I (1 -2\
9{,30 + Bi& + 2,0 < Bo+ Bi& +1,4(5)6 (Z + % ) }

=1—a, forall 8 = (B, B1,0).

(i) What is the form of the asymptotic (p, 1 — «)-level upper tolerance limit?

Section 6.5

6.5.1

6.5.2

6.5.3

6.54

Consider a symmetric continuous distribution F(x — u), —00 < @ < 00.
How large should the sample size n be so that (X ;), X(,—i+1)) is a distribution-
free confidence interval for u, at level 1 — a = 0.95, when

()i =1,(@i)i =2, and (iii) i = 3.

Apply the large sample normal approximation to the binomial distribution
to show that for large size random samples from symmetric distribution the
(1 — a)-level distribution free confidence interval for the median is given by
(X(iy» X(n—i+1))» where i = [4 — 1/n z1_¢] (David, 1970, p. 14).

How large should the sample size n be so that a (p, y) upper tolerance limit
will exist with p = 0.95 and y = 0.95?

Let F(x) be a continuous c.d.f. and Xy < --- < X, the order statistic of
a random sample from such a distribution. Let F~!'(p) and F~!(g), with
0 < p < g < 1, be the pth and gth quantiles of this distribution. Consider
the interval £, ; = (F~Y(p), F’l(q)). Let p <r < s < n. Show that

y = P{E,; C (X, X}

s—r—1

n! .
- 2 =

j=0

r+j
p ./

TR

Ifg=1-—p/2and p = B/2 then (X(), X)) is a (1 — B, y) tolerance inter-
val, where y is given by the above formula.
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Section 6.6

6.6.1

6.6.2

In a one-way ANOVA k = 10 samples were compared. Each of the samples
consisted of n = 10 observations. The sample means in order of magnitude
were: 15.5, 17.5, 20.2, 23.3, 24.1, 25.5, 28.8, 28.9, 30.1, 30.5. The pooled
variance estimate is s; = 105.5. Perform the Scheffé simultaneous testing to
determine which differences are significant at level « = 0.05.

n = 10observations Y;; (i =1,...,3;j =1, ..., n) were performed at three
values of x. The sample statistics are:

X1 =0 Xy = 1.5 X3 =3.0
Y 5.5 9.7 17.3
SDY 13.7 15.8 14.5

(i) Determine the LSEs of By, 1, and o2 for the model: ¥;; = Bo + Bix; +
eij, where {¢;;} are i.i.d. N(0, 0%).

(ii) Determine simultaneous confidence intervals for E{Y} = By + Bix, for
all 0 < x < 3, using the Scheffé’s s-method.

Section 6.7

6.7.1

6.7.2

6.7.3

6.7.4

Let X, X», ... be a sequence of i.i.d. random variables having a common

log-normal distribution, LN (i, o2). Consider the problem of estimating £ =

exp{u 4+ 02/2}. The proportional-closeness of an estimator, £, is defined as

Py{|E — €| < A&}, where A is a specified positive real.

(i) Show that with a fixed sample procedure, there exists no estimator, £, such
that the proportional-closeness for a specified A is atleast y,0 < y < 1.

(ii) Develop a two-stage procedure so that the estimator £y will have the
prescribed proportional-closeness.

Show that if F is a family of distribution function depending on a location
parameter of the translation type, i.e., F(x;0) = Fy(x — 0), —00 < 6 < 00,
then there exists a fixed width confidence interval estimator for 6.

Let Xy, ..., X, be i.i.d. having a rectangular distribution R(0,0), 0 <6 <
2. Let X(,) be the sample maximum, and consider the fixed-width interval
estimator I5(X)) = (X, Xy +6), 0 < § < 1. How large should n be so
that Py{0 € I5(Xn))} > 1 —«, forall & < 2?

Consider the following three-stage sampling procedure for estimating the
mean of a normal distribution. Specify a value of §, 0 < § < oo.
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(i) Take a random sample of size n;. Compute the sample variance S,fl. If
n; > (az/Sz)Sf“, where a2 = Xf_a[l], terminate sampling. Otherwise,
add an independent sample of size

a2 )
N, = \\?SMJ +1—n;,.

(ii) Compute the pooled sample variance, S,%] Ny If n 4+ N, >

(a® / 52)531 N, terminate sampling; otherwise, add

a2
N3 = [§551+N2:| +1—(n 4+ M)

independent observations. Let N = nj + N, + N3.Let Xy be the average
of the sample of size N and I5(X,) = (Xy — 8, Xy + 8).

(i) Compute Py{u € Is(Xy)} for 6 = (u, o).
(i) Compute E4{N}.

PART IV: SOLUTION TO SELECTED PROBLEMS

622 Xi.....X,areiid P().T, =) X;~ P(nh)
i=1
P{T, <t} = P(t;ni)
=1-P(G,t+1) <ni)
= P{x*[2t + 2] > 2n7}.
The UMP test of Hy : A > A¢ against Hy : A < Ag is ¢(T,) = (T, < t,).

Note that P(x2[2t, +2] >2nho) =a if 2nkg= x2_[2, +2]. For

 Xap2Ty +2] -

two-sided confidence limits, we have A, > and A, =
n

XT—apl2T, 421
2n '

6.2.4 Without loss of generality assume that o2 = 1

1
where — < p < 1, nis the dimension of X, and J = 1, 1,.
n—
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(i) The Helmert transformation yields Y = HX, where
Y~ N@O,H(1 - p)] + pJ)H).

Note that H((1 — p)I + pJ)H' = diag((1 — p) +np,(1 —p),...,
(1= p)).

i) Y7 ~ (1= p) +np)x}(1] and Y Y2 ~ (1 — p)xdln — 11, where x}

i=1
and x22 [n — 1] are independent. Thus,

2(pn —
W:M~<l+ e )F[l,n—l].

oo
j=2

Hence, fora given 0 < o < 1,
np
P 1+1— Fopll,n —11<W
—p

< (1 + i) Fi_apll.n — 1]} —1-a
l1—p

1
Recall that Fypp[1,n — 1] =

= ——— Let
Fi_gpln—1,1]

1
Rn,ut = _(WFlfa/Z[n - 1» 1] - 1)
n

R — 1 W—Flfa/z[l,l’l—l]
e Fi_gpll,n—1] .

Since p/(1 — p) is a strictly increasing function of p, the confidence
limits for p are

. 1 R, .
Lower limit = max { ———, ——— | .
n—1 14+ Ry,

n,o

Upper limit = ————.
pp 1+ Roe

6.2.6 The method used here is known as Fieller’s method. Let U = X — §Y.
Accordingly, U ~ N(0, o2 + §°0}) and

(X —8Y)? )
=~ X1
012+82022 xl
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It follows that there are two real roots (if they exist) of the quadratic equation
iné,

82(Y? — x 10} — 28XY + (X* — xi_[1lo?) = 0.
These roots are given by

XY N 1Yo
5 5 3 -T2, 3 5
Y2 —olxl 1] Y2 —aix? ]

12
o3 (XY obill
a2 (2) -2k
ol \Y Y2

It follows that if Y2 > 022 Xlz_a[l] the two real roots exist. These are the
confidence limits for 8.

d10 =

6.4.1 Them.s.s. for 1is T, = Y X;. A p-quantile of P(%) is

i=1

Xp(A) =min{j = 0: P(j;1) = p}

=min{j > 0: xi_,[2j 4 2] = 24}.

Since P(A) is an MLR family in X, the (p, 1 — o) guaranteed upper tolerance
limit is

La,p(Tn) = Xp(xot(Tn))s

- 1
where A, (T,) = o Xlzfa [2T, 4+ 2] is the upper confidence limit for A.
n
Accordingly,

I 1 : L,
Lo p(T,) = min {] >0: 5)(1,,,[21 +2] = le,o,[ZTn +2]}.

6.5.1 (i) Since F is symmetric, if i = 1, then j = n. Thus,

Iys(l,n+1) > 0.975,
n+1
1
Ips(l,n+1)= Z (l’l + )/2n+1
; J
j=1

1
=1- TS > 0.975.
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Or,
—(n + 1)log2 < log(0.025),
-1 .
> M -1, n=>-.
log(2)
.e n—2
(ii) Ips2,n)=1-— TS > 0.975,
2
PEZ 0.025.

2n+1 -
10 9
Forn =8, > =0.0195. Forn =17, 7% = 0.0352. Thus, n = 8.

l+n+1+nn+1)/2

(iii) IysB,n—1)=1-— it > 0.975
1+ (n+DH(n+2)

=1- 2—+12 > 0.975.

Or
2 1 2
+ ;H;(” 2 _ .05,
2411 x 12

For n =10, we get —n = 0.0327. For n=11, we get
2+ 12 x 13

6.5.2 w1 (o)

lostn+2=i)=3 =I5 >1-0/2.
j=i

For large n, by Central Limit Theorem,

n+1
1
Isi,n+2—i)= Zb(j;n-l- 1, E)

j=i

i1
zl—cb(l 2 (n+1)/2)21—a/2.

%\/n +1
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Thus,

n 1 n 1
2l — =V —1zjqpn == — = s
+3msVn—lap =3 zﬁzl

~

n 1
j=n—i= §+§Vn+1zl—a/27
~ N + 1[
=315 nZi—q/2-
6.71 Let Y, =logX;,i=1,2,.... If we have a random sample of fixed size

. I I [
n, then the MLE of £ is &, =exp (Y, + =62}, where ¥, = _ZYi and
2 ni

n<

1 & _
62= =) (Y, — T,
i=1

(i) Foragiven A, 0 < A < I, the proportional closeness of &, is

1 _ 1
PC=P {(1 — A)exp {,u,+502} < exp{Y,, + EAHZ}

1,
§(1+k)exp{u+§a }}

=P {log(l N <, —n+ %(Anz — %) < log(1 +)»)} )

_ 1
For large values of n, the distribution of W, = (¥,, — n) + 5(6,12 —0?)

o? o?
is approximately, by CLT, N <0, — (1 + 7))
n

2 2
lim P {log(l — M <N (o, < <1 + "-)) < log(1 +,\)}
n

02—00 2

i ® log(1 + A)/n ® log(1 — A)/n 0

= lim —_— | — ———=]] =0.
02—00 U,/1—|—0'2/2 UVI—}—O’Z/Z

Hence, there exists no fixed sample procedure with PC > y > 0.

(ii) Consider the following two-stage procedure.
Stage I. Take a random sample of size m. Compute ¥,, and &2. Let
8 = log(1 4+ A). Note that § < —log(1 — X). If o were known, then the
proportional closeness would be at least y if

X261+ 9)°
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Accordingly, we define the stopping variable

X261+ %)

5.2 } On the other

| =

If {N < m} stop sampling and use &,, = exp {)7,,, +
hand, if {N > m} go to Stage II.

Stage II. Let N, = N — m. Draw additional N, observations, condition-
ally independent of the initial sample. Combine the two samples and

_ - _ 1
compute Yy and 67. Stop sampling with £y = exp{ ¥, + =62 . The
p N p pling p 5N

distribution of the total sample size N,, = max{m, N} can be determined
in the following manner.

(@

2
Py [Ny =m) =Py | 67(1 +6%/2) < 22
xy 111

_ploim =11 otGCm -1 mé?
- m—1 2m—12  x2[1 "~

(m — 1)(J1 +2m8?/x2[1] — 1)
=P1xClm —1] < =

Forl=m+1,m+2,...let

(m — 1)1 +2182/x2[1] — 1)

o2 ’

then

P{N, =1} = P{h( — 1) < x*[m — 1] < Au(D}.



CHAPTER 7

Large Sample Theory for Estimation
and Testing

PART I: THEORY

We have seen in the previous chapters several examples in which the exact sampling
distribution of an estimator or of a test statistic is difficult to obtain analytically. Large
samples yield approximations, called asymptotic approximations, which are easy
to derive, and whose error decreases to zero as the sample size grows. In this chapter,
we discuss asymptotic properties of estimators and of test statistics, such as consis-
tency, asymptotic normality, and asymptotic efficiency. In Chapter 1, we presented
results from probability theory, which are necessary for the development of the the-
ory of asymptotic inference. Section 7.1 is devoted to the concept of consistency
of estimators and test statistics. Section 7.2 presents conditions for the strong con-
sistency of the maximum likelihood estimator (MLE). Section 7.3 is devoted to the
asymptotic normality of MLEs and discusses the notion of best asymptotically nor-
mal (BAN) estimators. In Section 7.4, we discuss second and higher order efficiency.
In Section 7.5, we present asymptotic confidence intervals. Section 7.6 is devoted
to Edgeworth and saddlepoint approximations to the distribution of the MLE, in the
one-parameter exponential case. Section 7.7 is devoted to the theory of asymptoti-
cally efficient test statistics. Section 7.8 discusses the Pitman’s asymptotic efficiency
of tests.

7.1 CONSISTENCY OF ESTIMATORS AND TESTS

Consistency of an estimator is a property, which guarantees that in large samples, the
estimator yields values close to the true value of the parameter, with probability close
to one. More formally, we define consistency as follows.

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Definition 7.1.1. Let {én;n =ng,no+ 1,...} be a sequence of estimators of a

parameter 6. 0, is called consistent if 0, L0 asn — co. The sequence is called
strongly consistent if 6, — 6 almost surely (a.s.) as n — oo for all 0.

Different estimators of a parameter 6 might be consistent. Among the consistent
estimators, we would prefer those having asymptotically, smallest mean squared error
(MSE). This is illustrated in Example 7.2.

As we shall see later, the MLE is asymptotically most efficient estimator under
general regularity conditions.

We conclude this section by defining the consistency property for test functions.

Definition 7.1.2. Let {¢,} be a sequence of test functions, for testing Hy : 0 € O
versus Hy : 0 € ©1. The sequence {¢,} is called consistent if

(i) lim sup Es{¢,(X,)} <o, 0 <o < 1
n—o00 0@,
and

(i) 1im Eg{¢n(X,)} = 1, forall 6 € ©,.
n— o0

A test function ¢, satisfying property (i) is called asymptotically size « test.

All test functions discussed in Chapter 4 are consistent. We illustrate in Example
7.3 a test which is not based on an explicit parametric model of the distribution F(x).
Such a test is called a distribution free test, or a nonparametric test. We show that
the test is consistent.

As in the case of estimation, it is not sufficient to have consistent test functions.
One should consider asymptotically efficient tests, in a sense that will be defined
later.

7.2 CONSISTENCY OF THE MLE

The question we address here is whether the MLE is consistent. We have seen in
Example 5.22 a case where the MLE is not consistent; thus, one needs conditions for
consistency of the MLE. Often we can prove the consistency of the MLE immediately,
as in the case of the MLE of # = (i, o) in the normal case, or in the Binomial and
Poisson distributions.

Let Xy, X5, ..., X,, ...beindependent identically distributed (i.i.d.) random vari-
ables having a p.d.f. f(x;0),60 € ©. Let

16:X,) =) log f(X;;6).

i=l
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If 6, is the parameter value of the distribution of the Xs, then from the strong law of
large numbers (SLLN)

%(l(G;Xn) — 1(00: Xn) —> —1(60.0). (7.2.1)

as n — oo, where I(6y,0) is the Kullback-Leibler information. Assume that
1(6y,0") > 0 for all 6 # 6,. Since the MLE, 6,, maximizes the left-hand side of
(7.2.1) and since 1(6y, 6p) = 0, we can immediately conclude that if ® contains
only a finite number of points, then the MLE is strongly consistent. This result is
generalized in the following theorem.

Theorem 7.2.1. Let Xy, ..., X,, be i.i.d. random variables having a p.d.f. f(x;0),
0 € O, and let 6y be the true value of 6. If

(i) ©® is compact;
(i) f(x;0) is upper semi-continuous in 9, for all x;
(iii) there exists a function K (x), such that Eq {|K(X)|} < 0o and log f(x;0) —
log f(x;6p) < K(x), for all x and 9;

(iv) forall 6 € © and sufficiently small § > 0, sup f(x;¢)is measurable in x;
|p—bo| <

V) f(x;0) = f(x;60) for almost all x, implies that 0 = 6y (identifiability);
then the MLE én N 6o, as n — o0.
The proof is outlined only. For 6 > 0, let ®s = {0 : |6 — 8y| = §}. Since O is

compact so is ®s. Let U(X;0) = log f(X;0) — log f(X;0y). The conditions of the
theorem imply (see Ferguson, 1996, p. 109) that

{hm sup — ZU(X,,O) <supu@®)} =1,
n—00 06@5 96@5

where () = —1(6y, 0) < 0, for all 8 € ®;. Thus, with probability one, for n suffi-
ciently large,

sup — Z U(X;;0) < sup u(0) < 0.
0e0; 1 0€0;

But,

—ZU(X,,Q ) = sup — ZU(X,,@) > 0.

n
i—1 6e®
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Thus, with probability one, for n sufficiently large, |9n — 6y| < 8. This demonstrates
the consistency of the MLE.

For consistency theorems that require weaker conditions, see Pitman (1979, Ch. 8).
For additional reading, see Huber (1967), Le Cam (1986), and Schervish (1995,
p. 415).

7.3 ASYMPTOTIC NORMALITY AND EFFICIENCY
OF CONSISTENT ESTIMATORS

The presentation of concepts and theory is done in terms of real parameter 6. The
results are generalized to k-parameters cases in a straightforward manner.

A consistent estimator §(X,,) of 6 is called asymptotically normal if, there exists
an increasing sequence {c,}, ¢, /1 00 as n — 00, so that

e (0X,) — 0) =5 N(@©,v2)), as n — oo. (7.3.1)

The function AV {6,} = v%(0)/c? is called the asymptotic variance of (X,,). Let

n

0
SX,;0) = Z@ log f(X;;0)be the score function and 7(8) the Fisher information.
i=1
An estimator é,, that, under the Cramér—Rao (CR) regularity conditions, satisfies

Vn(6, — 6) S(Xu30) + 0,(1), (7.3.2)

1
IOV
as n — oo, is called asymptotically efficient. Recall that, by the Central Limit
1

Theorem (CLT), TS X, 0) i> N(0, 1(0)). Thus, efficient estimators satisfying
n

(7.3.2) have the asymptotic property that

R 4 1
i@, —0) - N <0, m) . as n— oo. (7.3.3)

For this reason, such asymptotically efficient estimators are also called BAN estima-
tors.
We show now a set of conditions under which the MLE é,, is a BAN estimator.
In Example 1.24, we considered a sequence {X,} of i.i.d. random variables,

_ 1 <
with X; ~ B(1,0), 0 < 8 < 1. In this case, X, = _in is a strongly consistent
n
i=1
estimator of 6. The variance stabilizing transformation g(X,) = 2sin"! /X, is a
(strongly) consistent estimator of @ = 2sin~! /6. This estimator is asymptotically

_ 1
normal with an asymptotic variance AV {g(X,)} = — for all w.
n
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Although consistent estimators satisfying (7.3.3) are called BAN, one can construct

sometimes asymptotically normal consistent estimators, which at some 6 values
1
have an asymptotic variance, with v2(0) < m Such estimators are called super
efficient. In Example 7.5, we illustrate such an estimator.
1

Le Cam (1953) proved that the set of point on which v2(6) < m has a Lebesgue
measure zero, as in Example 7.5.

The following are sufficient conditions for a consistent MLE to be a BAN esti-
mator.

C.1. The CR regularity conditions hold (see Theorem 5.2.2);
C.2. ﬁS(Xn; 6) is continuous in 6, a.s.;

C.3. én exists, and S(X,,; én) = 0 with probability greater than 1 — §, 0 < § arbi-
trary, for n sufficiently large.

1 9 R
Cd. - —S8X,:6,) - —I10), asn— oo.
n 060

Theorem 7.3.1 (Asymptotic efficiency of MLE). Let 6, be an MLE of § then, under
conditions C.1.-C.A4.

@, —0) -5 N@©,1/10)), as n— .

Sketch of the Proof. Let B; , be a Borel set in B” such that, for all X, € Bs 9.,
0, exists and S(X,l;én) = 0. Moreover, Py(Bsg.,) > 1 —§.ForX,, € B;s .., consider
the expansion

A A d
SXp;6h) = S(Xp36) + (6, — 0) - @S(Xn;@f),

where |0 — 6] < |6, — 6.
According to conditions (iii)—(v) in Theorem 7.2.1, and Slutzky’s Theorem,

1
—S5(X;60)
b, =) =~ L N©,1/16),
- _S(ane;:)
n 06

as n — 00, since by the CLT

L sx,:0) <5 NGO, 10)),
n

7

asn — OQ.
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7.4 SECOND-ORDER EFFICIENCY OF BAN ESTIMATORS

Often BAN estimators 0, are biased, with
. b 1
Ey{6,)=0+—4+0(-), asn— oo. (74.1)
n n

The problem then is how to compare two different BAN estimators of the same
parameter. Due to the bias, the asymptotic variance may not present their precision
correctly, when the sample size is not extremely large. Rao (1963) suggested to adjust
first an estimator 6, to reduce its bias to an order of magnitude of 1/n2. Let 9* be the
adjusted estimator, and let

A 1 D 1

The coefficient D of 1/n? is called the second-order deficiency coefficient. Among
two BAN estimators, we prefer the one having a smaller second-order deficiency
coefficient.

Efron (1975) analyzed the structure of the second-order coefficient D in expo-
nential families in terms of their curvature, the Bhattacharyya second-order lower
bound, and the bias of the estimators. Akahira and Takeuchi (1981) and Pfanzagl
(1985) established the structure of the distributions of asymptotically high orders
most efficient estimators. They have shown that under the CR regularity conditions,
the distribution of the most efficient second-order estimator 6,7 is

3J1,2(0) + 2J3(9)

PIYnI®) € —6) < 1} = B(0) + () + o (i

6./n I13/2(9)
(7.4.3)
where
82
J1.2(0) = Ey {S(X;G) 57 108 f(X;e)} , (7.4.4)
and
J3(0) = Eg{S*(X:6)). (7.4.5)

For additional reading, see also Barndorff-Nielsen and Cox (1994).



PART I: THEORY 445
7.5 LARGE SAMPLE CONFIDENCE INTERVALS

Generally, the large sample approximations to confidence limits are based on the
MLE:s of the parameter(s) under consideration. This approach is meaningful in cases
where the MLEs are known. Moreover, under the regularity conditions given in the
theorem of Section 7.3, the MLEs are BAN estimators. Accordingly, if the sample
size is large, one can in regular cases employ the BAN property of MLE to construct
confidence intervals around the MLE. This is done by using the quantiles of the stan-
dard normal distribution, and the square root of the inverse of the Fisher information
function as the standard deviation of the (asymptotic) sampling distribution. In many
situations, the inverse of the Fisher information function depends on the unknown
parameters. The practice is to substitute for the unknown parameters their respective
MLEs. If the samples are very large this approach may be satisfactory. However, as
will be shown later, if the samples are not very large it may be useful to apply first a
variance stabilizing transformationg(6) and derive the confidence limits of g(6).
A transformation g(0) is called variance stabilizing if g'(9) = /7(0). If 6, is
an MLE of 6 then g(én) is an MLE of g(0). The asymptotic variance of g(én)
under the regularity conditions is (g'(6))*/n1(6). Accordingly, if g’(6) = +/T1(9) then

the asymptotic variance of g(én) is —. For example, suppose that X, ..., X, is a
n

sample of n i.i.d. binomial random variables, B(1, 8). Then, the MLE of 6 is X,

The Fisher information function is 7,(6) = n/8(1 — 6). If g(0) = 2sin™! /0 then
= 1

g'(0) = 1//6(1 = 0). Hence, the asymptotic variance of g(X,) = 2sin~! /X, is —.
Transformations stabilizing whole covariance matrices are discussed in the paper gf
Holland (1973).

