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Series Editor’s Note

I am particularly proud and happy to introduce you to Noel Card and his 
wonderful resource Applied Meta-Analysis for Social Science Research. The rea-
son that I am so enthusiastic is that I have a close professional and personal 
relationship with Noel spanning some 10-plus years now. Noel overlapped 
with me for a number of years at the University of Kansas before he moved 
to his current position at the University of Arizona. During this time, I have 
seen Noel develop into one of the very finest pedagogically gifted quantita-
tive scholars of our day. His honors include an early career award from the 
Society for Research in Child Development. He is also a member of the Soci-
ety of Multivariate Experimental Psychology (SMEP), a limited-membership 
society devoted to the advancement of multivariate methods as applied in the 
social and behavioral sciences. Noel’s election to SMEP at such a young age 
speaks volumes about his ability and accomplishments. 

When I became the Series Editor of the Methodology in the Social Sci-
ences series, one of the first books I sought was a comprehensive book on 
meta-analysis written in the accessible style of this series. I approached Noel 
about writing this book knowing that he was the absolute best person to 
write it. To begin, Noel has had a long-standing passion for meta-analysis, 
and he has honed his pedagogy for quantitative synthesis techniques by 
regularly teaching the University of Kansas Summer Institutes in Statistics 
(“Stats Camps”; www.Quant.ku.edu) course on meta-analysis. Couple his 
dogged determination to understand all that is meta-analysis with his gifted 
ability to communicate quantitative methods to a diverse audience and you 
have a recipe for a perfect book: a desk reference for those who are familiar 
with meta-analysis and an all-in-one learning tool to use in classes at both 

http://www.Quant.ku.edu
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the undergraduate or graduate level. Noel’s coverage is both broad and deep 
and not tainted by preferences or restricted by a particular software focus. 
As a resource work, Noel’s book covers many topics that others avoid, but 
Noel integrates these topics so seamlessly that you’ll wonder which topics 
are lacking in the other books (e.g., calculating appropriate and unique effect 
sizes, thoroughly handling artifact corrections, evaluating publication bias 
with bias alternative analytic representations, evaluating advanced statisti-
cal models of the assembled data, and so on). In each chapter, Noel provides 
thoughtful and helpful advice on the key issues as well as offers alternative 
tactics. He carefully presents the pros and cons of each alternative and issue. 
As you read, you will immediately hear him reaching out to you and guiding 
your understanding of the material. His “voice” as he writes is assuring and 
clear, light-hearted yet authoritative. He deftly introduces a topic or idea at 
the ground level and moves you step by step up the rungs of understanding 
to the very top of where the field currently resides.  

Throughout Noel’s book you will find a number of appealing pedagogi-
cal features. For those who are not comfortable with equations, for example, 
Noel is very careful to explain the concepts in clear, simple language and in 
equation form. He also annotates the equations so that beginners can learn 
how to “read” a statistical equation. Equations are useful only when you the 
reader can follow them. Noel makes sure you can follow them—primarily 
as a supplement to the accompanying narrative. To illustrate all of the key 
points throughout the book, Noel uses ample real data examples that he’s 
discovered in his own meta-analytic work. Noel also has very thoughtfully 
selected and annotated some recommended readings that you will find at the 
end of each chapter. 

You can see from the table of contents that the coverage is complete. You 
will discover when you read each topic that Noel does not assume that you 
have prior knowledge nor does he offend the seasoned expert. His motiva-
tion is genuine: He provides a comprehensive yet accessible work that will 
advance scientific practice of quantitative synthesis in the social, behavioral, 
and educational sciences. His many examples provide solid grounding for 
and concrete clarifications of the concepts. Noel’s book is about as close to a 
“page turner” as you can get. 

Todd d. LiTTLe 
At 30,000 feet between 
Houston and Kansas City; 
University of Kansas 
Lawrence, Kansas
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Preface and Acknowledgments

In some sense, I began this book over 10 years ago, when I was a graduate 
student at St. John’s University. During this period of reading and trying to 
draw conclusions from the research literature on childhood aggression and 
victimization (my first area of substantive interest), I became discouraged by 
the lack of accumulation of science, as evidenced by the discrepant conclu-
sions drawn in (narrative) reviews of the literature and the numerous studies 
conducted and published in what seemed an absence of knowledge of the 
existing literature. During this time, I became motivated to find a better way 
to summarize and synthesize the research literature in my particular field.

I soon was introduced to meta-analysis as a potential solution, and it did 
not take long before I was convinced of its value. I began reading all I could 
about this methodology and had the good fortune to attend a workshop by 
Robert Rosenthal in the summer of 2004. Since that time, I have become 
increasingly interested and immersed in meta-analysis through publishing 
meta-analyses within my substantive area, teaching graduate classes and 
workshops on the topic, and collaborating with researchers on their own 
meta-analyses. So, when Todd D. Little, Editor of The Guilford Press’s Meth-
odology in the Social Sciences series, approached me in 2007 about the pos-
sibility of writing a book, I was eager for the opportunity and believed I was 
ready to do so.

The key phrase of the last sentence is “ . . . believed I was ready to do so.” 
During the last 3 years of writing this book, I have learned that the methods of 
meta-analysis are both broad and deep, and that this is a continuously evolv-
ing methodology. In this book, I have tried to capture each of these qualities 
in presenting this methodology to you. First, I have tried to cover the full 
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breadth of meta-analysis, covering every aspect of the process of planning, 
conducting, and writing a meta-analytic review. Second, I have delved into 
the depth of meta-analysis when I believe that more advanced methods are 
valuable, aiming to present this material in the least technical manner I can. 
Finally, I have tried to present the state of the art of meta-analysis by cover-
ing recent advances that are likely to be valuable to you. In balancing these 
sometimes competing demands of coverage, I have consistently thought back 
to when I was preparing my first meta-analyses to consider what is the most 
important material for beginning users of meta-analysis techniques to know. 
The result, I hope, is that this book will help you learn about and then use 
what I believe is an invaluable tool in the advancement of science.

Fortunately, I had many people supporting me during the writing of this 
book. First and foremost, I want to thank C. Deborah Laughton (Publisher, 
Methodology and Statistics, at Guilford) and Todd D. Little (Series Editor). 
Both provided the perfect balance of patience and prompting, listening and 
advice giving, and—above all—sincere friendship throughout the writing 
of this book. I also thank C. Deborah for securing input from a  number 
of expert reviewers and am grateful to these reviewers for their thought-
ful and constructive feedback: Adam Hafdahl, ARCH Statistical Consulting, 
LLC; Mike Cheung, Department of Psychology, National University of Singa-
pore; Blair Johnson, Department of Psychology,  University of Connecticut; 
Soyeon Ahn, Department of Educational and Psychological Studies, Univer-
sity of Miami; Jody Worley, Department of Human Relations, University of 
Oklahoma; Robert Tett, Department of Psychology, University of Tulsa; John 
Norris, Department of Second Language Studies, University of Hawaii; Brad 
Bushman, Institute for Social Research, University of Michigan; Meng-Jia Wu, 
School of Education, Loyola University; Tania B. Huedo-Medina, Department 
of Psychology, University of Connecticut; and Jeffrey Valentine, Department 
of Educational and Counseling Psychology, University of Louisville. I am 
also thankful to the many individuals who provided prepublication copies 
of their writings on meta-analysis, which was necessary to ensure that the 
material presented in this book is up to date. This book also benefited from 
feedback from students in a class at the University of Arizona (spring 2010) 
and two workshops (2009 and 2010) in an ongoing course I teach at the 
University of Kansas Summer Institutes in Statistics (affectionately known 
as “Stats Camps”; see quant.ku.edu/StatsCamps/overview.html). The students 
in these classes provided invaluable feedback and reactions to the material 
that greatly improved the pedagogical value of this book. Finally, I am most 
grateful to the support of my family throughout this process.
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1

An Introduction to Meta-Analysis

Meta- analysis, also called quantitative research synthesis, is a powerful 
approach to summarizing and comparing results from empirical literature. The 
goal of this book is to provide you, the reader, with information to conduct and 
evaluate meta- analytic reviews.

1.1 the need for reSeArch SyntheSIS 
In the SocIAl ScIenceS

Isaac Newton is known to have humbly explained his success: “If I have seen 
further it is by standing upon the shoulders of giants” (1675; from Columbia 
World of Quotations, 1996). Although the history of science suggests that 
Newton may have been as likely to kick his fellow scientists down as he was 
to collaboratively stand on their shoulders (e.g., Boorstin, 1983, Chs. 52–53; 
Gribbin, 2002, Ch. 5), this statement does eloquently portray a central prin-
ciple in science: That the advancement of scientific knowledge is based on 
systematic building of one study on top of a foundation of prior studies, the 
accumulation of which takes our understanding to ever increasing heights. A 
closely related tenet is replication—that findings of studies are confirmed (or 
not) through repetition by other scientists.

Together, the principles of orderly accumulation and replication of 
empirical research suggest that scientific knowledge should steadily prog-
ress. However, it is reasonable to ask if this is really the case. One obstacle to 
this progression is that scientists are humans with finite abilities to retain, 
organize, and synthesize empirical findings. In most areas of research, stud-



4 PLANNING AND PREPARING A META-ANALYTIC REVIEW 

ies are being conducted at an increasing rate, making it difficult for scholars 
to stay informed of research in all but the narrowest areas of specialization. 
I argue that many areas of social science research are in less need of further 
research than they are in need of organization of the existing research. A 
second obstacle is that studies are rarely exact replications of one another, 
but instead commonly use slightly different methods, measures, and/or sam-
ples.1 This imperfect replication makes it difficult (1) to separate meaningful 
differences in results from expectable sampling fluctuations, and (2) if there 
are meaningful differences in results across studies, to determine which of 
the several differences in studies account for the differences in results.

An apparent solution to these obstacles is that scientists systematically 
review results from the numerous studies, synthesizing results to draw con-
clusions regarding typical findings and sources of variability across studies. 
One method of conducting such systematic syntheses of the empirical lit-
erature is through meta- analysis, which is a methodological and statistical 
approach to drawing conclusions from empirical literature. As I hope to dem-
onstrate in this book, meta- analysis is a particularly powerful tool in draw-
ing these sorts of conclusions from the existing empirical literature. Before 
describing this tool in the remainder of the book, in this chapter I introduce 
some terminology of this approach, provide a brief history of meta- analysis, 
further describe the process of research synthesis as a scientific endeavor, 
and then provide a more detailed preview of the remainder of this book.

1.2 BASIc terMInology

Before further discussing meta- analysis, it is useful to clarify some relevant 
terminology. One clarification involves the distinction of meta- analysis from 
primary or secondary analysis. The second clarification involves terminology 
of meta- analysis within the superordinate category of a literature review.

1.2.1 Meta-Analysis versus Primary 
or Secondary Analysis

The first piece of terminology to clarify are the differences among the terms 
“meta- analysis,” “primary analysis,” and “secondary analysis” (Glass, 1976). 
The term “primary analysis” refers to what we typically think of as data anal-
ysis—when a researcher collects data from individual persons, companies, 
and so on,2 and then analyzes these data to provide answers to the research 
questions that motivated the study. The term “secondary analysis” refers to 
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re- analysis of these data, often to answer different research questions or to 
answer research questions in a different way (e.g., using alternative analytic 
approaches that were not available when the data were originally analyzed). 
This secondary data analysis can be performed either by the original research-
ers or by others if they are able to obtain the raw data from the researchers. 
Both primary and secondary data analysis require access to the full, raw data 
as collected in the study.

In contrast, meta- analysis involves the statistical analysis of the results 
from more than one study. Two points of this definition merit consideration 
in differentiating meta- analysis from either primary or secondary analysis. 
First, meta- analysis involves the results of studies as the unit of analysis, spe-
cifically results in the form of effect sizes. Obtaining these effect sizes does not 
require having access to the raw data (which are all-too-often unavailable), as 
it is usually possible to compute these effect sizes from the data reported in 
papers resulting from the original, primary or secondary, analysis. Second, 
meta- analysis is the analysis of results from multiple studies, in which indi-
vidual studies are the unit of analysis. The number of studies can range from 
as few as two to as many as several hundred (or more, limited only by the 
availability of relevant studies). Therefore, a meta- analysis involves drawing 
inferences from a sample of studies, in contrast to primary and secondary 
analyses that involve drawing inferences from a sample of individuals. Given 
this goal, meta- analysis can be considered a form of literature review, as I 
elaborate next.

1.2.2 Meta-Analysis as a form of literature review

A second aspect of terminological consideration involves the place of meta-
 analysis within the larger family of literature reviews. A literature review can 
be defined as a synthesis of prior literature on a particular topic. Literature 
reviews differ along several dimensions, including their focus, goals, per-
spective, coverage, organization, intended audience, and method of synthe-
sis (see Cooper, 1988, 2009a). Two dimensions are especially important in 
situating meta- analysis within the superordinate family of literature reviews: 
focus and method of synthesis. Figure 1.1 shows a schematic representation 
of how meta- analysis differs from other literature reviews in terms of focus 
and method of synthesis.

Meta- analyses, like other research syntheses, focus on research out-
comes (not the conclusion reached by study authors, which Rosenthal noted 
are “only vaguely related to the actual results” (1991, p. 13). Reviews focusing 
on research outcomes answer questions such as “The existing research shows 
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X” or “These types of studies find X, whereas these other types of studies find 
Y.” Other types of literature reviews have different foci. Theoretical reviews 
focus on what theoretical explanations are commonly used within a field, 
attempt to explain phenomena using a novel theoretical alternative, or seek 
to integrate multiple theoretical perspectives. These are the types of reviews 
that are commonly reported in, for example, Psychological Review. Survey 
reviews focus on typical practices within a field, such as the use of particu-
lar methods in a field or trends in the forms of treatment used in published 
clinical trials (e.g., Card & Little, 2007, surveyed published research in child 
development to report the percentage of studies using longitudinal designs). 
Although reviews focusing on theories or surveying practices within the lit-
erature are valuable contributions to science, it is important to distinguish 
the focus of meta- analysis on research outcomes from these other types of 
reviews.

However, not all reviews that focus on research outcomes are meta-
 analyses. What distinguishes meta- analysis from other approaches to research 
synthesis is the method of synthesizing findings to draw conclusions. The 
methods shown in the bottom of Figure 1.1 can be viewed as a continuum 
from qualitative to quantitative synthesis. At the left is the narrative review. 
Here, the reviewer evaluates the relevant research and somehow draws con-

fIgure 1.1. Relation of meta- analysis to other types of literature reviews.

Focus: Theories Research results Typical practices 

Research 
synthesis 

Survey Theoretical 
review 

Formal
vote counting

Informal
vote counting

Meta-
analysis

Narrative 
research review

Method of synthesis:
Unknown Tallying 

significance 
Statistical 
analysis of 
significance 

Statistical 
analysis of 
effect sizes 

Superordinate category: Literature review 
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clusions. This “somehow” represents the limits of this qualitative, or narra-
tive, approach to research synthesis. The exact process of how the reviewer 
draws conclusions is unknown, or at least not articulated, so there is con-
siderable room for subjectivity in the research conclusions reached. Beyond 
just the potential for subjective bias to emerge, this approach to synthesizing 
research taxes the reviewer’s ability to process information. Reviewers who 
attempt to synthesize research results qualitatively tend to perceive more 
inconsistency and smaller magnitudes of effects than those performing meta-
 analytic syntheses (Cooper & Rosenthal, 1980). In sum, the most common 
method of reviewing research— reading empirical reports and “somehow” 
drawing conclusions—is prone to subjectivity and places demands on the 
reviewer that make conclusions difficult to reach.

Moving toward the right, or quantitative direction, of Figure 1.1 are 
two vote- counting methods, which I have termed informal and formal. Both 
involve considering the significance of effects from research studies in terms 
of significant positive, significant negative, or nonsignificant results, and 
then drawing conclusions based on the number of studies finding a particu-
lar result. Informal (also called conventional) vote counting involves simply 
drawing conclusions based on “majority rules” criteria; so, if more studies 
find a significant positive effect than find other effects (nonsignificant or sig-
nificant negative), one concludes that there is a positive effect. A more formal 
vote- counting approach (see Bushman & Wang, 2009) uses statistical analy-
sis of the expected frequency of results given the type I error rates (e.g., Given 
a traditional type I error rate of .05, do significantly more than 5% of studies 
find an effect?). Although vote- counting methods can be useful when infor-
mation on effect sizes is unavailable, I do not discuss them in this book for 
two reasons (for descriptions of these vote- counting methods, see Bushman 
& Wang, 2009). First, conclusions of the existence of effects (i.e., statistical 
significance) can be more powerfully determined using meta- analytic proce-
dures described in this book. Second, conclusions of significance alone are 
unsatisfying, and the focus of meta- analysis is on effect sizes that provide 
information about the magnitude of the effect.3

At the right side of Figure 1.1 is meta- analysis, which is a form of research 
synthesis in which conclusions are based on the statistical analysis of effect 
sizes from individual studies.4 I reserve further description of meta- analysis 
for the remainder of the book, but my hope here is that this taxonomy makes 
clear that meta- analysis is only one approach to conducting a literature 
review. Specifically, meta- analysis is a quantitative method of synthesizing 
empirical research results in the form of effect sizes. Despite this specific-
ity, meta- analysis is a flexible and powerful approach to advancing scientific 
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knowledge, in that it represents a statistically defensible approach to synthe-
sizing empirical findings, which are the foundation of empirical sciences.

1.3 A BrIef hIStory of MetA-AnAlySIS

In this section, I briefly outline the history of meta- analysis. My goal is not 
to be exhaustive in detailing this history (for more extensive treatments, see 
Chalmers, Hedges, & Cooper, 2002, Hedges, 1992, and Olkin, 1990; for a his-
tory intended for laypersons, see Hunt, 1997). Instead, I only hope to provide 
a basic overview to give you a sense of where the techniques described in this 
book have originated.