Let 6 = 1(g) be the inverse of a variance stabilizing transformation g(6), and
suppose (without loss of generality) that #(g) is strictly increasing. For cases satisfying
the BAN regularity conditions, if én is the MLE of 0,

Jn(g@) — g0) -5 N, 1), as n — oo. (7.5.1)

A (1 — a) confidence interval for g(6) is given asymptotically by (g(6,) — Zi—a2/ V1,
g(é,,) +zl_a/2/ﬁ), where zi_4/2 = &~ '(1 —a/2). Let g; and gy denote these
lower and upper confidence intervals. We assume that both limits are within the
range of the function g(0); otherwise, we can always truncate it in an appropriate
manner. After obtaining the limits g; and gy we make the inverse transformation on
these limits and thus obtain the limits 6;, = #(g;) and 6y = t(gy). Indeed, since #(g)
is a one-to-one increasing transformation,

Pol0p <0 <0y} = Po{gr < g(9) < gu}

TP < g6 < g0) + L } ~1-a

=P {g(e) - NG

(7.5.2)
Thus, (6., 6y) is an asymptotically (1 — «)-confidence interval.
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7.6 EDGEWORTH AND SADDLEPOINT APPROXIMATIONS TO THE
DISTRIBUTION OF THE MLE: ONE-PARAMETER CANONICAL
EXPONENTIAL FAMILIES

The asymptotically normal distributions for the MLE require often large samples to
be effective. If the samples are not very large one could try to modify or correct the
approximation by the Edgeworth expansion. We restrict attention in this section to
the one-parameter exponential type families in canonical form.

According to (5.6.2), the MLE, v, of the canonical parameter ¢ satisfies the
equation

o 1 & _
K'(fh) =~ > UX) =0, (7.6.1)
i=1

The cumulant generating function K (v) is analytic. Let G(x) be the inverse function
of K'(Y). G(x) is also analytic and one can write, for large samples,

v, = G(U,)

) 1
= G(K'(W) + (U, — K'@)G'(K' () + 0, (ﬁ) (7.6.2)

~ 1
=y + (0, — K'W)/K" W) + 0, <ﬁ) .

Recall that K”(y) = I() is the Fisher information function, and for large samples,

R U,— K’
VI (@, —¥) = W()w) +0,(1). (7.6.3)

Moreover, E{U,} = K'() and V{\/n U,} = I(). Thus, by the CLT,

Jn U_?Zf()‘/’) 4 N@©,1),  as n— 0. (7.6.4)

Equivalently,

P — ) N (0, ﬁ) , asn — oo. (7.6.5)

This is a version of Theorem 7.3.1, in the present special case.
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If the sample is not very large, we can add terms to the distribution of
I (Y, — ) according to the Edgeworth expansion. We obtain

P{/nIW) (fn — ¥) < x} = (x) — 6ﬂ(x2 — Do (x)
Jn
x[B—-3 , :312 4 2
(7.6.6)
where
KO ()
B = W’ (7.6.7)
and
K9
.82 -3= W (7.6.8)

Let 7, = ZU (X;). T, is the likelihood statistic. As shown in Reid (1988) the
i=1

saddlepoint approximation to the p.d.f. of the MLE, v, is

87, (3 ¥) = cu(KP () exp{—(x — )T, — n(K(¥) — K(x)}(1 + O(n~?)),
(7.6.9)

where ¢, is a factor of proportionality, such that / 8y, (s Ydp(x) = 1.

Let L(6;X,) and [(0;X,,) denote the likelihood and log-likelihood functions. Let
é,, denotes the MLE of 9, and

2

a921(9; xn)|9=én. (7.6.10)

N 1

Jn (9,,) = -

n

We have seen that Ey{J,(0)} = 1(6). Thus, J,(0) 25 1(0), as n — oo (the Fisher
information function). J,(6,) is an MLE estimator of J,(6). Thus, if 6, SN 0, as

n — oo, then, as in condition C.4. of Theorem 7.3.1, Jn(én) HLIN 1(0), as n — oo.
The saddlepoint approximation to g4 (x;0) in the general regular case is

L(6:X,)

= . 7.6.11
L(0n: X5) ( :

g5, (x;0) = ¢, (J,(0)'?

Formula (7.6.11) is called the Barndorff-Nielsen p*-formula. The order of magni-
tude of its error, in large samples, is O(n~%/?).
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7.7 LARGE SAMPLE TESTS

For testing two simple hypotheses there exists a most powerful test of size o. We
have seen examples in which it is difficult to determine the exact critical level k, of
the test. Such a case was demonstrated in Example 4.4. In that example, we have
used the asymptotic distribution of the test statistic to approximate k,. Generally, if
Xi, ..., X, are i.i.d. with common p.d.f. f(x;8) let

_ f(X50y)

R(X) = s
X f(X;00)

(7.7.1)

where the two sample hypotheses are Hy : § = 0 and H; : § = 0. The most pow-
erful test of size o can be written as

1, ifZlogR(X,-)>ka,

i=1

dX,) = -
Vas ifZlogR(X,-):ka,

i=1
0, otherwise.

Thus, in large samples we can consider the test function ¢(S,) = I{S, > k,}, where

S, = Zlog R(X;). Note that under Hy, Eg,{S,} = —n(I(0o, 0,) while under H,,
i=1
Eg {S,} = nl(8,,0,), where I1(#, 0’) is the Kullback-Leibler information.
Let o = Vp {log R(X1)}. Assume that 0 < of < oo. Then, by the CLT,

. Sn +n1(00501) . .

lim Py, | ———=——— < x = ®(x). Hence, a large sample approximation to
n—oo ﬁ [el))
kg 18

ky = —nl(0,0,) + Zlfa«/; 0y. (7.7.2)

The large sample approximation to the power of the test is

180,01) + 1(61,00) “0) L a3

Ilf(olao'l):q)(\/; Zia—

o] o]
where 012 = Vp,{log R(X)}. Generally, for testing Hy : @ = 6, versus H;, : § # 0
where 0 is a k-parameter vector, the following three test statistics are in common use,
in cases satisfying the CR regularity condition:

1. The Wald Statistic

0w =n(d, —00)J0,)@8, —0), (7.7.4)
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where 9,, is the MLE of 0, and

J(@,) = —H(®) (1.1.5)
0=0,
Here, H(0) is the matrix of partial derivatives
H() ! i XH:I f(X;0)i,j=1 k
= - 0 100, j=1,...,k].
n \ 86,00, & O/ AER0T
An alternative statistic, which is asymptotically equivalent to Q,,, is
Q3 =n(B, — 00) J00)B, — ). (7.7.6)
One could also use the FIM, (), instead of J ().
2. The Wilks’ Likelihood Ratio Statistic:
QL =210, X,) — 1(B0; X,)}. (17.7)
3. Rao’s Efficient Score Statistic:
1 , B
Or = ;S(Xn;a()) (J(80))™"'S(X,1: 00), (7.7.8)

where S(X,;0) is the score function, namely, the gradient vector
n

WZ log f(X;;0). Qg does not require the computation of the MLE 0,.

i=1

On the basis of the multivariate asymptotic normality of 8,,, we can show that all
these three test statistics have in the regular cases, under Hy, an asymptotic x>[k]
distribution. The asymptotic power function can be computed on the basis of the
non-central x2[k; A] distribution.

7.8 PITMAN’S ASYMPTOTIC EFFICIENCY OF TESTS

The Pitman’s asymptotic efficiency is an index of the relative performance of test
statistics in large samples. This index is called the Pitman’s asymptotic relative
efficiency (ARE). It was introduced by Pitman in 1948.

Let Xy, ..., X, bei.i.d. random variables, having a common distribution F(x; @),
0 € ©. Let T, be a statistic. Suppose that there exist functions w(6) and o0,(6)

so that, for each 6 € ®, Z, = (T, — u(0))/0,(0) LN N(0, 1), as n — oo. Often
0,(0) = c(B)w(n), where w(n) = n=¢ for some o > 0.
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Consider the problem of testing the hypotheses Hy : 6 < 6, against H; : 0 > 6,
at level o, — «, as n — o0. Let the sequence of test functions be

Gn(T) = I{(T, — 1(60))/0n(60) = kn}, (7.8.1)

where k,, — Z;_,. The corresponding power functions are

(7.8.2)

V(0 T,) ~ @ (“(9) — 1(6o)  c(6o) @)

w(n)co)  c®) 4 c0)
We assume that

1. n(9) is continuously differentiable in the neighborhood of 6, and u'(6y) > 0;
2. ¢(0) is continuous in the neighborhood of 8y, and c¢(6y) > O.

Under these assumptions, if 6, = 6y 4+ §w(n) then, with § > 0,

lim ¥, (6, Ty) = @ (3“/(9‘)) — zla) _— (7.8.3)
s c(60)
The function
W)
6T = =5 (7.8.4)

is called the asymptotic efficacy of 7,,.
Let V, be an alternative test statistic, and W, = (V,, — n(6))/(v(@)w(n)) i)
N(0, 1), as n — oo. The asymptotic efficacy of V,, is J(8; V) = (/(8))>/v*(8). Con-

sider the case of w(n) =n~"2. Let 6, = 6y + N 8 > 0, be a sequence of local
n
alternatives. Let v,,(8,; V,,) be the sequence of power functions at 8, = 6y + §//n
and sample size n’(n) so that lim ¥,,(6,; V,y) = ¥* = lim v,,(6,; T,,). For this
n—o00 n—oo

_ nJ:T)

n(n) = T (7.8.5)
and
. ’ 22
lim 1 = ZG: V) (”(90)) ) (7.8.6)
n—o0 n'(n) J(6y;T) u'(6o) VZ(GO)

This limit (7.8.6) is the Pitman ARE of V,, relative to 7,,.

We remark that the asymptotic distributions of Z,, and W,, do not have tobe N (0, 1),
but they should be the same. If Z, and W,, converge to two different distributions, the
Pitman ARE is not defined.
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7.9 ASYMPTOTIC PROPERTIES OF SAMPLE QUANTILES

Give a random sample of 7 i.i.d. random variables, the empirical distribution of the
sample is

F,(x) = %Z[{X,- <x}, —00<x<o00. (7.9.1)

i=1

This is a step function, with jumps of size 1/n at the location of the sample random
variables {X;,i = 1, ..., n}. The pth quantile of a distribution F is defined as

£, = F'(p) = inf{x : F(x) > p} (7.9.2)

according to this definition the quanitles are unique. Similarly, the pth sample quantile
are defined as &, , = F, ' (p).

Theorem 7.9.1. Let0 < p < 1. Suppose that F is differentiable at the pth quantile
&, and F'(§,) > O, then &, , — &, a.s. asn — o0.

Proof. Let e > 0 then

Fé,—¢e)<p<F(,+e).

By SLLN

F,(§,—€)— F(,—¢€) as., as n - o0
and

F,(§,+¢€)— F(,+¢€) as., as n — oo.
Hence,

P{F,(,—€)<p<F,(é,+e€), YVm=>n}— 1
as n — oo. Thus,
P&, —e<F,'(p) <& +e Ym>n}— 1
as n — oo. That is,

P{SUP|$m,p _§p| >e}— 0, as n — oo.

m=>n

QED
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Note that if 0 < F(£) < 1 then, by CLT,

lim P {ﬁ(F”@) —Feé) < t} = O(1), (7.9.3)
n—00 VEEL = F(&)

for all —o0o < t < co. We show now that, under certain conditions, &, , is asymptot-
ically normal.

Theorem 7.9.2. Let 0 < p < 1. Suppose that F is continuous at &, = F~'(p).
Then,

(i) If F'(§,—) > O then, forallt <0,

. nl/z(%—pn - sp) }
1 P - = O(¢). 794
5 {uxl—p»”HF%&—)St ® (7.94)

n—0o0

(ii) If F'(§,+) > O then, forallt > 0,

lim P { n Gy — &) < t} — D). (7.9.5)
n—oo | /p(1 = p)/F'(&p+)

Proof. Fix t. Let A > 0 and define

1/2 _
G,(t)=P {w < z} . (7.9.6)
Thus,
Gu(t) = P&, <&, +1An""?)
(7.9.7)
= P{p < F,(§, +tAn""/%)}.
Moreover, since nF,(§,) ~ B(n, F(§,)),
G,(t)=P {p < %B(n, F, + tAn1/2)} . (7.9.8)
By CLT,
B(n, F(§,)) —nF(&)) }
P - Z d(z), 7.9.9
{ wFE FEn 2~ 7 @ 799
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asn — oo, where F(§,) = 1 — F(§,). Let

An(t) = F(&, +tAn~"/?),

and
. _ B(n, A) —nA
Ll = e
Then
Gu(t) = P{Z, (A1) = —C,(1)},
where

nl/z(An(l) - P)
vV An(t)(l - An(t))’

Cn(t) =

Since F is continuous at &,

A, (DA = A1) = p(1 — p), as n — oo.

tA
Moreover, if t > 0, F(§, +tAn~?) — F(§,) = TF’($p+) +o0 <
n
t>0
Colt) > —— e F(&)4), a5 n —
n —_— , as n — 00.
Vra=p "
Similarly, if r < 0
C,(t) —> 4 F'(§,-) — 00
" _— —), as n )
Vra=p 7’
Thus, let
vPAZP) e g
F'(¢p—) ’
A=
vPUZP) e
F'ép+)
Then, lim C,(¢) = t. Hence, from (7.9.12),

lim G,(t) = ®(1).

453

(7.9.10)

(7.9.11)

(7.9.12)

(7.9.13)

). Hence, if

(7.9.14)

(7.9.15)

QED
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d
Corollary. If F is differentiable at &,, and f(§,) = d_F(x)|x—E > 0, then &, , is
x =&

. p(l —p)
asymptotically N <§ , —>
" nf2&p)
PART II: EXAMPLES
Example 7.1. Let X, X», ... be a sequence of i.i.d. random variables, such that

_ j -
E{|X:|} < oo.Bythe SLLN, X, = —Zx,. 2% 4, asn — oo, where u = E{X,}.
n
i=1
Thus, the sample mean X, is a strongly consistent estimator of p. Similarly, if
E{|X1]"} < oo, r > 1, then the rth sample moment M, , is strongly consistent esti-
mator of u, = E{X!},i.e.,

1 « ~
M,, = —ZXI.’ 2w, as n— oo.
n
i=1
Thus, if 62 = V{X;}, and 0 < 62 < o0,

) 2 as. o
o, = n2 — (Mn,l) > 0.
n—00

That is, 62 is a strongly consistent estimator of o2. It follows that S? =

| _
7 Z(X = Xn)2 is also a strongly consistent estimator of o?. Note that, since
n—

i=1

M,, =5 u,.,asn — cowhenever E{|X;|"} < 0o, then for any continuous function
(), (M) —> g(u,), as n — oo. Thus, if

n3

L=

is the coefficient of skewness, the sample coefficient of skewness is strongly consistent
estimator of i, i.e.,

A

1 ¢ = .3
=y (X = X)
n i=1

IBI,n =

(62)?
n

Example 7.2. Let X, X, ...be asequence of i.i.d. random variables having a rect-
angular distribution R(0, #), 0 < § < oco. Since u; = 6/2, 91,,1 = 2X,, is a strongly
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consistent estimator of . The MLE 92,,1 = X(y is also strongly consistent estimator
of 6. Actually, since forany 0 < € < 6,

P{éz,n59—€}=(1—§) , n>1.
Hence, by Borel-Cantelli Lemma, P{6,, <6 —¢,i.0.} =0. This implies that
Gzn 2% 6, as n — oo. The MLE is strongly consistent. The expected value
of the MLE is E {02,,1} = ?9. The variance of the MLE is
n

no?

Vol = e ¥ 2

The MSE of {#,,,} is V{0,.,} + Bias?{0,,}, i.e.,

262

MSE{6, ,} = —(n The )

2
The variance of élﬁn is V{é],n} = I The relative efficiency of él,,, against ézy,, is
n

SE{02 n} 6n
{91,11} (I’l + D(n + 2)

Rel. eff. =

’

as n — oo. Thus, in large samples, 2X,, is very inefficient estimator relative to the
MLE. ]

Example 7.3. Let X, X5, ..., X,, be i.i.d. random variables having a continuous
distribution F(x), symmetric around a point 6. 6 is obviously the median of the

1
distribution, i.e., 0 = F~! 5 ) We index these distributions by 6 and consider the

location family F; = {Fy : Fy(x) = F(x —0),and F(—z)=1— F(z); —o0o <0 <
oo}. The functional form of F is not specified in this model. Thus, F; is the family
of all symmetric, continuous distributions. We wish to test the hypotheses

Hy:0 =06y versus H; : 0 > 0,.
The following test is the Wilcoxon signed-rank test:
LetY; =X; —6p,i =1,...,n.LetS(Y;) = I{Y; > 0},i =1, ..., n. We consider

now the ordered absolute values of Y;, i.e.,

Y|y <Yl < - < |Y|w
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and let R(Y;) be the index (j) denoting the place of Y; in the ordered absolute values,
ie,R(Y)=j,j=1,...,nif and only if, |Y;| = |Y|;. Define the test statistic

T, =Y S(Y)R(Y).
i=1

The test of Hy versus H; based on T, which rejects Hy if 7, is sufficiently large is
called the Wilcoxon signed-rank test. We show that this test is consistent. Note that

1
under Hy, Py{S(Y;) =1} = 5 Moreover, for eachi = 1, ..., n, under H,

P{SY) =11Yi[ =y} =P{0<Y; <y}

1
F) =3

1
E(ZF(y) -D

Po{S(Y;) = 1} Po{|Yi| = y}.

Thus, S(Y;) and |Y;| are independent. This implies that, under Hy, S(Y;), ..., S(Y,,)
are independent of R(Y)), ..., R(Y,), and the distribution of 7,,, under Hy, is like that

n n 1
of T, = Zjo ~ ZjB <1, E) It follows that, under H,
=1 j=1

e . nn+1
:E Tn = — = ———G;
Mo ol Ty} 2};1 1

Similarly, under Hy,

1 .
VolTud =3 > J°
j=1

_nn+1D2n+1)
= T.

According to Problem 3 of Section 1.12, the CLT holds, and

P {M gx} = D(x).
kY VO{Tn}
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Thus, the test function

1 D2 1
oMt GO D
4 24

—

¢(Tn) =

0, otherwise

has, asymptotically size o, 0 < o < 1. This establishes part (i) of the definition of
consistency.
When 6 > 6y (under H;) the distribution of 7, is more complicated. We can

nin+1)

p- 47) that the asymptotic mean of V,,, as n — 00, is 3 p2(0), and the asymptotic

consider the test statistic V,, = One can show (see Hettmansperger, 1984,

variance of V, is

1
AV = ~(ps(0) - p3(6)),
where

p2(8) = Po{Y) + Y2 > 0},
ps@) = Po{Y1 + Y, > 0,Y, + Y3 > 0}.

In addition, one can show that the asymptotic distribution of V,, (under H;) is normal
(see Hettmansperger, 1984).

Zi_q
;T4 24

ply 1 47 2n+1
f— n > - —a —_— .
v 4" 7N 24nm + 1)

1
Finally, when 6 > 0, p,(9) > 3 and

b {T _ D) n(n+1)(2n+l)]
[ n I -~

lim Pg
n— 00

{Tn et 7 nn+ DH2n + 1)}
4 24

Jn (l - le(Q))

=1- lim ¢ 4 2

e  Pa(®) — p3©®)

for all 6 > 0. Thus, the Wilcoxon signed-rank test is consistent. |

:1’
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Example 74. Let 71, 15, ..

., T,, be i.i.d. random variables having an exponential

distribution with mean 8, 0 < 8 < oo. The observable random variables are X; =
min(7;, t*),i =1,...,n; 0 < t* < oo. This is the case of Type I censoring of the

random variables Ty, ..., T,.
The likelihood function of 8,0 < 8 < 00, is

1 1<
L(ﬂ;xn)=mexp{—3iz_ljxi},

where K, = ZI{Xi < t*}. Note that the MLE of B8 does not exist if K,, = 0.

i=1

However, P{K, =0} = e/ — 0 as n — oo. Thus, for sufficiently large n, the

MLE of g is
n
DX
5 i=1
Bn = X,
Note that by the SLLN,
1 a.s. —l*/ﬁ
-K, — 1—e¢ ,
n
and
1 - a.s.
Y X =5 E{Xi,
n “
i=1
Moreover,

as n — 00,

as n — OoQ.

1 (- .
E{X} = E/ te Bdr + 1/
0

B

=Bl —e /P

e

Thus, B, 25 B, as n — oo. This establishes the strong consistency of f,.

Example 7.5. Let {X,} be a sequence of i.i.d. random variables, X; ~ N(0, 1),
—0o0 < 6 < 0o. Given a sample of n observations, the minimal sufficient statistic



PART II: EXAMPLES 459
1 n
is X, = _ZXJ" The Fisher information function is 7(9) = 1, and X,, is a BAN
n
j=1
estimator. Consider the estimator,

1)_( if 1%, < logn
A AAns 1 nl =
9/1 = 2_ \/E
X, otherwise.
Let
A, =X, 7, < ogn
n — n - nl = \/ﬁ
Now,
2®(logn) — 1, if0 =0,
Po{An} = .
d(logn — 4/n )+ ®(logn + /n0) —1, if6 #£0.
Thus,
1, ifo =0,
lim Py{A,} =
n—00 0, ifo #0.

‘We show now that én is consistent. Indeed, for any § > O,

Po{10, — 0] > 8} =Paf{l0, — 0] > 8, 15, (X)) =1} + Po{10, — 0] > &, I, (X,)=0}.
If 6 = 0 then

Pp{l0a] > 8} = PofI Xl > 28, In,(X,) = 1} + Pp{IX,| > 8, 11, (X,) = 0}

< Po{| Xyl > 28} + Py{l5,(X,) =0} —> 0, as n — oo,

since X, is consistent. Similarly, if 8 £ 0,
Po{10,] > 8} < Polln, (X)) = 1} + Py{|X, — 0] > 8} = 0, as n — oo.

Thus, 6, is consistent. Furthermore,

§>>
I

XnIA,l(Xn) + )_(n(l - IA,,(XI’I))

N =

X, —

XnIA,,(Xn)-

| =
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Hence,

1\ .
il — o) - N(O,Z>, if6 =0,
N©, 1),  if6 #£0,

as n — oo. This shows that 6, is asymptotically normal, with asymptotic variance

4—, if0 =0,
AVplfy =™

-, otherwise.
n

6, is super efficient. [ ]

Example 7.6. Let X;, X, ..., X,, be i.i.d. random variables, X; ~ B(1,e¢7%),0 <
0 < o0o. The MLE of 6 after n observations is

n

>

6, = —log =—.
n

6, does not exist if ZX i = 0. The probability of this event is (1 — e~?)". Thus, if
i=1
log &
log(1 — e=?)

, then Py [Zx = 0} < 8.Forn > N(8, 0), let

i=1

n>N@,0) =

BnZ{anliXizl},
i=I

1 9 A An
then P4(B,} > 1~ 3. On the set By, —— - 8(X,:0,) = - P
n

—, where p, =
n

1 n
—E X; is the MLE of p =e%. Finally, the Fisher information function is
n

i=1

I0)=ef/(1 —e?), and

1 0 A as.
—— —8(X,;; 0, 1(0).
N 90 ( ) r:; @)

All the conditions of Theorem 7.3.1 hold, and

N d 1—6‘70
Jnd, —0) — N |0, — , as n— oo.
e
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Example 7.7. Consider again the MLEs of the parameters of a Weibull distribu-
tionG'/A(x, 1); 0 < B, A < 0o, which have been developed in Example 5.19. The
likelihood function L(A, B;X,,) is specified there. We derive here the asymptotic
covariance matrix of the MLEs A and 8. Note that the Weibull distributions satisfy
all the required regularity conditions.

Let [;;,i = 1,2, j = 1,2 denote the elements of the Fisher information matrix.
These elements are defined as

— a _.2
I =FE _ﬁlogL()\,ﬁ;X)_ } ,

0 1T 9
o = E | 5+ log LGk )| [ﬁlogm, mo“ :

_8 _2
I, =F —log L(A, B;X .
» o og L(x, B )_ }

We will derive the formulae for these elements under the assumption of n =1
observation. The resulting information matrix can then be multiplied by # to yield
that of a random sample of size n. This is due to the fact that the random variables
are i.i.d.

The partial derivatives of the log-likelihood are

81o L(Aﬂ'X)—l x#
o gH PR =g ’

3 1
—logL(x, B;X) = — +log X — AXP log X.
ap B

Thus,

A 1
In=E X_X =2

since X# ~ E(X). It is much more complicated to derive the other elements of 1(6).
For this purpose, we introduce first a few auxiliary results. Let M (¢) be the moment
generating function of the extreme-value distribution. We note that

o0
M) = / ze" D=y < 1,
—0oQ

o0
M) = / Ry MY
o0



462 LARGE SAMPLE THEORY FOR ESTIMATION AND TESTING

Accordingly,

d o0
—TI'(+n= / (log x)x'e *dx
dt 0

o0
=/ ze DT g — M(—1), 1> —1,
—0Q

similarly,

2

d "
ATA+n=M'(=n. 1>-1.