There exist several early individual attempts to combine statistically 
results from multiple studies. Olkin (1990) cites Karl Pearson’s work in 1904 
to synthesize associations between inoculation and typhoid fever, and several 
similar approaches were described from the 1930s. Methods of combining prob-
abilities advanced in the 1940s and 1950s (including the method that became 
well known as Stouffer’s method; see Rosenthal, 1991). But these approaches 
saw little application in the social sciences until the 1970s (with some excep-
tions such as work by Rosenthal in the 1960s; see Rosenthal, 1991).

It was only in the late 1970s that meta- analysis found its permanent 
place in the social sciences. Although several groups of researchers devel-
oped techniques during this time (e.g., Rosenthal & Rubin, 1978; Schmidt 
& Hunter, 1977), it was the work of Gene Glass and colleagues that intro-
duced the term “meta- analysis” (Glass, 1976) and prompted attention to the 
approach, especially in the field of psychology. Specifically, Smith and Glass 
(1977) published a meta- analysis of the effectiveness of psychotherapy from 
375 studies, showing that psychotherapy was effective and that there is little 
difference in effectiveness across different types of therapies. Although the 
former finding, introduced by Glass, would probably have been received with 
little disagreement, the latter finding by Smith and Glass was controversial 
and prompted considerable criticism (e.g., Eysenck, 1978). The controversial 
nature of Smith and Glass’s conclusion seems to have had both positive and 
negative consequences for meta- analysis. On the positive side, their convinc-
ing approach to the difficult question of the relative effectiveness of psycho-
therapies likely persuaded many of the value of meta- analysis. On the nega-
tive side, the criticisms of this particular study (which I believe were greater 
than would have been leveled against meta- analysis of a less controversial 
topic) have often been generalized to the entire practice of meta- analyses. I 
describe these criticisms in greater detail in Chapter 2.
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Despite the controversial nature of this particular introduction of meta-
 analysis to psychology, the coming years witnessed a rapid increase in this 
approach. In the early 1980s, several books describing the techniques of meta-
 analysis were published (Glass, McGraw, & Smith, 1981; Hunter, Schmidt, & 
Jackson, 1982; Rosenthal, 1984). Shortly thereafter, Hedges and Olkin (1985) 
published a book on meta- analysis that was deeply rooted in traditional sta-
tistics. This rooting was important both in bringing formality and perceived 
statistical merit to the approach, as well as serving as a starting point for 
subsequent advances to meta- analytic techniques.

The decades since the introduction of meta- analysis to the social sci-
ences have seen increasing use of this technique. Given its widespread use in 
social science research during the past three decades, it appears that meta-
 analysis is here to stay. For this reason alone, scholars need to be familiar 
with this approach in order to understand the scientific literature. However, 
understanding meta- analysis is valuable not only because it is widely used; 
more importantly, meta- analysis is widely used because it represents a pow-
erful approach to synthesizing the existing empirical literature and contrib-
uting to the progression of science. My goal in the remainder of this book is 
to demonstrate this value to you, as well as to describe how one conducts a 
meta- analytic review.

1.4 the ScIentIfIc ProceSS of reSeArch SyntheSIS

Given the importance of research syntheses, including meta- analyses, to 
the progression of science, it is critical to follow scientific standards in their 
preparation. Most scientists are well trained in methods and data- analytic 
techniques to ensure objective and valid conclusions in primary research, 
yet methods and data- analytic techniques for research synthesis are less 
well known. In this section, I draw from Cooper’s (1982, 1984, 1998, 2009a) 
description of five5 stages of research synthesis to provide an overview of the 
process and scientific principles of conducting a research synthesis. These 
stages are formulating the problem, obtaining the studies, making decisions 
about study inclusion, analyzing and interpreting study results, and present-
ing the findings from the research synthesis.

As in any scientific endeavor, the first stage of a literature review is to 
formulate a problem. Here, the central considerations involve the question 
that you wish to answer, the constructs you are interested in, and the popu-
lation about which you wish to draw conclusions. In terms of the questions 
answered, a literature review can only answer questions for which prior liter-
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ature exists. For instance, to make conclusions of causality, the reviewer will 
need to rely on experimental (or perhaps longitudinal, as an approximation) 
studies; concurrent naturalistic studies would not be able to provide answers 
to this question. Defining the constructs of interest seems straightforward 
but poses two potential complications: The existing literature may use differ-
ent terms or operationalizations for the same construct, or the existing litera-
ture may use similar terms to describe different constructs. Therefore, you 
need to define clearly the constructs of interest when planning the review. 
Similarly, you must consider which samples will be included in the literature 
review; for instance, you need to decide whether studies of unique popula-
tions (e.g., prison, psychiatric settings) should be included within the review. 
The advantages of a broad approach (in terms of constructs and samples) are 
that the conclusions of the review will be more generalizable and may allow 
for the identification of important differences among studies. However, a nar-
row approach will likely yield more consistent (i.e., more homogeneous, in 
the language of meta- analysis) results, and the quantity of literature that must 
be reviewed is smaller. Both of these features might be seen as advantages or 
disadvantages, depending on the goals (e.g., to identify average effects versus 
moderators) and ambition (in terms of the number of studies one is willing 
to code) of the reviewer.

The next step in a literature review is to obtain the literature relevant for 
the review. Here, the important consideration is that the reviewer is exhaus-
tive, or at least representative, in obtaining relevant literature. It is useful to 
conceptualize the literature included as a sample drawn from a population of 
all possible studies. Adapting this conceptualization (and paralleling well-
known principles of empirical primary research) highlights the importance of 
obtaining a representative sample of literature for the review. If the literature 
reviewed is not representative of the extant research, then the conclusions 
drawn will be a biased representation of reality. One common threat to all 
literature reviews is publication bias (also known as the file drawer problem). 
This threat is that studies that fail to find significant effects (or that find effects 
counter to what is expected) are less likely to be published, and therefore 
less likely to be accessible to the reviewer. To counter this threat, you should 
attempt to obtain unpublished studies (e.g., dissertations), which will either 
counter this threat or at least allow you to evaluate the magnitude of this bias 
(e.g., evaluating whether published versus unpublished studies find different 
effects). Another threat is that reviewers typically must rely on literature writ-
ten in a language they know (e.g., English); this excludes literature written in 
other languages and therefore may exclude most studies conducted in other 
countries. Although it would be impractical to learn every language in which 



  An Introduction to Meta- Analysis 11

relevant literature may be written, you should be aware of this limitation and 
how it impacts the literature on which the review is based. To ensure the 
transparency of a literature review, the reviewer should report the means by 
which potentially relevant literature was searched and obtained.

The third, related, stage of a literature review is the evaluation of stud-
ies to decide which should inform the review. This stage involves reading 
the literature obtained in the prior stage (searching for relevant literature) 
and drawing conclusions regarding relevance. Obvious reasons to exclude 
works include investigation of constructs or samples that are irrelevant to 
the review (e.g., studies involving animals when one is interested in human 
behavior) or failure of the work to provide information relevant to the review 
(e.g., it treats the construct of interest only as a covariate without providing 
sufficient information about effects). Less obvious decisions need to be made 
for works that involve questionable quality or methodological features differ-
ent from other studies. Including such works may improve the generalizabil-
ity of the review but at the same time may contaminate the literature basis or 
distract from your focus. Decisions at this stage will typically involve refining 
the problem formulated at the first stage of the review.

The fourth stage is the most time- consuming and difficult: analyzing 
and interpreting the literature. As mentioned, there exist several approaches 
to how reviewers draw conclusions, ranging from qualitative to informal or 
formal vote counting to meta- analysis. For a meta- analysis, this stage involves 
systematically coding study characteristics and effect sizes, and then statisti-
cally analyzing these coded data. As I describe later in this book (Chapter 2) 
there are powerful advantages to using a meta- analytic approach.

The final stage of the literature review is the presentation of the review, 
often in written form. Although I suspend detailed recommendations on 
reporting meta- analyses until later in the book, a few general guidelines 
should be considered here. First, we should be transparent about the review 
process and decisions taken. Just as empirical works are expected to present 
sufficient details so that another researcher could replicate the results, a well-
 written research synthesis should provide sufficient detail for another scholar 
to replicate the review. Second, it is critical that the written report answers 
the original questions that motivated the review, or at least describes why 
such answers cannot be reached and what future work is needed to provide 
these answers. A third, related, guideline is that we should avoid a simple 
study-by-study listing. A good review synthesizes—not merely lists—the lit-
erature. Meta- analysis provides a powerful way of drawing valuable informa-
tion from multiple studies that goes far beyond merely listing their individual 
results.
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1.5 An overvIew of the Book

1.5.1 organization of the Book

The five stages of research synthesis guide the organization of this book. 
Chapter 2 describes the stage of formulating a problem for meta- analysis, 
and Chapter 3 describes both stages two (searching the literature) and three 
(deciding which studies should be included) of a meta- analytic review. I 
mentioned that the fourth stage, analyzing and interpreting the literature, is 
the most time- consuming and challenging, and I have therefore devoted the 
majority of the book (Chapters 4 to 12) to this topic. Specifically, Chapter 
4 offers suggestions for coding study characteristics, and Chapters 5 to 7 
describe the coding and correction of various types of effect sizes. Chapters 
8 to 12 cover various topics in analyzing effect sizes, including ways of com-
puting average effect sizes, analyzing variability in effect sizes across studies, 
and evaluating the threat of publication bias. Finally, Chapter 13 addresses 
the final stage of conducting a meta- analysis by offering advice on present-
ing the results of a meta- analysis. Collectively, these chapters should provide 
enough information for you to conduct a meta- analytic review from begin-
ning to end—from conceptualization to publication.

In each chapter, I offer my advice on what I consider the “practical mat-
ters” of performing a meta- analysis. These include topics that are often not 
discussed in other books on meta- analysis, but that I have learned through 
my own experience in conducting, publishing, consulting for, and review-
ing others’ meta- analytic reviews. These topics include advice on managing 
the potentially overwhelming amount of information of a meta- analysis, how 
much information you should code from studies, whether it is useful to use 
specific meta- analysis software programs, selecting from multiple models for 
meta- analysis, and linking meta- analytic results with theory. Because these 
are topics not often written about, it is likely that some may disagree with 
my recommendations. At the same time, this advice represents what I wish I 
had known when I first began learning about and conducting meta- analytic 
reviews, and I offer it with the hope that it will help new meta- analysts.

1.5.2 example Meta-Analysis

To illustrate many of the steps in conducting a meta- analytic review, I will rely 
on a meta- analytic review my colleagues and I have published (Card, Stucky, 
Sawalani, & Little, 2008). The paper reported results of several interrelated 
meta- analyses comparing two forms of aggression among children and ado-
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lescents: direct aggression (a.k.a. overt aggression), which includes behav-
iors such as hitting, pushing, teasing, and calling other kids mean names; 
and indirect aggression (a.k.a. relational, social, or covert aggression), which 
includes behaviors such as gossiping, hurtful manipulation of relationships, 
and excluding a peer from activities. In this paper, we considered gender dif-
ferences in each of these forms of aggression, the magnitude of correlation 
between these two forms, and how strongly correlated each form is to various 
aspects of psychosocial adjustment. My goal in presenting these results is not 
to illustrate the substantive conclusions, but rather to provide a consistent, 
ongoing example throughout the book.

1.6 PrActIcAl MAtterS: A note on SoftwAre 
And InforMAtIon MAnAgeMent

Conducting a meta- analytic review is usually a substantial undertaking. I do 
not mean that the statistical analyses are daunting; in fact, one of my goals 
is to show you that the statistical analyses for a basic meta- analysis are fairly 
straightforward. However, the process of exhaustively searching and collect-
ing the literature, of reading and coding studies, and of analyzing and report-
ing results requires a substantial amount of time and effort.

One way to reduce this burden, or at least to avoid adding to it, is 
through organization. Let me make one point clear: My first practical sug-
gestion to beginning meta- analysts is to be extremely organized through-
out the process. Some examples of this organization, which I expand upon 
throughout this book, are to keep detailed records of literature searches, to 
have a well- organized system for keeping copies of studies evaluated for the 
meta- analysis, and—if working with a team of researchers—to ensure that 
all individuals are following the same system of organizing, coding, and the 
like. Carefully conducting a meta- analysis requires a lot of work, and you 
certainly want to avoid doubling (or tripling) that work by repetition due to 
poor organization, or even worse, not being able to adequately describe this 
work when reporting your findings.

To aid in this organization, you should use a good spreadsheet program 
(such as Microsoft Excel or a comparable program). Although early meta-
 analysts relied on hundreds of notecards, the capacities of modern spread-
sheets to store, sort, and search for information makes their use a neces-
sity for the modern meta- analyst. Along with a good spreadsheet program, 
you will need basic statistical analysis software to conduct a meta- analysis. 
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Any program that can conduct weighted general linear model analyses (e.g., 
weighted regression analyses) will suffice, including SPSS and SAS.

At this point, I have only recommended that you use standard spread-
sheet and basic statistical analysis software. Are there special software pack-
ages for meta- analysis? Yes, there exist a range of freely downloadable as well 
as commercial packages for conducting meta- analyses, as well as sets of mac-
ros that can be used within common statistical packages.6 I do not attempt 
to describe these programs in this book (interested readers can see Bax, Yu, 
Ikeda, & Moons, 2007, or Borenstein, Hedges, Higgins, & Rothstein, 2009, 
Ch. 44). I do not describe these software options because, as I state later in 
this book, I do not necessarily recommend them for the beginning meta-
 analyst. These meta- analysis programs can be a timesaver after one learns 
the techniques and the software, and they are certainly useful in organizing 
complex data (i.e., meta- analyses with many studies and multiple effect sizes 
per study) for some more complex analyses. However, the danger of rely-
ing on them exclusively— especially when you are first learning to conduct 
meta- analyses—is that they may encourage erroneous use when you are not 
adequately familiar with the techniques.

1.7 SuMMAry

In this chapter, I have introduced meta- analysis as a valuable tool for syn-
thesizing research, specifically for synthesizing research outcomes using 
quantitative analyses. I have provided a very brief history and overview of 
the terminology of meta- analysis, and described five stages of the process of 
conducting a meta- analytic review. Finally, I have previewed the remainder 
of this book, which is organized around these five stages.

1.8 recoMMended reAdIngS

Cooper, H. M. (1998). Synthesizing research: A guide for literature reviews. Thousand 
Oaks, CA: Sage.—This book provides an encompassing perspective on the entire 
process of meta- analysis and other forms of literature reviews. It is written in an acces-
sible manner, focusing on the conceptual foundations of meta- analysis rather than the 
data-analytic practices.

Hunt, M. (1997). How science takes stock: The story of meta- analysis. New York: Russell 
Sage Foundation.—This book provides an entertaining history of the growth of meta-
 analysis, written for an educated lay audience.
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noteS

1. A common misperception is that lack of replicability is more pervasive in social 
than in natural sciences. However, Hedges (1987) showed that psychological 
research demonstrates similar replicability as that in physical sciences.

2. What is called the “unit of analysis,” or fundamental object about which the 
researcher wishes to draw conclusions.

3. Bushman and Wang (2009) describe techniques for estimating effect sizes using 
vote- counting procedures. However, this approach is less accurate than meta-
 analytic combination of effect sizes and would be justifiable only if effect size 
information was not available in most primary studies.

4. Some authors (e.g., Cooper, 1998, 2009a) recommend limiting the use of the term 
“meta- analysis” to the statistical analysis of results from multiple studies. They 
suggest using terms such as “systematic review” or “research synthesis” to refer 
to the broader process of searching the literature, evaluating studies, and so on. 
Although I appreciate the importance of emphasizing the entire research synthe-
sis process by using a broader term, the term “meta- analysis” is less cumbersome 
and more recognizable to most potential readers of the review. For this reason, I 
use the term “meta- analysis” (or “meta- analytic review”) in this book, though I 
focus on all aspects of the systematic, quantitative research synthesis.

5. Cooper (2009a) has recently expanded these steps by explicitly adding a step on 
evaluating study quality. I consider the issue of coding study quality and other 
characteristics in Chapter 4.

6. For instance, David Wilson makes macros for SPSS, SAS, and Stata on his web-
site: mason.gmu.edu/~dwilsonb/ma.html.



16 

2

Questions That Can  
and Questions That Cannot  
Be Answered 
through Meta-Analysis

The first step of a meta- analysis, like the first step of any research endeavor, 
is to identify your goals and research questions. Too often I hear beginning 
meta- analysts say something like “I would like to meta- analyze the field of X.” 
Although I appreciate the ambition of such a statement, there are nearly infinite 
numbers of research questions that you can derive—and potentially answer 
through meta- analysis— within any particular field. Without more specific goals 
and research questions, you would not have adequate guidance for searching 
the literature and deciding which studies are relevant for your meta- analysis 
(Chapter 3), knowing what characteristics of the studies (Chapter 4) or effect 
sizes (Chapters 5–7) to code, or how to proceed with the statistical analyses 
(Chapters 8–10). For this reason, the goals and specific research questions 
of a meta- analytic review need to be more focused than “to meta- analyze” a 
particular set of studies.

After describing some of the common goals of meta- analyses, I describe 
the limits of what you can conclude from meta- analyses and some of the 
common critiques of meta- analyses. I describe these limits and critiques here 
because it is important for you to have a realistic view of what can and cannot 
be answered through meta- analysis while you are planning your review.
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2.1 IdentIfyIng goAlS And reSeArch QueStIonS 
for MetA-AnAlySIS

In providing a taxonomy of literature reviews (see Chapter 1), Cooper (1988, 
2009a) identified the goals of a review to be one of the dimensions on which 
reviews differ. Cooper identified integration (including drawing generaliza-
tions, reconciling conflicts, and identifying links between theories of dis-
ciplines), criticism, and identification of central issues as general goals of 
reviewers. Cooper noted that the goal of integration “is so pervasive among 
reviews that it is difficult to find reviews that do not attempt to synthesize 
works at some level” (1988, p. 108). This focus on integration is also central 
to meta- analysis, though you should not forget that there is room for addi-
tional goals of critiquing a field of study and identifying key directions for 
future conceptual, methodological, and empirical work. Although these goals 
are not central to meta- analysis itself, a good presentation of meta- analytic 
results will usually inform these issues. After reading all of the literature for 
a meta- analysis, you certainly should be in a position to offer informed opin-
ions on these issues.

Considering the goal of integration, meta- analyses follow one of two1 
general approaches: combining and comparing studies. Combining studies 
involves using the effect sizes from primary studies to collectively estimate 
a typical effect size, or range of effect sizes. You will also typically make 
inferences about this estimated mean effect size in the form of statistical 
significance testing and/or confidence intervals. I describe these methods in 
Chapters 8 and 10. The second approach to integration using meta- analysis 
is to compare studies. This approach requires the existence of variability (i.e., 
heterogeneity) of effect sizes across studies, and I describe how you can test 
for heterogeneity in Chapter 8. If the studies in your meta- analysis are het-
erogeneous, then the goal of comparison motivates you to evaluate whether 
effect sizes found in studies systematically differ depending on coded study 
characteristics (Chapter 4) through meta- analytic moderator analyses (Chap-
ter 9).

We might think of combination and comparison as the “hows” of meta-
 analysis; if so, we still need to consider the “whats” of meta- analysis. The goal 
of meta- analytic combination is to identify the average effect sizes, and meta-
 analytic comparison evaluates associations between these effect sizes and 
study characteristics. The common component of both is the focus on effect 
sizes, which represent the “whats” of meta- analysis. Although many different 
types of effect sizes exist, most represent associations between two variables 
(Chapter 5; see Chapter 7 for a broader consideration). Despite this simplicity, 
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the methodology under which these two- variable associations were obtained 
is critically important in determining the types of research questions that 
can be answered in both primary and meta- analysis. Concurrent associations 
from naturalistic studies inform only the degree to which the two variables 
co-occur. Across-time associations from longitudinal studies (especially those 
controlling for initial levels of the presumed outcome) can inform temporal 
primacy, as an imperfect approximation of causal relations. Associations from 
experimental studies (e.g., association between group random assignment and 
outcome) can inform causality to the extent that designs eliminate threats to 
internal validity. Each of these types of associations is represented as an effect 
size in the same way in a meta- analysis, but they obviously have different 
implications for the phenomenon under consideration. It is also worth noting 
here that a variety of other effect sizes index very different “whats,” including 
means, proportions, scale reliabilities, and longitudinal change scores; these 
possibilities are less commonly used but represent the range of effect sizes 
that can be used in meta- analysis (see Chapter 7).

Crossing the “hows” (i.e., combination and comparison) with the “whats” 
(i.e., effect sizes representing associations from concurrent naturalistic, lon-
gitudinal naturalistic, quasi- experimental, and experimental designs, as well 
as the variety of less commonly used effect sizes) suggests the wide range of 
research questions that can be answered through meta- analysis. For exam-
ple, you might combine correlations between X and Y from concurrent natu-
ralistic studies to identify the best estimate of the strength of this association. 
Alternatively, you might combine associations between a particular form of 
treatment (as a two-group comparison receiving versus not receiving) and 
a particular outcome, obtained from internally valid experimental designs, 
to draw conclusions of how strongly the treatment causes improvement in 
functioning. In terms of comparison, you might evaluate the extent to which 
X predicts later Y in longitudinal studies of different duration in order to 
evaluate the time frame over which prediction (and possibly causal influence) 
is strongest. Finally, you might compare the reliabilities of a particular scale 
across studies using different types of samples to determine how useful this 
scale is across populations. Although I could give countless other examples, 
I suspect that these few illustrate the types of research questions that can be 
answered through meta- analysis. Of course, the particular questions that are 
of interest to you are going to come from your own expertise with the topic; 
but considering the possible crossings between the “hows” (combination and 
comparison) and the “whats” (various types of effect sizes) offers a useful 
way to consider the possibilities.
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2.2 the lIMItS of PrIMAry reSeArch And the lIMItS 
of MetA-AnAlytIc SyntheSIS

Perhaps no statement is more true, and humbling, than this offered as the 
opening of Harris Cooper’s editorial in Psychological Bulletin (and likely 
stated in similar words by many others): “Scientists have yet to conduct the 
flawless experiment” (Cooper, 2003, p. 3). I would extend this conclusion 
further to point out that no scientist has yet conducted a flawless study, and 
even further by stating that no meta- analyst has yet performed a flawless 
review. Each approach to empirical research, and indeed each application of 
such approaches within a particular field of inquiry, has certain limits to the 
contributions it can make to our understanding. Although full consideration 
of all of the potential threats to drawing conclusions from empirical research 
is beyond the scope of this section, I next highlight a few that I think are 
most useful in framing consideration of the most salient limits of primary 
research and meta- analysis—those of study design, sampling, methodologi-
cal artifacts, and statistical power.

2.2.1 limits of Study design

Experimental designs allow inferences of causality but may be of question-
able ecological validity. Certain features of the design of experimental (and 
quasi- experimental) studies dictate the extent to which conclusions are valid 
(see Shadish, Cook, & Campbell, 2002). Naturalistic (a.k.a. correlational) 
designs are often advantageous in providing better ecological validity than 
experimental designs and are often useful when variables of interest cannot, 
or cannot ethically, be manipulated. However, naturalistic designs cannot 
answer questions of causality, even in longitudinal studies that represent the 
best nonexperimental attempts to do so (see, e.g., Little, Card, Preacher, & 
McConnell, 2009).

Whatever limits due to study design that exist within a primary study 
(e.g., problems of internal validity in suboptimally designed experiments, 
ambiguity in causal influence in naturalistic designs) will also exist in a meta-
 analysis of those types of studies. For example, meta- analytically combining 
experimental studies that all have a particular threat to internal validity (e.g., 
absence of double-blind procedures in a medication trial) will yield conclu-
sions that also suffer this threat. Similarly, meta- analysis of concurrent cor-
relations from naturalistic studies will only tell you about the association 
between X and Y, not about the causal relation between these constructs. In 
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short, limits to the design that are consistent across primary studies included 
in a meta- analysis will also serve as limits to the conclusions of the meta-
 analysis.

2.2.2 limits of Sampling

Primary studies are also limited in that researchers can only generalize the 
results to populations represented by the sample. Findings from studies using 
samples homogeneous with respect to certain characteristics (e.g., gender, 
ethnicity, socioeconomic status, age, settings from which the participants are 
sampled) can only inform understanding of populations with characteris-
tics like the sample. For example, a study sampling predominantly White, 
middle- and upper-class, male college students (primarily between 18 and 22 
years of age) in the United States cannot draw conclusions about individuals 
who are ethnic minority, lower socioeconomic status, females of a different 
age range not attending college, and/or not living in the United States.

These limits of generalizability are well known, yet widespread, in much 
social science research (e.g., see Graham, 1992, for a survey of ethnic and 
socioeconomic homogeneity in psychological research). One feature of a well-
 designed primary study is to sample intentionally a heterogeneous group of 
participants in terms of salient characteristics, especially those about which 
it is reasonable to expect findings potentially to differ, and to evaluate these 
factors as potential moderators (qualifiers) of the findings. Obtaining a het-
erogeneous sample is difficult, however, in that the researcher must typi-
cally obtain a larger overall sample, solicit participants from multiple settings 
(e.g., not just college classrooms) and cultures (e.g., not just in one region or 
country), and ensure that the methods and measures are appropriate for all 
participants. The reality is that few if any single studies can sample the wide 
range of potentially relevant characteristics of the population about which we 
probably wish to draw conclusions.

These same issues of sample generalizability limit conclusions that we 
can draw from the results of meta- analyses. If all primary studies in your 
meta- analysis sample a similar homogeneous set of participants, then you 
should only generalize the results of meta- analytically combining these 
results to that homogeneous population. However, if you are able to obtain 
a collection of primary studies that are diverse in terms of sample charac-
teristics, even if the studies themselves are individually homogeneous, then 
you can both (1) evaluate potential differences in results based on sample 
characteristics (through moderator analyses; see Chapter 9) and (2) make 
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conclusions that are generalizable to this more heterogeneous population. In 
this way, meta- analytic reviews have the potential to draw more generaliz-
able conclusions than are often tractable within a primary study, provided 
you are able to obtain studies collectively consisting of a diverse range of 
participants. However, you should keep in mind the limits of the samples 
of studies included in your meta- analysis and be cautious not to extrapolate 
beyond these limits. Most meta- analyses contain some limits— intentional 
(specified by inclusion/exclusion criteria; see Chapter 3) or unintentional 
(required by the absence or unavailability—e.g., written in a language that 
you do not know—of primary research with some populations)—that limit 
the generalizability of conclusions.

2.2.3 limits of Methodological Artifacts

Researchers planning and conducting primary studies do not intention-
ally impose methodological artifacts, but these often arise. These artifacts, 
described in detail in Chapter 6, can arise from imperfect measures (imper-
fect reliability or validity), sampling homogeneity (resulting in direct or indi-
rect restriction of ranges among variables of interest), or poor data- analytic 
choices (e.g., artificial dichotomization of continuous variables). These arti-
facts typically2 attentuate, or diminish, the effect sizes estimated in primary 
studies. This attenuation leads to lower statistical power (higher rates of type 
II error) and underestimation of the magnitude—and potentially the impor-
tance—of the results.

These artifacts can be corrected in the sense that it is possible to esti-
mate the magnitude of “true” effect sizes disattenuated for these artifacts. In 
primary studies, this is rarely done, with the exception of those using latent 
variable analyses to correct for unreliability (see, e.g., Kline, 2005). This 
correction for attenuation of effect sizes is more common in meta- analyses, 
though the practice is somewhat controversial and varies across disciplines 
(see Chapter 6). Whether or not you correct for certain artifacts in your own 
meta- analyses should guide the extent to which you view these artifacts as 
potential limits (by attenuating your effect sizes and potentially introducing 
less meaningful heterogeneity).

2.2.4 limits of Statistical Power

Statistical power refers to the probability of concluding that an effect exists 
when it truly does. The converse of statistical power is type II error, or fail-
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ing to conclude that an effect exists when it does. Although this concept of 
statistical power is rooted in the Null Hypothesis Significance Testing frame-
work (which is problematic, as I describe in Chapter 5), statistical power is 
also relevant in other frameworks such as reliance on point estimates and 
confidence intervals in describing results (i.e., low statistical power leads to 
large confidence intervals).

The statistical power of a primary study depends on several factors, 
including the type I error rate (i.e., a) set by the researcher, the type of analy-
sis performed, and the magnitude of the effect size within the population. 
However, because these other factors are typically out of the researcher’s 
control,3 statistical power is dictated primarily by sample size, where larger 
sample sizes yield greater statistical power. When planning primary studies, 
researchers should conduct power analyses to guide the number of partici-
pants needed to have a certain probability (often .80) of detecting an effect 
size of a certain magnitude (for details see, e.g., Cohen, 1969; Kraemer & 
Thiemann, 1987; Murphy & Myors, 2004).

Despite the potential for power analysis to guide study design, there are 
many instances when primary studies are underpowered. This might occur 
because the power analysis was based on an unrealistically high expectation 
of population effect size, because it was not possible to obtain enough par-
ticipants due to limited resources or scarcity of appropriate participants (e.g., 
when studying individuals with rare conditions), or because the researcher 
failed to perform a power analysis in the first place. In short, although inad-
equate statistical power is not a problem inherent to primary research, it is 
plausible that in many fields a large number of existing studies do not have 
adequate statistical power to detect what might be considered a meaningful 
magnitude of effect (see, e.g., Halpern, Karlawish, & Berlin, 2002; Maxwell, 
2004).

When a field contains many studies that fail to demonstrate an effect 
because they have inadequate statistical power, there is the danger that 
readers of this literature will conclude that an effect does not exist (or that 
it is weak or inconsistent). In these situations, a meta- analysis can be use-
ful in combining the results of numerous underpowered studies within a 
single analysis that has greater statistical power.4 Although meta- analyses 
can themselves have inadequate statistical power, they will generally5 
have greater statistical power than the primary studies comprising them 
(Cohn & Becker, 2003). For this reason, meta- analyses are generally less 
impacted by inadequate statistical power than are primary studies (but 
see Hedges & Pigott, 2001, 2004 for discussion of underpowered meta-
 analyses).
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2.3 crItIQueS of MetA-AnAlySIS: when Are they 
vAlId And when Are they not?

As I outlined in Chapter 1, attention to meta- analysis emerged in large part 
with the attention received by Smith and Glass’s (1977) meta- analysis of psy-
chotherapy research (though others developed techniques of meta- analysis 
at about the same time; e.g., Rosenthal & Rubin, 1978; Schmidt & Hunter, 
1977). The controversial nature of this meta- analysis drew criticisms, both of 
the particular paper and of the process of meta- analysis itself. Although these 
criticisms were likely motivated more by dissatisfaction with the results than 
the approach, there has been some persistence of these criticisms toward 
meta- analysis since its early years. The result of this extensive criticism, and 
efforts to address these critiques, is that meta- analysis as a scientific process 
of reviewing empirical literature has a deeper appreciation of its own limits; 
so this criticism was in the end fruitful.

In the remainder of this section, I review some of the most common criti-
cisms of meta- analysis (see also, e.g., Rosenthal & DiMatteo, 2001; Sharpe, 
1997). I also attempt to provide an objective consideration of the extent, and 
under what conditions, these criticisms are valid. At the end of this section, 
I place these criticisms in perspective by noting that many apply to any lit-
erature review.

2.3.1 Amount of expertise needed to conduct 
and understand

Although not necessarily a critique, I think it is important first to address a 
common misperception I encounter: that meta- analysis requires extensive 
statistical expertise to conduct. Although very advanced, complex methods 
exist for various aspects of meta- analysis, most meta- analyses do not require 
especially complicated analyses. The techniques might seem rather obscure 
or complex when one is first reading meta- analyses; I believe that this is pri-
marily because most of us received considerable training in primary analysis 
during our careers, but have little if any exposure to meta- analysis. How-
ever, performing a basic yet sound meta- analysis requires little more exper-
tise than that typically acquired in a research- oriented graduate social sci-
ence program, such as the ability to compute means, variances, and perhaps 
perform an analysis of variance (ANOVA) or regression analysis, albeit with 
some small twists in terms of weighting and interpretation.6

Although I do not view the statistical expertise needed to conduct a sound 
meta- analysis as especially high, I do feel obligated to make clear that meta-
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 analyses are not easy. The time required to search adequately for and code 
studies is substantial (see Chapters 3–7). The analyses, though not requiring 
an especially high level of statistical complexity, must be performed with 
care and by someone with the basic skills of meta- analysis (such as provided 
in Chapters 8–11). Finally, the reporting of a meta- analysis can be especially 
difficult given that you are often trying to make broad, authoritative state-
ments about a field (see Chapters 13–14). My intention is not to scare anyone 
away from performing a meta- analysis, but I think it is important to recog-
nize some of the difficulty in this process. However, needing a large amount 
of statistical expertise is not one of these difficulties for most meta- analyses 
you will want to perform.

2.3.2 Quantitative Analysis May lack “Qualitative 
finesse” of evaluating literature

Some complain that meta- analyses lack the “qualitative finesse” of a nar-
rative review, presumably meaning that it fails to make creative, nuanced 
conclusions about the literature. I understand this critique, and I agree that 
some meta- analysts can get too caught up in the analyses themselves at the 
expense of carefully considering the studies. However, this tendency is cer-
tainly not inherent to meta- analysis, and there is certainly nothing to pre-
clude the meta- analyst from engaging in this careful consideration.

To place this critique in perspective, I think it is useful to consider 
the general approaches of qualitative and quantitative analysis in primary 
research. Qualitative research undoubtedly provides rich, nuanced informa-
tion that has contributed substantially to understanding in nearly all areas of 
social sciences. At the same time, scientific progress would be limited if we 
did not also rely on quantitative methods and on methods of analyzing these 
quantitative data. Few scientists would collect quantifiable data from doz-
ens or hundreds of individuals, but would instead use a method of analysis 
consisting of looking at the data and “somehow” drawing conclusions about 
central tendency, variability, and co- occurrences of individual differences. 
In sum, there is substantial advantage to conducting primary research using 
both qualitative and quantitative analyses, or a combination of both.

Extending this value of qualitative and quantitative analyses in primary 
research to the process of research synthesis, I do not see careful, nuanced 
consideration of the literature and meta- analytic techniques to be mutually 
exclusive processes. Instead, I recommend that you rely on the advantages 
of meta- analysis in synthesizing vast amounts of information and aiding in 
drawing probabilistic inferential conclusions, but also using your knowledge 
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of your field where these quantitative analyses fall short. Furthermore, meta-
 analytic techniques provide results that are statistically justifiable (e.g., there 
is an effect size of a certain range of magnitude; some type of studies provide 
larger effect sizes than another type), but it is up to you to connect these find-
ings to relevant theories in your field. In short, a good meta- analytic review 
requires both quantitative methodology and “qualitative finesse.”

2.3.3 the “Apples and oranges” Problem

The critique known as the “apples and oranges problem” was first used as a 
critique against Smith and Glass’s (1977) meta- analytic combination of stud-
ies using diverse methods of psychotherapy in treating a wide range of prob-
lems among diverse samples of people (see Sharpe, 1997). Critics charge that 
including such a diverse range of studies in a meta- analysis yields meaning-
less results.

I believe that this critique is applicable only to the extent that the meta-
 analyst wants to draw conclusions about apples or oranges; if you want to 
draw conclusions only about a narrowly defined population of studies (e.g., 
apples), then it is problematic to include studies from a different popula-
tion (e.g., oranges). However, if you wish to make conclusions about a broad 
population of studies, such as all psychotherapy studies of all psychologi-
cal disorders, then it is appropriate to combine a diverse range of studies. 
To extend the analogy: combining apples and oranges is appropriate if you 
want to draw conclusions about fruit; in fact, if you want to draw conclu-
sions about fruit you should also include limes, bananas, figs, and berries! 
Studies are rarely identical replications of one another, so including studies 
that are diverse in methodology, measures, and sample within your meta-
 analysis has the advantage of improving the generalizability of your conclu-
sions (Rosenthal & DiMatteo, 2001). So, the apples and oranges critique is 
not so much a critique about meta- analysis; rather, it just targets whether or 
not the meta- analyst has considered and sampled studies from an appropriate 
level of analysis.