These identities are used in the following derivations:

1 1
112=E{(E+logX—AXﬂlogX> (X —Xﬁ>}

1, ,
= E[F (3)—2T'Q2) + v — log Al,

where y = 0.577216.. . . is the Euler constant. Moreover, as compiled from the tables
of Abramowitz and Stegun (1968, p. 253)

I'(2) = 0.42278 ... and T'(3) = 1.84557 ...

We also obtain

1 JTZ 2 " "
122=§ 1+?+(y—10g)») +I7(3)-2I''(2)

—2log MI'(3) — 2I"(2) — 1) + %(y —log /\)},

where I'"(2) = 0.82367 and I'(3) = 2.49293. The derivations of formulae for I,
and I, are lengthy and tedious. We provide here, for example, the derivation of one
expectation:

LE{XP(log X)?*} = %E{Xﬂ(log X2,
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However, X# ~ E(\) ~ %U , where U ~ E(1). Therefore,

2
LE{XP(log X)*} = 2E {U <10g %) } /B

o . o .
{ / e E T dr — ZIOgA/ ze %7 dz + (log A)Z}
oo _

oo

2
B
2

= —[I'"(2) — 2(log M)I"(2) + (log 1)’].

=

The reader can derive other expressions similarly.

For each value of A and 8, we evaluate I}, I}, and I5;. The asymptotic variances
and covariances of the MLEs, designated by AV and AC, are determined from the
inverse of the Fisher information matrix by

A 122
AViA} = ——————,
nll I — 1]
AV{B} = M
n[lln —135]

and
~ A —1
ACG., B) = 12

n[Inly — 151

Applying these formulae to determine the asymptotic variances and asymptotic
covariance of A and /§ of Example 5.20, we obtain, for A =1 and g = 1.75, the
numerical results I;; = 1, I1» = 0.901272, and I, = 1.625513. Thus, for n = 50,
we have AV {1} = 0.0246217, AV{B} = 0.0275935 and AC(%, B) = —0.0221655.
The asymptotic standard errors (square roots of AV) of A and f are, 0.1569 and
0.1568, respectively. Thus, the estimates A = 0.839 and § = 1.875 are not signifi-
cantly different from the true values A = 1 and g = 1.75. [ ]

1
Example 7.8. Let Xy, ..., X,, be i.i.d. random variables with X| ~ E <E)’ 0<

1
& <oo.Let)y,..., Y, beiid. random variables, Y; ~ G (—, 1), 0<n<oo,and
n

assume that the Y-sample is independent of the X-sample.

<

n

The parameter to estimate is 6 = § The MLE of 6 is é,, = 7 where X, and
n n
Y, are the corresponding sample means. For each n > 1, 9, ~ 0F[2n,2n]. The
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2

" 26 N
asymptotic distribution of 8,, is N (9, —>, 0 < 6 < o0. 6, is a BAN estimator. To
n

find the asymptotic bias of 6,, verify that

2n
2n —2

=01+ !
- n—1)"

N 0 1 N
The bias of the MLE is B(6,) = P which is of O (—) Thus, we adjust 6, by
n— n

E{6,) =6

N 1\ A N N N
0F = (1 — —) 0,,. The bias of 6* is B(9") = 0. The variance of 6} is

" n
1
202\ "2
Vil = — %
n 2
(3)
n
_26° 4 3 n 3 n 1
T on w2 \n2))
Thus, the second-order deficiency coefficients of 4 is D = 36%. Note that 8 is the
UMVU estimator of 6. u

Example 7.9. Let X|, X, ..., X, be i.i.d. Poisson random variables, with mean X,

0 < A < 00. Weconsider =e™,0<0 < 1.
The UMVU of 6 is

where T, = Zx The MLE of 6 is

i=1
0, =exp(=X,), n=1,

where X,, = T, /n. Note that 6, — én 2% 0. The two estimators are asymptotically
equivalent. Using moment generating functions, we prove that

E{0,} = exp{—nA(1 — e~ /"))

A 1
- -
= — o\—=)-
et m¢ + (nz)
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Thus, adjusting the MLE for the bias, let

A 5 X _
or = e X — Lexp{—X,).
2n

Note that, by the delta method,

_ _ re A2 _o 1
E{X,,exp{—X,,}}: n +m€ +o0 ﬁ .

Thus,
A s 1
E{f,}=e"+0|—= |, asn— oo
n
The variance of the bias adjusted estimator 6 is

. . 1 e e 1
V0¥ = Vie X} — ;cov(e_x”, X, e ")+ 0 (F) , as n — oo.

Continuing the computations, we find

. A 3A2—2a 1
X 2 -
Vie 7"} =e (n +—2n2 +0(—n2>> .

Similarly,

1 v o % re P (3BA —2 1
—cov(e X", X,e %) = # +o|—=)-
n 2n? n?

It follows that

. re 2 1
Vig = =—+o(=).

In the present example, the bias adjusted MLE is most efficient second-order estima-
tor. The variance of the UMVU 6, is

~ AT (2 1
Vi{6,} = + +o0 <—2> .

n 2n? n

Thus, 6, has the deficiency coefficient D = A2e=> /2. [
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Example 7.10.

(a)

(b)

In n = 100 Bernoulli trials, we observe 56 successes. The model is X ~
B(100, ). The MLE of 6 is § = 0.56 and that of g(0) = 2sin~'(/0) is
£(0.56) = 1.69109. The 0.95-confidence limits for g(0) are g; = g(0.56) —
Z.975/10 = 1.49509 and gy = 1.88709. The function g(0) varies in the range
[0, w]. Thus, let g; = max(0, g) and gj; = min(gy, 7). In the present case,
both g; and gy are in (0, 7). The inverse transformation is

0, = sin*(g./2),
by = sin*(gy /2).
In the present case, 8; = 0.462 and 6y = 0.656. We can also, as mentioned

earlier, determine the approximate confidence limits directly on 6 by estimat-
ing the variance of 6. In this case, we obtain the limits

3

o, =6 — =22 601 — 6) = 0.463
10

5, Zl-a/2
Oy =60+ 6(1 — ) = 0.657.
/100
Both approaches yield here close results, since the sample is sufficiently large.
Let (X1, Y1), ..., (X,, Y,) beii.d. vectors having the bivariate normal distri-

bution, with expectation vector (£, ) and covariance matrix

2
B poT ) B
E_<par 2 )’ <& n<oo, 0<o, T<0, —1<p<l.

The MLE of p is the sample coefficient of correlation r = X(X; — X)\Y; —
Y)/[Z(X; — X)* - =(Y; — ¥)?]"/2. By determining the inverse of the Fisher
information matrix one obtains that the asymptotic variance of r is AV {r} =

1 2\2 : . 1 1+p
—(1 — p*)~. Thus, if we make the transformation g(p) = = log then
n - P
1
g'(p) = .Thus, g(r) = 1 5 log((1 +r)/(1 — r)) is a variance stabilizing
,o

transformatlon for r, with an asymptotic variance of 1/xn. Suppose that in a
sample of n = 100 we find a coefficient of correlation » = 0.79. Make the
transformation

2(0.79) = 11 L7 o714,
00 —— —
£021
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We obtain on the basis of this transformation the asymptotic limits

gr = 1.0714 — 0.196 = 0.8754
1.0714 4 0.196 = 1.2674.

8U

The inverse transformation is p = (e?¢ — 1)/(e?¢ + 1). Thus, the confidence
interval of p has the limits p;, = 0.704 and py = 0.853. On the other hand, if
we use the formula

Ll—a/2

+
r Jn

(1 —=r.

We obtain the limits p;, = 0.716 and py = 0.864. The two methods yield
confidence intervals which are close, but not the same. A sample of size 100
is not large enough. m

Example 7.11. In Example 6.6, we determined the confidence limits for the cross-
ratio productp. We develop here the large sample approximation, according to the
two approaches discussed above. Let

(%)
1 -6y

0
o =logp =log Lo log log + log

2 b1
1 -6, 1 -6 1 — 065
Let él'j = X,‘j/l’l,‘j i j=1,2). é,'j is the MLE of 9,‘]‘. Let wij = IOg(Qi.j/(l - 9,1))
The MLE of v;; is yr;; = log(6;;/(1 — 6;;)). The asymptotic distribution of v;; is
normal with mean ;; and

A

0;;
AV {log I ]é } = [n;;0;;(1 — 9ij)]_l'

— 0

Furthermore, the MLE of w is
& = Y11 — Y2 — Vo1 + Ya.

Since X;;, (i, j) =1, 2, are mutually independent so are the terms on the RHS of
®. Accordingly, the asymptotic distribution of @ is normal with expectation w and
asymptotic variance

2

A 1
AV =) )" 110,01 — 6;7)°

i=1 j=1
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Since the values 6;; are unknown we substitute their MLEs. We thus define the
standard error of @ as

1/2

2 2

1
SEW@ =122 ———5>
i o gl —0i))

According to the asymptotic normal distribution of @, the asymptotic confidence
limits for p are

P = pexp{—z1_ap - SE(®}},

p? = pexplzi_apSE{D}),

where p is the MLE of p = ¢“. These limits can be easily computed. For a numerical
example, consider the following table (Fleiss, 1973, p. 126) in which we present the
proportions of patients diagnosed as schizophrenic in two studies both performed in
New York and London.

New York London
Study n 0 n 0
1 105 0.771 105 0.324
2 192 0615 174 0.394

These samples yield the MLE p = 2.9. The asymptotic confidence limits at level
1 —a =095are pV = 1.38and p® = 6.08. This result indicates that the interaction
parameter p is significantly greater than 1. We show now the other approach, using

the variance stabilizing transformation 2 sin_l(«/g). Let 6; i =Xi; +0.5)/(n;; +1)

and ¥;; =2 sin_l(él- 7). On the basis of these variables, we set the 1 — « confidence
limits for n;; = 2sin~'(,/6;;). These are

77,(-}) =Y — Zi—a2//mij and 77,(-‘,2-) =Yij + 21—as2//Nij-
For these limits, we directly obtain the asymptotic confidence limits for v;; that are
¥ =2logtan(i(;/2), k=12,
where

A(1 1 ..
77,(]) = maX(O, 771(])), l, J = 1» 27
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and

(2 @ ..
'75,') = min(w, 7;; )) i,j=172.

We show now how to construct asymptotic confidence limits for p from these asymp-
totic confidence limits for ;.
Define

2
N |
A (k) (k) (k) (k)
0):52:(11_12_ + V),

and

D is approximately equal to z3_, /2AV{£)}. Indeed, from the asymptotic theory of
MLEs, D;; = (w(z) 1//1.(;)) /4 is approximately the asymptotic variance of ;; times
73, /2 Accordingly,

\/B = Z1_a/2SE{c@},

and by employing the normal approximation, the asymptotic confidence limits for p
are

p® = exp{d + (-D'VD}, k=1,2.

Thus, we obtain the approximate confidence limits for Fleiss’ example, o = 1.40
and p® = 6.25. These limits are close to the ones obtained by the other approach.
For further details, see Zacks and Solomon (1976). |

Example 7.12. Let X, X5, ..., X,, be i.i.d. random variables having the gamma
distribution G(1, v), 0 < v < oco. This is a one-parameter exponential type family,
with canonical p.d.f.

flx;v)=— exp{v logx —log'(v)}.

Here, K(v) = logI'(v).
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The MLE of v is the root of the equation

T
T T(v)
= Um

K'(v)

_ I
where U, = —Zlog(Xi). The function I'"(v)/ I'(v) is known as the di-gamma, or
n<

i=1
psi function, ¥ (v) (see Abramowitz and Stegun, 1968, p. 259). ¥(v) is tabulated for
1 < v <2 inincrements of A = 0.05. For v values smaller than 1 or greater than 2
use the recursive equation

1
v 4+v)=vW)+ o

The values of 9, can be determined by numerical interpolation.
The function i (v) is analytic on the complex plane, excluding the points v =
0, —1, =2, .... The nth order derivative of ¥/ (v) is

n,—vt

O
0 —e

> 1
=(-=D'n!) ——0.
;0 (Jj vy

Accordingly,
K'() =),
1) = ¥'(),
5 — Yy O)
LT W)
AO)
o= o

To assess the normal and the Edgeworth approximations to the distribution of ¥, we
have simulated 1000 independent random samples of size n = 20 from the gamma
distribution with v = 1. In this case /(1) = 1.64493, 8, = —1.1395 and B, — 3 =
2.4.1In Table 7.1, we present some empirical quantiles of the simulations. We see that
the Edgeworth approximation is better than the normal for all standardized values of
D, between the 0.2th and 0.8th quantiles. In the tails of the distribution, one could get
better results by the saddlepoint approximation. [ ]
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Table 7.1 Normal and Edgeworth
Approximations to the Distribution of
ﬁzo,n =20,v =1

Z Exact Normal Edgeworth
—1.698 0.01 0.045 0.054
—1.418 0.05 0.078 0.083
—1.148 0.10 0.126 0.127
—0.687 0.20 0.246 0.238
—0.433 0.30 0.333 0.320
—0.208 0.40 0.417 0.401
—0.012 0.50 0.495 0.478
0.306  0.60 0.620 0.606
0.555 0.70 0.711 0.701
0.887 0.80 0.812 0.811
1.395 0.90 0.919 0.926
1.932 095 0.973 0.981
2.855 0.99 0.999 0.999
Example7.13. Let X|, X5, ..., X, bei.i.d. random variables having the exponential

distribution X; ~ E(¥), 0 < ¢ < oco. This is a one-parameter exponential family
with canonical p.d.f.

fs) =exp{yU(x) — K@)}, 0 <x < oo,

where U(x) = —x and K (¢) = —log(y).
The MLE of ¥ is ¥, = 1/X,,. The p.d.f. of v, is obtained from the density of X,,
and is

(}’llﬂ)”. 1 e "VIx
C(n) x"+!

2, (5 9) =

for0 < x < o0.
The approximation to the p.d.f. according to (7.6.9) yields

83, (3 ¥) = 6y exp{—(x = ¥)T, — n(—log ¥ +log x))
= cu oy explatx — )/x)

n_,n
=c —w ¢ e
n xn+l :
Substituting ¢, = n"e™"/I'(n) we get the exact equation. [ ]
Example7.14. Let X, X5, ..., X, bei.i.d.random variables, having acommon nor-

mal distribution N (0, 1). Consider the problem of testing the hypothesis Hy : 6 <0
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against H; : 8 > 0. We have seen that the uniformly most powerful (UMP) test of
size o is

¢°=1{;2 >Z‘”}
n n = ﬁ s

N
where X, = —ZX,- and and Z,_, = ®~'(1 — a). The power function of this UMP
n

. i=1
test 1s

Yn(0) = (Vn 6 —Z1,), 6=0.
Let 6, > 0 be specified. The number of observations required so that v,(6,) > y is
N(o, 61, y) = least integer n greater than (Z, + Zl,a)z/ef.
Note that

(i) lim v, (6;) = 1 for each 6; > 0
n—0o0
and

8
(ii) if § > 0 and 6, = ﬁ then

n—o00

8
lim v, (ﬁ) =00 - Zi—o) = Vo,

where 0 < o < Yoo < 1.

Suppose that one wishes to consider a more general model, in which the p.d.f. of
Xyis f(x —0), —00 < 6 < 0o, where f(x)is symmetric about € but not necessarily
equal to ¢(x), and Vy{X} = o for all —co < # < 0o. We consider the hypotheses
Hp : 0 <0against H; : 0 > 0.

Due to the CLT, one can consider the sequence of test statistics

(1 _ = a,o
b, (Xn)—I{XnZ ﬁ}

where a,, | Z;_, as n — 00, and the alternative sequence

X, =I{M€ a—}
Pu ) = 27 (O)vn
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where M, is the sample median
X(m+1), ifn=2m+1,
M, = .
E(X(m) + X(m+1)), if n =2m.

According to Theorem 1.13.7, \/n(M, — 6) AN <0 > asn — oo. Thus,

1
T4120)
the asymptotic power functions of these tests are

0
Y (0) ~ @ (—f - zlo,) . 0>0,
o
and

vPO)~ @ (20f(O)n—Z1), 6>0.

Both ¥{"(6;) and ¥ (6;) converge to 1 asn — oo, forany §; > 0, which shows their
consistency. We wish, however, to compare the behavior of the sequences of power

8 8
functions for 6, = —. Note that each hypothesis, with 8, , = — is an alternative
Jn ’ Jn

one. But, since 6; , — 0 as n — o0, these alternative hypotheses are called local
hypotheses. Here we get

YD S Vo7 -
n ﬁ o l—a

and

o <i> ~ @ QFO) — Zig) = Y
n ﬁ —o .

8
To insure that ¥* = v/** one has to consider for ¥ a sequence of alternatives T
n

with sample size n’ = so that

n
4120

8 8 .
Vi (ﬁ> ~ @ (2%;0(0)@_ — zl_C,) =y

The Pitman ARE of ¢ to ¢ is defined as the limit of n/n’(n) as n — oo. In
the present example,

ARE(¢?, ¢") = 4£2(0).
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1
If the original model of X ~ N(0, 1), f(0) = and ARE of @ to (D is 0.637.
. 2
On the other hand, if f(x) = 3¢ ~I*I which is the Laplace distribution, then the ARE
of @ to M is 1. [ |

Example 7.15. In Example 7.3, we discussed the Wilcoxon signed-rank test of H :
0 < 6y versus H; : 6 > 6y, when the distribution function F is absolutely continuous
and symmetric around 6. We show here the Pitman’s asymptotic efficiency of this
test relative to the z-test. The ¢-test is valid only in cases where aj% = V{X} and
(X, — 60)

3 , where S2 is the sample variance.
n

0 < a} < 00. The ¢-statistic is t, = /n——=

. a.s. .
Since S, —> oy, as n — 00, we consider

{ \/ﬁ()_(n - 90)
S

n

Ou(ty) =1 > t_qln — 1]} .

The asymptotic efficacy of the ¢-test is

1
J(Q;tn) = _25
of

where O'J% is the variance of X, under the p.d.f. f(x). Indeed, u(9) = 6.
Consider the Wilcoxon signed-rank statistic 7,,, given by (7.1.3). The test function,
for large n, is given by (7.1.8). For this test

w(@) = Pp{Y1 > 0} +

—1
n . ) 12 0),

where p,(0) is given in Example 7.3. Thus,

—1 [
@) =(1-F(-0))+ n 2 ) f (1—=F(=x—-0)f(x —6)dx.
Hence,
, n—-1 [~ , 1
WO =5+ "2 [ Pooar 5.
Using 0%(0) = W, we obtain the asymptotic efficacy of

24

oo 2
JO:T,) = 12( / fz(x)dx> +o (%)
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as n — o0. Thus, the Pitman ARE of 7,, versus t, is

00 2
ARE(T,, 1,) = 1207 ( / fz(x)dx> : (7.9.16)

Thus, if f(x) = ¢(x) (standard normal) ARE(7},, t,) = 0.9549. On the other hand, if

1
fx)= 3 exp{—|x|} (standard Laplace) then ARE(7},, #,) = 1.5. These results deem

the Wilcoxon signed-rank test to be asymptotically very efficient nonparametric
test. |

Example 7.16. Let X, ..., X, bei.i.d. random variables, having acommon Cauchy
distribution, with a location parameter 6, —oo < 6 < o0, i.e.,

1

f(x:0) = m,

-0 < X < OQ.

We derive a confidence interval for 6, for large n (asymptotic). Let 6, be the sample
median, i.e.,
A 1
b, =F," (—) :
2
a1
Note that, due to the symmetry of f(x;0) around 6,0 = F 5 ) Moreover,

1
f(6:0) = —.
b4

Hence, the (1 — &) confidence limits for 6 are

N b4
0, £ Z1_qp——.
I—a/25 NG
|
PART III: PROBLEMS
Section 7.1
711 Let X; =a+Bz;+¢€,i=1,...,n, be a simple linear regression model,
where zi, ..., z, are prescribed constants, and €y, ..., €, are independent

2

random variables with E{e;} = 0 and V{¢;} = 02,0 < 02 < o0, forall i =

1,...,n.Let@, and B, be the LSE of « and f.
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(i) Show that if Z(Zi — Zn)2 — 00, as n — o0, then ,3,, SN B.ie., ,3,, is

i=1
consistent.

(ii) What is a sufficient condition for the consistency of &, ?

7.1.2 Suppose that X, X,,...,X,,... are ii.d. random variables and 0 <
E{X}} < oo. Give a strongly consistent estimator of the kurtosis coefficient

X
B = .
(u3)?
713 Let Xy,..., Xy be independent random variables having binomial distribu-
tions B(n, 6;),i = 1, k. C0n51der the null hypothesis Hy : 6; = --- = 6

k

against the alternative H; : Z(G —0)> > 0, where § = —ZQ Let p; =

i=1 i=1
k

1
X;/nand p = zZpi. Show that the test function
i=1

s = | I i 5T _)Z(pl—m > Xi_alk =11,

0, otherwise,

has a size «,, converging to « as n — oo. Show that this test is consistent.

7.1.4 In continuation of Problem 3, define ¥; = 2sin~! Jpisi=1,... k.
(i) Show that the asymptotic distribution of Y¥;, asn — oo, is N(n;, ﬁ), where
n; = 2sin~' /6.
k 1 &
(ii) Showthat Q =nY (Y; — Y)?, where Y = — ) Y;, is distributed asymp-
) 0 g( ) k; ymp

k
totically (as n — o0) like x%[k — 1; A0)], where A(0) = %Z(ni — r‘;)2;

= - Zn, Thus, prove the consistency of the test.
i=1
(iii) Derive the formula for computing the asymptotic power of the test ¢(X) =

HQ = xi_ [k =11}

k
(iv) Assuming that Z(n,- — ﬁ)2 is independent of n, how large should n be so
i=1

k
that the probability of rejecting Hy when Z(m — 77)? = 107! will not be
i=1
smaller than 0.9?
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Section 7.2

7.2.1 Let Xy, X5,...,X,,...beiid. random variables, X; ~ G(1,v), 0 < v <
v* < 00. Show that all conditions of Theorem 7.2.1 are satisfied, and hence
the MLE, b, 2% vasn — oo (strongly consistent).

7.2.2 LetXy, X5,...,X,,...beii.d. random variables, X; ~ (v, 1),0 < v < oo.
Show that the MLE, 7, is strongly consistent.

7.2.3 Consider the Hardy—Weinberg genetic model, in which (J;, J,) ~
MNn, (pi(9), p2(6))), where p1(6) = 6 and p,(f) =26(1 —6),0 < 6 <
1. Show that the MLE of 6, §,,, is strongly consistent.

724 Let X, X,,..., X, be iid. random variables from G(\, 1), 0 < A < oo.
Show that the following estimators &(X,,) are consistent estimators of w(L):

(i) &(X,) = —log X,,, (L) = log A;
(i) &(X,) = X2, w(h) = 1/A%;
(i) &(X,) = exp{—1/X,}, ®(}) = exp{—A}.

725 LetX,..., X, beiid. from N(u,c?), —0o < p < 00,0 < o < 0o. Show
that

(i) log(1 + X2) is a consistent estimator of log(1 + u?);

(ii) #(X,/S) is a consistent estimator of ¢(u/c), where S? is the sample
variance.

Section 7.3

731 Let(X;,Y;),i =1,...,nbeiid. random vectors, where

X & o? yolegtes
()= (13} Gt 75))

—o0 <& <00,0<n<00,0<0y,00 <00,—1 < p < 1.Find the asymp-

_ _ ~ 1 n _ 1 n
totic distribution of W,, = X,,/Y,,, where X,, = _in and Y, = —ZYi.
g g

7.3.2 Let Xy, X2,..., X,,...beiid. random variables having a Cauchy distribu-
tion with location parameter 6, i.e.,

1 1
fx30) = —

'm, — 0 <X <00, —00 < 0 < o0.
T X —

1
Let M, be the sample median, or M, = Fn’1 <§> Is M, a BAN estimator?
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7.3.3

7.3.4

7.3.5

LARGE SAMPLE THEORY FOR ESTIMATION AND TESTING

Derive the asymptotic variances of the MLEs of Problems 1-3 of Section 5.6
and compare the results with the large sample approximations of Problem 4
of Section 5.6.