In considering this critique, it is useful to consider the opportunities for 
considering multiple levels of analysis through moderator analysis in meta-
 analysis (see Chapter 9). Evoking the fruit analogy one last time: A meta-
 analysis can include studies of all fruit and report results about fruit; but 
then systematically compare apples, oranges, and other fruit through mod-
erator analyses (i.e., do results involving apples and oranges differ?). Fur-
ther moderator analyses can go further by comparing studies involving, for 
example, McIntosh, Delicious, Fuji, and Granny Smith apples. The possibility 



26 PLANNING AND PREPARING A META-ANALYTIC REVIEW 

of including diverse studies in your meta- analysis and then systematically 
comparing these studies through moderator analyses means that the apples 
and oranges problem is easily addressable.

2.3.4 the “file drawer” Problem

The “file drawer” problem is based on the possibility that the studies included 
in a meta- analysis are not representative of those that have been conducted 
because studies that fail to find significant or expected results are hidden 
away in researchers’ file drawers. Because I devote an entire chapter to this 
problem, also called publication bias, later in this book (Chapter 11), I do 
not treat this threat in detail here. Instead, I briefly note that this is indeed 
a threat to meta- analysis, as it is to any literature review. Fortunately, meta-
 analyses typically use systematic and thorough methods of obtaining stud-
ies (Chapter 3) that minimize this threat, and meta- analytic techniques for 
detecting and potentially correcting for this bias exist (Chapter 11).

2.3.5 garbage In, garbage out

The critique of “garbage in, garbage out” is that the meta- analysis of poor 
quality primary studies only results in conclusions of poor quality. In many 
respects this critique is a valid threat, though there are some exceptions. 
First, we can consider what “poor quality” (i.e., garbage) really means. If 
studies are described as being of poor quality because they are underpowered 
(i.e., have low statistical power to detect the hypothesized effect), then meta-
 analysis can overcome this limitation by aggregating findings from multiple 
underpowered studies to produce a single analysis that is more powerful. If 
studies are considered to be of poor quality because they contain artifacts 
such as using measures that are less reliable or less valid than is desired, or 
if the primary study authors used certain inappropriate analytic techniques 
(e.g., artificially dichotomizing continuous variables), then methods of cor-
recting effect sizes might help overcome these problems (see Chapter 6). For 
these types of “garbage” then, meta- analyses might be able to produce high-
 quality findings.

There are other types of problems of study quality that meta- analyses 
cannot overcome. For instance, if all primary studies evaluating a particu-
lar treatment fail to assign participants randomly to conditions, do not use 
double-blind procedures, or the like, then these threats to internal validity in 
the primary studies will remain when you combine the results across stud-
ies in a meta- analysis. Similarly, if the primary studies included in a meta-
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 analysis are all concurrent naturalistic designs, then there is no way that 
meta- analytic combination of these results can inform causality. In short, the 
design limitations that consistently occur in the primary studies will also be 
limitations when you meta- analytically combine these studies.

Given this threat, some have recommended that meta- analysts exclude 
studies that are of poor study quality, however that might be defined (see 
Chapter 4). Although this exclusion does ensure that the conclusions you 
reach have the same advantages afforded by good study designs as are avail-
able in the primary studies, I think that uncritically following this advice is 
misguided for three reasons. First, for some research questions, there may 
be so few primary studies that meet strict criteria for “quality” that it is not 
very informative to combine or compare them; however, there may be many 
more studies that contain some methodological flaws. In these same situa-
tions, it seems that the progression of knowledge is unnecessarily delayed by 
stubborn unwillingness to consider all available evidence. I believe that most 
fields benefit more from an imperfect meta- analysis than no meta- analysis 
at all, provided that you appropriately describe the limits of the conclusions 
of your review. A second reason I think that dogmatically excluding poor 
quality studies is a poor choice is that this practice assumes that certain 
imperfections of primary studies result in biased effects, yet does not test 
this assumption. This leads to the third reason: Meta- analyses can evaluate 
whether systematic differences in effect sizes emerge from certain method-
ological features. If you code the relevant features of primary studies that are 
considered “quality” within your particular field (see Chapter 4), you can 
then evaluate whether these features systematically relate to differences in 
the results (effect sizes) found among studies through moderator analyses 
(Chapter 9). Having done this, you can (1) make statements about how the 
differences in specific aspects of quality impact the effect sizes that are found, 
which can guide future design of primary studies; (2) where differences are 
found, limit conclusions to the types of studies that you believe produce the 
most valid results; and (3) where differences are not found, have the advan-
tage of including all relevant studies (versus a priori excluding a potentially 
large number of studies).

2.3.6 Are these Problems relevant only  
to Quantitative reviews?

Although these critiques were raised primarily against the early meta- analyses 
and have since been raised as challenges primarily against meta- analytic (i.e., 
quantitative) reviews, most apply to all types of research syntheses. Aside 
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from the first two I have reviewed (meta- analyses requiring extensive statisti-
cal expertise and lacking in finesse), which I have clarified as being generally 
misconceptions, the remainder can be considered as threats to all types of 
research syntheses (including narrative research reviews) and often all types 
of literature reviews (see Figure 1.1). However, because these critiques have 
most often been applied toward meta- analysis, we have arguably considered 
these threats more carefully than have scholars performing other types of lit-
erature reviews. It is useful to consider how each of the critiques I described 
above threatens both quantitative and other literature reviews (considering 
primarily the narrative research review), and how each discipline typically 
manages the problem.

The “apples and oranges” problem (i.e., inclusion of diverse types of 
studies within a review) is potentially threatening to both narrative and 
meta- analytic review. However, my impression is that meta- analyses more 
commonly attempt to draw generalized conclusions across diverse types of 
primary studies, whereas narrative reviews more often draw fragmented con-
clusions of the form “These types of studies find this. These other types of 
studies find this.” If practices stopped there, then the apples and oranges 
problem could more fairly be applied to meta- analyses than other reviews. 
However, meta- analysts usually perform moderator analyses to compare 
the diverse types of studies, and narrative reviews often try to draw synthe-
sized conclusions about the diverse types of studies. Given that both types 
of reviews typically attempt to draw conclusions at multiple levels (i.e., about 
fruits in general and about apples and oranges in particular), the critique of 
focusing on the “wrong” level of generalization—if there is such a thing, ver-
sus just focusing on a different level of generalization than another scholar 
might choose—is equally applicable to both. However, both the process of 
drawing generalizations across diverse studies and the process of comparing 
diverse types of studies are more objective and lead to more accurate con-
clusions (Cooper & Rosenthal, 1980) when performed using meta- analytic 
versus narrative review techniques.

The “file drawer” problem—the threat of unpublished studies not being 
included in a review, and the resultant available studies being a biased rep-
resentation of the literature—is a threat to all attempts to draw conclusions 
from this literature. In other words, if the available literature is biased, then 
this bias affects any attempt to draw conclusions from the literature, narra-
tive or meta- analytic. However, narrative reviews almost never consider this 
threat, whereas meta- analytic reviews routinely consider it and often take 
steps to avoid it and/or evaluate it (indeed, there exists an entire book on 
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this topic; see Rothstein, Sutton, & Borenstein, 2005b). Meta- analysts typi-
cally make greater efforts to systematically search for unpublished literature 
(and studies published in more obscure sources) than do those preparing 
narrative reviews (Chapter 3). Meta- analysts also have the ability to detect 
publication bias through comparison of published and available unpublished 
studies, funnel plots, or regression analyses, as well as the means to evaluate 
the plausibility of the file drawer threat through failsafe numbers (see Chap-
ter 11). All of these capabilities are absent in the narrative review.

Finally, the problem of “garbage in, garbage out”—that the inclusion 
of poor quality studies in a review leads to poor quality results from the 
review—is a threat to both narrative and meta- analytic reviews. However, I 
have described ways that you can overcome some problems of the primary 
studies in meta- analysis (low power, presence of methodological artifacts), 
as well as systematically evaluate the presumed impact of study quality on 
results, that are not options in a narrative review.

In sum, the problems that might threaten the results of a meta- analytic 
review are also threats to other types (e.g., narrative) of reviews, even though 
they are less commonly considered in other contexts. Moreover, meta-
 analytic techniques have been developed that partially or fully address these 
problems; parallel techniques for narrative reviews either do not exist or 
are rarely considered. For these reasons, although you should be mindful of 
these potential threats when performing a meta- analytic review, these threats 
are not limited—and are often less of threats—in a meta- analytic relative to 
other types of research reviews.

2.4 PrActIcAl MAtterS: the recIProcAl relAtIon 
Between PlAnnIng And conductIng 
A MetA-AnAlySIS

My placement of this chapter on identifying research questions for meta-
 analysis before chapters on actually performing a meta- analysis is meant to 
correspond to the order you would follow in approaching this endeavor. As 
with primary research, you want to know your goals and research questions, 
as well as potential limitations and critiques, of your meta- analysis before 
you begin.

However, such an ordering is somewhat artificial in that it misses the 
often reciprocal relation between planning and conducting a meta- analytic 
review. At a minimum, someone planning a meta- analysis almost certainly 
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has read empirical studies in the area that would likely be included in the 
review, and conclusions that the reader takes from these studies will undoubt-
edly influence the type of questions asked when planning the meta- analysis.

Beyond this obvious example, I think that much of the process of con-
ducting a meta- analysis is less linear than is typically presented, but more 
of an iterative, back-and-forth process among the various steps of planning, 
searching the literature, coding studies, analyzing the data, and writing the 
results. I do not view this reality as problematic; although we should avoid 
the practice of “HARKing” (Hypothesizing After Results are Known; Kerr, 
1998), we do learn a lot during the process of conducting the meta- analysis 
that can refine our initial questions. Next, I briefly describe how each of the 
major steps of searching the literature, coding studies, analyzing the data, 
and writing the results can provide reasons to revise our initial plans of the 
meta- analysis.

As I discuss in detail in Chapter 3, an important step in meta- analysis 
is specifying inclusion/exclusion criteria (i.e., what type of studies will be 
included in the literature) and searching for relevant literature. This pro-
cess should be guided by the research questions you wish to answer, but 
the process might also change your research questions. For example, finding 
that there is little relevant literature to inform your meta- analysis research 
questions— either too few studies to obtain a good estimate of the overall 
effect size or too little variation over levels of moderators of interest—might 
force you to broaden your questions to include more studies. Conversely, 
finding that so many studies are relevant to your research question that it is 
not practical to include all of them might cause you to narrow your research 
question (e.g., to a more limited sample, type of measure, and/or type of 
intervention).7

Research questions can also be modified after you begin coding studies 
(see Chapters 4–7). Not only might your careful reading of the studies lead 
you to new or modified research questions, but also the more formal process 
of coding might necessitate changes in your research questions. If studies 
do not provide sufficient information to compute effect sizes consistently, 
and it is not possible to obtain this information from study authors, then it 
may be necessary to abandon or modify your original research questions. If 
your research questions involve comparing studies (i.e., moderator analyses), 
you may have to alter this research question if the studies do not provide 
adequate variability or coverage of certain characteristics. For example, if 
you were interested in evaluating whether an effect size differs across ethnic 
groups, but during the coding of studies found that most studies sampled 
only a particular ethnic group, then you would not have adequate variability 



  Questions That Can and Cannot Be Answered through Meta- Analysis 31

across the studies and would have to abandon this particular research ques-
tion (or else modify it in some way to make it more tractable).

Analyzing the data (see Chapters 8–12) is probably where the most mod-
ifications to original study questions will occur. Although you should thor-
oughly investigate your original research questions, and you should avoid 
entirely exploratory “fishing expeditions,” you will invariably form new 
research questions during the data analysis phase. Some of these new ques-
tions will be formed as you learn answers to your original questions (e.g., 
“Having found this, I wonder if . . . ?”), whereas other questions will come 
from simply looking at the data (e.g., thinking about why a particular study, 
or set of studies, has discrepant effect sizes). Although both approaches are 
post hoc, the latter is certainly more exploratory—and therefore more likely 
to capitalize on chance—than the former. However, both approaches to cre-
ating new research questions are valuable, as long as you are upfront about 
their source when presenting and drawing conclusions from your meta-
 analysis (see Chapter 13).

As is true of analyzing the data, the process of writing your results may 
lead to refinement of research questions or even the development of new 
ones. Furthermore, the process of presenting your findings to colleagues— 
through either conference presentations or the peer review process—is likely 
to generate further refinement and creation of research questions.

2.5 SuMMAry

As with any research endeavor, it is important to identify the research ques-
tions you wish to answer when you are planning your meta- analysis. To facil-
itate generating and shaping these questions, I have described the primary 
methods of meta- analysis as combination and comparison across studies, 
with the focus being on one of a variety of effect sizes. I have also compared 
potential limitations of primary research and meta- analysis to offer perspec-
tive on the ways that meta- analysis can (and cannot) improve upon existing 
primary studies. In addition, I have discussed some of the common criticisms 
of meta- analysis; although most of these are either inaccurate or else appli-
cable to both meta- analytic and narrative reviews, early recognition of these 
criticisms can help you avoid some of these charges. Finally, I have described 
how formulating research questions for meta- analysis is a reciprocal process. 
Although you should identify research questions during the planning stage, 
it is likely that these will be modified or appended throughout the process of 
conducting a meta- analysis.
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2.6 recoMMended reAdIngS

Hall, J. A., Tickle- Degnen, L., Rosenthal, R., & Mosteller, F. (1994). Hypotheses and prob-
lems in research synthesis. In H. Cooper & L. V. Hedges (Eds.), The handbook of 
research synthesis (pp. 17–28). New York: Russell Sage Foundation.—This chapter 
provides a brief overview of some of the critical considerations in formulating problems 
for a meta- analytic review.

Pan, M. L. (2008). Preparing literature reviews: Qualitative and quantitative approaches 
(3rd ed.). Glendale, CA: Pyrczak.—This very accessible and brief book provides 
pragmatic advice for students preparing a literature review. Chapter 2 describes ways 
to identify potential topics for review. The book as a whole is probably most useful for 
undergraduate or early graduate students.

noteS

1. Rosenthal (1991) identified a third general approach called aggregate analysis. 
This approach evaluates some characteristics of the studies in relation to some 
mean value. For example, Rosenthal (1991) cited an analysis by Underwood 
(1957) evaluating a methodological feature of 14 learning studies (number of 
lists participants had to learn prior to the list of interest) with the mean values 
of participants in those 14 studies (mean amount of material recalled from the 
list of interest). This type of aggregate analysis represents a special case of meta-
 analysis in which the effect size is a single variable (in this example, a mean; see 
Chapter 7, Section 7.1) rather than the more typical effect size representing an 
association between two variables (see Chapter 5). Associations of this single 
variable with study characteristics represent what I have described as modera-
tor analyses in Chapter 9 (though the term “moderator analysis” is not accurate 
when the effect size is a single variable, these same techniques apply). Given that 
the aggregate analysis described by Rosenthal (1991) represents a special case of 
the more general meta- analytic approach I describe in this book, I do not con-
sider it a third, unique goal of meta- analysis.

2. The single exception to this statement is that primary studies that have overly 
heterogeneous samples (e.g., sampling extreme cases) can suffer expansion of 
range of variables of interest, which leads to overestimation of effect sizes.

3. Strictly speaking, the researcher can modify each of these factors, though it is 
typically difficult to do so. Type I error rates are arbitrary, yet most fields have 
such entrenched standards (most often a = .05) that deviations are met with skep-
ticism. The researcher is of course free to choose from a range of data- analytic 
strategies, but generally there is little variability in this decision because all 
researchers will choose the approach that provides the highest statistical power. 
Finally, special design limitations, such as intentionally sampling homogeneous 
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populations to reduce extraneous variance in between-group comparisons, can 
impact the population effect size; but this effect size is generally considered to 
exist independent of the researcher’s control.

4. Two important caveats to this claim merit consideration. First, it is necessary for 
the collection of underpowered studies to have enough methodological similari-
ties if they are to be considered reasonable replications of one another (Halpern 
et al., 2002). Second, some underpowered studies will still yield statistically sig-
nificant results because they, by chance alone, happen to estimate a particularly 
large effect size that achieved statistical significance, whereas other underpow-
ered studies will yield more typical effect sizes that fail to achieve statistical sig-
nificance. If the former are more likely to be published (or otherwise included in 
your meta- analysis) than the latter, then meta- analytic combination of this biased 
sample of underpowered effect sizes will lead to overestimates of the effect size 
in your meta- analysis. This possibility has led to suggestions that you exclude 
underpowered studies from meta- analyses (Kraemer, Gardner, Brooks, & Yesav-
age, 1998). Although I view the categorical exclusion of all underpowered studies 
as being problematic in areas of research where there are few adequately powered 
studies, the possibility of underpowered studies being systematically biased does 
indicate the importance of thorough literature reviews (especially for unpub-
lished studies; see Chapter 3), the value of conducting analyses to detect publica-
tion bias (see Chapter 11), and the need for caution in interpreting meta- analyses 
of underpowered studies.

5. A meta- analysis using fixed- effects analysis (see Chapter 8) will always have 
greater statistical power in determining the mean effect size than will any one 
of the multiple studies included. Meta- analyses using random- effects models 
(Chapter 9) can have lower statistical power than a single primary study if sub-
stantial population heterogeneity in effect sizes exists.

6. I should make clear that basic meta- analytic techniques require only this level of 
prerequisite knowledge, but there are some more advanced meta- analytic tech-
niques that require understanding of matrix algebra and multivariate statistics. 
Most of the material in this book is accessible for readers with basic graduate-
level training, though I also include—with appropriate warning—some of this 
more advanced material.

7. In principle, it is acceptable to identify a large sample of studies and randomly 
sample a more tractable number of studies. In practice, however, nearly all meta-
 analyses that are published include all identified studies in the coding and analy-
ses, which means that many readers expect you to include all available studies in 
your meta- analysis.
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3

Searching the Literature

After articulating one or more research questions for your meta- analysis (Chap-
ter 2), the next step is to locate the studies that will provide information to 
answer these questions (as described in subsequent chapters on coding and 
analysis). Unlike narrative reviews that are typically unsystematic in their search-
ing of the literature (or at least typically do not articulate this process), the field 
of meta- analysis has devoted considerable attention to practices of searching 
and retrieving relevant literature.

In this chapter, I describe how it is useful to conceptualize the studies in 
your meta- analysis as a sample of a larger population (Section 3.1) and how 
this conceptualization leads to explicit criteria of which type of studies should 
be included versus excluded from your meta- analysis (Section 3.2). I will then 
describe various methods of searching for relevant literature, considering the 
advantages and disadvantages of each (Section 3.3). I conclude the chapter 
by describing the importance of “reality checking” your search (Section 3.4) 
and the practical matter of creating a meta- analytic database (Section 3.5). 
The steps involved in a literature search as described in this chapter are sum-
marized in Figure 3.1.

3.1 develoPIng And ArtIculAtIng 
A SAMPlIng frAMe

Given that meta- analysis uses the individual study as its unit of analysis, it is 
useful to think of your meta- analysis as consisting of a sample of studies, just 
as primary analyses sample people or other units (e.g., families, businesses) 
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comprising its sample. In primary analyses, we typically wish to make infer-
ences to a larger population that is represented by the sampled individuals; 
in meta- analysis, we typically wish to make inferences to a larger population 
of possible studies from the sample of studies included in our review. In both 
cases, we want our sample to be representative of this larger population, as 
opposed to a biased (nonrepresentative) set.

To illustrate the importance of obtaining an unbiased sample of studies, 
we can consider the threat of publication bias (discussed in further detail in 
Chapter 11). The top of Figure 3.2 displays a hypothetical population of effect 
sizes, with the horizontal (x) axis representing the effect sizes obtained in 
studies of this population and the vertical (y) axis representing the frequency 
that studies yield this effect size.1 We see that the mean effect size in this 
population is somewhere around 0.20 and that there is a certain amount of 
deviation around this mean due to either sampling fluctuation or unspecified 
(random) differences. The bottom part of this figure shows the distribution 
of a biased sample of studies drawn from this population. I have used arrows 
of different width to represent the likelihood of studies from the population 
being included in this sample. The arrows to the right are thick to represent 
studies with large effect sizes being very likely to be included in the sample 
(i.e., very likely to be found in a search), whereas the arrows to the left are 
thin to represent studies with small effect sizes being very unlikely to be 
included in the sample (i.e., likely not found in a search). We can see that this 
differential likelihood of inclusion by effect sizes results in a biased sample. 
If you were to meta- analyze studies from this sample, you would find a mean 
effect size somewhere around 0.30 rather than the 0.20 found in the popula-
tion. Thus, analysis of this biased sample of studies leads to biased results in 
a meta- analysis.

The goal of searching and retrieving the literature for a meta- analytic 
review is to obtain a representative, unbiased collection of studies from which 
inferences can be made about a larger population of studies. Meta- analyses 
differ from primary analyses in that your goal is typically to obtain all of the 
studies comprising this population as it currently exists.2 Whether or not 
you are successful in obtaining all available studies (and it is not possible to 
know with certainty that you have), it is still appropriate to consider this set 
of studies as a sample, from which you might draw inferences about a larger 
population including studies you did not locate or studies performed in the 
future (assuming that these studies are part of the same population as those 
included in your meta- analysis).

This approach, in which you think of the studies included in your meta-
 analysis as a sample from a population to which you wish to make inferences, 
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has two important implications. First, this conceptualization properly frames 
the conclusions you draw from results after completing your meta- analysis; 
this is important in allowing you to avoid either understating or overstat-
ing the generalizability of your findings. Second, and more relevant during 
the planning stages of your review, this conceptualization should guide your 
criteria for which type of studies should or should not be included in your 
meta- analysis, as described next.

fIgure 3.2. Hypothetical illustration of biased sample due to differential 
likelihood of including studies in a meta- analysis.

-0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60

Population of effect sizes

-0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60

Sample of published effect sizes
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3.2 IncluSIon And excluSIon crIterIA

The inclusion criteria, and conversely the exclusion criteria, are a set of explicit 
statements about the features of studies that will or will not (respectively) 
be included in your meta- analysis. Ideally, you should specify these criteria 
before searching the literature so that you can then determine whether each 
study identified in your search should be included in your meta- analysis. 
Practically speaking, however, you are likely to find studies that are ambigu-
ous given your initial criteria, so you will need to modify these criteria as 
these unanticipated types of studies arise.

3.2.1 the Importance of clear criteria

Developing an explicit set of inclusion and exclusion criteria is important 
for three reasons. First, as I noted earlier, these criteria should reliably guide 
which studies you will (or will not) include in your meta- analysis. This guid-
ance is especially important if others are assisting in your search. Even if you 
are conducting the search alone, however, these criteria can reduce subjectiv-
ity that might be introduced if the criteria are ambiguous.

The second reason that explicit criteria are important is that these crite-
ria define the population to which you can make conclusions. A statement of 
exclusion (i.e., an exclusion criterion) limits your conclusions not to involve 
this characteristic. For example, in the example meta- analysis I will pres-
ent throughout this book (considering various effects involving relational 
aggression), my colleagues and I excluded samples with an average age of 18 
years or older. It would therefore be inappropriate to attempt to draw any con-
clusions regarding adults from this meta- analysis. A statement of inclusion 
(i.e., an inclusion criterion) implies that the population is defined—at least 
in part—by this criterion. For example, a criterion specifying that included 
studies must use experimental manipulation with double-blind procedures 
would mean that the population is of studies with this design (and any other 
inclusion criteria stated).

The third reason that explicit criteria are important relates to the goal 
of transparency, which is an important general characteristic to consider 
when reporting your meta- analysis (see Chapter 13). Here, I mean that your 
inclusion/exclusion criteria should be so explicit that a reader could, after 
performing the same searches as you perform, come to the same conclu-
sions regarding which studies should be included in your meta- analysis. To 
illustrate, imagine that you perform a series of searches that identify 100 
studies, and based on your inclusion/exclusion criteria you decide that 60 
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should be included in your meta- analysis. If another person were to evalu-
ate those same 100 studies using your inclusion/exclusion criteria, he or she 
should—if your criteria are explicit enough— identify the same 60 studies 
as appropriate for the review. To achieve this level of transparency in your 
meta- analysis, it is important to record and report the full set of inclusion/
exclusion criteria you used.

3.2.2 Potential Inclusion/exclusion criteria

The exact inclusion/exclusion criteria you choose for your meta- analysis 
should be based on the goals of your review (i.e., What type of studies do you 
want to make conclusions about?) and your knowledge of the field. Never-
theless, there are several common elements that you should consider when 
developing your inclusion/exclusion criteria (from Lipsey & Wilson, 2001, 
pp. 18–23):

3.2.2.a Definitions of Constructs of Interest

The most important data in meta- analyses are effect sizes, which typically 
are some index of an association between X and Y.3 In any meta- analysis 
of these effect sizes, it is important to specify criteria involving operational 
definitions of both constructs X and Y. Although it is tempting for those 
with expertise in the area to take an “I know it when I see it” approach, 
this approach is inadequate for the reader and for deciding which studies 
should be included. One challenge is that the literature often refers to the 
same (or similar enough) construct by different names (e.g., in the example 
meta- analysis, the construct I refer to as “relational aggression” is also called 
“social aggression,” “indirect aggression,” and “covert aggression”). A sec-
ond challenge is that the literature sometimes refers to different constructs 
with the same name (e.g., in the example meta- analysis, several studies used 
a scale of “indirect aggression” that included such aspects as diffuse anger 
and resentment that were inconsistent with the more behavioral definition 
of interest). By providing a clear operational definition of the constructs of 
interest, you can avoid ambiguities due to these challenges.

3.2.2.b Sample Characteristics

It is also important to consider the samples used in the primary studies that 
you will want to include or exclude. Here, numerous possibilities may or may 
not be relevant to your review, and may or may not appear in the literature you 
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consider. Some basic demographic variables to consider include gender (e.g., 
Will you include studies sampling only males or only females?), ethnicity 
(e.g., Will you include only representative samples, or those that sample one 
ethnic group exclusively?), and age (e.g., Will you include studies sampling 
infants, toddlers, children, adolescents, young adults, and/or older adults?). 
It is also worth considering what cultures or nationalities will be included. 
Even if you place no restrictions on nationality, you will need to exclude 
reports written in languages you do not know,4 which likely precludes many 
studies of samples from many areas of the world. Beyond these examples, 
you might encounter countless others—for example, samples drawn from 
unique settings (e.g., detention facilities, psychiatric hospitals, bars), selected 
using atypical screening procedures (e.g., certain personality types), or based 
on atypical recruitment strategies (e.g., participants navigating to a website). 
Although it is useful if you can anticipate some of these irregular sample 
characteristics in advance, many will invariably arise unexpectedly and you 
will have to deal with these on a case-by-case basis.

3.2.2.c Study Design

A third consideration for inclusion/exclusion criteria for almost every meta-
 analysis is the type of research design that included studies should have. Some 
obvious possibilities are to include only experimental, quasi- experimental, 
longitudinal naturalistic, or concurrent naturalistic designs. Even within 
these categories, however, there are innumerable possibilities. For example, if 
you are considering only experimental treatment studies, should you include 
only those with a certain type of control group, only those using blinded pro-
cedures, and so on? Among quasi- experimental studies, are you interested 
only in between-group comparisons or pre–post designs? Answers to these 
sorts of questions must come from your knowledge of the field in which you 
are performing the review, as well as your own goals for the meta- analysis.

3.2.2.d Time Frame

The period of time from which you will draw studies is a consideration that 
may or may not be relevant to your meta- analysis. By “period of time,” I mean 
the year in which the primary study was conducted, for which you might 
use the proxy variable year of publication (or completion, presentation, etc., 
for unpublished works). For many phenomena, it might be of more interest 
to include studies from a broad range of time and evaluate historic effects 
through moderator analyses (i.e., testing whether effect sizes vary regularly 



  Searching the Literature 41

across time; see Chapter 9) rather than a priori excluding studies. However, 
in some situations it may make sense to include only those studies performed 
within a certain time period. These situations might include when you are 
only interested in a phenomenon after some historic changes (e.g., correlates 
of unprotected sex after the AIDS crisis) or when the phenomenon has only 
existed during a certain period of time (e.g., studies of cyberbullying have 
only been performed since the popularity of the Internet has increased).

3.2.2.e Publication Type

The reporting format of the studies is another consideration for potential 
inclusion/exclusion criteria. Although including only published studies is 
generally considered problematic (due to the high possibility of publication 
bias; see Chapter 11), it is important to consider what types of reports will 
be included. Possibilities include dissertations, other unpublished written 
reports (e.g., reports to funding agencies), conference presentations, or infor-
mation that the researcher provides you upon request.

3.2.2.f Effect Size Information

Finally, a necessary inclusion criterion is that the studies provide sufficient 
information to compute an effect size.5 In most situations, this will be infor-
mation provided in the written report that allows you directly to compute 
an effect size (see Chapter 5). However, you should also consider whether 
you would include studies that provide only enough information to compute 
a lower-bound estimate (e.g., probability ranges such as p < .05, statements 
that results were nonsignificant; see Chapter 5). When studies do not report 
sufficient information to compute effect sizes, you should contact the study 
authors to request more information; here, a necessary inclusion criterion is 
that the authors supply this information.

3.2.3 relative Advantages of Broad versus narrow 
Inclusion criteria

In developing inclusion/exclusion criteria, specifying both broad and narrow 
sets of criteria has notable advantages. By broad criteria, I refer to a set of cri-
teria that include most possible studies and exclude few, whereas narrow cri-
teria will exclude many studies and include few. Of course, these two choices 
represent end points along a continuum. Selecting a set of criteria that falls 
along this continuum has several implications for your meta- analysis.
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Perhaps the most important consideration in weighing a broad versus nar-
row set of criteria is that of the population of studies about which you want to 
draw conclusions. Put simply: Would you prefer to make conclusions about a 
very specific, well- defined population, or would you rather make more gener-
alizable conclusions about a potentially messy population (i.e., one with likely 
fuzzy boundaries, likely inconsistent representation in your sample of studies, 
and possibly undistinguished subpopulations)? Specific to the issue of study 
quality (see Chapter 4) is the question of whether you want to include only the 
most methodologically rigorous studies or are willing to include methodologi-
cally flawed studies (risking the “garbage in, garbage out” criticism described 
in Chapter 2). There is not a universal “right answer” to these questions, just as 
there is not a right answer to the issue of level of generalization to the “apples 
and oranges” problem described in Chapter 2. If you choose a narrow set of 
criteria, you should be cautious to draw conclusions only about this narrowly 
defined population. In contrast, if you choose a broad set of criteria, it is prob-
ably advisable to code for study characteristics that contribute to this breadth 
and to evaluate these as potential moderators of effect sizes (see Chapter 9).

A second consideration is the number of studies that will ultimately be 
included in your meta- analysis by specifying a broad versus narrow set of 
criteria. Broad criteria will result in a meta- analysis of more studies that are 
more diverse in their features, whereas narrow criteria will result in fewer 
studies that are more similar in their features. Having fewer studies will 
sometimes result in inadequate power to evaluate the average effect size (see 
Chapters 8 and 10), will usually preclude thorough consideration of study 
characteristics that account for differences in effect sizes (i.e., moderator 
analyses; see Chapter 9), and might even lead your audience to view your 
review as too small to be important to the field. In contrast, having more 
studies increases the amount of work involved in the meta- analysis (espe-
cially the coding of studies), perhaps to the point where a meta- analysis of 
the full collection of studies is impossible.6 Therefore, one consideration is to 
specify inclusion/exclusion criteria that yield a reasonable number of studies 
given your research questions, your available time and resources, and typical 
practices in your field. This is not the only, or even primary, consideration, 
but it is a realistic factor to consider.

3.3 fIndIng relevAnt lIterAture

After specifying inclusion/exclusion criteria, the next step is to begin search-
ing for empirical studies that fit within this sampling frame. In searching for 
this relevant literature, you have many options, each with advantages and 
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limitations over the others. Although it is not always necessary to use all of 
the options I list next, it is useful to consider at least most of them and how 
reliance on some but not others might bias the sample of studies you obtain 
for your meta- analysis.

Before describing these search options, it is useful to consider the con-
cepts of recall and precision (see White, 2009). Recall is the percentage of 
studies retrieved from those that should be retrieved (i.e., the number of stud-
ies meeting your inclusion criteria that actually exist); it is a theoretical value 
that can never be known because you never know how many studies actually 
exist. Precision is the percentage of retrieved studies that are relevant (i.e., 
actually meet your inclusion criteria). Ideally, we would like both to be 100%, 
such that our search strategies yield every available study that meets our 
criteria and none that do not. In reality, we can never meet this goal, so you 
must balance the relative costs of one or the other being less than 100%. The 
cost of imperfect recall is that you will miss studies that should have been 
included, resulting in reduced statistical power and potentially biased results 
if the missed studies differ from those you included. The cost of imperfect 
precision is that we will waste our resources retrieving and reading studies 
that will not be included in our meta- analysis. Although this might not seem 
like a tremendous cost, it is if it means that you cannot complete your meta-
 analysis.7 The goal of your search strategy should be to achieve high recall 
without diminishing precision beyond an unacceptable level, where “unac-
ceptable” depends on your available resources and the expected benefits of 
increasing recall in terms of statistical power and reducing bias.

3.3.1 electronic databases

Modern electronic databases, available via the Internet through most uni-
versity libraries (or available for subscription for others), have made the task 
of searching for relevant studies much easier than in the early days of meta-
 analysis. Electronic databases exist in many fields, such as economics (Econ-
Lit), education (ERIC), medicine (Medline), psychology (PsycINFO), and 
sociology (Sociological Abstracts), to name just a few. These databases often 
have wide coverage (though see cautions below) and therefore serve as one 
of the primary search tools in modern meta- analysis. In fact, these databases 
are typically the first searches performed by meta- analysts, and I would con-
sider them necessary (though not sufficient) for your meta- analysis.

Despite their power and apparent simplicity, using electronic databases is 
a more complex process than might be initially apparent (see Reed & Baxter, 
2009). I next describe three considerations in using these databases, attempt-
ing to consider these generically rather than focusing on any one database.
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3.3.1.a What Is Included and What Is Excluded?

The first question you should ask before using any electronic database is 
“What is included (and what is excluded) from this database?.” Answering 
this question requires you to read the documentation of the databases you 
are considering; consulting with librarians in your topical area is invaluable, 
as they have considerable expertise on this question.

Some databases include dissertations and other unpublished works, 
whereas others do not. If the database you plan to use does not include dis-
sertations, you should certainly supplement your search of this database 
with one that includes dissertations (such as Proquest dissertation and the-
sis database). If the database does not include other unpublished work, and 
your inclusion criteria allow for this work, then you will need to ensure that 
other search strategies will find these works. If the database does include 
unpublished works, you should investigate how these works are selected for 
inclusion; databases that include works unsystematically (e.g., primary study 
authors being willing to submit works to the database) should be treated cau-
tiously as the sample of unpublished work may be biased.8

Another consideration is the breadth of published work included in the 
database. Prominent journals are more likely to be included than peripheral 
journals, and books by larger publishers are more likely to be included than 
those by lesser-known publishers. If it is plausible that the results (effect 
sizes) could differ in studies published in outlets included (e.g., prominent 
journals) versus excluded (e.g., periphery journals) in the database(s) you are 
using, then reliance on this database may yield a biased sample of studies.

3.3.1.b Key Words

After researching the databases you will use to understand their coverage, 
you then search the databases for relevant studies. To perform this search, 
you generally enter key words, for which the search engine will return records 
containing these key words. Selection of appropriate key words goes far in 
increasing recall and precision, so you should consider these key words care-
fully and report them in your meta- analytic review.