Let Xi,...,X, be 1iid. random variables. The distribution of
X as that of N(i1, 0%). Derive the asymptotic variance of the MLE of

D(n/o).

Let Xy, ..., X, be i.i.d. random variables having a log-normal distribution
LN(u,0?). What is the asymptotic covariance matrix of the MLE of £ =
exp{u + 0%/2} and D? = g% exp{c? — 1}?

Section 7.4

7.4.1

7.4.2

7.4.3

Let X, X5, ..., X, be i.i.d. random variables having a normal distribution
N(/L,Uz), —00< U <00,0<0 <oo. Letf =et.
(i) What is the bias of the MLE 6,,?

(ii) Let én be the bias adjusted MLE. What is én, and what is the order of its
bias, in terms of n?

(iii) What is the second order deficiency coefficient of éy, ?

1
Let Xy, X5, ..., X, bei.i.d.random variables, X; ~ G <B, 1),0 < B < 0.

Letd =e¢ /8, 0<6 < 1.
(i) What is the MLE of 6?

n 1
(ii) Use the delta method to find the bias of the MLE, 6, up to O (—2>
n

(iii) What is the second-order deficiency coefficient of the bias adjusted
MLE?

Let Xy, X, ..., X, bei.i.d. random variables having a one-parameter canoni-
cal exponential type p.d.f. Show that the first order bias term of the MLE v, is

1 K9®4)
B,(y)=—7" .
2n 1Y)
Section 7.5
7.5.1 Inarandom sample of size n = 50 of random vectors (X, Y) from a bivariate

normal distribution, —oo < u, n < 00, 0 < gy, 02 <00, —1 < p < 1, the
MLE of p is p = 0.85. Apply the variance stabilizing transformation to

determine asymptotic confidence limits of ¢ = sin~!(p); —% <¢ < %
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7.5.2  Let S? be the sample variance in a random sample from a normal distribution
N (1, o). Show that the asymptotic variance of

1 1
W, = — log(5?) is AV{W,} = —.
n

/2

Suppose that n = 250 and S? = 17.39. Apply the above transformation to
determine asymptotic confidence limits, at level 1 — o = 0.95, for ol

7.53 Let Xy,..., X, be arandom sample (i.i.d.) from N(u, 0%); —00 < 1 < 00,
0 <o? < 0.

(i) Show that the asymptotic variance of the MLE of o is 0%/2n.
(i) Determine asymptotic confidence intervals at level (1 — ) for w = u +

Z,o.
(iii) Determine asymptotic confidence intervals at level (1 — «) for /o and
for (/o).
7.5.4 Let Xy,..., X, be arandom sample from a location parameter Laplace dis-

tribution; —oo < u < oo. Determine a (1 — «)-level asymptotic confidence
interval for .

Section 7.6

7.6.1 Let X, X,,...,X, be iid. random variables having a one-parameter
Beta(v, v) distribution.
(i) Write the common p.d.f. f(x;v) in a canonical exponential type form.
(ii) What is the MLE, ¥,,?
(iii) Write the Edgeworth expansion approximation to the distribution of the
MLE b,,.

7.6.2 In continuation of the previous problem, derive the p*-formula of the density
of the MLE, ¥,,?

PART IV: SOLUTION OF SELECTED PROBLEMS

713 Let  =b;,...,6) and p' = (p1,..., pr). Let D = (diag(6;(1 — 6,)),
i=1,...,k) be a k x k diagonal matrix. Generally, we denote X, ~

AN (‘;‘, lV) if /n(X,, — &) LN N(0,V)asn — oo. [AN(, -) stands for
n

1
‘asymptotically normal’]. In the present case, p ~ AN <0, —D).
n
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7.2.3

LARGE SAMPLE THEORY FOR ESTIMATION AND TESTING

Let Hy: 6, =6, = --- = 6; = 6. Then, if Hy is true,

o(1 — 6
pLaAN (Olk, ¥Ik>.
n

k
1
Now, Z(pi — ) =p (Ik — £Jk> p. where Ji =1;1,. Since
i=1

n—oo

1 1
<Ik - %Jk) is idempotent, of rank (k —1), np (Ik — %Jk> p LN

k
1
0(1 — 8)x>[k — 1]. Moreover, p; = Ezpi — 0 a.s., as n — oo. Thus, by
izl

Slutsky’s Theorem

nlﬁ%(l?i — i)’ .,
Ty T
and
k
HZ(Pi — )’
lim P ’;((1—_13]() > X k=11 =

k
If H, is not true, Z(@i — )% > 0. Also,

i=1

k k
1 . — D 2 —_— - — 0 2
Tim Y (pi = pe* =) 6 =6 >0 as.

i=1 i=1

Thus, under H;,

k
nZ(Pi — Pk’
lim P { =

2
< x{ k=11 =0.
n—o0 (L — pr) !

Thus, the test is consistent.

1

20+ Ji as.
The MLE of 6 is 6, = =22 J, ~ B(n.6%). Hence, > % 02 and
n

2n
J N
22 2% 29(1 — 6). Thus, lim §, = 6 a.s.
n n—00
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. X &
7.3.1 By SLLN, lim — = = as.

n—00 Yn n

X
ﬁ(f’_—§> i>N(O,D2) as n — 0o,
n n
where

1 &2

5
D*=0¢2— 407> — 2= p0107.
I S S

X, &1 ,
Thus, — ~ AN | =, —D~* ).
Y, n n

7.3.2 As shown in Example 7.16,

1

f(X;0) = m,

-0 <X < OQ.

Also,

On the other hand, the Fisher information is 1,(0) = g Thus, AV(@,,) =

72 1 2 a .
— > = —. Thus, 6, is not a BAN estimator.
4n I,®) n

7.4.2

(i) X ~ BG(1, 1). Hence, the MLE of B is X, It follows that the MLE of
0 =eVhis é,, = e V/Xn,

(ii)

1
2

o f2)

A - | R 1 /1
O =0 =Xy = Proze P+ S Xy = ple V- 5 <— - 2)

B> \B
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Hence,

Bias(én) = E{én - 9}
B ’326—1//3 1 1
T <_2 * E) o <;)

e VP 1
= (12 +o (;) .

The bias adjusted estimator is

_ 1 1
(iii) Let f(x) = e /¥ (1 + — — ) Then

nx 2nx?

_ —1/x
R + -
fi&) = e ( nx 2nx2>
—l/x -
nx2 nx3
71/): 1
nx C 2nx?
It follows that

A e B 2e72/P 2 1 1

Accordingly, the second-order deficiency coefficient of é,, is

p_ 22 1
“7(‘5*2732)'
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7.6.1 X, ..., X,areiid.like Beta(v,v),0 < v < o0.
i 1
@) fv) = mx”_l(l—x)“_l, O0<x<1
1

— evlog(x(l—x))
B(w,v)x(1 —x)

- exp{vlog(x(1 — x)) — K(v)},
x(1 —x)

where K (v) = log B(v, v).
(ii) The likelihood function is equivalent to

L(v | X)=exp (v > log(Xi(1 - X;) — nK(v)) .
i=1
The log likelihood is
(v [ X)=v > log(Xi(1 - X;)) — nK(v).
i=1

Note that the derivative of K (v) is

K'(v) =2 <F’(V) _ F’(ZV)) ‘

r'v) r'2v)
It follows that the MLE of v is the root of

I''v) T'Qv)
C'(v) + rQ2v)’

1 n
-5 ;logm(l —X;) =—

d
The function o logT'(v) is also called the psi function,
v
d
ie., Y= T logI'(v). As shown in Abramowitz and Stegun
v
1 1
(1968, p. 259), v (2v) — Y (v) = 5(1// (v + 5) — ¥ (v)) + log2. Also,
1 n
——Zlog(Xi(l — X;)) > log4. Thus, the MLE is the value of v for
n*

i=1
which

1 I ¢ 1
" (U + z) —yw = Elog(xi(l ~ X)) — 5 log(2).
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1
(iii) Since Beta(v, v) is symmetric distribution around x = > X~(1-X)

and hence
1% (Z log(X;(1 — Xi))> = 4nV{log X}.
i=1
Thus, since X;,..., X, are i.i.d., the Fisher information is I(v) =
4V{log X}. The first four central moments of Beta(v, v) are u! = 0;
202 +8v+5

b= ————u¥=0and uf = ——— . Thus,

M=y BT M T oo, 1y
B1 =0,

and

B = (21 + 8v +5)2v + 1).

It follows that the Edgeworth asymptotic approximation to the distribu-
tion of the MLE, 7,,, is

P{ynl(w) (d, —v) <x} = d(x) —

x(x?=3) [2vV2+8v+5
24n 16Q2v + 1)



CHAPTER 8

Bayesian Analysis in Testing
and Estimation

PART I: THEORY

This chapter is devoted to some topics of estimation and testing hypotheses from the
point of view of statistical decision theory. The decision theoretic approach provides
a general framework for both estimation of parameters and testing hypotheses. The
objective is to study classes of procedures in terms of certain associated risk functions
and determine the existence of optimal procedures. The results that we have presented
in the previous chapters on minimum mean-squared-error (MSE) estimators and on
most powerful tests can be considered as part of the general statistical decision theory.
We have seen that uniformly minimum MSE estimators and uniformly most powerful
tests exist only in special cases. One could overcome this difficulty by considering
procedures that yield minimum average risk, where the risk is defined as the expected
loss due to erroneous decision, according to the particular distribution Fy. The MSE
in estimation and the error probabilities in testing are special risk functions. The
risk functions depend on the parameters 6 of the parent distribution. The average
risk can be defined as an expected risk according to some probability distribution on
the parameter space. Statistical inference that considers the parameter(s) as random
variables is called a Bayesian inference. The expected risk with respect to the
distribution of @ is called in Bayesian theory the prior risk, and the probability
measure on the parameter space is called a prior distribution. The estimators or
test functions that minimize the prior risk, with respect to some prior distribution,
are called Bayes procedures for the specified prior distribution. Bayes procedures
have certain desirable properties. This chapter is devoted, therefore, to the study of
the structure of optimal decision rules in the framework of Bayesian theory. We start
Section 8.1 with a general discussion of the basic Bayesian tools and information
functions. We outline the decision theory and provide an example of an optimal

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.
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statistical decision procedure. In Section 8.2, we discuss testing of hypotheses from
the Bayesian point of view, and in Section 8.3, we present Bayes credibility intervals.
The Bayesian theory of point estimation is discussed in Section 8.4. Section 8.5
discusses analytical and numerical techniques for evaluating posterior distributions
on complex cases. Section 8.6 is devoted to empirical Bayes procedures.

8.1 THE BAYESIAN FRAMEWORK

8.1.1 Prior, Posterior, and Predictive Distributions

In the previous chapters, we discussed problems of statistical inference, testing
hypotheses, and estimation, considering the parameters of the statistical models as
fixed unknown constants. This is the so-called classical approach to the problems
of statistical inference. In the Bayesian approach, the unknown parameters are con-
sidered as values determined at random according to some specified distribution,
called the prior distribution. This prior distribution can be conceived as a normal-
ized nonnegative weight function that the statistician assigns to the various possible
parameter values. It can express his degree of belief in the various parameter values
or the amount of prior information available on the parameters. For the philosophi-
cal foundations of the Bayesian theory, see the books of DeFinneti (1974), Barnett
(1973), Hacking (1965), Savage (1962), and Schervish (1995). We discuss here only
the basic mathematical structure.

Let F = {F(x;6);0 € ©} be a family of distribution functions specified by the
statistical model. The parameters 6 of the elements of F are real or vector valued
parameters. The parameter space ® is specified by the model. Let H be a family of
distribution functions defined on the parameter space ®. The statistician chooses an
element H(0) of H and assigns it the role of a prior distribution. The actual parameter
value 6 of the distribution of the observable random variable X is considered to be
a realization of a random variable having the distribution H(9). After observing the
value of X the statistician adjusts his prior information on the value of the parameter
0 by converting H (6) to the posterior distribution H(0 | X). This is done by Bayes
Theorem according to which if /(0) is the prior probability density function (p.d.f.)
of 8 and f(x;0) the p.d.f. of X under 6, then the posterior p.d.f. of 6 is

h( | x) =h(9)f(X;9)//®f(x;9)dH(9)- (8.1.1)

If we are given a sample of n observations or random variables X, X5, ..., X,,
whose distributions belong to a family F, the question is whether these random
variables are independent identically distributed (i.i.d.) given 6, or whether 6 might
be randomly chosen from H (6) for each observation.

Atthe beginning, we study the case that X, . .., X, are conditionallyi.i.d., given 6.
This is the classical Bayesian model. In Section 8.6, we study the so-called empirical
Bayes model, in which 6 is randomly chosen from H(8) for each observation. In
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the classical model, if the family F admits a sufficient statistic 7(X), then for any
prior distribution H(0), the posterior distribution is a function of 7'(X), and can be
determined from the distribution of 7(X) under 6. Indeed, by the Neyman—Fisher
Factorization Theorem, if 7'(X) is sufficient for F then f(x;60) = k(x)g(T (x);6).
Hence,

h(@ | x) = h(9)g(T(X);9)//Og(T(X);G)dH(@)- (8.1.2)

Thus, the posterior p.d.f. is a function of 7(X). Moreover, the p.d.f. of T(X) is
g (t;0) = k*(t)g(t; 0), where k*(r) is independent of 0. It follows that the conditional
p.d.f. of 6 given {T(X) = ¢t} coincides with k(6 | x) on the sets {x; T (x) = ¢} for
all z.

Bayes predictive distributions are the marginal distributions of the observed
random variables, according to the model. More specifically, if a random vector X
has a joint distribution F(x;60) and the prior distribution of 6 is H(6) then the joint
predictive distribution of X under H is

FH(X)=/ F(x;0)dH(0). (8.1.3)
e)

A most important question in Bayesian analysis is what prior distribution to choose.
The answer is, generally, that the prior distribution should reflect possible prior
knowledge available on possible values of the parameter. In many situations, the
prior information on the parameters is vague. In such cases, we may use formal prior
distributions, which are discussed in Section 8.1.3. On the other hand, in certain
scientific or technological experiments much is known about possible values of the
parameters. This may guide in selecting a prior distribution, as illustrated in the
examples.

There are many examples of posterior distribution that belong to the same para-
metric family of the prior distribution. Generally, if the family of prior distributions
‘H relative to a specific family F yields posteriors in H, we say that F and H are
conjugate families. For more discussion on conjugate prior distributions, see Raiffa
and Schlaifer (1961). In Example 8.2, we illustrate a few conjugate prior families.

The situation when conjugate prior structure exists is relatively simple and gener-
ally leads to analytic expression of the posterior distribution. In research, however,
we often encounter much more difficult problems, as illustrated in Example 8.3. In
such cases, we cannot often express the posterior distribution in analytic form, and
have to resort to numerical evaluations to be discussed in Section 8.5.

8.1.2 Noninformative and Improper Prior Distributions

It is sometimes tempting to obtain posterior densities by multiplying the likelihood
function by a function 4(6), which is not a proper p.d.f. For example, suppose that
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1
X |0~ N(@,1).Inthiscase L(0; X) = exp —5(9 — x)z}.This likelihood function

is integrable with respect to d6. Indeed,

/Oo exp{—%(@ - X)Z}de =27.

o]

Thus, if we consider formally the function 4(0)d6 = cd6 or h(6) = c then

ho | X) = exp {—%(9 - X)Z} , (8.1.4)

1
V2
which is the p.d.f. of N(X, 1). The function h(0) = ¢, ¢ > 0 for all 6 is called an

improper prior density since / cd® = oo. Another example is when X | A ~
—00

P(}), ie., L(A | X) = e *A*. If we use the improper prior density (L) = ¢ > 0 for

all A > 0 then the posterior p.d.f. is

1
hn ] X) = FAXﬂ, 0 <A< o0. (8.1.5)

This is a proper p.d.f. of G(1, X + 1) despite the fact that 4(}) is an improper prior
density. Some people justify the use of an improper prior by arguing that it provides
a “diffused” prior, yielding an equal weight to all points in the parameter space. For
example, the improper priors that lead to the proper posterior densities (8.1.4) and
(8.1.5) may reflect a state of ignorance, in which all points 6 in (—oco, 00) or A in
(0, 00) are “equally” likely.

Lindley (1956) defines a prior density /(6) to be noninformative, if it maximizes
the predictive gain in information on & when a random sample of size n is observed. He
shows then that, in large samples, if the family JF satisfies the Cramer—Rao regularity
conditions, and the maximum likelihood estimator (MLE) é,l is minimal sufficient
for F, then the noninformative prior density is proportional to |1(6)|'/?, where |1(8)|
is the determinant of the Fisher information matrix. As will be shown in Example
8.4, h(f) o< |1(9)|'/? is sometimes a proper p.d.f. and sometimes an improper one.

Jeffreys (1961) justified the use of the noninformative prior |1(6)|"/ 2 on the
basis of invariance. He argued that if a statistical model F = {f(x;0);0 € ®} is
reparametrized to F* = { f*(x; w); w € 2}, where @ = ¢(0) then the prior density
h(0) should be chosen so that 2(6 | X) = h(w | X).

Let # = ¢ '(w) and let J(w) be the Jacobian of the transformation, then the
posterior p.d.f. of w is

h*(@ | X) o< h(gp™ (@) f(x; ¢~ (@) (@)]. (8.1.6)



PART I: THEORY 489
Recall that the Fisher information matrix of @ is
I*(w) = J N ) (¢~ (w)] ' (w). (8.1.7)
Thus, if #(0) o |1(#)]'/? then from (8.1.7) and (8.1.8), since
(@) = 1@~ (@)I'?/1J (@), (8.1.8)
we obtain
h (@ | X) o fx; ¢~ (@) ()], (8.1.9)

The structure of 2(6 | X) and of 2*(w | X) is similar. This is the “invariance” property
of the posterior, with respect to transformations of the parameter.
A prior density proportional to |1(8)|'/? is called a Jeffreys prior density.

8.1.3 Risk Functions and Bayes Procedures

In statistical decision theory, we consider the problems of inference in terms of
a specified set of actions, A, and their outcomes. The outcome of the decision is
expressed in terms of some utility function, which provides numerical quantities
associated with actions of .4 and the given parameters, 6, characterizing the elements
of the family F specified by the model. Instead of discussing utility functions, we
discuss here loss functions, L(a,9), a € A, 6 € ®, associated with actions and
parameters. The loss functions are nonnegative functions that assume the value zero
if the action chosen does not imply some utility loss when 0 is the true state of Nature.
One of the important questions is what type of loss function to consider. The answer
to this question depends on the decision problem and on the structure of the model.
In the classical approach to testing hypotheses, the loss function assumes the value
zero if no error is committed and the value one if an error of either kind is done. In a
decision theoretic approach, testing hypotheses can be performed with more general
loss functions, as will be shown in Section 8.2. In estimation theory, the squared-error
loss function (é(x) —0)* is frequently applied, when é(x) is an estimator of 9. A
generalization of this type of loss function, which is of theoretical importance, is the
general class of quadratic loss function, given by

LA(x), 0) = QO)B(x) — 0)*, (8.1.10)

where Q(0) > 0 is an appropriate function of 6. For example, O(x) —0)2/0% is a
quadratic loss function. Another type of loss function used in estimation theory is
the type of function that depends on é(x) and 6 only through the absolute value
of their difference. That is, L(9(x), ) = W(|d(x) — 6]). For example, |6(x) — 6|
where v > 0, or log(1 + |é(x) — 6|). Bilinear convex functions of the form

L©#,0)=a,(d —0) +a —0)" (8.1.11)
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are also in use, where ay, a, are positive constants; @ —60)" = —min(d — 6, 0) and
(é —0)t = max(d — 0, 0). If the value of 6 is known one can always choose a proper
action to insure no loss. The essence of statistical decision problems is that the true
parameter 6 is unknown and decisions are made under uncertainty. The random
vector X = (X1, ..., X,) provides information about the unknown value of 6. A
function from the sample space X of X into the action space A is called a decision
function. We denote it by d(X) and require that it should be a statistic. Let D denotes
a specified set or class of proper decision functions. Using a decision function d(X)
the associated loss L(d(X), 6) is a random variable, for each 8. The expected loss
under 0, associated with a decision function d(X), is called the risk function and
is denoted by R(d, 0) = E¢{L(d(X), 6)}. Given the structure of a statistical decision
problem, the objective is to select an optimal decision function from D. Ideally, we
would like to choose a decision function d°(X) that minimizes the associated risk
function R(d, 6) uniformly in 6. Such a uniformly optimal decision function may not
exist, since the function d° for which R(d°, ) = i%f R(d, 0) generally depends on

the particular value of 6 under consideration. There are several ways to overcome this
difficulty. One approach is to restrict attention to a subclass of decision functions, like
unbiased or invariant decision functions. Another approach for determining optimal
decision functions is the Bayesian approach. We define here the notion of Bayes
decision function in a general context.

Consider a specified prior distribution, H (), defined over the parameter space
®. With respect to this prior distribution, we define the prior risk, p(d, H), as the
expected risk value when 6 varies over O, i.e.,

p(d, H) = / R(d, 6)h(6)de, (8.1.12)
®

where h(6) is the corresponding p.d.f. A Bayes decision function, with respect to
a prior distribution H, is a decision function dy(x) that minimizes the prior risk
p(d7 H)’ i'e'5

p(dy. H) = inf p(d. H). (8.1.13)

Under some general conditions, a Bayes decision function dy(x) exists. The Bayes
decision function can be generally determined by minimizing the posterior expecta-
tion of the loss function for a given value x of the random variable X. Indeed, since
L(d, 9) > 0 one can interchange the integration operations below and write

p(d, H) =/ {/ L(d(x),@)f(x;@)dx}h(@)d@
e Wy

- / fH<x){ / L), 9>Mde}dx,
X ) Su(x)

(8.1.14)
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where fy(x) = f f(x;t)h(r)dt is the predictive p.d.f. The conditional p.d.f.

h(@ | x) = f(x;0)h(®)/fy(x) is the posterior p.d.f. of 6, given X = x. Similarly,
the conditional expectation

R(d(x), H) = / L(d(x),0)h(6 | x)do (8.1.15)
®

is called the posterior risk of d(x) under H. Thus, for a given X = x, we can
choose d(x) to minimize R(d(x), H). Since L(d(x),0) > Oforalld € ® andd € D,
the minimization of the posterior risk minimizes also the prior risk p(d, H). Thus,
dy(X) is a Bayes decision function.

8.2 BAYESIAN TESTING OF HYPOTHESIS

8.2.1 Testing Simple Hypothesis

We start with the problem of testing two simple hypotheses Hy and H;. Let Fy(x)
and Fi(x) be two specified distribution functions. The hypothesis H specifies the
parent distribution of X as Fy(x), H; specified it as Fj(x). Let fy(x) and fi(x) be
the p.d.f.s corresponding to Fy(x) and F;(x), respectively. Let 7,0 < 7 < 1, be the
prior probability that Hj is true. In the special case of two simple hypotheses, the loss
function can assign 1 unit to the case of rejecting Hy when it is true and b units to
the case of rejecting H; when it is true. The prior risks associated with accepting Hy
and H, are, respectively, po(r) = (1 — m)b and p;(7) = 7. For a given value of «,
we accept hypothesis H; (i =0, 1) if p;(;r) is the minimal prior risk. Thus, a Bayes
rule, prior to making observations is

g {o, ifr > b/(1+Db), (8.2.1)

1, otherwise,

where d = i is the decision to accept H; (i =0, 1).

Suppose that a sample of » i.i.d. random variables X1, ..., X, has been observed.
After observing the sample, we determine the posterior probability 7 (X,,) that Hy is
true. This posterior probability is given by

aX) =7 [[ X)) |7 []XH+a-[[A&D]. ©B22)

j=1 j=1 j=1
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We use the decision rule (8.2.1) with 7 replaced by 7 (X,,). Thus, the Bayes decision
function is

0, ifn(X,) > 140 (8.2.3)

1, otherwise.

The Bayes decision function can be written in terms of the test function discussed in
Chapter 4 as

1. ifl_[fl(Xj) . 7 ’
O (Xy) = jzlfO(Xj) b(1 — ) (8.2.4)

0, otherwise.