A first consideration is the key words you select. You can select key 
words based on your knowledge of the literature in your area, by examining 
the key words specified in studies that you know contain data about the phe-
nomenon of interest, and through thesauri available in some electronic data-
bases. Your goal is to create a list of words or phrases that (1) are as specific 
to the phenomenon you are investigating as possible and (2) cover the range 
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of terms used to describe the phenomenon. Considering the example meta-
 analysis involving associations of relational aggression with various other 
constructs (e.g., gender, peer rejection), our goal was to search for all studies 
of relational aggression. Terms such as “aggression” were too broad, as these 
would identify studies investigating constructs aside from that in which we 
were interested. Using the term “relational aggression” was more specific, but 
by itself would have been inadequate because different researchers use dif-
ferent terms for this construct. We ultimately developed a list of four terms 
to use in our search (“relational aggression,” “social aggression,” “indirect 
aggression,” and “covert aggression”) that represent the terms typically used 
by primary study authors investigating this construct.

Wildcard marks (e.g., “*” in PsycINFO) are useful in combination with 
key words. Wildcard marks are used in conjunction with a stem, specify-
ing that the search engine returns all studies containing the specified stem 
followed by any characters where the wildcard mark is typed. For example, 
submitting the phrase “relational agg*” would return studies containing 
the phrases “relational aggression,” “relational aggressor,” and so on. Using 
wildcard marks can also return unexpected and unwanted findings, how-
ever, (e.g., the example stem and wildcard would also return any studies that 
used the phrase “relational aggravation”). These can generally be recognized 
quickly and skipped, or you can modify the wildcard search term or use the 
Boolean statement “not” as described next.

Boolean statements are a tremendous asset when you are searching elec-
tronic databases. These statements include “or,” “and,” and “not” in most 
databases. The use of “or” is especially valuable in combining alternative key 
words for the same construct; for example, we connected the four terms for 
the construct of interest using “or” in our example meta- analysis (i.e., the 
search phrase was: “relational aggression” or “social aggression” or “indi-
rect aggression” or “covert aggression”). The logical statement “and” is useful 
for either limiting the studies returned or specifying two construct associa-
tions that are of interest in many meta- analyses. For example, in the example 
meta- analysis, we could have combined the above search (various key words 
for relational aggression combined using “or”) with a phrase limiting the 
samples to childhood or adolescence (“child* or adolesc*”) using the “and” 
statement.9 Similarly, if we were only interested in studies reporting associa-
tions between relational aggression and peer rejection (one of the examples 
I use commonly throughout the book), we could have used “and” to link 
the phrases for relational aggression with a set of phrases for peer rejection. 
Finally, you can use the key word “not” either to exclude unwanted wildcard 
phrases (e.g., in the example above, I could specify “not ‘relational aggrava-
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tion’ ” to remove the unwanted studies using this term), or to specify exclu-
sion criteria (e.g., specifying “not ‘adult’ ”).

3.3.1.c Cautions

Electronic databases are incredibly powerful and time- efficient tools for 
searching for relevant studies, and I believe that every modern meta- analysis 
should use these databases. However, at least three cautions merit consider-
ation.

First, as I described earlier, you should carefully consider what is not 
included in the electronic databases you use. If a database does not include 
(or if it has poor rates of inclusion) unpublished works or studies published 
in peripheral outlets, then reliance on this database alone would result in 
diminished recall. This diminished recall can threaten your meta- analysis by 
decreasing statistical power and, if the studies not included in the database 
systematically differ from those included (e.g., publication bias, Chapter 11), 
by producing biased results. To avoid these problems, you should identify 
alternative electronic databases and other search strategies that are likely 
to identify relevant studies not included in the electronic database you are 
using.

A related caution comes from the fact that most electronic databases are 
discipline specific. Although the databases vary in the extent to which they 
include works in related disciplines, this disciplinary specificity suggests that 
you should not rely on only a single database within your discipline. Many, if 
not most, phenomena that social scientists study are considered within mul-
tiple disciplines. For example, research on relational aggression might appear 
not only in psychology (e.g., in the PsycINFO database), but also in criminal 
justice, education, gender studies, medicine, public health, and sociology (to 
name just a few possibilities). I recommend that you consider searching at 
least one or two databases outside of your primary discipline to explore how 
much literature might be obtained from other disciplines.

A third caution in using electronic databases relates to their very nature: 
You perform a search and a list of studies is provided, but you have no idea 
how many potentially relevant studies were not provided. In other words, rely-
ing only on electronic databases provides no information about what stud-
ies were not identified in your search, so the possibility remains that some 
studies—and possibly even some very well-known studies—did not match 
your specified search criteria. You can address this problem in several ways. 
One possibility is to perform some additional searches within your selected 
database(s) that use broader terms (e.g., “aggression” rather than more spe-
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cific terms such as “relational aggression”) and visually scan results to see if 
any additional relevant studies could be identified with broader search cri-
teria. Second, you can rely on additional search procedures besides the elec-
tronic database. I return to this topic of assessing the adequacy of your search 
(including the adequacy of electronic database searches) in Section 3.4.

3.3.1.d Conclusions about the Use of Electronic Databases

Electronic databases of journal articles, books and chapters, and often some 
unpublished works exist in most social science disciplines. These searchable 
databases can provide an efficient method of searching for studies to include 
in your meta- analysis if you carefully consider the coverage of the databases 
you use and select appropriate key words along with wildcard marks and 
Boolean statements. These electronic databases should not be your only 
method of searching the literature, however, as several cautions need to be 
considered when using them. Nevertheless, the electronic databases are likely 
to be one of the primary ways you will search for studies, and every modern 
meta- analysis should use these tools.

3.3.2 Bibliographical reference volumes

Bibliographical reference volumes are printed works that provide informa-
tion similar to electronic databases (e.g., titles, authors, abstracts), often list-
ing studies by broad topics and/or including an index of key words. These 
volumes were frequently published by large research societies and were 
intended to aid literature searches in specific fields in much the same way 
that electronic databases now do in most fields. For example, the Ameri-
can Psychological Association published Psychological Abstracts from 1927 
to 2006. In many fields, publication of these printed reference volumes has 
been discontinued in favor of online electronic versions (though exceptions 
may exist).

Searching these reference volumes is not nearly as convenient as search-
ing electronic databases, and few meta- analysts currently rely on these vol-
umes as their primary search instrument (though you are likely to see them 
used when you read older meta- analytic reviews). Nevertheless, there still 
may be instances when you would consider using these printed volumes. Spe-
cifically, if studies potentially relevant for your meta- analysis include older 
studies, and the electronic databases that you use have not yet incorporated 
all of these older studies, then it may be useful to consult these reference vol-
umes to ensure that you do not systematically exclude these older studies.
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3.3.3 listings of unpublished works

As I mentioned briefly in Chapter 2, and describe in detail in Chapter 11, one 
of the most challenging threats to many meta- analyses is that of publication 
bias (a.k.a. the “file drawer problem”). The extent to which you can avoid 
and evaluate this threat depends on your searching for and including unpub-
lished studies in your meta- analysis. I have already mentioned the value of 
searching electronic databases that include dissertations as one method of 
obtaining unpublished studies. Next I list three additional listings that might 
allow you to find more unpublished studies. For each, I suggest searching 
with the same careful rigor I suggested for searching electronic databases.

3.3.3.a Conference Programs

A potentially valuable way to find unpublished studies is to search the pro-
grams of academic conferences in which relevant work is likely to be pre-
sented. Dedicated meta- analysts often have shelves of these programs, 
though even this idea is becoming antiquated as more conference programs 
are archived and searchable online. In this approach, you search the titles of 
presentations listed in conference books (larger conferences typically have at 
least crude indices) and request copies of these works from authors (whose 
contact information is usually listed in these books).

From my experience, it is usually possible to identify a large number 
of unpublished works by searching conference programs; however, retriev-
ing copies of these presentations for coding can be more difficult. Typically, 
you are better able to contact authors and more likely to receive requested 
presentations if you make your request shortly after the conference rather 
than several years later. Therefore, studies obtained through conference pro-
grams probably underrepresent older studies. Some other tips I have learned 
through experience include: (1) whenever you request a conference presenta-
tion, provide exact details such as the title of the presentation and the year 
and conference where it was presented; (2) contact coauthors if you do not 
receive a response from the first author, as some authors of the presentation 
may have graduated or left academia; (3) tell the author why you are request-
ing this information (I will elaborate on this piece of general advice below).

Although I think conference presentations are a valuable source of 
unpublished studies, there are some limitations and cautions to consider. 
First, your search for conference presentations should be systematic. If you 
decide to search the programs of a particular conference, you should make 
reasonable efforts to search the programs’ books across a reasonable number 
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of years (vs. the years you attended but not the years in between when you 
did not attend), and you should certainly search for works within the entire 
conference book (vs. just the presentations you happened to attend). Second, 
you should recognize that the response rate to your requests might be low 
(you should track this response rate as it might be useful to report), and you 
should consider the possibility that responses might be systematically related 
to effect sizes.10 Finally, you should anticipate that conference presentations 
will often present information needed for study coding (Chapter 4) and effect 
size calculation (Chapters 5–7) in less detail than other formats (e.g., journal 
articles). It is still better to code what you can from these studies than not to 
consider them at all, and it is possible to request further information from 
study authors.

3.3.3.b Funding Agency Lists

Another valuable way to obtain unpublished studies is to search funding 
award listings from relevant funding agencies (e.g., National Institutes of 
Health, National Science Foundation, private foundations). Because funding 
decisions are made before results are known, studies obtained through this 
approach will not likely be subject to biases in findings of significance/non-
significance. Furthermore, searching these listings is likely to yield studies 
that have been started but have not yet gone through the publication process 
(i.e., more recent studies).

3.3.3.c Research Registries

Some fields of clinical science have established listings in which researchers 
are expected to register a study before conducting it. To encourage registra-
tion, some journals will only publish results from studies registered prior 
to conducting the study. Such registries, by creating a listing of studies in 
advance of knowing the results, should yield a collection of results unbiased 
by the findings (e.g., nonsignificant or counterintuitive findings). If the field 
in which you are performing your meta- analysis has such registries, these 
will be a very valuable search avenue for obtaining an unbiased set of stud-
ies.

3.3.4 Backward Searches

After accumulating a set of studies for potential inclusion in your meta-
 analysis, you will begin the process of coding these studies (see Chapters 



50 PLANNING AND PREPARING A META-ANALYTIC REVIEW 

4–8). You should read these articles completely (vs. going straight for the 
method and results sections where most information you will code appears), 
searching for cited studies that might be relevant for your review that you 
did not identify through your other strategies. Similarly, you should care-
fully read prior reviews (narrative or meta- analytic) searching for potentially 
relevant studies.

This process of searching for relevant studies cited in the works you have 
found is referred to as “backward searching” (sometimes also called “foot-
note chasing”); that is, you are working from the studies you have “back-
ward” in time to identify previously conducted studies cited in these works. 
This approach is especially useful in identifying older studies, whereas it is 
unlikely to identify newer studies that have not yet been cited. An impor-
tant potential bias of this approach comes from the possibility that studies 
yielding certain “favorable” results (e.g., significant findings, effects favoring 
expectations) are probably more likely to be cited than studies with “unfa-
vorable” results (e.g., null findings, counterintuitive findings).

Despite the potential biases of backward searches, I believe that they 
represent a valuable method of searching. My own experience is that many 
studies come from this approach even with what I consider quite thorough 
initial searches using other means. This approach is also valuable in iden-
tifying literature that might have been missed in other search approaches 
due to failures to use appropriate key words or to search literatures in other 
disciplines.

3.3.5 forward Searches

Whereas backward searches attempt to find studies cited in the studies you 
have, forward searches attempt to find studies that cite the studies you have. 
Forward searches are often performed using special databases for this purpose 
(e.g., Social Science Citation Index), though some field- specific databases are 
incorporating this approach (e.g., the psychology database PsycINFO now 
has this capacity). To perform a forward search, you enter information for a 
study you know is relevant to the topic of your meta- analysis, and the search 
engine finds works that cite this study. Because these citing studies necessar-
ily occur after the cited study, the search is moving “forward” in time and is 
more likely to find newer articles than a backward search.

There are various degrees of intensity in engaging in forward searches. 
A less intense approach is to identify several of the earliest and most seminal 
works on the topic, then perform forward searches to identify studies citing 
these seminal papers. At the other end of the spectrum, you could perform 
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forward searches of all works that you have determined meet the inclusion 
criteria for your review.

Forward searches are likely to yield high recall, as it is unlikely that 
many relevant studies would fail to cite at least some of the seminal works in 
the area. However, my experience11 is that forward searches are often quite 
low in precision. This is because many papers will cite a seminal work in an 
area when this area is of tangential interest to the paper.

3.3.6 communication with researchers in the field

The final search approach that I will describe is to consult experts/researchers 
in the field in which you are performing your meta- analysis. This approach 
actually consists of several possibilities.

At a minimum, you should ask some experts to examine your inclu-
sion/exclusion criteria and the list of studies you have identified, request-
ing that they note additional studies that should have been included. If you 
examine these suggested studies and some do meet your inclusion criteria, 
then you should not only include these studies, but also consider why your 
search strategy failed to identify these studies (and revise your search strat-
egy accordingly). I recommend that you consult colleagues who have a some-
what different perspective in the field than your own (i.e., different “camps”) 
to provide a unique perspective.

Another valuable approach to communicating with researchers is simply 
to e-mail those individuals who conduct research in the area of your meta-
 analysis, asking them if they have any additional studies on the topic. This 
effort can also vary in intensity, ranging from e- mailing just the most active 
researchers in the field to e- mailing every author of studies you have identi-
fied through other means. Although you will have to identify an approach 
that works best for you given your field and relationships with other research-
ers, some practices that I have found valuable are: (1) to clearly state why I 
am requesting studies (e.g., “I am conducting a meta- analytic review of the 
associations between X and Y”); (2) to provide a small number of the most 
critical inclusion criteria (e.g., “I am interested in obtaining studies involving 
children or adolescents”); and (3) to state the various ways that they could 
provide the requested information to me (e.g., “I would like the correlation 
between X and Y, but can compute this from most other statistics you might 
have available, such as t-tests, ANOVA results, or raw means and standard 
deviations. I am also happy to compute this correlation myself, if you are 
willing to share the raw data with the agreement that I will delete this data 
file after computing this correlation.”).
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A related but less targeted approach is to post requests on listservs, web-
pages, or similar forums. Many of the same practices that are valuable when 
e- mailing are useful in such postings, though the standards of particular 
forums might necessitate briefer requests.

These communications with researchers are extremely valuable, though 
several considerations are important. First, my impression is that the response 
rates vary widely for different meta- analysts, with some receiving almost no 
responses but others receiving tremendous responses. I suspect that the fac-
tors that improve response rates include your ability to convince others that 
your request is important and worth their time, your ability to minimize the 
burden on the researchers, and the quality of relationships you have with 
these colleagues. A second consideration is the obvious fact that the more 
widespread your requests (i.e., numerous e-mails or public postings), the more 
people know that you are conducting this particular meta- analysis, which is 
a consideration in terms of the review process. Perhaps the most important 
consideration, however, is one that I believe means that you absolutely must, 
to at least some degree, involve colleagues in the area of your meta- analysis: 
Meta- analytic reviews synthesize the body of knowledge in an area of study 
and typically provide the foundation for the next wave of empirical study in 
this area. Thus, the research community has a vested interest in this process, 
and the meta- analyst has an obligation to consider their input. This statement 
does not mean that you need to send the initial draft of your meta- analysis 
to everyone in your field (you should not), nor that your review needs to sup-
port the conclusions of everyone in your field (your conclusions are hopefully 
empirically driven). Instead, by soliciting input from others in your field, 
whether by simply including the full body of their empirical results in your 
review or obtaining input from a smaller number of colleagues, your meta-
 analysis will benefit from this collective knowledge.

3.4 reAlIty checkIng: IS My SeArch AdeQuAte?

Regardless of what methods of searching the literature you rely upon, the 
most important question is whether your search is adequate. You can think 
of the adequacy of your search in three ways. First, is the sample of studies 
you have obtained representative of the population of studies, or is it instead 
biased (as illustrated in Figure 3.2)? Second, does the sample of studies you 
have obtained provide sufficient statistical power to evaluate the hypotheses 
you are interested in (or, similarly, does it provide sufficiently narrow confi-
dence intervals of effect size estimates to be useful)? Third, would the typi-
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cal scholar in my field find the sample of studies complete, or have I missed 
studies that obviously should be included? The first two questions directly 
affect the quality of the empirical conclusions of your meta- analysis and so 
are obviously important. The third question is less important to the conclu-
sions drawn, but is pragmatically relevant to others’ viewing of your review 
as adequate. This is a worthy consideration affecting both the likelihood of 
publication of your review and the impact it will have on your field.

The question of whether the sample you have obtained is an unbiased 
representation of the population is impossible to answer with certainty. How-
ever, there do exist methods of evaluating for the most likely bias—that of 
publication bias—which I describe in Chapter 11.

Probably the best way to answer all of these questions satisfactorily is to 
make every reasonable effort to ensure that your search is exhaustive—that 
is, to ensure that the sample of studies for your meta- analysis contains as 
close to all the studies that exist in the current population as possible. This 
goal is probably never entirely attainable, yet if you have made every effort to 
obtain all available studies, it is reasonable to conclude that you have come 
“close enough.”12 No one knows when “close enough” is adequate, and there 
is less empirical evidence to inform this decision than is desired, but I offer 
the following suggestions for your own consideration of this topic.

First, you should conduct an initial search using some combination of 
the methods described above that you expect will provide a reasonably thor-
ough sample of studies. For example, you might decide to consult prior (nar-
rative or meta- analytic) reviews in this area, search several electronic data-
bases in which you believe relevant studies might exist (ensuring that these 
electronic searches include searches of unpublished studies such as disser-
tations), several listings of unpublished studies (i.e., conference programs, 
funding databases, and any research registries that exist in your field), and 
send out a request to authors via e-mail or listserv/website postings.

Second, you should create a list of studies obtained from these sources 
and ask some colleagues familiar with this research area to examine this list 
along with your inclusion/exclusion criteria. If they view it as complete, you 
have a good beginning. However, if they identify studies that are missing but 
should have been found, you should revise your search strategies (e.g., speci-
fying different key words for electronic searches) and repeat the prior step.

The third suggestion is to take this list and begin forward and back-
ward searches. You might start with forward searches, as this is less time-
 consuming. Here, you would start with a small number of the most seminal 
works in the area (in the absence of a clear idea of the seminal works, you 
might create a short list of the first studies and the studies published in the 
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top journals in your field). After performing forward searches with these 
seminal works (spending considerable time reviewing the citing papers to 
ensure relevance, as these types of searches are usually low in precision), you 
probably will have identified some additional studies; if not, you can reason-
ably conclude that forward searching will not yield any additional studies. 
Then, you can begin performing forward searches with the remaining stud-
ies, perhaps starting with the oldest studies first, as these have existed for the 
longest time and have therefore had more opportunity to be cited. At some 
point, you will likely reach a point where forward searches of more articles 
no longer yield new articles, and you can stop forward searching.

At this point, you can begin coding studies (see Chapters 4–7). While 
doing so, you should also perform backward searches (i.e., reading the works 
carefully for citations to other potentially relevant studies). My experience 
is that I often find a considerable number of additional studies when I begin 
coding, but that this number quickly diminishes as I progress in coding stud-
ies. If you find that you are almost never identifying additional studies near 
the end of your coding, you can be reasonably confident that your search is 
approaching exhaustion.

Despite this confidence, I recommend two additional steps to serve as 
a reality check. First, sit down with a few years of journals that are likely 
to publish studies relevant to your meta- analysis, and simply flip through 
the tables of contents and potentially relevant studies.13 If you do not find 
any additional articles, then this adds to your confidence that you have con-
ducted an exhaustive search. However, if you do find additional articles, then 
you obviously need to revise your search procedures (if you find relevant 
articles, carefully consider why they were not found—e.g., did the authors 
use different key words or terminology than you used in your search?). The 
second step, if your flipping through the journals suggests the adequacy of 
your search, is to send the list of studies again to some experts in your field 
(preferably some who did not evaluate the initial list). If they identify studies 
you have missed, you should revise your search procedures; but if they do 
not, you can feel reasonably confident that your search is adequate.

My intention is not to be prescriptive in the process you should take in 
searching the literature. In fact, I think that the search process I described is 
more intensive than that used for most published meta- analyses. Neverthe-
less, I present these steps as a model of a process that I believe leaves little 
uncertainty that your search is “close enough” to exhaustive. Although there 
is no guarantee that you have obtained every study from the population, I 
believe that after taking these steps you have reached a point where more 
efforts are unlikely to identify additional studies and are therefore not worth-
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while. I also believe that no other potential meta- analyst would be willing to 
engage in significantly greater efforts, so your search represents the best that 
is likely to be contributed to the field. Moreover, by consulting with experts 
in your field, you have ensured that your peers view the search as reasonable, 
which usually means that reviewers will have a favorable view during the 
review process, and readers will view it as adequate after it is disseminated. 
In sum, I believe that strategies similar to the one I have described can pro-
vide a high degree of confidence that your search is adequate.

3.5 PrActIcAl MAtterS:  
BegInnIng A MetA-AnAlytIc dAtABASe

Aside from perhaps persistence and patience, the most import virtue you can 
have for searching the literature for a meta- analysis is organization. As you 
have likely inferred, searching for studies is a time- intensive process, and you 
certainly do not want to add to this time by repeating work because of poor 
organization.

A good organizational scheme for the literature search will include sev-
eral key components. First, you should have a clear, written statement of 
the inclusion/exclusion criteria that you will use in evaluating studies found 
through this search. Toward this end, it might be useful to record stud-
ies identified in your search that were excluded for one reason or another 
(recording why they were excluded). Second, you should have a clear list of 
methods for searching the literature, with enough details to replicate these 
searches. For example, you might have a list that begins:

Step 1: Read the following review papers and chapters (listing these 
works).

Step 2: Search the PsycINFO database using the following key words 
(listing the key words, including any wildcard marks and logical 
operations).

Step 3: Search the ERIC database using the following key words (listing 
the same set of key words as the step 2 search, unless there is reason 
to use other key words or logical operations).

You then record the dates—and names, if multiple people are conducting the 
searches—of each search.

During the course of these searches, you will scan many titles and 
abstracts in an attempt to determine whether each study is relevant for your 
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meta- analysis. I suggest that you be rather inclusive during this initial screen-
ing, retaining any studies that might meet your inclusion criterion. You should 
also retain any nonempirical works, such as reviews or theoretical papers; 
although these do not provide empirical results for your meta- analysis, it will 
be worthwhile to read them (1) to identify additional studies cited in these 
papers, and (2) to inform interpretation of results of your meta- analysis.

As you are identifying works that you will retain, it is critical to have some 
way of organizing this information. I use spreadsheets such as that shown in 
Table 3.1. (I have shown only four studies here, your spreadsheet will likely 
be much larger.) Although you should develop an approach that meets your 
own needs, this example spreadsheet contains several pieces of information 
that I recommend recording. The first column contains a number for each 
paper (article, chapter, dissertation, etc.) identified in the search. The num-
ber is arbitrary, but it is useful for filing purposes (as the number of papers 
becomes large, it is useful to file them by number rather than, e.g., author 
name). The next four columns contain citation information for the paper. This 
information is useful not only for citing the paper in your write-up, but in 
identifying repetitive papers during your multiple search strategies (for this 
purpose, having this information in a searchable spreadsheet is useful). The 
sixth column contains the abstract, which is useful if you want to search for 
specific terms within your spreadsheet. I recommend copying this informa-
tion into your spreadsheet if it is electronically available, but it probably is not 
worth the time needed to type this in manually. The seventh column identi-
fies where and when the paper was found; recording the date is important 
because (1) you might want to update the search near the completion of your 
meta- analysis, and (2) you should report the last search dates in your presen-
tation of your meta- analysis. The two rightmost columns (columns eight and 
nine) contain information for retrieving and coding the reports. One column 
indicates whether you have the report, or the status of your attempt to retrieve 
it (e.g., the third paper notes that I had requested this dissertation through my 
university’s interlibrary loan system). The last column will become relevant 
when you begin coding the studies (see Chapters 4–8). Here, I have recorded 
the person (BS = Brian Stucky, the second author on this paper) who coded 
this report and the date it was coded. Recording both pieces of information 
are valuable in case you later identify a problem in the coding (e.g., if one 
coder was making a consistent error) or if you revise the coding protocol (you 
then need to modify the coding of all studies coded before this change). In 
this column, I also record when studies are excluded for a particular reason; 
for instance, the fourth study was excluded because it used an adult sample 
(which was one of the specified exclusion criteria in this review).
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Of course, you may use a different way of organizing information from 
your literature search. The point is that you should have some way of organiz-
ing information that clearly records important information and avoids any 
duplication of effort.

3.6 SuMMAry

One of the most important steps of a meta- analytic review is obtaining the 
sample of studies that will provide the data for your analyses. To define this 
sample, we need to specify a clear set of inclusion and exclusion criteria 
specifying what types of studies will and will not comprise this sample. We 
then search the literature for studies fitting these inclusion criteria. Several 
approaches to searching for literature exist, and I have described some of 
the more common methods. The goal of this search is to obtain an unbiased, 
typically exhaustive (i.e., complete) sample of studies.

3.7 recoMMended reAdIngS

Reed, J. G., & Baxter, P. M. (2009). Using reference databases. In H. Cooper, L. V. Hedges, 
& J. C. Valentine (Eds.), The handbook of research synthesis and meta- analysis (2nd 
ed., pp. 73–101). New York: Russell Sage Foundation.—This chapter provides a very 
detailed, practical guide to using electronic databases, including forward search data-
bases.

Hopewell, S., Clarke, M., & Mallett, S. (2005). Grey literature and systematic reviews. In H. 
R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta- analysis: Pre-
vention, assessment and adjustments (pp. 49–72). Hoboken, NJ: Wiley.—This chapter 
describes several ways of identifying and retrieving studies that are more obscure 
than traditional journal articles, and discusses the biases potentially introduced by not 
including this literature.

noteS

 1. The details (e.g., effect sizes, distributions around the mean) of this example will 
become clearer as you read subsequent chapters. For now, you should just try to 
understand the gist of this example.

 2. In principle, a meta- analysis does not need to include all studies that exist. 
Instead, you can select a random sample of all existing studies on which to per-
form your analyses, assuming the studies you have selected provide adequate 
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statistical power to evaluate your research questions. I view this type of random 
sampling as an extremely valuable approach to performing reviews in areas where 
there is so much empirical literature that a full meta- analysis is not practical. 
However, very few meta- analytic reviews use this random- sampling approach; 
nearly all attempt to be exhaustive in their inclusion of studies. Unfortunately, 
this typical practice of being exhaustive seems to have created a standard where 
meta- analytic reviews are expected to be exhaustive, and the random- sampling 
approach would likely draw criticism.

 3. The importance of developing clear operational definitions of constructs is 
important regardless of effect sizes used, whether they are of single variables 
(e.g., means or proportions) or multivariate effect sizes (see Chapter 7).

 4. If you are particularly interested in drawing cross- cultural conclusions and there 
exists adequate numbers of studies written in a tractable number of languages, 
it may be possible to hire translators. However, you should remember that cod-
ing studies is an intensive effort (see Chapters 4 and 5) that requires consider-
able technical expertise. Because it would be difficult to find someone with both 
multilingual and meta- analytic skills, and require considerable amounts of their 
time, this is not a viable alternative in the vast majority of cases. For this reason, 
restriction of populations of studies to those written in languages you know is 
often reasonable as long as you recognize this restriction.

 5. This condition is necessary to include a study in your analyses. However, you 
should also consider whether the studies that report insufficient information dif-
fer in meaningful ways, with the most relevant possibility being that the results 
were nonsignificant. If you find that a considerable number of studies report 
insufficient information to compute effect sizes (and other efforts, such as con-
tacting the authors, do not alleviate this problem), then you should report these 
studies in your report for transparency.

 6. Here, performing the meta- analysis with a random sample of studies might be 
preferable to changing your inclusion/exclusion criteria, especially if doing so 
makes the population of studies of lesser interest. Footnote 2 of this chapter 
describes some of the challenges to this approach.

 7. To illustrate this cost, consider my experience when publishing the example 
meta- analysis I use throughout this book: During this review process, one of the 
reviewers suggested that I “plow through” the approximately 30,000 studies that 
could be identified using a very general search term like “aggression.” Assuming 
10 minutes to review each study for possible inclusion (which is a conserva-
tive estimate), this process would have taken over two years of 40 hours/week 
reviewing. During this time, approximately 3,000 additional studies identified 
using this search term would have been added, thus requiring another 3 to 4 
months of full-time reviewing. Furthermore, during the coding, analysis, and 
write-up of these results, a couple thousand more works would likely have been 
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added to the database. Although this reviewer was certainly trying to be helpful 
by ensuring high recall, this example illustrates that the cost of low precision 
can be substantial in making a meta- analysis impossible.

 8. The use of nonacademic search engines (e.g., Google scholar) might be especially 
plagued by inconsistency in what works are included. I personally do not use 
these nonacademic search engines. If you do decide to use one, I recommend 
not using it as a primary search method, but rather as a check of the adequacy 
of your other search procedures (i.e., after searching for literature using other 
methods, does this nonacademic search engine uncover additional works that 
should have been included?).

 9. We did not do so in the actual meta- analysis because the number of studies using 
samples outside of this age range was reasonably small.

10. To my knowledge, no one has evaluated this possibility empirically. I also sus-
pect that factors unrelated to the effect sizes (e.g., length of time since the pre-
sentation, your persuasiveness and persistence in requesting presentations) are 
more influential with regard to response than the effect sizes. But this possibility 
of biased response should be kept in mind when response rates are low, and it 
might be worthwhile to evaluate this possibility (through, e.g., funnel plots or 
effect size– sample size correlations; see Chapter 11) among the conference pre-
sentation included in your meta- analysis.

11. I do not believe that anyone has evaluated this empirically.

12. I find it comforting to consider that, just as there has never been a flawless study 
(see quote by Cooper, 2003, in Chapter 2 of the present volume), there has never 
been—and never will be—a flawless meta- analysis. Although you might strive 
to obtain every study within your sample, there comes a point of diminishing 
returns where a tremendous amount of additional effort yields very few addi-
tional benefits. When this point is reached, your field benefits more from timely 
completion and dissemination of your meta- analysis than futile efforts to obtain 
additional studies.

13. This image might seem quaint to some readers. If you prefer, point-and-click 
your way through the online tables of contents of some relevant journals.
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4

Coding Study Characteristics

Performing the simplest meta- analysis, in which the goal is simply to estimate 
a typical (mean) effect size and perhaps to make statistical inferences about 
this effect size (see Chapters 8 and 10), requires only that you code the effect 
sizes and sample sizes (to compute the standard errors of the effect sizes) from 
each study (see Chapter 5). If you wish to correct for artifacts to these effect 
sizes, it is also necessary to code information for these corrections such as the 
reliabilities and dichotomizations of variables comprising the effect sizes (see 
Chapter 6).

Performing this sort of simple meta- analysis may seem adequate if it 
answers all of your research questions. However, this approach would fail to 
provide information about why effect sizes might differ across studies, a ques-
tion that might be a key motivator of the meta- analysis (see Chapter 2) or a 
valuable follow-up to observed heterogeneity (Chapter 8). Moderator analy-
ses attempt to explain this heterogeneity among effect sizes by evaluating 
whether coded study characteristics systematically predict variation in effect 
sizes across studies (see Chapter 9). To perform these moderator analyses, it 
is necessary that you code relevant study characteristics that might be useful in 
predicting variation in effect sizes across studies.

In addition to coding study characteristics for moderator analyses, thor-
ough coding of these characteristics is important simply for describing the 
research basis for your meta- analysis. In other words, what does the sample 
of studies from which you draw your conclusions look like? This description is 
useful both in describing the population to which you can make conclusions 
(see Chapter 3 for a discussion of conceptualizing samples and populations 
of studies) and in identifying gaps within the research. For example, does your 
meta- analysis rely primarily on studies using a particular measure or type of 
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measure to the exclusion of others, or certain types of samples to the neglect 
of others? Answers to these questions inform both the extent to which you can 
generalize your conclusions and where it might be valuable to perform future 
primary research.

In short, almost every meta- analysis will benefit from careful coding of 
study characteristics, whether you use them for performing moderator analyses 
or for describing the sample of studies. In this chapter, I first describe consid-
erations in selecting study characteristics to code (Section 4.1) and then turn 
to the specific topic of coding study quality (Section 4.2). I next describe the 
important step of evaluating coding decisions (Section 4.3). Finally, I provide 
practical suggestions for developing a coding protocol to guide the coding of 
studies (Section 4.4).

4.1 IdentIfyIng IntereStIng ModerAtorS

Decisions about which study characteristics to code need to be heavily 
informed by your knowledge of the content area in which you are performing 
a meta- analytic review. Nevertheless, I describe two sets of general consider-
ations that I believe apply to meta- analytic reviews across fields: considering 
the research questions you are interested in and considering coding certain 
specific aspects of studies.

4.1.1 considering research Questions of Interest

Just as planning a primary research study requires you to select variables 
based on your research questions, planning a meta- analysis requires that you 
base your decisions about which study characteristics to code on the research 
questions that you wish to answer. If your research questions are exclusively 
about average effect sizes across studies (i.e., combining studies), then you 
might not need to code much beyond effect sizes, sample sizes, and informa-
tion for any artifact corrections you wish to make. I qualify this statement 
by noting that it is still valuable to be able to provide basic descriptive infor-
mation about this sample of studies to inform the generalizability of your 
review. Nevertheless, the number of study characteristics that you will need 
to code to address this research question adequately is small.

In contrast, if at least some of your research questions involve com-
paring studies (i.e., identifying whether studies with certain features yield 
larger effect sizes than studies with other features), then it will be much more 
important to code many study characteristics. Obviously, if you put forth 
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a research question about a specific characteristic moderating effect sizes 
(e.g., do studies with this characteristic yield larger effect sizes than studies 
without this characteristic?), then it will be necessary to code this specific 
characteristic. However, you should also consider what study characteristics 
might commonly co-occur with the characteristic you are interested in, and 
code these. For example, if you are interested in investigating whether stud-
ies with certain types of samples yield different effect sizes (e.g., children vs. 
adults), you should carefully consider the other study characteristics that 
are likely to differ across these types of samples (e.g., studies of adults might 
frequently rely on self- reports, whereas studies of children might frequently 
rely on parent reports, observations, etc.). If you fail to code these other study 
characteristics, then you cannot empirically rule out the possibility that your 
results involving the coded study characteristic of interest are not really due 
to these co- occurring characteristics. In contrast, if you do code these char-
acteristics, then you are able to evaluate empirically such competing explana-
tions (see Chapter 9).

As a more extreme version of research questions involving specific mod-
erators, some meta- analysts aim to predict all heterogeneity in effect sizes by 
coded study characteristics. Although this goal tends to be quite exploratory, 
and you would therefore view the findings of moderation by specific charac-
teristics cautiously, it nevertheless is a goal you might consider. If so, then 
you will necessarily code a large number of study characteristics; specifically, 
you will code any study characteristics that meet two conditions. First, the 
study characteristics are consistently reported in many or even most studies; 
this is necessary to avoid a preponderance of missing data when you evalu-
ate the coded characteristic as a moderator. The second condition is that the 
study characteristic varies across at least some studies; this variability across 
studies is necessary for the study characteristic to covary with effect sizes. 
You would then enter these coded study characteristics into some large pre-
dictive model (e.g., forward stepwise regression) to explore relations between 
them and variation in effect sizes.