The Bayes test function ¢,(X,,) is similar to the Neyman—Pearson most powerful
test, except that the Bayes test is not necessarily randomized even if the distributions

n

F;(x) are discrete. Moreover, the likelihood ratio 1_[ S1(X;)/fo(X ;) is compared to
j=1

the ratio of the prior risks. '

We discuss now some of the important optimality characteristics of Bayes tests
of two simple hypotheses. Let Ry(¢) and R;(¢) denote the risks associated with an
arbitrary test statistic ¢, when Hy or H; are true, respectively. Let Ry(r) and R; ()
denote the corresponding risk values of a Bayes test function, with respect to a prior
probability 7. Generally

Ro(@) = crep(@p); 0 <cp <00
and

Ri(#) = cae1(¢); 0 <o <00,
where €,(¢) and €;(¢) are the error probabilities of the test statistic ¢, ¢; and ¢
are costs of erroneous decisions. The set R = {Ro(¢), R1(¢)); all test functions ¢}
is called the risk set. Since for every 0 < o < 1 and any functions ¢V and ¢®,
ap® + (1 — a)¢p? is also a test function, and since

Ri(a¢™ + (1 —a)p®) = aRi(¢") + (1 —a)Ri(#"?), i =0,1 (825)

the risk set R is convex. Moreover, the set

S ={(Ro(m@), Ri(m)); 0 <7 < 1} (8.2.6)

of all risk points corresponding to the Bayes tests is the lower boundary for R. Indeed,
according to (8.2.4) and the Neyman—Pearson Lemma, R () is the smallest possible
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risk of all test functions ¢ with Ry(¢) = Ry(;r). Accordingly, all the Bayes tests
constitute a complete class in the sense that, for any test function outside the class,
there exists a corresponding Bayes test with a risk point having component smaller
or equal to those of that particular test and at least one component is strictly smaller
(Ferguson, 1967, Ch. 2). From the decision theoretic point of view there is no sense in
considering test functions that do not belong to the complete class. These results can
be generalized to the case of testing k simple hypotheses (Blackwell and Girshick,
1954; Ferguson, 1967).

8.2.2 Testing Composite Hypotheses

Let ®y and ®; be the sets of §-points corresponding to the (composite) hypotheses
Hy and H,, respectively. These sets contain finite or infinite number of points. Let
H(0) be a prior distribution function specified over ® = ®y U ®;. The posterior
probability of Hy, given n i.i.d. random variables X, ..., X,,, is

‘Aﬂﬂxww@

0j=1

nb ’

/Hﬂ&@w@
© -

7(X,) = 8.2.7)

where f(x;0)is the p.d.f. of X under 6. The notation in (8.2.7) signifies that if the sets
are discrete the corresponding integrals are sums and dH(6) are prior probabilities,
otherwise dH(0) = h(8)d6, where h() is a p.d.f. The Bayes decision rule is obtained
by computing the posterior risk associated with accepting Hy or with accepting H,
and making the decision associated with the minimal posterior risk. The form of the
Bayes test depends, therefore, on the loss function employed.

If the loss functions associated with accepting Hy or H, are

Lo(0) = col{6 € ©1} and L(0) = c,1{0 € O}
then the associated posterior risk functions are

Ro(X) = co /@1 f(X;G)dH(9)/f®f(X;9)dH(9) (8.2.8)
and

Rl(X)=01/ f(X;Q)dH(Q)// JF(X;0)dH(0).
O] ®
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In this case, the Bayes test function is

1, if X; 0)dH (0 X; 0)dH (0
b =11 lcl/(:)of( ;6) ()<CO/(:)lf( ;0)dH (),

0, otherwise.

(8.2.9)

In other words, the hypothesis Hy is rejected if the predictive likelihood ratio

Ap(X) = f JX;0)dH®)/ | f(X;0)dH(0) (8.2.10)
0, &
is greater than the loss ratio c¢;/co. This can be considered as a generalization of
(8.2.4). The predictive likelihood ratio Ay (X) is called also the Bayes Factor in
favor of H, against Hy (Good, 1965, 1967).

Cornfield (1969) suggested as a test function the ratio of the posterior odds in
favor of Hy, i.e., P[Hy | X]/(1 — P[Hy | X]), to the prior odds 7 /(1 — ) where 7 =
P[Hy] is the prior probability of Hy. The rule is to reject Hy when this ratio is smaller
than a suitable constant. Cornfield called this statistic the relative betting odds. Note
that this relative betting odds is [A z(X)m/(1 — )]~!. We see that Cornfield’s test
function is equivalent to (8.2.9) for suitably chosen cost factors.

Karlin (1956) and Karlin and Rubin (1956) proved that in monotone likelihood
ratio families the Bayes test function is monotone in the sufficient statistic 7'(X). For
testing Hy : 0 < 6y against H; : 0 > 6y, the Bayes procedure rejects Hy whenever
T (X) > &p. The result can be further generalized to the problem of testing multiple
hypotheses (Zacks, 1971; Ch. 10).

The problem of testing the composite hypothesis that all the probabilities in a
multinomial distribution have the same value has drawn considerable attention in the
statistical literature; see in particular the papers of Good (1967), Good and Crook
(1974), and Good (1975). The Bayes test procedure proposed by Good (1967) is based
on the symmetric Dirichlet prior distribution. More specifically if X = (X1, ..., X))
is a random vector having the multinomial distribution M (n, ) then the parameter
vector 6 is ascribed the prior distribution with p.d.f.

k
['(kv) 1
h,...,6k) = 0", 8.2.11
@ ) Fk(v)g, (8.2.11)
- 1
0<6,...,6 <1land Zei = 1. The Bayes factor for testing /1 : § = zl against
i=1
1
the composite alternative hypothesis H; : 0 # zl, where 1 = (1, ..., 1), according

t0 (8.2.10) is
k
kT kv)[ [P + X;)

N i=1
AW;X) = ORTET (8.2.12)
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From the purely Bayesian point of view, the statistician should be able to choose an
appropriate value of v and some cost ratio c;/cq for erroneous decisions, according
to subjective judgment, and reject Hy if A(v;X) > ¢ /co. In practice, it is generally
not so simple to judge what are the appropriate values of v and c¢;/cy. Good and
Crook (1974) suggested two alternative ways to solve this problem. One suggestion
is to consider an integrated Bayes factor

A@ﬁ:/meAmxmu (8.2.13)
0

where ¢(v) is the p.d.f. of a log-Cauchy distribution, i.e.,

1

P T o

0<v<oo. (8.2.14)

The second suggestion is to find the value v° for which A(v;X) is maximized and
reject Hy if A* = (2log A(V; X))!/? exceeds the (1 — a)-quantile of the asymptotic
distribution of A* under Hy. We see that non-Bayesian (frequentists) considerations
are introduced in order to arrive at an appropriate critical level for A*. Good and
Crook call this approach a “Bayes/Non-Bayes compromise.” We have presented this
problem and the approaches suggested for its solution to show that in practical work
a nondogmatic approach is needed. It may be reasonable to derive a test statistic in a
Bayesian framework and apply it in a non-Bayesian manner.

8.2.3 Bayes Sequential Testing of Hypotheses

We consider in the present section an application of the general theory of Section 8.1.5
to the case of testing two simple hypotheses. We have seen in Section 8.2.1 that the
Bayes decision test function, after observing X,,, is to reject H if the posterior proba-
bility, 7 (X,,), that Hy is true is less than or equal to a constant 77 *. The associated Bayes
risk is pQ (X)) = 7 X)I{n(X,) < 7%} + b(1 — n (X, ) {7 (X,) > 7*}, where
7* = b/(1 4+ b).If 7(X,) = 7 then the posterior probability of Hj after the (n + 1)st

| — —1
observation is ¥ (mw, X,11) = 1+ —nR(X,Hl) , where R(x) = N is the
T So(x)

likelihood ratio. The predictive risk associated with an additional observation is

pi(m) = ¢ + E{pO W (r, X))}, (8.2.15)

where c is the cost of one observation, and the expectation is with respect to the
predictive distribution of X given 7. We can show that the function p;(;r) is concave
on [0, 1] and thus continuous on (0, 1). Moreover, £;(0) > ¢ and p;(1) > c. Note
that the function ¥ (7, X) - 0 wplif # — 0 and ¢(r, X) > 1 wplif w — 1.
Since p© () is bounded by 7*, we obtain by the Lebesgue Dominated Convergence
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Theorem that E{p°(y(, X))} — Oasw — Oorasm — 1.The Bayesrisk associated
with an additional observation is

V() = min{p®(r), pi ()} (8.2.16)

Thus, if ¢ > b/(1 + b) it is not optimal to make any observation. On the other hand, if
¢ < b/(1 4+ b) there exist two points n{l) and 712(]), such that 0 < 7'[1(]) << 7[2(') <

1, and

(1) (1)

Let

po(m) = c+ E{pVW @, X)), 0<m <1, (8.2.18)
and let

pP () = min{pV(x), pa(m)}, 0<m <. (8.2.19)

Since p V(Y (1, X)) < p°(¥(rr, X)) for each  with probability one, we obtain that
() < pi(r)forall0 < 7 < 1. Thus, p@ () < pW(w) forallw,0 < 7 < 1. pp(w)
is also a concave function of 7 on [0, 1] and p,(0) = po(1) = c. Thus, there exists

nfz) < 711( D and n§2> > nz(]) such that

e G e
We define now recursively, for each 7 on [0, 1],
pu(m) = c+ E{p" (X)), n=1; (8.2.21)
and
p" () = min{p (), pu(0)}. (8.2.22)

These functions constitute for each m monotone sequences p,(7) < p,—; and
p() < p"D(mr) for every n > 1. Moreover, for each n there exist 0 < nl(") <

ﬂfn—l) < n—é”—l) < n;”) < 1 such that

(0) : (n) (n)
p(")(rr) _ {,0 (), ifm <m orm>m,", (8.2.23)

on(m),  otherwise.
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Let p(7) = lim p(")(n) for each  in [0, 1] and p(7) = E{p(Y(, X))}. By the
n—00
Lebesgue Monotone Convergence Theorem, we prove that p(w) = lim p, () for
n—00

each 7w € [0, 1]. The boundary points 77"’ and 7y" converge to 7, and 75, respec-
tively, where 0 < m; < m, < 1. Consider now a nontruncated Bayes sequential pro-
cedure, with the stopping variable

N =min{n > 0: pO(7(X,)) = p( (X))}, (8.2.24)

where Xg = 0 and 7 (X() = 7. Since under Hy, 7(X,) — 1 with probability one and
under H;, 7 (X,) — 0 with probability 1, the stopping variable (8.2.24) is finite with
probability one.

Itis generally very difficult to determine the exact Bayes risk function p() and the
exact boundary points m; and ;. One can prove, however, that the Wald sequential
probability ratio test (SPRT) (see Section 4.8.1) is a Bayes sequential procedure in
the class of all stopping variables for which N > 1, corresponding to some prior
probability 7 and cost parameter b. For a proof of this result, see Ghosh (1970, p. 93)
or Zacks (1971, p. 456). A large sample approximation to the risk function p(7)
was given by Chernoff (1959). Chernoff has shown that in the SPRT given by the
boundaries (A, B) if A — —oo and B — 00, we have

1(0, Db(1 —
A%]ogc—logM,
T

101, 0y (8.2.25)

1—m

’

1
B ~ log — + log
¢

where the cost of observations ¢ — 0 and 1(0, 1), I(1, 0) are the Kullback-Leibler
information numbers. Moreover, as ¢ — 0

1—m
p(m) ~ (—clogc) ( ) . (8.2.26)

T
100, 1) ' I(1,0)

Shiryayev (1973, p. 127) derived an expression for the Bayes risk p(;r) associated
with a continuous version of the Bayes sequential procedure related to a Wiener
process. Reduction of the testing problem for the mean of a normal distribution to
a free boundary problem related to the Wiener process was done also by Chernoff
(1961, 1965, 1968); see also the book of Dynkin and Yushkevich (1969).

A simpler sequential stopping rule for testing two simple hypotheses is

Ne=min{fn >1:7X,) <e or 7(X;;) >1—¢€}. (8.2.27)
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If 7(Xy) < € then Hj is rejected, and if 7(Xy) > 1 — € then H is accepted. This
stopping rule is equivalent to a Wald SPRT (A, B) with the limits

A:L and B:ﬂ'
1—-e){1—m) e(l—m)

1
If # = — then, according to the results of Section 4.8.1, the average error probability

is less than or equal to €. This result can be extended to the problem of testing k
simple hypotheses (k > 2), as shown in the following.

Let Hy, ..., H; be k hypotheses (k > 2) concerning the distribution of a random
variable (vector) X. Accordingto H;,thep.d.f.of Xis f;(x;0),0 € ©;,j =1,... k.
The parameter @ is a nuisance parameter, whose parameter space ®; may depend

on H;. Let G;(#), j=1,...,k, be a prior distribution on ®;, and let 7; be the
k

prior probability that H; is the true hypothesis, an = 1. Given n observations on

X1, ..., X,, which are assumed to be conditionajllz; i.i.d., we compute the predictive
likelihood of H;, namely,
LX) = /@, ﬁf(Xi;ﬁ’)de(@), (8.2.28)
J =1, ..., k. Finally, the posterior probability of H;, after n observations, is
n,(X,,):M, i=1,. .k (8.2.29)

> miLi(X,)
i=1

We consider the following Bayesian stopping variable, for some 0 < € < 1.

Ne=min{n, n > 1: lmaxk 7;i(X,)>1—¢€} (8.2.30)
<j<

Obviously, one considers small values of €, 0 < € < 1/2, and for such ¢, there is a
unique value j° such that 7;o(Xp,) =2 1 — €. At stopping, hypothesis H o is accepted.
For each n > 1, partition the sample space X of X,, to (k + 1) disjoint sets

DY =%, :mj(x) = 1—€}, j=1,...k
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k
and D(") X" — UD;") .Aslong as x, € D(()”) we continue sampling. Thus, N, =
j=1
k
min{n>1:x, € UD?’) . In this sequential testing procedure, decision errors
J=l
occur at stopping, when the wrong hypothesis is accepted. Thus, let §;; denote the
predictive probability of accepting H; when H; is the correct hypothesis. That is,

8ij = Z f Lj(x)du(xy). (8.2.31)

D(n)

Note that, for 7* =1 — €, 7;(x,) > 7™ if, and only if,

n,L (X,). (8.2.32)

an[‘ (%) <

i#]

Let o; denote the predictive error probability of rejecting H; when it is true, i.e.,

o; = ZS,‘]‘.
i#]
k
The average predictive error probability is @, = Zn .
j=1

Theorem 8.2.1. For the stopping variable N, the average predictive error proba-
bility is @, < e.

Proof. From the inequality (8.2.32), we obtain

5y < Z /, LSS Zueo- ¥ 2o fanes)
’ it (8.2.33)

1—n* m ]
= —(1 —a) — —38i.
7Tj( a;) E !

T* — TT;
I#i#]

Summing over i, we get

== — Lo —Zm 1—a>——2 3 s

i#] I i) I istj It
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or

i = 17__[:[* Zni(l _ai)_z Z 8-

i#] i#] 1Fi#]

Summing over j, we obtain

@ < 1;” oS =m—a) =33 > e (8234)

Joi# Jo A IFE]

The first term on the RHS of (8.2.34) is

1—n* 1— )
— Z Zma —a)=— Z(l — &, —7;(1 —a)))
i i (8.2.35)
ST ha—a,
T

*

The second term on the RHS of (8.2.34) is

_Z Z Z iy = —Z Zm(al )

Joi#E] FEE] i #
= —Z(&n —njaj)-i—z Zﬂ15j1 (8.2.36)
J o I#]
= —(k = Day + &z = —(k — 2)éx.

Substitution of (8.2.35) and (8.2.36) into (8.2.34) yields

_ 1—x* _
Oy < " (I —ay)
g

or

QED

Thus, the Bayes sequential procedure given by the stopping variable N, and the
associated decision rule can provide an excellent testing procedure when the number
of hypothesis k is large. Rogatko and Zacks (1993) applied this procedure for testing
the correct gene order. In this problem, if one wishes to order m gene loci on a
chromosome, the number of hypotheses to test is k = m!/2.
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8.3 BAYESIAN CREDIBILITY AND PREDICTION INTERVALS

8.3.1 Credibility Intervals

Let F = {F(x;0);0 € O} be a parametric family of distribution functions. Let H (6)
be a specified prior distribution of & and H (0 | X) be the corresponding posterior
distribution, given X. If 6 is real then an interval (L, (X), Lo(X)) is called a Bayes
credibility interval of level 1 — « if for all X (with probability 1)

PyfL,(X) <0 < La(X) | X} > 1 —@. (8.3.1)

In multiparameter cases, we can speak of Bayes credibility regions. Bayes tolerance
intervals are defined similarly.

Box and Tiao (1973) discuss Bayes intervals, called highest posterior density
(HPD) intervals. These intervals are defined as € intervals for which the posterior
coverage probability is at least (1 — «) and every 6-point within the interval has
a posterior density not smaller than that of any 6-point outside the interval. More
generally, a region Ry (X) is called a (1 — o) HPD region if

(i) Py(® € RgyX) | X] > 1 — «, for all X; and
(ii) (0 | x) = h(¢ | x), for every 0 € Ry(x) and ¢ € Ry (x).

The HPD intervals in cases of unimodal posterior distributions provide in nonsym-
metric cases Bayes credibility intervals that are not equal tail ones. For various
interesting examples, see Box and Tiao (1973).

8.3.2 Prediction Intervals

Suppose X is arandom variable (vector) having a p.d.f. f(x;0),0 € ©.1f @ is known,
an interval I, (0) is called a prediction interval for X, at level (1 — «) if

Po{X € [,(0)} =1—q. (8.3.2)

When 6 is unknown, one can use a Bayesian predictive distribution to determine an
interval I,(H) such that the predictive probability of {X € I,(H)} is at least 1 — .
This predictive interval depends on the prior distribution H(@). After observing
X1, ..., X, one can determine prediction interval (region) for (X, 41, ..., Xp4m) by
using the posterior distribution H(# | X,,) for the predictive distribution fy(x | x,,) =

f(x;0)dH(# | x,). In Example 8.12, we illustrate such prediction intervals. For

0
additional theory and examples, see Geisser (1993).



502 BAYESIAN ANALYSIS IN TESTING AND ESTIMATION
8.4 BAYESIAN ESTIMATION

8.4.1 General Discussion and Examples

When the objective is to provide a point estimate of the parameter 6 or a function
w = g(0) we identify the action space with the parameter space. The decision function
d(X) is an estimator with domain x and range ©®, or Q = g(®). For various loss
functions the Bayes decision is an estimator 0 (X) that minimizes the posterior risk.
In the following table, we present some loss functions and the corresponding Bayes
estimators.

In the examples, we derived Bayesian estimators for several models of interest,
and show the dependence of the resulting estimators on the loss function and on the
prior distributions.

Loss Function Bayes Estimator
é -0y 0X) = Ex6 | X)

(The posterior expectation)
Q(6)(0* - 0 Eqn{6000) | XY/ Ex{Q@®) | X}
16— 0 9(X) = median of the posterior

distribution, i.e., H71(.5 | X).
a —0)+b@ — 6)*  The - quantile of H(6 | X);

a+
ie, H'(=% | X).

a+b

8.4.2 Hierarchical Models

Lindley and Smith (1972) and Smith (1973a, b) advocated a somewhat more compli-
cated methodology. They argue that the choice of a proper prior should be based on the
notion of exchangeability. Random variables Wy, W,, ..., W, are called exchange-
able if the joint distribution of (Wi, ..., W;) is the same as that of (W;,, ..., W,,),
where (iy, ..., i;) is any permutation of (1,2, ..., k). The joint p.d.f. of exchange-
able random variables can be represented as a mixture of appropriate p.d.f.s of i.i.d.

random variables. More specifically, if, conditional on w, Wy, ..., W; are i.i.d. with
k

pdf. f(Wy, ..., Wi;w) = l_[g(Wi, w), and if w is given a probability distribution

i=1

P(w) then the p.d.f.

k
LW W) = / [TeWiwyaPow) (8.4.1)
i=1

represents a distribution of exchangeable random variables. If the vector X represents
the means of k independent samples the present model coincides with the Model 11
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of ANOVA, with known variance components and an unknown grand mean . This
model is a special case of a Bayesian linear model called by Lindley and Smith a
three-stage linear model or hierarchical models. The general formulation of such a
model is

X ~ N(A10,,V),

01~ N(A20,, X,
and

0, ~ N(A303, C),
where X isann x 1 vector,f; are p; x 1 (i =1, 2, 3), Ay, Ay, Az are known constant
matrices, and V, ¥, C are known covariance matrices. Lindley and Smith (1972)

have shown that for a noninformative prior for 8, obtained by letting C~! — 0, the
Bayes estimator of @, for the loss function L(6,,0) =[]0, — 0] 2, is given by

0, = B7'AX, (8.4.2)
where
B=AV'A + 37" - 3744 AT AT (8.4.3)
We see that this Bayes estimator coincides with the LSE, (A’A)"'A’X, when V = I
and $~! — 0. This result depends very strongly on the knowledge of the covariance
matrix V. Lindley and Smith (1972) suggested an iterative solution for a Bayesian
analysis when V is unknown. Interesting special results for models of one way and
two-way ANOVA can be found in Smith (1973b).
A comprehensive Bayesian analysis of the hierarchical Model II of ANOVA is
given in Chapter 5 of Box and Tiao (1973).

In Gelman et al. (1995, pp. 129-134), we find an interesting example of a
hierarchical model in which

Ji |6 ~Bn;,0), i=1,... k.
01, ..., 6 are conditionally i.i.d., with
0; |a, B~ Beta(a, ), i=1,...,k
and («, B) have an improper prior p.d.f.

h(a, B) o (o + B) /2.
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According to this model, § = (6, ..., 6;) is a vector of priorly exchangeable (not
independent) parameters. We can easily show that the posterior joint p.d.f. of 6, given
J=U4, ..., ) and (¢, B) is

k
1 a+J;—1 ni—J:.—
hWILmﬂ)=rIBW+_ ﬂ+%]_J)j+ (1 —0)f*mi=i=1 (8.4.4)
Jj=1

In addition, the posterior p.d.f. of (o, B) is

Ba+J;,,B+n;—J;)

8.4.5
B(a, B) ( )

ﬂaMDaﬂamH
The objective is to obtain the joint posterior p.d.f.

h(0|J)=/ / hO | 3. . B)g(e. B | Dduds

//g(“ ﬁ)nB( S0 =0y ddy,

From h(# | J) one can derive a credibility region for 6, etc.

8.4.3 The Normal Dynamic Linear Model

In time-series analysis for econometrics, signal processing in engineering and other
areas of applications, one often encounters series of random vectors that are related
according to the following linear dynamic model

Yn = Aon + €,
(8.4.6)
0n=G0n71+wnv n>1,

where A and G are known matrices, which are (for simplicity) fixed. {€,} is a sequence
of i.i.d. random vectors; {®,} is a sequence of i.i.d. random vectors; {€,} and {®,}
are independent sequences, and

en ~ N(O’ V)9

w, ~ N0, Q).

(8.4.7)

We further assume that @ has a prior normal distribution, i.e.,

0o ~ N(no, Co), (8.4.8)
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and that 0 is independent of {¢,} and {w,}. This model is called the normal random

walk model.

We compute now the posterior distribution of 6, given Y;. From multivariate

normal theory, since

Y |01~ N(AO,, V),
011600~ N(GOy, ),

and
0o ~ N9, Co),
we obtain
0, ~ N(Gyg, Q2+ GCoG").

Let F; = 2 4 GCyG’. Then, we obtain after some manipulations

0,1Y~ N, Ch),
where

m=Gno+ FA[V + AF A1/ (Y, — AGyp),
and
Ci=F, — FjA'[V+ AF, A1 AF,.

Define, recursively for j > 1

F;=Q+GC;_,G,
and

C;=F;— F;A'[V + AF;A'l"' AF;

nj=Gnj 1+ FATV +AF;AT(Y; — AGy; ).

(8.4.9)

(8.4.10)

(8.4.11)

The recursive equations (8.4.11) are called the Kalman filter. Note that, for each
n > 1,1, depends on D, = (Y, ..., Y,). Moreover, we can prove by induction on

n, that

0, | Dy ~ Ny, C),

(8.4.12)
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for all n > 1. For additional theory and applications in Bayesian forecasting and
smoothing, see Harrison and Stevens (1976), West, Harrison, and Migon (1985), and
the book of West and Harrison (1997). We illustrate this sequential Bayesian process
in Example 8.19.

8.5 APPROXIMATION METHODS

In this section, we discuss two types of methods to approximate posterior distributions
and posterior expectations. The first type is analytical, which is usually effective in
large samples. The second type of approximation is numerical. The numerical approx-
imations are based either on numerical integration or on simulations. Approximations
are required when an exact functional form for the factor of proportionality in the pos-
terior density is not available. We have seen such examples earlier, like the posterior
p.d.f. (8.1.4).

8.5.1 Analytical Approximations

The analytic approximations are saddle-point approximations, based on variations of
the Laplace method, which is explained now.
Consider the problem of evaluating the integral

I =/~~~/f(0)exp{—nk(0)}d0, (8.5.1)

where 6 is m-dimensional, and k(@) has sufficiently high-order continuous partial
derivatives. Consider first the case of m = 1. Let # be an argument maximizing
—k(0). Make a Taylor expansion of k(6) around 0,ie.,

k(0) = k@) + (0 — DK (@) + %(9 —0Yk" D)+ 00O —0)?, as 6 > 0. (85.2)

k'(@) = 0and k”() > 0. Thus, substituting (8.5.2) in (8.5.1), the integral I is approx-
imated by

= / F(6) exp {—nk(é) _ gk”(é)(e _ 9)2} d6

(8.5.3)
~ 2
= exp{—nk(6)} /nkT(é)EN{f(@)},

where En{f(0)} is the expected value of f(6), with respect to the normal dis-

tribution with mean @ and variance 6”2 = v The expectation Ey{f(0)} can
n 1"
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be sometimes computed exactly, or one can apply the delta method to obtain the
approximation

Ex{f©®)} = f@ + 1 /0 + 0@, (8.5.4)

2n k'(0)

Often we see the simpler approximation, in which f (0) is used for En{f(9)}. In this
case, the approximation error is O(n~"). If we use f(8) for Ex{f ()}, we obtain the
approximation

[ 2
I = exp{—nk©)} £(H) nk—Ze) (8.5.5)

In the m > 1 case, the approximating formula becomes

N 27\"?* . 12 e R
I = <7> |X(0)]/~ f(0) exp{—nk(8)}, (8.5.6)

where

2

36,06,

T'6) = ( k@),i, j = 1m> (8.5.7)

0=0

These approximating formulae can be applied in Bayesian analysis, by letting —nk (@)
be the log-likelihood function, /(8* | X,,); @ be the MLE, 8,,, and ¥~'(8) be J(@,)
given in (7.7.15). Accordingly, the posterior p.d.f., when the prior p.d.f. is 2(@), is
approximated by

1O | X,) = C,(X,)h(8) exp {—%(0 ~0) 7600 -80).  858)

In this formula, 6, is the MLE of 6 and

—1
Cx) =| [ [ n@rexp |50~ 6,36,0 - b)) ao| 59

=[Q27)2 | J@,)I" PEN{h@)".

If we approximate Ey{h(0)} by h(@,), then the approximating formula reduces to

m/2

~ M b2 o —0YJ0) 0—0
MO X = @0 exp {50 = 8,36 -0~ 0] 85.10)
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This is a large sample normal approximation to the posterior density of . We can
write this, for large samples, as

0|X,~N (0 l(Jna@n))—l) : (8.5.11)
n

Note that Equation (8.5.11) does not depend on the prior distribution, and is not
expected therefore to yield good approximation to A(@ | X,,) if the samples are not
very large.

One can improve upon the normal approximation (8.5.11) by combining the
likelihood function and the prior density /(@) in the definition of k(@). Thus, let

- 1
k(@) =——((0 | X,,) + logh(8)). (8.5.12)
n
Let 0 be a value of 0 maximizing —nk(#), or 6, the root of

1
Vel(0 | X,) + 0] Vo h(0) = 0. (8.5.13)

Let

2

96,00

Jo) =1 — % ( log h(0)> ) (8.5.14)

Then, the saddle-point approximation to the posterior p.d.f. 2(0 | X,,) is

h(@)L(6 | X,)

n\m/2 _ .
. - (1 12, T N )
O 1X)=(5-) 1@ h@,)L@, | X,)

8.5.15
o ( )

This formula is similar to Barndorff-Nielsen p*-formula (7.7.15) and reduces to the
p*-formulaif 7(0)d@ o d@. The normal approximation is given by (8.5.11), in which
0, is replaced by 8, and J@,)is replaced by J(8,,).

For additional reading on analytic approximation for large samples, see Gamerman
(1997, Ch. 3), Reid (1995, pp. 351-368), and Tierney and Kadane (1986).

8.5.2 Numerical Approximations

In this section, we discuss two types of numerical approximations: numerical inte-
grations and simulations. The reader is referred to Evans and Swartz (2001).
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I. Numerical Integrations
We have seen in the previous sections that, in order to evaluate posterior p.d.f., one
has to evaluate integrals of the form

1=/wLw|&mwm& (8.5.16)

[ee]

Sometimes these integrals are quite complicated, like that of the RHS of Equa-
tion (8.1.4).

Suppose that, as in (8.5.16), the range of integration is from —oo to co and
I < oo. Consider first the case where 0 is real. Making the one-to-one transformation
w = e /(1 + €%), the integral of (8.5.16) is reduced to

_/” O ® > LI (8.5.17)
=L TR0 el =) >

where g(0) = L(0 | X,,)h(6). There are many different methods of numerical inte-
gration. A summary of various methods and their accuracy is given in Abramowitz
and Stegun (1968, p. 885). The reader is referred also to the book of Davis and
Rabinowitz (1984).

If we define f(w) so that

w 1
flw)=q (log T w) 1 ) (8.5.18)
then, an n-point approximation to / is given by
L= pif, (8.5.19)
i=1

where

(7 201 1
w; =cos” [ — - , i=1,...,n
2 2n+1

(8.5.20)
27 -
p1—2n+10)l, 1 =1,...,n.
The error in this approximation is
T (2n)
fE), 0<é&<1. (8.5.21)

R, = ——
(2n)124n+1
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Integrals of the form

1 1 1
1 :/ qu)du :/ q(u)du—}-/ q(—u)du. (8.5.22)
~1 0 0

Thus, (8.5.22) can be computed according to (8.5.19). Another method is to use an
n-points Gaussian quadrature formula:

= Zwiq(ui), (8.5.23)
i=1

where u; and w; are tabulated in Table 25.4 of Abramowitz and Stegun (1968,
p- 916). Often it suffices to use n = 8 or n = 12 points in (8.5.23).

II. Simulation
The basic theorem applied in simulations to compute an integral / = / f(©)dH(O)
is the strong law of large numbers (SLLN). We have seen in Chapter 1 that if

X1, X, ... 1s a sequence of i.i.d. random variables having a distribution Fx(x), and
o0

if/ |g(x)|dF(x) < oo then
¢ as. [
~ D 8(X) = / g()dF(x).
i=1 -

This important result is applied to approximate an integral / f(6)dH(9) by a

sequence 61, 6>, ... of i.i.d. random variables, generated from the prior distribution
H(9). Thus, for large n,

0 1 n
/ F©)dHE®) = Z £6)). (8.5.24)
- i=1

Computer programs are available in all statistical packages that simulate realizations
of a sequence of i.i.d. random variables, having specified distributions. All programs
use linear congruential generators to generate “pseudo’” random numbers that have
approximately uniform distribution on (0, 1). For discussion of these generators, see
Bratley, Fox, and Schrage (1983).

Having generated i.i.d. uniform R(0, 1) random variables Uy, Uy, ..., U,, one
can obtain a simulation of i.i.d. random variables having a specific c.d.f. F, by the
transformation

X, =F '), i=1,...,n. (8.5.25)
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In some special cases, one can use different transformations. For example, if U, U,
are independent R(0, 1) random variables then the Box-Muller transformation

X1 = (=2log U)'"? cos(2n Us),
(8.5.26)
X, = (=2log Up)"?sin2n Us),

yields two independent random variables having a standard normal distribution. It is
easier to simulate a N(0, 1) random variable according to (8.5.26) than according to
X = &~ !(U). Intoday’s technology, one could choose from a rich menu of simulation
procedures for many of the common distributions.

If a prior distribution H(#) is not in a simulation menu, or if 4(8)d6 is not
o

proper, one can approximate f f(0)h(0)d0 by generating 0, . .., 0, from another

—00
convenient distribution, A(#)d@ say, and using the formula

o . h(d;
/ F(O)h(0)do = Z £(8; )AE n ; (8.5.27)

The method of simulating from a substitute p.d.f. A(#) is called importance sampling,
and A(0) is called an importance density. The choice of A(#) should follow the
following guidelines:

(i) The support of A(#) should be the same as that of i(8);
(i) A(@) should be similar in shape, as much as possible, to 2(8); i.e., A(@) should
have the same means, standard deviations and other features, as those of /().

The second guideline is sometimes complicated. For example if h(0)d(0)
is the improper prior d6 and [ —/ f(0)d6, where / | f(6)|d6 < oo, one
could use first the monotone transformation x = e /(1 + e") to reduce I to I =

1

d

/ f|log —— al —x. One can use then a beta, S(p, ¢g), importance density
0 1—x/) x(1—x)

to simulate from, and approximate / by

~=12":f log X B(p.q)
n 1-X; ) X' — X1

It would be simpler to use B(1, 1), which is the uniform R(0, 1).
An important question is, how large should the simulation sample be, so that the
approximation will be sufficiently precise. For large values of n, the approximation
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n

I, = —Z f(0:)h(8;) is, by Central Limit Theorem, approximately distributed like
4

72 -
N (1, —>, where
n

©* = Vs{f(0)h(6)).

Vs(-) is the variance according to the simulation density. Thus, n could be chosen

sufficiently large, so that Z;_/5 - 7 < 4. This will guarantee that with confidence
n

probability close to (1 — «) the true value of I is within / & §. The problem, however,
is that generally 72 is not simple or is unknown. To overcome this problem one could
use a sequential sampling procedure, which attains asymptotically the fixed width
confidence interval. Such a procedure was discussed in Section 6.7.

We should remark in this connection that simulation results are less accurate
than those of numerical integration. One should use, as far as possible, numerical
integration rather than simulation.

To illustrate this point, suppose that we wish to compute numerically

I = \/_/ exp{——xz}dle.
Reduce I, as in (8.5.17), to
u \? du
J_/ exp{ (l"gl—u> } w(l—u)’
Simulation of N = 10, 000 random variables U; ~ R(0, 1) yields the approximation

1 10,000 1 U 2 1
f10,000 = ——— — (1 ’ :
970, 000027 ; eXp{ 2 <°g - ui) } ui(1—up)

= 1.001595.

On the other hand, a 10-point numerical integration, according to (8.5.29), yields
fo=1.

When 6 is m-dimensional, m > 2, numerical integration might become too difficult.
In such cases, simulations might be the answer.
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8.6 EMPIRICAL BAYES ESTIMATORS

Empirical Bayes estimators were introduced by Robbins (1956) for cases of repetitive
estimation under similar conditions, when Bayes estimators are desired but the statis-
tician does not wish to make specific assumptions about the prior distribution. The
following example illustrates this approach. Suppose that X has a Poisson distribution
P(}), and X has some prior distribution H(X), 0 < A < oco. The Bayes estimator of
A for the squared-error loss function is

f OOAp(X;A)dH(A)
0

E{L| X) =

’

foop(X; M)dH (%)
0

where p(x; 1) denotes the p.d.f. of P(A) at the point x. Since Ap(x; 1) = (x + 1) -
p(x + 1;A) for every A and each x =0, 1,... we can express the above Bayes
estimator in the form

/ Oop(X + 1; M)dH(L)
0
/Oop(X;A)dH(A) (8.6.1)
0

=X+ Dpu(X + 1)/ pu(X),

Eg{i | X}=(X+1D

where pgy(x) is the predictive p.d.f. at x. Obviously, in order to determine
the posterior expectation we have to know the prior distribution H(X). On
the other hand, if the problem is repetitive in the sense that a sequence
(X1, 21), (X2, A2)s .o, (Xp, Ap), ..., is generated independently so that A, A, ...

are i.i.d. having the same prior distribution H(}), and Xy, ..., X, are conditionally
independent, given A1, ..., A,, then we consider the sequence of observable random
variables X1, ..., X,, ... as 1.i.d. from the mixture of Poisson distribution with p.d.f.

pu(j), j =0,1,2,.... Thus, if on the nth epoch, we observe X, = i% we estimate,

on the basis of all the data, the value of py(i® + 1)/ pr(i°). A consistent estimator
1 n

of py(j),forany j =0,1,...1s —ZI{Xi = j}, where I{X; = j} is the indicator
n<

i=1
function of {X; = j}. This follows from the SLLN. Thus, a consistent estimator of
the Bayes estimator Eg{A | X,,} is

ZI{X,- =X, + 1}
J = (X, + DEL . (8.6.2)

DX = X,)
i=1
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This estimator is independent of the unknown H()), and for large values of n is
approximately equal to E{A | X,}. The estimator 4, is called an empirical Bayes
estimator. The question is whether the prior risks, under the true H (1), of the esti-
mators A, converge, as n — 00, to the Bayes risk under H()). A general discussion
of this issue with sufficient conditions for such convergence of the associated prior
risks is given in the paper of Robbins (1964).

Many papers were written on the application of the empirical Bayes estimation
method to repetitive estimation problems in which it is difficult or impossible to
specify the prior distribution exactly. We have to remark in this connection that the
empirical Bayes estimators are only asymptotically optimal. We have an adaptive
decision process which corrects itself and approaches the optimal decisions only
when n grows. How fast does it approach the optimal decisions? It depends on the
amount of a priori knowledge of the true prior distribution. The initial estimators may
be far from the true Bayes estimators. A few studies have been conducted to estimate
the rate of approach of the prior risks associated with the empirical Bayes decisions to
the true Bayes risk. Lin (1974) considered the one parameter exponential family and
the estimation of a function A(6) under squared-error loss. The true Bayes estimator is

i) = / 2O) f (x; O)dH () / F(x:0)dH (),

and it is assumed that A(x) fr(x) can be expressed in the form Za), x)f g) (x), where
i=0
g)(x) is the ith order derivative of fy(x) with respect to x. The empirical Bayes
estimators considered are based on consistent estimators of the p.d.f. fy(x) and its
derivatives. For the particular estimators suggested it is shown that the rate of approach
is of the order O(n=*) with 0 < o < 1/3, where n is the number of observations.

In Example 8.26, we show that if the form of the prior is known, the rate of
approach becomes considerably faster. When the form of the prior distribution is
known the estimators are called semi-empirical Bayes, or parametric empirical
Bayes.

For further reading on the empirical Bayes method, see the book of Maritz (1970)
and the papers of Casella (1985), Efron and Morris (1971, 1972a, 1972b), and Susarla
(1982).

The E-M algorithm discussed in Example 8.27 is a very important procedure for
estimation and overcoming problems of missing values. The book by McLachlan and
Krishnan (1997) provides the theory and many interesting examples.

PART II: EXAMPLES

Example 8.1. The experiment under consideration is to produce concrete under
certain conditions of mixing the ingredients, temperature of the air, humidity, etc.
Prior experience shows that concrete cubes manufactured in that manner will have a
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compressive strength X after 3 days of hardening, which has a log-normal distribution
LN(u, o?). Furthermore, it is expected that 95% of such concrete cubes will have
compressive strength in the range of 216-264 (kg/cm?).
According to our model, Y = log X ~ N(u, 0%). Taking the (natural) logarithms
of the range limits, we expect most Y values to be within the interval (5.375,5.580).
The conditional distribution of ¥ given (i, 0%) is

Y|, 0%~ N, o).

Suppose that o2 is fixed at o> = 0.001, and p has a prior normal distribution p ~
N (19, T2), then the predictive distribution of ¥ is N (i1, o> + t2). Substituting 119 =
5.475, the predictive probability that Y € (5.375, 5.580), if ~/o2 4+ 72 = 0.051 is
0.95. Thus, we choose 2 = 0.0015 for the prior distribution of .

From this model of Y | i, 0> ~ N(u, 0?) and 1 ~ N (i, T2). The bivariate dis-

tribution of (Y, ) is
<Y> ([MO] |:02+Tz T2]>
~N . 2 2 .
“w Ho T T

Hence, the conditional distribution of u given {Y = y} is, as shown in Section 2.9,

72 o?

Y=y~N ————(y — o), T°——— | ~ N(219 + 0.6y, 0.0006).
wl y <Mo+02+12()’ Mo), T 02+T2> (219 + 0.6y )
The posterior distribution of p, given {Y = y} is normal. [ |
Example 8.2. (a) X, X5, ..., X, given A are conditionally i.i.d., having a Poisson

distribution P(A), i.e., F = {P(A),0 < A < 00}.
Let H = {G(A, 2),0 < o, A < 00}, i.e., H is a family of prior gamma distribu-

tions for A. The minimal sufficient statistics, given A, is 7, = ZX i- Ty | A~ P(An).

i=l1

Thus, the posterior p.d.f. of A, given 7,,, is

h()\. | T;l) x )\.7-”67”)\ . )\O[*lef)»A

— )\'Tn +aflef)u(n+A) )

Hence, A | T, ~ G(n + A, T,, + «). The posterior distribution belongs to H.
b F={Gr,a),0 <A <oo},afixed H={G(A,v),0 < v, A < 00}

h(h | X) ox A%e X vl A

— A‘V+a7187)\.(X+A)

Thus, » | X ~ G(X + A, v + ). n
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Example 8.3. The following problem is often encountered in high technology
industry.

The number of soldering points on a typical printed circut board (PCB) is often very
large. There is an automated soldering technology, called “wave soldering,” which
involves a large number of different factors (conditions) represented by variables
X1, Xo, -+, X¢. Let J denote the number of faults in the soldering points on a
PCB. One can model J as having conditional Poisson distribution with mean A,
which depends on the manufacturing conditions X, . .., X; according to a log-linear
relationship

k
logh = Bo+ Y _ Bixi = B'x,

i=I

where B = (Bo, ..., Br) and x = (1, x1, ..., x;). B is generally an unknown para-
metric vector. In order to estimate 8, one can design an experiment in which the
values of the control variables X, ..., X; are changed.

Let J; be the number of observed faulty soldering points on a PCB, under control
conditions givenby x; (i = 1, ..., N). The likelihood function of 8, given Ji, ..., Jy
and X, ..., Xy, IS

N
LB | Jis oo Iy X1, xy) = [ [exptdixiB — e}

i=1
N
— explwyB = Y%,

i=1

N
where wy = ZJ,'X,-. If we ascribe B a prior multinormal distribution, i.e.,

i=1
B ~ N(By, V) then the posterior p.d.f. of B, given Dy = (Jy, ..., Iy, X1, ..., Xn),
is

N
, 1
h(B | Dy) ocexp {wyp — > eF — 5B - Bo) V(B —Bo)t.
i=1

It is very difficult to express analytically the proportionality factor, even in special
cases, to make the RHS of 2(8 | Dy) a p.d.f. |

Example 8.4. In this example, we derive the Jeffreys prior density for several
models.

A.F=1{bx;n,0),0<6 <1}
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This is the family of binomial probability distributions. The Fisher information
function is

1
[@)=———, 0<6<1.
0(1 —0)

Thus, the Jeffreys prior for 0 is
h@) x02(1—-6)""2, 0<6<1.

In this case, the prior density is

L p —1/2

h@)=—-0""""1-6)""7", 0<6<]l.

b4

This is a proper prior density. The posterior distribution of 8, given X, under the
1 1

above prior is Beta(X + > n—X+ 5)
B.F ={N(u,0c?);—00 < <00,0 <o < 0o}

The Fisher information matrix is given in (3.8.8). The determinant of this matrix
is |I(u, 0%)| = 1/20°°. Thus, the Jeffreys prior for this model is

1
h(ﬂ, o ) &8 dl'L( 2)3/2

Using this improper prior density the posterior p.d.f. of (i, %), given X1, ..., X,
is

JnQke 2‘7%(”(“7)_(!1)2+Q)

JORGETS

1
where X, = —ZX,, 0= Z(X X,)?. The parameter p = — 1s called the pre-

h(p, 0% | X,, Q) =

cision parameter In terms of  and ¢, the improper prior densuy is

h(i, ¢) o o~ '/2.

The posterior density of (i, ¢) correspondingly is

Q5 e =X+ 013t

r(3)r()er .

h(p, ¢ | Xn, Q) =
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Example 8.5. Consider a simple inventory system in which a certain commodity
is stocked at the beginning of every day, according to a policy determined by the
following considerations. The daily demand (in number of units) is a random variable
X whose distribution belongs to a specified parametric family F. Let X, X, ...
denote a sequence of i.i.d. random variables, whose common distribution F(x;6)
belongs to F and which represent the observed demand on consecutive days. The
stock level at the beginning of each day, S,,,n = 1, 2, ... can be adjusted by increasing
or decreasing the available stock at the end of the previous day. We consider the
following inventory cost function

K@, x)=c(s —x)T —h(s —x)7,

where ¢, 0 < ¢ < 00, is the daily cost of holding a unit in stock and #, 0 < h < oo
is the cost (or penalty) for a shortage of one unit. Here (s — x)™ = max(0, s — x)
and (s — x)~ = —min(0, s — x). If the distribution of X, F(x;8) is known, then the
expected cost R(S, 0) = E¢{K (S, X)} is minimized by

s°@)=F! <L-9>
c+h )’

where F~'(y;0) is the y-quantile of F(x;0). If 8 is unknown we cannot determine
S°(6). We show now a Bayesian approach to the determination of the stock levels.
Let H(9) be a specific prior distribution of . The prior expected daily cost is

p(S, H) :/ R(S, 0)h(6)do,
)

or, since all the terms are nonnegative

o(S, H):/h(@){Zf(x;@)K(S,x)}d@
)

x=0
[o¢]
= Z K(S, x)/ f(x;0)h(0)d6.
o o)
The value of § which minimizes p(S, H) is similar to (8.1.27),

SO%H) = Fj;! <L>
H \c+hn)’

i.e., the h/(c + h)th-quantile of the predictive distribution Fpy(x).
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After observing the value x; of X, we convert the prior distribution H(#) to a
posterior distribution H;(6 | x;) and determine the predictive p.d.f. for the second
day, namely

le()’):/@f(y§9)hl(9 | x1)do.

The expected cost for the second day is

p(S2, H) =Y K(S2, ) fu(y).

y=0

Moreover, by the law of the iterated expectations

faO) =Y fm (1) fu(x).

x=0
Hence,
(o] o
p(S2, H) =Y fu(x) D K(S2, ) fu,(y | x).
x=0 y=0
The conditional expectation ZK (S2, y) fu,(y | x) is the posterior expected cost
y=0

given X| = x; or the predictive cost for the second day. The optimal choice of S, given
X1 = x is, therefore, the i /(c + h)-quantile of the predictive distribution Fg,(y | x)

: 0 —i(_h
Le., S)(H) = Fy, oy

for every x, it minimizes p(S,, H). In the same manner, we prove that after n days,

| x). Since this function minimizes the predictive risk

given X,, = (x, ..., x,) the optimal stock level for the beginning of the (n + 1)st
day is the T -quantile of the predictive distribution of X, given X,, = x,, i.e.,
c
h
S,?H(xn) = Ff;”l <c T | xn), where the predictive p.d.f. of X, given X,, = x is

Ju,(y 1X) = /@ F(y:0)hO | x)db,

and (6 | x) is the posterior p.d.f. of 6 given X,, = x. The optimal stock levels are
determined sequentially for each day on the basis of the demand of the previous days.
Such a procedure is called an adaptive procedure. In particular, if X, X,...is a
sequence of i.i.d. Poisson random variables (r.v.s), P(6) and if the prior distribution
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1
H(0) is the gamma distribution, G <—, v), the posterior distribution of 6 after n
T

1 n
observations is the gamma distribution G <— +n,v+ Tn>, where T, = ZX ;. Let
T
i=1
gO | n+ % v + T,) denote the p.d.f. of this posterior distribution. The predictive
distribution of X, given X,,, which actually depends only on 7,,, is

L [ 4, 1
an(yITn)=—f e g (0| —+nv+T,)do
vt Jo T

T+ y+T)
T I'(y+ DL w+T,)

Y (=g,

where ¥, = t/(1 + (n + 1)7). This is the p.d.f. of the negative binomial N B(y,,
v + T,). It is interesting that in the present case the predictive distribution belongs
to the family of the negative-binomial distributions for alln = 1, 2, .... We can also
include the case of n = 0 by defining 7, = 0. What changes from one day to another
are the parameters (v,,, v 4+ T,,). Thus, the optimal stock level at the beginning of the
(n + 1)st day is the i /(c + h)-quantile of the N B(r,,, v + T,). [ |

Example 8.6. Consider the testing problem connected with the problem of detect-
ing disturbances in a manufacturing process. Suppose that the quality of a product is
presented by a random variable X having a normal distribution N(6, 1). When the
manufacturing process is under control the value of 8 should be 6y. Every hour an
observation is taken on a product chosen at random from the process. Consider the
situation after n hours. Let X1, ..., X,, be independent random variables represent-
ing the n observations. It is suspected that after k hours of operation 1 <k <n a
malfunctioning occurred and the expected value 6 shifted to a value 6, greater than
6. The loss due to such a shift is (6; — 6p) [$] per hour. If a shift really occurred the
process should be stopped and rectified. On the other hand, if a shift has not occurred
and the process is stopped a loss of K [$] is charged. The prior probability that the
shift occurred is yr. We present here the Bayes test of the two hypotheses

Hy: Xy,..., X, arei.id.like N(Oy, 1)
against

H, :Xy,..., X; arei.i.d. like N(6y, 1) and
Xea1, ..., X, areiid.like N6y, 1),

for a specified k, 1 <k < n — 1; which is performed after the nth observation.
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The likelihood functions under Hy and under H, are, respectively, when X,, = x,,

1 n
Lo(x,) = exp {—5 D i — 90)2] :
i=1

and
1 T& n
Ly(x,) = exp {—5 [Z(xi — 60)° + Z (xi — 91)2j| } :
i=1 i=k+1
Thus, the posterior probability that Hy is true is
7(Xp) = 7 Lo(Xn)/{m Lo(X,) + (1 — )L (X))},

where 7 = 1 — . The ratio of prior risks is in the present case K7 /((1 — 7w)(n —
k)(01 — 6p)). The Bayes test implies that Hy should be rejected if

6y + 04 1 o Kn
2 (n — k)61 — 6h) & (1 —m)(n — k)61 — 6p)’

vk
ank =

_ 1 <
where X;lk_k = m Z Xj.
Jj=k+1
The Bayes (minimal prior) risk associated with this test is

o) =nKey(m) + (1 —m)n — k) — bp)e(m),

where €((r) and € (77) are the error probabilities of rejecting Hy or H; when they are
true. These error probabilities are given by

0o + 01

€o(m) = Py, [X:_k > + An—k(ﬂ)i|

0, — 6
=1—<I>(«/n—k( ! 5 0 +Ank(n))),
where ®(z) is the standard normal integral and

Anfk(n) =

1 | K | T
(n— k)61 — o) (°g<n—k)<91—eo) * Ogl—n>'

Similarly,

am)=1-—® <«/n s (9‘ ;9‘) - Ank(n)>> .
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The function A,_;() is monotone increasing in 7 and lin%) A,_i(m) = —00,
limlA,,_k(n) = 00. Accordingly, €)(0) = 1, €1(0) =0and ¢¢(1) =0, ¢1(1) = 1. g
T

Example 8.7. Consider the detection problem of Example 8.6 but now the point of
shift k is unknown. If 6y and 6, are known then we have a problem of testing the
simple hypothesis Hy (of Example 8.6) against the composite hypothesis

H :Xi,...,Xg ~N®o, 1), Xp1,..., Xn ~ NG, 1) for k=1,...,n—1.

Let 7 be the prior probability of Hyand ;, j = 1, ..., n — 1, the prior probabilities
under H, that {k = j}. The posterior probability of Hy is then

1 n—1
Mo(X,) = (1 +—= > n—(’]W(n -7
j=1

-1
)(X:; ,-—eoz—()?n—eo)z“) ,

I . 1
where ijszi, j=1,...,n and X;_j— — Z X;. The posterior
i=1

probability of {k = j}is,forj=1,...,n—1,

nij

:m

i=n—j+1

1
M;(X,) = Mo(X, )—TW

.exp{ [ (X; — 6o)* +< )(x;‘; ,—ej)—(Xn—eo)ZH.

Let R;(X,) (i =0, 1) denote the posterior risk associated with accepting H;. These
functions are given by

n—1
Ro(X) = 101 — 60| Y _(n — HIT;(X,),

Jj=1

and

Rl(Xn) = KHO(Xn)s
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H, is rejected if R1(X,,) < Ry(X,,), or when

n—1 . .
> — i/ = jexp {—%(X,» — 60— (1 - ﬁ) X - eoz}
j=1
Kmoy/n no . )
S T OO DR B

Example 8.8. We consider here the problem of testing whether the mean of a
normal distribution is negative or positive. Let X, ..., X,, be i.i.d. random variables
having a N (0, 1) distribution. The null hypothesis is Hy : & < 0 and the alternative
hypothesis is H; : 6 > 0. We assign the unknown 6 a prior normal distribution, i.e.,
6 ~ N(0, t2). Thus, the prior probability of Hyis m = % The loss function Ly(6) of
accepting Hy and that of accepting H,, L(#), are of the form

0, if6 <0, 62, iff <0,
LO(Q)Z{@{ it >0, L'(G)Z{o, it > 0.

For the determination of the posterior risk functions, we have to determine first the
posterior distribution of 6 given X,,. Since X,, is a minimal sufficient statistic the
conditional distribution of 6 given X, is the normal

N S I~
N(X,—2 ——n ).
l+t2 nl+1?

(See Example 8.9 for elaboration.) It follows that the posterior risk associated with
accepting Hj is

N I R Vi Ral e n 1 o
Ro(X,) = Nirs /0 0 exp{—E (HE) - 0(X,)) }d@,

where 6(X,,) is the posterior mean. Generally, if X ~ N(£, D?) then

1 > 2 1 2 (&2 2 g E

Substituting the expressions

1

_ 1\ )
5—’("(”_) and D = s 2m

2n
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we obtain that
_ NS _ 1\
Ro(X,) = (1 + —2) (— + X,%) o (V/n X, (1 + —2>
nt n nt
% 1\ 32 . 1\ 12
“l1+ — X, 14+ — .
~lim) o(in(5m)
In a similar fashion, we prove that the posterior risk associated with accepting H; is
_ 1\ '/ _ 1\'"?
Ri(X,) = (1 + T) (— + X,Z,) o | —/n X, <1 + —2>
’n n nt

X, 1\ 32 . 1\ 12
) () )

The Bayes test procedure is to reject Hy whenever R|(X,) < Ryo(X,). Thus, H,
should be rejected whenever

(% + )‘(,3) [2@ (ﬁ X, (1 + n—iz)_1/2> — 1}
() (e (0) )

But this holds if, and only if, X,, > 0. ]

Example 8.9. Let X;, X5, ... bei.i.d. random variables having a normal distribution
with mean u, and variance o> = 1. We wish to test k = 3 composite hypotheses
H :—oco<pu<-—-1;Hy:—1<pu<1; H :pu>1. Let u have a prior normal
distribution, i ~ N(0, t2). Thus, let

o) mee(-o ()

1
andm=1—® <—>, be the prior probabilities of H_;, Hy, and H;, respectively.
T

Furthermore, let

D(p/7)

G(w=1@ <—l>
T

1, ifu>—1,

if u < —1,
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0, if u < —1,

1

c1>(ﬁ —qn(——

Go(w) = - L if-l=psl,
q><_ _cp(__
T T
1, ifp>1,
and
0, ifu <1,
1
G *(7) _¢<_>

I(M) - T T lf] S /»'L

The predictive likelihood functions of the three hypotheses are then

LX) 1 Lo 1 +nt?+nt2X, [ n n 7
- =—|\1- . exp] ———X°1
1han Ty /1 + nt2 1+ nt? P 2(1 +nt?) "
_ 1 1 2 _nt?X, 1 2 2X,
LO(X,,):—<<I>< +nt® —nt >+cp< +nt* +nt )_1)_

o 74/1 + nt? 74/1 + nt?

[ expl-— 2
Ttne P\ 20 w0y |

and
, 1 1 +nt? —nt’X, n n o5
LiX)=—[1-a : - %!,
WX =2 ( ( Ifne Vitne PP 2040
It follows that the posterior probabilities of H;, j = —1, 0, 1 are as follows:
1 21+ X,
1—@( +nr(1+ )>’ =1,
/1 +nt?
_ 1 21 - X, 1 214+ X,
7 (X,) = ¢(¥) W(w) —1, j=0,
/1 +nt? /1 +nt?
1 2(1 - X,
1—® (u) , j=1
/1 +nt?
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Thus, 7_(X,) > 1 — € if

- 1 \12
nt?

nt

— +Z-
nr2 1—e

Similarly, 7 (X,) > 1 — € if

_ 1 v1+1 2
X, > 1+ — +Zl_e+—/nr_
nt JnT
. 1 1 .
Thus, if b, =1+ — + Zi_e 1+ —z/rﬁ then b, and —b,, are outer stopping
nt nt

boundaries. In the region (—b,, b,), we have two inner boundaries (—c,, ¢,) such
thatif | X,| < c, then H is accepted. The boundaries +c, can be obtained by solving
the equation

q)<1+nr2(l—cn))+¢(l+n‘cz(l+cn)> P
74/1 4+ nt? 74/1 + nt?

, Or ng =

S

T

2 Y
Zl—e/z_ﬁ : u

Example 8.10. Consider the problem of estimating circular probabilities in the
normal case. In Example 6.4, we derived the uniformly most accurate (UMA) lower
confidence limit of the function

1
waz,p):l—Ep{P(J;p)},

11
where Jisa NB (1 - —, E) random variable for cases of known p. We derive here
P
the Bayes lower credibility limit of (o2, p) for cases of known p. The minimal suf-

\/l—i—noz’z) .

¢y >0 and ¢, > 0 only if n > ng, where (I><

n 1 n
ficient statistic is T5, = » X7 + —» ¥7. This statistic is distributed like 0% x2[2n]
i=1 j=1
. 1 1 e
or like G 797" n). Letw = — and let w ~ G(t, v). The posterior distribution of
o o
w, given Ty, is

| Ty ~G(T5 + 1,1+ V).
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Accordingly, if G™!(p | T», + T, n + v) designates the pth quantile of this posterior
distribution,

Plo>G | Ty +t,n+v)| Ty} =1—a,

with probability one (with respect to the mixed prior distribution of 75,). Thus, we
obtain that a 1 —  Bayes upper credibility limit for o2 is
6. = :
26 Yo | T +1T,n+V)
- T2n +T
T 26 Ya | l,n+v)

Note that if 7, and v are close to zero then the Bayes credibility limit is very close
to the non-Bayes UMA upper confidence limit derived in Example 7.4. Finally, the
(1 — ) Bayes lower credibility limit for ¥ (o2, p) is w(@f, 0). [ |

Example 8.11. We consider in the present example the problem of inverse regres-
sion. Suppose that the relationship between a controlled experimental variable x and
an observed random variable Y (x) is describable by a linear regression

Y(x)=a+ Bx + ¢,

where € is a random variable such that E{e} = 0 and E{€?} = o2. The regression
coefficients « and 8 are unknown. Given the results on n observations at xi, . .., X,
estimate the value of & at which E{Y(£)} = n, where 7 is a preassigned value. We
derive here Bayes confidence limits for £ = (n — «)/ 8, under the assumption that m
random variables are observed independently at x; and x,, where x, = x; + A. Both
x1 and A are determined by the design. Furthermore, we assume that the distribution
of € is N(0, 0%) and that (a, B) has a prior bivariate normal distribution with mean
(ag, Bo) and covariance matrix V = (v;;;1, j = 1, 2). For the sake of simplicity, we
assume in the present example that o' is known. The results can be easily extended
to the case of unknown 2.

The minimal sufficient statistic is (¥;, ¥») where ¥; is the mean of the m observa-
tions at x; (i = 1, 2). The posterior distribution of (, 8) given (¥}, ¥>) is the bivariate
normal with mean vector

2 -1 -
ar) _ (@ (o A\ (N — (@ + foxy)
<ﬂl)—<ﬁ0)+vx <m1+xvx> <Y2_(a0+ﬂ0x2)>,

where



528 BAYESIAN ANALYSIS IN TESTING AND ESTIMATION

and [/ is the 2 x 2 identity matrix. Note that X is nonsingular. X is called the design
matrix. The covariance matrix of the posterior distribution is

5 —1
L=V VX (G—I+XVX/> XV.
m

Let us denote the elements of X by X;;, i, j = 1, 2. The problem is to determine
the Bayes credibility interval to the parameter £ = (n — «)/8. Let ga and &, denote
the limits of such a (1 — «) Bayes credibility interval. These limits should satisfy the
posterior confidence level requirement

P{gsn;aséalf’l,%}zl—a.

If we consider equal tail probabilities, these confidence limits are obtained by solving
simultaneously the equations

where D = X1 +2§ T +§2E22 and similarly D = ¥y, + 28, %1 + &, ¥2. By
inverting, we can realize that the credibility limits ix and &, are the two roots of the
quadratic equation

(M —ay = Bi1E) = x{_o[11(F11 + 26 T2 + 7 %),
or
A2 —2BE+C =0,
where

A =Bt — xt (11T,
B = /31(]’] — a1)2 + X127a[1]23121
C=m—a)?—xt 1%y
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The two roots (if they exist) are

(n—a) + xi [11%12/B
B — xi_, [11%2/ B
n o [IDY2{(n — a)* Ty + 200 — a)B1 12 + Bi T2 — xi o [1IF[}/?
B — xi_ (1132

E10=

b

where |X| denotes the determinant of the posterior covariance matrix. These credi-
bility limits exist if the discriminant

A* =) —a, ﬁmr(” ;f“) — ¥ 113

is nonnegative. After some algebraic manipulations, we obtain that
o? a? , ,
X =—V]|- || —+tr{XVX})I-XVX'|,
m m

where tr{-} is the trace of the matrix in { }. Thus, if m is sufficiently large, A* > 0
and the two credibility limits exist with probability one. [ ]

Example 8.12. Suppose that X, ..., X,y are i.i.d. random variables, having a
Poisson distribution P(1),0 < A < co. We ascribe A a prior gamma distribution, i.e.,
A~ G(A, a).
n
After observing Xy, ..., X,, the posterior distribution of A, given 7, = ZX,-
i=1
isA | T, ~ G(A +n, T, + «). The predictive distribution of X, 1, given T,,, is the
negative-binomial, i.e.,

Xn+1 | Tn ~ NB(’,U,,, T;z +a)7

where

A+n

Vo= a1

Let NB~'(p; ¥, @) denote the pth quantile of N B(, ). The prediction interval for
X,+1, after observing X1, ..., X, atlevel | — «, is

(o . o
(vB (5;1//,1,Tn+a),NB (1—5;%,Tn+a)).

According to Equation (2.3.12), the pth quantile of N B({, @) is NB Y(p | v, a)=
least integer k, k > 1, such that [;_y (o, k + 1) > p. [ ]
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Example 8.13. Suppose that an n-dimensional random vector X,, has the multi-
normal distribution X,, | © ~ N(ul,, V,), where —oo < p < 00 is unknown. The
covariance matrix V, is known. Assume that w has a prior normal distribution,
w ~ N(uo, T%). The posterior distribution of 1, given X,,,is i | X,, ~ N(n(X,.), Dy),
where

n(Xy) = po + 7—'21;1(‘/11 + TZJn)il(Xn — oly)
and
D, =71 =T 1,(Vy + T2 0,) 1)

Accordingly, the predictive distribution, of yet unobserved m-dimensional vector
Yo | e~ N(ply, Vin), is

Y}’l | Xl‘l ~ N(n(XVl)1ﬂl7 Vm + DnJm)'
Thus, a prediction region for Y,,, at level (1 — ) is the ellipsoid of concentration

Yo = X)) Vi + D)™ Y = n(X) 1) < xi_olm].

Example 8.14. A new drug is introduced and the physician wishes to determine
a lower prediction limit with confidence probability of y = 0.95 for the number of
patients in a group of n = 10 that will be cured. If X,, is the number of patients cured
among n and if 6 is the individual probability to be cured the model is binomial,
ie., X, ~ B(n, 0). The lower prediction limit, for a given value of 9, is an integer
k,(0) such that Py{X, > k,(6)} > y.If B~'(p;n, 0) denotes the pth quantile of the
binomial B(n, #) then k, (6) = max(0, B~'(1 — y;n,0) — 1). Since the value of 8 is
unknown, we cannot determine k,,(6). Lower tolerance limits, which were discussed
in Section 6.5, could provide estimates to the unknown k, (6). A statistician may
feel, however, that lower tolerance limits are too conservative, since he has good a
priori information about 8. Suppose a statistician believes that 6 is approximately
equal to 0.8, and therefore, assigns 6 a prior beta distribution S(p, g) with mean
0.8 and variance 0.01. Setting the equations for the mean and variance of a S(p, ¢q)
distribution (see Table 2.1 of Chapter 2), and solving for p and g, we obtain p = 12
and g = 3. We consider now the predictive distribution of X,, under 8(12, 3) prior
distribution of 6. This predictive distribution has a probability function

n)B(12+j,3+n—j) .
, Jj=0,...,n.

pa(j) = <j B(12.3)
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For n = 10, we obtain the following predictive p.d.f. py(j) and c.d.f. f5(j). Accord-
ing to this predictive distribution, the probability of at least 5 cures out of 10 patients
is 0.972 and for at least 6 cures is 0.925.

J pu(j) Fu(j)
0 0.000034 0.000034
1 0.000337 0.000378
2 0.001790 0.002160
3 0.006681 0.008841
4 0.019488 0.028329
5 0.046770 0.075099
6 0.094654 0.169752
7 0.162263 0.332016
8 0.231225 0.563241
9 0.256917 0.820158
10 0.179842 1.000000

Example 8.15. Suppose that in a given (rather simple) inventory system (see Exam-
ple 8.2) the monthly demand, X of some commodity is a random variable having a
Poisson distribution P(0), 0 < 8 < co. We wish to derive a Bayes estimator of the
expected demand 6. In many of the studies on Bayes estimator of 6, a prior gamma
distribution G <; v) is assumed for 6. The prior parameters t and v,0 < 7, v < 00,
are specified. Note that the prior expectation of 6 is vt and its prior variance is V7.
A large prior variance is generally chosen if the prior information on 6 is vague.
This yields a flat prior distribution. On the other hand, if the prior information on
0 is strong in the sense that we have a high prior confidence that 9 lies close to a
value 6 say, pick vt = 6y and vt? very small, by choosing 7 to be small. In any
case, the posterior distribution of 6, given a sample of n i.i.d. random variables

Xi,..., Xy, is determined in the following manner. 7, = ZX,- is a minimal suf-
i=1
ficient statistic, where T,, ~ P(n8). The derivation of the posterior density can be
based on the p.d.f. of 7,,. Thus, the product of the p.d.f. of 7, by the prior p.d.f. of
6 is proportional to §' '~ 1e=0+1/9) where T, = t. The factors that were omitted
from the product of the p.d.fs are independent of 6 and are, therefore, irrelevant.
We recognize in the function §'T"~1e=0"*1/7) the kernel (the factor depending on
0) of a gamma p.d.f. Accordingly, the posterior distribution of 6, given 7,, is the

o 1 '
gamma distribution G ( n + —, T,, + v ]. If we choose a squared-error loss function,
T

then the posterior expectation is the Bayes estimator. We thus obtain the estimator

A 1
0= (T, +v)/ (n + —). Note that the unbiased and the MLE of 6 is T,,/n which is
T
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not useful as long as 7,, = 0, since we know that § > 0. If certain commodities have a
very slow demand (a frequently encountered phenomenon among replacement parts)
then 7,, may be zero even when n is moderately large. On the other hand, the Bayes
estimator 6 is always positive. [ ]

Example 8.16. (a) Let X;,..., Xy be i.i.d. random variables having a normal
distribution N(#, 1), —oo < 6 < oo. The minimal sufficient statistic is the sample
mean X. We assume that § has a prior normal distribution N(0, 2). We derive the
Bayes estimator for the zero-one loss function,

L©#,0)=1{0:10 — 0| > &}.
The posterior distribution of 6 given X is normal N(X(1 + 1/nt?)~", (n + 1/7%)7").
This can be verified by simple normal regression theory, recognizing that the joint

distribution of (X, @) is the bivariate normal, with zero expectation and covariance
matrix

Thus, the posterior risk is the posterior probability of the event {|§ — #| > 8}. This is
given by

O+8—X(1+1/nt>)!
1 —1/2
(”* ?)

6—86—X(1+ 15!

N2
n+§

We can show then (Zacks, 1971; p. 265) that the Bayes estimator of 6 is the posterior
expectation, i.e.,

RO, tH=1-

+ @

1 —1
é(X)=X<1+—) .

nt?

In this example, the minimization of the posterior variance and the maximization of
the posterior probability of covering by the interval (8 — §, 6 + §) is the same. This
is due to the normal prior and posterior distributions.



PART II: EXAMPLES 533

(b) Continuing with the same model, suppose that we wish to estimate the tail
probability

V= Ppf{X = &} =1— P& —0) = PO — o).

Since the posterior distribution of & — &, given X is normal, the Bayes estimator for
a squared-error loss is the posterior expectation

_ 1\
7,'2 1/2
1
< + l—i—nrz)

Note that this Bayes estimator is strongly consistent since, by the SLLN, X — 6
almost surely (a.s.), and ®(-) is a continuous function. Hence, the Bayes estimator
converges to ®(6 — &) a.s. as n — oo. It is interesting to compare this estimator
to the minimum variance unbiased estimator (MVUE) and to the MLE of the tail
probability. All these estimators are very close in large samples.

If the loss function is the absolute deviation, |1ﬁ — |, rather than the squared-error,
(¥ — )2, then the Bayes estimator of ¥ is the median of the posterior distribution
of ®(6 — &p). Since the ®-function is strictly increasing this median is ®(6 5 — &),
where 6y 5 is the median of the posterior distribution of 6 given X. We thus obtain
that the Bayes estimator for absolute deviation loss is

. 1\!
vf=<1>< <1+—2) —so).
nt

This is different from the posterior expectation. [ ]

Eg{®0 —&)| X} =@

Example 8.17. Inthis example, we derive Bayes estimators for the parameters  and
o2 in the normal model N (u, o?) for squared-error loss. We assume that X, ..., X,
given (K, 02) areiid. N (/L, 2). The minimal sufficient statistic is (X,,, Q), where

= —ZX and Q = Z(X X,)?. Let ¢ = 1/02 be the precision parameter,
i=1 i=1
and consider the reparametrization (i, o2) — (1, ¢).
The likelihood function is

L(u, $) = ¢"*exp {—%[n(u — X"+ Q]} :

The following is a commonly assumed joint prior distribution for (u, ¢), namely,

wl ¢~ N(wo, t2/9),
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and

(f)“G(%,%), n()>2,

where ng is an integer, and 0 < ¥ < oco. This joint prior distribution is called the
@, v . Since X, and Q are
2°2

conditionally independent, given (1, ¢), and since the distribution of Q is independent
of w, the posterior distribution of i | X,,, ¢ is normal with mean

Normal-Gamma prior, and denoted by NG | no, 72,

2

L 1 n ™n
e =, Mo T,
and variance
Vi 6.7y = —©
e = Gy

[ip is a Bayesian estimator of u for the squared-error loss function. The posterior
risk of fip is

Vi | Xy, Q) = E{V{| Xs, 6} | X, Q)+ V{E{1 | X,, ¢} | X, Q).

The second term on the RHS is zero. Thus, the posterior risk of 15 is

_ 72 1 _
Vil X, 0) = 1+m2E{$IX,Q}-

The posterior distribution of ¢ depends only on Q. Indeed, if we denote generally by
p(X | 1, ¢) and p(Q | ¢) the conditional p.d.f. of X and Q then

h(p, ¢ | X, Q) o< p(X | 11, )p(Q | 9)h(i | $)g(9)
o h(u | X, $)p(Q | 9)g().

Hence, the marginal posterior p.d.f. of ¢ is

o]

h'@ | X, Q) :/ h(p, ¢ | X, Q)

—00

x p(Q | $)g(@).
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Thus, from our model, the posterior distribution of ¢, given Q, is the gamma
—1
G (Q Ty ntm ) It follows that

2 2
1 - 1 v+ 0
E{— | Q,X}:E{—|Q}=—.
0] 0] no+n-—3
Thus, the posterior risk of fip is
e o+y

Vinl X, 0} =

1+nt2 ntng—3

The Bayesian estimator of o2 is

A2 _ 1 _ 0+v
el 252,

The posterior risk of 63 is

V{1|Q}= (Q+ ) @+
¢ (n+ng—3)n+ny—5) (n4+no—3)>
_ 20 +¥)?
(n+no—3%m~+no—5)
which is finite if n + ng > 5. [ ]

Example 8.18. Consider the model of the previous example, but with priorly inde-
pendent parameters u and ¢, i.e., we assume that 2(u, ¢) = h()g(¢), where

h(p) =

1

and

w/2*)
8(¢) = —<F <n_o))¢21e¢z.

2

If p(X | i, ) and p(Q | ¢) are the p.d.f. of X and of Q, given u, ¢, respectively,
then the joint posterior p.d.f. of (u, ¢), given (X, Q), is

h(p. ¢ | X, 0) = AKX, Q)p(X | w, 9)p(Q | §)h(1)g(#),
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where A(X, Q) > 0is a normalizing factor. The marginal posterior p.d.f. of u, given

(X, Q). is
R | X, Q) = AKX, Q)h(p) /0 PX | 1, $)p(Q | $)g(@)d¢.

It is straightforward to show that the integral on the RHS of (8.4.18) is proportional

n %2
to [l + Q+W(M X) . Thus,
B | X, Q) = A*(X S O B . ol
(nlX,0)= (,Q)GXP{ 2—T2(M Mo)}' Q+1/f(M_ )

A simple analytic expression for the normalizing factor A*(X, Q) is not available.

_notn
2

ng+n

One can resort to numerical integration to obtain the Bayesian estimator of 11, namely,
n _ 2
(n—X )2} dp.
O+

o0
Ap = A*X, Q) / pewho’ [1 +
—0Q

By the Lebesgue Dominated Convergence Theorem
im [ L plolie =2 u—xp 7$d
im expy——(u — . -
Jim Jwexp == ko oo I
= pexp |\ —>—(u — o) ¢ lim
oo 2t n—00
_notn
n _ 2
S+ (u— X)* du.
o
Thus, for large values of n,
ro X
S/
MB ~ 1 1 9
zt5
where 6,7 = o+y
n
In a similar manner, we can show that the marginal posterior p.d.f. of ¢ is
n0+2n—l 1 ¢n B ,
— X — — -
p{ 2 +m2¢)( w —ae

g (¢ | X. Q)= B*(X, Q);m ex

o+vy
2

I
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where B*(X, Q) > 0 is a normalizing factor. Note that for large values of n, g*(¢ |
O+v no+n—1

2 2

In Chapter 5, we discussed the least-squares and MVUEs of the parameters in linear
models. Here, we consider Bayesian estimators for linear models. Comprehensive
Bayesian analysis of various linear models is given in the books of Box and Tiao
(1973) and of Zellner (1971). The analysis in Zellner’s book (see Chapter III) follows
a straightforward methodology of deriving the posterior distribution of the regression
coefficients for informative and noninformative priors. Box and Tiao provide also
geometrical representation of the posterior distributions (probability contours) and
the HPD-regions of the parameters. Moreover, by analyzing the HPD-regions Box and
Tiao establish the Bayesian justification to the analysis of variance and simultaneous
confidence intervals of arbitrary contrasts (the Scheffé S-method). In Example 8.11,
we derived the posterior distribution of the regression coefficients of the linear model
Y =a + Bx + €, where € ~ N(O, 0?) and (o, B) have a prior normal distribution.
In a similar fashion the posterior distribution of B in the multiple regression model
Y = X + € can be obtained by assuming that e ~ N (0, V') and the prior distribution
of B is N(Bo, B). By applying the multinormal theory, we readily obtain that the
posterior distribution of §, given Y, is

X, Q) is approximately the p.d.f. of G

B 1Y ~ N(Bo+BX(V+XBX) (Y — XB¢), B—BX(V+ XBX')"'XB).

This result is quite general and can be applied whenever the covariance matrix V is
n .
known. Often we encounter in the literature the NG <,Bo, 72, ?0, %) prior and the

(observations) model

Y|[B.¢~NXB,(1/$)I)

and

2
ﬂ|ﬂoyfz’“N<ﬁo,%1), and ¢’”G<%,n—20>.

This model is more general than the previous one, since presently the covariance
matrices V and B are known only up to a factor of proportionality. Otherwise, the

models are equivalent. If we replace V by ZV*’ where V* is a known positive definite

matrix, and ¢, 0 < ¢ < oo, is an unknown precision parameter then, by factoring
V* = C*C*, and letting Y* = (C*)~'Y, X* = (C*)~'X we obtain

1
Y| B, ~N(XB,-1).
o (xs )
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Similarly, if B = DD’ and 8* = D! then

72
ﬂ*|¢’“N<ﬂ3,—I>-
é
If X** = X*D then the previous model, in terms of Y* and X**, is reduced to

Y* — X**ﬂ* +6*,

where Y* = C7'Y, X* = C~'XD, g* =D"!8,V=CC, and B = DD'.
We obtained a linear model generalization of the results of Example 8.17. Indeed,

B1Y, ¢~ N(Bo+XT+°XX) (Y — XBy), %[I — X'+ 7°XX)~'X]).
Thus, the Bayesian estimator of 8, for the squared-error loss, || — B [|% is
By =0 —-X{T+2XX)"'X)Bo + X'I + r2XX)Y.
As in Example 8.17, the conditional predictive distribution of Y, given ¢, is normal,
Y|¢p~N <Xﬂ0, %(I + IZXX’)> .

Hence, the marginal posterior distribution of ¢, given Y, is the gamma distribution,
i.e.,

1 _ n+n
¢1Y~G (E(llf + (Y —XBo) A+ °XX) "' (Y — XB)), 2 0) ;
where n is the dimension of Y. Thus, the Bayesian estimator of ¢ is

43 _ n—+ no
T (Y = XBo)y I+ T2XX) (Y — XBo)

Finally, if ¥ =n(y then the predictive distribution of Y is the multivariate
t[no; XBo, I + t2XX’], defined in (2.13.12). n

Example 8.19. The following is a random growth model. We follow the model
assumptions of Section 8.4.3:

X[=90J+9]'tt+€[, t:1,2,...,
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where 6y, and 0}, vary at random according to a random-walk model, i.e.,

6o 00.1—1 o,
i) — E) + ) .
(91,r) (91,t1 ) (wl,z>
Thus, let 6, = (0, 61,) and a, = (1, r). The dynamic linear model is thus

tha;0f+€l
0,=0, 1+, t=12,....

Let 5, and C, be the posterior mean and posterior covariance matrix of 6,. We
obtain the recursive equations

1 !

N =1+ r—(Xt —a,n,-1)(Ci—1 + Qay,
1

rp =0’ +a/(Cro + Qa,

1 /
C=C+Q—- r_(thl + Qaa (€1 + ),
t

where 02 = V{¢,} and Q is the covariance matrix of ®,. |

Example 8.20. In order to illustrate the approximations of Section 8.5, we apply
them here to a model in which the posterior p.d.f. can be computed exactly. Thus,
let Xy, ..., X, be conditionally i.i.d. random variables, having a common Poisson
distribution P(X), 0 < A < oo. Let the prior distribution of A be that of a gamma,

G(A, o). Thus, the posterior distribution of A, given T, = in is like that of
i=1
Gn+ A,a+T,), with p.d.f.

4T,
(n+ A)* a+T, =1 ,=2(n+A)

ha(A | Ty) = NCEED,

0 <A <o0.

The MLE of A is A, = 7, /n. In this model, J(,) = n/X,. Thus, formula (8.5.11)
yields the normal approximation

=L nl-
77X,

From large sample theory, we know that

n 2
2}?"()» Xn)}~

A T,) —
Gt At )=t 4.y,

1’11/2 n—o00
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Thus, the approximation to A(A | T,,) given by
A AN ?
ﬁ<1+;> n(1+;> %, + 2
A | T,) = - expl—z——% A — A”
27 (X, +9) 2 <Xn+;> 1+ =
n

should be better than 4 (A | T,,), if the sample size is not very large. [ |
Example 8.21. We consider again the model of Example 8.20. In that model, for

0 <A< o0,
- _ (x—1)
k(A) =1 —X, -logh+1— —

n

A _ a—1
=A({l+—|)—-[X,+—— )logA.
n n

log A

Thus,

_ a—1
_ A Xt —,
kayy=(14+—)— ———
n A

and the maximizer of —nk(}) is

- oa—1
X,
: n
A = A
14—
n
Moreover,
(13)
14+ —
-~ n
JOn) = =277
" n
The normal approximation, based on A and J (R, is
_ a—1 _ a—1
X, + X, +
n n This is very close to the large sample

A A\2
1+ — =
+ n n (1 + . )
approximation (8.5.15). The only difference is that «, in i(x | T,), is replaced by
|

o =a—1.
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Example 8.22. We consider again the model of Example 8.3. In that example,
Y; | A ~ P(X;), where &; =eXif i=1,....n. Let (X)=(X,,...,X,) be the
n x p matrix of covariates. The unknown parameter is 8 € R”). The prior distri-

bution of B is normal, i.e., § ~ N(Bo, 727). The likelihood function is, according to
Equation (8.1.8),

L(B: Y. (X)) = exp {W;lﬂ - Zexéﬂ} ,

i=1

where W,, = ZYiXi. The prior p.d.f. is,

i=l1

1
h(B) = —52 B - Bo) (B — ﬂo)} .

1
Qmyrzger P {

Accordingly,
T 1 / . X/ 1 /
k)= —- (Wnﬂ — Ee ik 5.2 (B—Bo) (B~ ﬂo)) :
Hence,
- 1 I g 1
Vak(B) = ——W, + -~ ;e Pxi + — (B = Bo),

and
iy = lie""ﬂxx{ + L[
n = 2
The value B, is the root of the equation
ﬂ = ﬂO + T2wn - t2 ZeX;ﬂXi-

i=I

Note that

~ 1
JB) = it T2 (X) AB)(X)),
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where A(B)is an n x n diagonal matrix with ith diagonal element equal to e (i =
1, ..., n). The matrix j(ﬂ) is positive definite for all B € R, We can determine Bn
by solving the equation iteratively, starting with the LSE, 8% = [(X)'(X)]"'(X)'Y?,
where Y, is a vector whose ith component is

log(Y),  if¥ >0,
Yi*: l=1,,”l
—exp{x;Bo}, ifY; =0,

The approximating p.d.f. for A(B | (X),Y,) is the p.d.f. of the p-variate normal
-1 . -
N (ﬁn, —(J(ﬂn))1>. This p.d.f. will be compared later numerically with a p.d.f.
n

obtained by numerical integration and one obtained by simulation. [ ]

Example 8.23. Let (X;,Y;),i =1,...,n be i.i.d. random vectors, having a stan-

dard bivariate normal distribution, i.e., (X,Y) ~ N <0, (; '(1)>> The likelihood

function of p is

1
Lp | Ty) = 1= o2yl CXP{ [Qx —2pPxy + QY]} ;

S 21— p?)

n n n
where T, = (Qx. Pxy, Qy) and Qx = ) "X}, Qy = ) Y7, Pxy = ) _X;Y;. The
i=l1 i=1 i=1

Fisher information function for p is

1+ p?
L(p) =n—"—7.
(0) =
Using the Jeffreys prior
(1+pH)'2
h([))=1_—p2, -l<p<l,

the Bayesian estimator of p for the squared error loss is

/l (1 +p2)1/2 . 1
—n . X — —
LAy P T2a -

Tt )" 1 |
L= oo -rptox ~20m + onfas

[Ox —2pPxy + Qy]} dp

pp =
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This estimator, for given values of Qx, Oy and Pxy, can be evaluated accurately by
16-points Gaussian quadrature. For n = 16, we get from Table 2.54 of Abramowitz
and Stegun (1968) the values

w; | 0.0950 0.2816 0.4580 0.6179 0.7554 |
w; | 0.1895 0.1826 0.1692 0.1496 0.1246 |

U; 0.8656 0.9446 0.9894
;i 0.0952 0.0623 0.0272

For negative values of u, we use —u; with the same weight, w;. For a sample
of size n = 10, with Qx = 6.1448, Oy = 16.1983, and Pxy = 4.5496, we obtain
pp = 0.3349. [ ]

Example 8.24. In this example, we consider evaluating the integrals in pp of
Example 8.23 by simulations. We simulate 100 random variables U; ~ R(—1, 1)
i =1,...,100, and approximate the integrals in the numerator and denominator of
0p by averages. For n = 100, and the same values of Qx, Qy, Pxy, as in Example
8.23, we obtain the approximation pg = 0.36615. [ ]

Example 8.25. We return to Example 8.22 and compute the posterior expectation
of B by simulation. Note that, for a large number M of simulation runs, E{f | X, Y}
is approximated by

M n
Zﬂj exp {w;ﬂj — Ze";ﬁf}
i=1

Jj=1

M n
> exn i, 300 |
j=1 i=1

E=

’

where B is a random vector, simulated from the N (Bo, 727) distribution.
To illustrate the result numerically, we consider a case where the observed sample
contains 40 independent observations; ten for each one of the for x vectors:

X =(1,—1,-1,1),
X, =(,1,—1,-1),
X, =(,-1,1,-1),
X, =(1,1,1,1).
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The observed values of wyg is (6, 3, 11, 29). For ﬂ6 =(0.1,0.1,0.5,0.5), we
obtain the following Bayesian estimators £, with M = 1000,

Simulation Normal Approximation
B 7 =0.01 7 =0.05 B 7 =0.01 7 =0.05
B, 0.0946 0.0060 B, 0.0965 0.0386
B, 0.0987 0.0842 B, 0.0995 0.0920
B, 0.4983 0.4835 B3 0.4970 0.4510
B, 0.5000 0.5021 B. 0.4951 0.4038

We see that when v = 0.01 the Bayesian estimators are very close to the prior
mean Bo. When t = 0.05 the Bayesian estimators might be quite different than
Bo. In Example 8.22, we approximated the posterior distribution of 8 by a normal
distribution. For the values in this example the normal approximation yields similar
results to those of the simulation. [ ]

Example 8.26. Consider the following repetitive problem. In a certain manufactur-
ing process, a lot of N items is produced every day. Let M;, j = 1,2, ..., denote
the number of defective items in the lot of the jth day. The parameters M, M5, ...
are unknown. At the end of each day, a random sample of size n is selected without
replacement from that day’s lot for inspection. Let X ; denote the number of defectives
observed in the sample of the jth day. The distribution of X; is the hypergeometric
H(N,Mj,n),j=1,2,....Samples from different days are (conditionally) indepen-
dent (given M|, M>, ...). In this problem, it is often reasonable to assume that the
parameters M, M,, ... are independent random variables having the same binomial
distribution B(N, 6). 6 is the probability of defectives in the production process. It is
assumed that 6 does not change in time. The value of 6 is, however, unknown. It is
simple to verify that for a prior B(N, ) distribution of M, and a squared-error loss
function, the Bayes estimator of M is

A~

Mj =Xj+(N—l’l)9
The corresponding Bayes risk is
pO) = (N —n)f(1 —0).

A sequence of empirical Bayes estimators is obtained by substituting in M ;j acon-
sistent estimator of 6 based on the results of the first (j — 1) days. Under the above
assumption on the prior distribution of My, M>, ..., the predictive distribution of
X1, X5, ... is the binomial B(n, #). A priori, for a given value of 8, X;, X», ... can
be considered as i.i.d. random variables having the mixed distribution B(n, 6). Thus,
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i—1
1 J

ﬁZX i, for j > 2, 1is a sequence of consistent estimators of 6. The

=4

corresponding sequence of empirical Bayes estimators is

Pj-1=

Mj=X;+(N—=npj-1, j=2
The posterior risk of M jgiven (X, pj_1)is

pj(M;) = E{[M; — M;1* | pj—1, X}
= E{[M; — M;* | pj—1, X;} +(M; — M;)?

= (N —n)f(1 —0)+ (M; — M;)*.
We consider now the conditional expectation of p; (Ail ;) given X ;. This is given by

E{p;(M;) | X;} = (N —m)0(1 — 0) + (N — n)*E{[p;_, — 01}

N —n
=(N—n)9(1—9)|:1+m].

Notice that this converges as j — oo to p(6). [ ]

Example 8.27. This example shows the application of empirical Bayes techniques to
the simultaneous estimation of many probability vectors. The problem was motivated
by a problem of assessing the readiness probabilities of military units based on
exercises of big units. For details, see Brier, Zacks, and Marlow (1986).

A large number, N, of units are tested independently on tasks that are classified into
K categories. Each unit obtains on each task the value 1 if it is executed satisfactorily
and the value O otherwise. Leti,i = 1, ..., N be the index of the ith unit, and j, j =
1, ..., k the index of a category. Unit i was tested on M;; tasks of category j. Let X;;
denote the number of tasks in category j on which the ith unit received a satisfactory
score. Let 6;; denote the probability of the ith unit executing satisfactorily a task of

category j. There are N parametric vectors 0; = (6;1,...,0;x),i =1,..., N,tobe
estimated.
The model is that, conditional on 6;, X;|, ..., X;x are independent random vari-

ables, having binomial distributions, i.e.,

Xij | 6 ~ B(M;;, 6;).
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In addition, the vectors @; (i = 1, ..., N) are i.i.d. random variables, having a com-

mon distribution. Since M,; were generally large, but not the same, we have used first
the variance stabilizing transformation

Xi;i +3/8
Yij=25il’11< #3//4), i=1,...,N, j=1,...,K.
\ Mi;

For large values of M;; the asymptotic distribution of Y;; is N(n;;, 1/M;;), where
nij =2 sin~! (4 /6;), as shown in Section 7.6.
LetY; = (Y;1,...,Yix),i = 1,..., N. The parametric empirical Bayes model is
that (Y;,0;)areiid,i=1,..., N,
Y; |0, ~N@w;,D)), i=1,...,N
and

N1,...,ny areiid. N(u, X),

where ; = (i1, ..., nik) and

1
R 0
M;;
D; = , i=1,...,N
1
0 _
M;

The prior parameters u and X are unknown. Note that if  and ¥ are given then
n, 12, ..., are a posteriori independent, given Y1, ..., Yy. Furthermore, the pos-
terior distribution of »;, given Y;, is

i | Y, w, T~ N, —B;(Y; —n), I —B;)D,),
where

B,=D:D;+ %', i=1,...,N.

Thus, if p and X are given, the Bayesian estimator of 7;, for a squared-error loss
function L(n;, #;) = ||#; — 1:||%, is the posterior mean, i.e.,

ﬁl(ﬂ?E)ZBl’L—i_(I_Bl)Yl’ i=17"'5N'

The empirical Bayes method estimates p and ¥ from all the data. We derive now
MLEs of u and X. These MLEs are then substituted in 7;(t, ¥) to yield empirical
Bayes estimators of ;.
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Note that Y; | u, ¥ ~ N(u, X +D;),i =1,..., N. Hence, the log-likelihood
function of (u, ¥), given the data (Y, ..., Yy), is

1 N 1 N
. %)= =5 3 log X + D] — 5 3 (Vi = w)/ (% + D)~ (Vi — ).
i=1 i=1

The vector f(X), which maximizes [(u, X), for a given Xis

N
A(E) = (Z(EDi)l) > (E+D)7Y.
i=1

i=l

Substituting 4(¥) in (e, X) and finding ¥ that maximizes the expression can yield
the MLE (ft, ¥). Another approach, to find the MLE, is given by the E-M algorithm.
The E-M algorithm considers the unknown parameters 71, ..., §y as missing data.
The algorithm is an iterative process, having two phases in each iteration. The first
phase is the E-phase, in which the conditional expectation of the likelihood function
is determined, given the data and the current values of (u, X). In the next phase,
the M-phase, the conditionally expected likelihood is maximized by determining the
maximizing arguments (@, &). More specifically, let

N
N 1 _
P, X 0n,.oonn, Y, Yy = —310g|23| 3 E i — ¥ —p)
i=1

be the log-likelihood of (u, X) if 5y, ..., ny were known. Let (u'”, 7)) be the
estimator of (u, X) after p iterations, p > 0, where u(?, @ are initial estimates.
In the (p + D)st iteration, we start (the E-phase) by determining

I, T 1 Y1, .., Y, nP, TP
=E{'@w, T i,y Y, oo V) [ Y, o, Yy, g X))

N
— N ! ry—1 (r) y(p)
== log Xl = 5 > Bl —w'T (i — ) | Vi, p7, 20},

i=1

where the conditional expectation is determined as though w(” and X7 are the true
values. It is well known that if E{X} = & and the covariance matrix of X is C(X) then
E{X'AX} = p'Ap + tr{AC(X)}, where tr{-} is the trace of the matrix (see, Seber,
1977, p. 13). Thus,

E{n —w' % o = w) | Yo, g P} = (W — )T W — )
+ t(27'VP),
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where, W = f(u(”, 1), in which B/’ = D;(D; + X)~!, and V" = B/’ TP,
i=1,..., N.Thus,

N N _
P, X Y, Y, n P ) = —5 log|%| - 5tr.{z;*lv<m}

N =

N
YW — g W — ),
i=1

N
- 1
where V() = NZVE.” ). In phase-M, we determine u "™ and 1 by maximiz-
i=1
ing **(p, X | --).
One can immediately verify that

N
- 1
(r+h — W = — w.
- v Y
Moreover,

s (pHD) » 5 N N o sle® 4 9w
(w7, % |Y1,...,YN,;L1’,EP)=—510g|E|—gtr.{x (C'" 4+ VPhy,
where C/P) = (C;f,);j, j'=1,...,K),and

N
C(p) _ i Z(W(p) _ W(p))(w(p) _ W(p))
=N ij j i i
i=1

Finally, the matrix maximizing /** is
E(/H-l) =CP Ly,

We can prove recursively, by induction on p, that
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N
_ 1
where BO = NZBED’I =0,1,...,and

i=1
1 N
K=—) (B)Y; — BY).
~ ,;( )

Thus,

lim W?» =Y = —B)"'K

pP—>00

N -1y
=<Z<1—Bi>> > (= B)Y;.
i=1 i=1

One continues iterating until u” and ¥’ do not change significantly.

Brier, Zacks, and Marlow (1986) studied the efficiency of these empirical Bayes
estimators, in comparison to the simple MLE, and to another type of estimator that
will be discussed in Chapter 9. |

PART III: PROBLEMS

Section 8.1

8.1.1 LetF ={B(N,0);0 <6 < 1} be the family of binomial distributions.
(i) Show that the family of beta prior distributions H = {8(p, ¢); 0 < p,
q < oo} is conjugate to F.
(ii) What is the posterior distribution of 6 given a sample of » i.i.d. random
variables, having a distribution in F?

(iii) What is the predicted distribution of X,, ., given (X1, ..., X,,)?

8.1.2 LetXy,...,X,bei.i.d. random variables having a Pareto distribution, with
p.d.f.

flv)=vA"/x"T, 0<A<x<oo;
0 < v < 0o (A is a specified positive constant).

n 1/n
(i) Show that the geometric mean, G = (HX ,-) ,1s a minimal sufficient
i=1

statistic.

(ii) Suppose that v has a prior G(A, p) distribution. What is the posterior
distribution of v given X?

(iii) What are the posterior expectation and posterior variance of v given X?
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8.1.3

8.14

8.1.5

8.1.6

8.1.7

8.1.8

8.1.9
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Let X be a p-dimensional vector having a multinormal distribution N (g, X).
Suppose that Xis known and that g has a prior normal distribution N (g, V).
What is the posterior distribution of g given X?

Apply the results of Problem