4.1.2 considering Specific Aspects of Studies

As I mentioned, the exact study characteristics you code will depend on your 
research questions and be informed by your knowledge of the topic area. 
Nevertheless, four general types of characteristics should be considered in 
any meta- analysis in the social sciences: characteristics of the sample, mea-
surement, design, and source (see also Lipsey, 2009; Lipsey & Wilson, 2001, 
pp. 83–86). These are summarized in Table 4.1.
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4.1.2.a Sample Characteristics

Potentially relevant characteristics of the sample that you might consider 
include aspects of the sampling procedure and the demographic features 
of the sample. For instance, you might code sampling procedures such as 
whether the sample was drawn from unique settings (e.g., from a univer-
sity setting, some sort of clinical setting, a correctional facility, or specific 
other settings relevant to the area), whether the study attempted to draw a 

tABle 4.1. Summary of Study characteristics to consider coding

Broad aspect Narrow aspects Examples

Sample 
characteristics

Sampling procedures Sampling from unique settings, 
representative sample, country

Demographic features Gender composition, ethnic composition, 
socioeconomic status, age, IQ

Measurement 
characteristics

Sources of information Self- report, other reporter (e.g., spouse, 
parent, teacher), observations

Measurement process Covert versus overt observations, timed 
versus untimed performance

Specific measures used Specific measure, original versus short 
forms, translations

Design 
characteristics

Type of design Experimental, quasi- experimental, pre–
post comparisons, regression discontinuity

Specific design features Type of control group, length of 
longitudinal time span

Source 
characteristics

Publication status Published versus unpublished, publication 
quality

Year of study Year of publication, year of data collection

Funding Funded versus unfunded, source of 
funding

Researcher characteristics Discipline, gender, ethnicity

Study quality Internal validity Use of random assignment, condition 
concealment, attrition

External validity Use of random sampling procedures, 
samples based on specific subpopulations

Construct validity Reliability of measures (for correction 
rather than exclusion or moderator 
analyses), relevant measurement 
characteristics (described above)
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sample representative of a larger population (e.g., a nationally representative 
sample) versus relying on a convenience sample, and the country from which 
the sample was drawn. Potentially relevant demographic features to consider 
include the gender or ethnic composition of the sample, the mean socioeco-
nomic status or age of the sample, or any other potentially relevant descrip-
tors (e.g., average IQ). Although you will not necessarily code all of these 
possible characteristics, either because you do not believe they are relevant 
or because the primary studies do not consistently report these features, I 
believe that most meta- analyses in the social sciences should at least consider 
coding some sample characteristics.

4.1.2.b Measurement Characteristics

In many areas of social science, there exist multiple approaches to measure-
ment and multiple specific measures of the variables that comprise your effect 
sizes. For this reason, you may want to code the measurement characteris-
tics of either or both variables comprising your effect size. Potential aspects 
that can be coded include both the source of information (e.g., self- report; 
some other reporter such as a spouse, parent, or teacher; observations by the 
researcher) and specific features of the measurement process (e.g., covert ver-
sus overt observations, timed versus untimed performance on a test). In areas 
where a small number of measurement instruments are widely used, you 
might also consider coding the specific measure used. In survey research, 
you might code whether the original version of an instrument, a shortened 
form, or a translated form of the scale was used. These suggestions repre-
sent just a few of the possibilities you might consider. A thorough knowledge 
of the strengths and limitations about measurement processes and specific 
measures in your field will be extremely influential in guiding your decisions 
about the measurement characteristics you might decide to code.

4.1.2.c Design Characteristics

You might also consider coding both broad and narrow characteristics of the 
designs of studies included in your meta- analysis. At the broad level, you 
might code, for example, whether studies used experimental group compari-
sons, quasi- experimental group comparisons, single-group pre–post com-
parisons, or regression discontinuity designs. At a narrower level, you could 
consider specific design features; for example, if you were conducting a meta-
 analysis of treatment studies, you might code various aspects of the control 
groups (e.g., no contact, attention only, treatment as usual, placebo).
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4.1.2.d Source Characteristics

Finally, in some instances coding characteristics of the research report itself 
may be valuable. As described in Chapter 11, you should always code whether 
or not the report is published (and potentially more nuanced codes such as 
publication quality) to evaluate evidence of publication bias. There may be 
instances when it is useful to code the year of publication (or year of pre-
sentation for conference presentations, year of defense for dissertation, etc.), 
which might serve as a proxy for the year the data was collected.1 Evalua-
tion of this year as a moderator might illuminate historic trends in the effect 
sizes across time. It might also be useful to evaluate whether or not studies 
were funded, or perhaps the specific sources of funding, if you suspect that 
these factors could bias the results. A fourth set of source characteristics to 
consider are the potentially relevant characteristics of the researchers them-
selves (e.g., discipline, gender, ethnicity). Evaluating these in relation to effect 
sizes might indicate either the presence of uncoded methodological features 
(related to, e.g., disciplinary styles) or systematic differences in results poten-
tially caused by biases of the researchers (e.g., different magnitudes of gender 
differences found by male versus female researchers).

4.2 codIng Study “QuAlIty”

Some have recommended that meta- analysts code for study quality and then 
either (1) include only studies meeting a certain level of quality or (2) evalu-
ate quality as a moderator of effect sizes.2 This recommendation is problem-
atic, in my view, because it assumes (1) that “quality” is a unidimensional 
construct and (2) that we are always interested in whether this overarching 
construct of “quality” directly relates to effect sizes. I believe that each of 
these assumptions is inaccurate, as I describe next.

4.2.1 the Multidimensional nature of Study Quality

Study quality can be defined in many ways (see Valentine, 2009; for an exam-
ple scoring instrument see Valentine & Cooper, 2008). At a broad level, you 
can consider quality in terms of study validity, specifically internal, external, 
construct, and statistical conclusion validity (Cook & Campbell, 1979; Shad-
ish et al., 2002). Of course, within each of these four broad levels, there exist 
numerous specific aspects of studies contributing to the validity (and hence, 
quality). For example, internal validity is impacted by whether or not random 
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assignment was used, the comparability of groups in quasi- experimental 
designs both initially and throughout the study, and the rates of attrition (to 
name just a few influences). Even more specifically, many fields of research 
have adapted— whether explicitly or implicitly— certain empirical practices 
that many researchers agree contribute to higher or lower quality of studying 
the phenomenon of interest (for a summary of three explicit sets of criteria, 
see Valentine, 2009).

If you believe that these numerous features of studies reflect an underly-
ing dimension of study quality, then you would expect these various features 
to co-occur across studies. For example, studies that have certain features 
reflecting internal validity should have other features reflecting internal 
validity, and studies with high internal validity should also have high exter-
nal, construct, and statistical conclusion validity. Whether or not these co- 
occurrences exist in the particular collection of studies in your meta- analysis 
is both a conceptual and an empirical question. Conceptually, do you expect 
that the various features are reflections of a unidimensional quality con-
struct in this area of study? Empirically, do you find substantial and con-
sistent positive correlations among these features across the studies in your 
meta- analysis? If both of these conditions hold, then it may be reasonable to 
conceptualize an underlying (latent) construct of study quality (see left side 
of Figure 4.1). However, my impression is that in most fields, the conceptual 
argument is doubtful and the empirical evaluation is not made.

4.2.2 usefulness of Moderation by Study Quality 
versus Specific features

If you cannot provide conceptual and empirical support for an underlying 
“quality” construct leading to manifestations of different aspects of quality 
across studies, I believe that it becomes more difficult to describe some phe-
nomenon of “quality.” Nevertheless, even if such a construct that produces 
consistent variation in features across studies does not exist, the collection of 
these features might still define something meaningful that could be termed 
“quality.” This situation is displayed on the right side of Figure 4.1. The differ-
ence between these two situations—one in which the features of the studies 
reflecting quality can be argued, conceptually and empirically, to co-occur 
(left) versus one in which the concept of quality is simply defined by these 
features— parallels the distinction between reflective versus formative indi-
cators (see Figure 4.1 and, e.g., Edwards & Bagozzi, 2000; Howell, Breivik, & 
Wilcox, 2007; MacCallum & Browne, 1993). However, this approach would 
also suffer the same problems of formative measurement (e.g., Howell et al., 
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2007), including difficulties in defining the construct if some of the forma-
tive indicators differentially relate to presumed outcomes. In terms of meta-
 analytic moderator analyses (see Chapter 9), the problem arises when some 
study features might predict effect sizes at a magnitude—or even direction— 
differently than others. This situation will lead to a conceptual change in 
the definition of the “study quality” construct; more importantly, this situa-
tion obscures your ability to detect which specific features of the studies are 
related to variation in effect sizes across studies. I argue that it is typically 
more useful to understand the specific aspects of study quality that relate 
to the effect sizes found, rather than some broader, ill- defined construct of 
“study quality.”

4.2.3 recommendations for coding Study Quality

In sum, I have argued that (1) the conditions (conceptual unidimensionality 
and empirically observed substantial correlations) in which study features 
might be used as reflective indicators of a “study quality” construct are rare, 
and (2) attempting simply to combine the conceptually multidimensional 
and empirically uncorrelated (or modestly correlated) features as formative 
indicators of a “study quality” construct are problematic. This does not mean 
that I suggest not considering study quality. Instead, I suggest coding the 
various aspects of study quality that are potentially important within your 
field and evaluating these as multiple moderators of the effect sizes among 
your studies.

Study Quality

Study 
Feature 2 

Study 
Feature 1 

Study 
Feature 3 

Study features as reflective indicators of 

study quality. Requires conceptual and 

empirical co-occurrence among coded 

study features. 

Study Quality

Study 
Feature 2 

Study 
Feature 1 

Study 
Feature 3 

Study features as formative indicators of study 

quality. Does not require conceptual and 

empirical co-occurrence among coded study 

features, but is problematic for analyses. 

fIgure 4.1. Conceptualizing study features as reflective versus formative 
indicators of study quality.
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My recommendation to code, and later analyze (see Chapter 9), individ-
ual aspects of study quality means that you must make decisions about what 
aspects of study quality are important enough to code.3 These decisions can 
be guided by the same principles that guided your decision to code other 
potential moderators (see Section 4.1). Based on your knowledge of the area in 
which you are performing a meta- analysis, you should consider the research 
questions you are interested in and generally consider coding at least some of 
the aspects of study quality contributing to internal, external, and construct 
validity.4 My decision to organize coding around these aspects of validity fol-
lows Valentine (2009), and these possibilities are summarized in the bottom 
of Table 4.1.

4.2.3.a Internal Validity

Internal validity refers to the extent to which the study design allows conclu-
sions of causality from observed associations (e.g., association between group 
membership and outcome). The most important influence on internal validity 
is likely the study design, with experimental (i.e., random assignment) stud-
ies providing more internal validity than quasi- experimental studies (such 
as matched naturally occurring groups, regression continuity, and single-
 subject designs; see Shadish et al., 2002). However, other study characteristics 
of studies might also impact internal validity. The degree to which condition 
is concealed to participants—also known as the “blinding” of participants to 
condition— impacts internal validity. For example, studies comparing a group 
receiving treatment (e.g., medication, psychotherapy) to a control group (e.g., 
placebo, treatment as usual) can have questionable internal validity if partici-
pants know which group they are in. Similarly, studies that are “double blind,” 
in that the researcher measuring the presumed outcome is unaware of partici-
pants’ group membership, are considered more internally valid in some areas 
of research. Finally, attrition— specifically selective and differential attrition 
between groups—can impact internal validity, especially in studies not using 
appropriate imputation technique (see Schafer & Graham, 2002).

4.2.3.b External Validity

External validity refers to the extent to which the findings from a particular 
study can be generalized to different types of samples, conditions, or different 
ways of measuring the constructs of interest. However, attention to external 
validity focuses primarily on generalization to other types of samples/partici-
pants. The most externally valid studies will randomly sample participants 
from a defined population (e.g., all registered voters in a region, all school-
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children in the United States). In many, if not most, fields, this sort of random 
sampling is rare. So, it is important for you to determine what you consider a 
reasonably broad level of generalization in the research context of your meta-
 analysis, and code whether studies achieve this or focus on a more limited 
subpopulation (and likely the specific types of subpopulations).5 Fortunately, 
meta- analytic aggregation of individual studies with limited external validity 
can lead to conclusions that have greater external validity (see Chapter 2), 
provided that the studies within the meta- analysis collectively cover a wide 
range of relevant sample characteristics (see Section 4.1.2.a above on coding 
these characteristics).

4.2.3.c Construct Validity

Construct validity refers to the degree to which the measures used in a study 
correspond to the theoretical construct the researchers intend to measure. 
The heading of “construct validity” is often used to refer to a wider range of 
measurement properties, including both the reliability and validity of the 
measure. I suggest coding the reliability of the measures comprising the two 
variables for potential effect size corrections (see Chapter 6). I do not support 
decisions to exclude studies with measures below a certain threshold reliabil-
ity given that any choice of the threshold is arbitrary and because reliability 
scores reported in a study are imperfect parameter estimates (e.g., it is very 
plausible that two studies with identical sampling procedures from the same 
population, same methodology, and using the same measures could obtain 
slightly different estimates of internal consistency, perhaps with one at 0.78 
and the other at 0.82 around an arbitrary 0.80 cutoff). It is more difficult to 
make such clear recommendations regarding the validity of the measures. 
Certainly, you should have a clear operational definition of the constructs of 
interest that can guide decisions about whether a study should or should not 
be included in your meta- analysis (see Chapter 3). Beyond this, it is possible 
to correct for imperfect validity (see Chapter 6), at least in situations where 
you have a good estimate of the correlation (i.e., validity coefficient) between 
the measure used in the study and some “gold standard” for the construct. 
Probably the safest approach is to treat this issue as an empirical question, 
and code relevant measurement characteristics (see Section 4.1.2.b) for use as 
potential moderators of study effect sizes.

4.2.3.d Conclusions Regarding Coding Aspects of Quality

This consideration of study “quality” in terms of aspects of validity highlights 
the range of potential characteristics you can code for your meta- analysis. Given 
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this range, I have treated the issue of coding study “quality” similarly to that of 
coding study characteristics (see Section 4.1), and do not see these aspects of 
“quality” holding a greater value than any other study characteristics.

At the same time, you should be aware of the “garbage in, garbage out” 
criticism (see Chapter 2), and consider this critique in light of the goals and 
intended audience of your meta- analysis. If your goal is to inform policy or 
practice, and the intended audience consists primarily of individuals who 
want clear, defensible answers (e.g., policymakers), then I suggest that you 
use aspects of study quality primarily as inclusion/exclusion criteria (see 
Chapter 3) in selecting studies (assuming that enough studies meet these 
inclusion criteria so as to provide a reasonably precise effect size estimate). 
In contrast, if your goal is to inform understanding of a phenomenon, and the 
intended audience is primarily individuals comfortable with nuanced, quali-
fied conclusions (e.g., scientists), then I suggest coding these aspects of study 
quality for analysis as potential moderators of effect sizes (see Chapter 9). 
Perhaps a middle ground between these two recommendations is to code and 
evaluate moderation by various aspects of study quality, but to base policy or 
practice recommendations on results from higher-quality studies when these 
aspects are found to moderate effect sizes. Regardless of how these aspects of 
study quality are used (i.e., as inclusion/exclusion criteria versus coded mod-
erators), I believe that a focus on specific aspects of study qualities is prefer-
able to a single code intended to represent an overall “quality” construct.

4.3 evAluAtIng codIng decISIonS

Once you have decided what study characteristics to code, the next step, of 
course, is to do it—to carefully read obtained reports and to record informa-
tion about the studies. The information recorded is that regarding both the 
study characteristics you have decided to code (see previous two sections) 
and the effect sizes. I defer discussion of computing effect sizes until Chapter 
5, but the same principles of evaluating coding decisions of effect sizes apply 
as for coding study characteristics that I describe in this section.

Two important qualities of your coding system are the related concepts 
of transparency and replicability (Wilson, 2009). In addition to these quali-
ties, it is also important to consider the reliability of your coding.

4.3.1 transparency and replicability of coding

When writing or otherwise presenting your meta- analysis, you should pro-
vide enough details of the coding process that your audience knows exactly 
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how you made coding decisions (transparency) and, at least in principle, 
could reach the same decisions as you did if they were to apply your coding 
strategy to studies included in your meta- analysis (replicability). To achieve 
these principles of transparency and replicability, it is important to describe 
fully how each study characteristic is quantified.

Some study characteristics are coded in a straightforward way; the char-
acteristics that require little or no judgment decisions on the part of the coder 
are sometimes termed “low inference codes” (e.g., Cooper, 2009b, p. 33). For 
example, coding the mean age of the sample will usually involve simply record-
ing information stated in the research reports. You should fully describe even 
such simple coding (e.g., that you recorded age in years). In my experience, 
however, even such seemingly simple study characteristics yield complexities. 
For example, a study might report an age range (from which you might record 
the midpoint) or a proxy such as grade in school (from which you might esti-
mate a likely age). Ideally, your original coding plan will have ways of deter-
mining a reasonable value from such information, or you might have to make 
these decisions as the unexpected decisions arise. In either case, it is important 
to report these rules to ensure the transparency of your coding process.6

When study characteristics are less obvious (i.e., high inference cod-
ing, in which the coder must make judgment decisions), it is critical to fully 
report the coding process to ensure transparency and replicability (and this 
process should already be written to ensure reliability of coding; discussed 
next in Section 4.3.2). For example, if you have decided to code for types of 
measures or designs of the studies, you should report the different values for 
this categorical code and define each of the categories. During the planning 
stages, you should consider whether it is possible to reduce a high inference 
code into a series of more specific low inference codes.7

4.3.2 reliability of coding

One way to evaluate empirically the replicability of your coding system is to 
assess the reliability of independent efforts of coding the same studies. You 
can evaluate this reliability either between coders (intercoder reliability) or 
within the same coder (intracoder reliability; Wilson, 2009).

Intercoder reliability is assessed by having two coders from the coding 
team independently code a subset of overlapping studies. The coders should 
be unaware of which studies each other is coding because an awareness of 
this fact is likely to increase the vigilance of coding and therefore provide an 
overestimate of the actual reliability. The number of doubly coded studies 
should be large enough to ensure a reasonably precise estimate of reliability. 
Lipsey and Wilson (2001, p. 86) recommended 20 to 50 studies, and your 
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decision to choose a number within this range might depend on your per-
ception of the level of inference of the coding. If your protocol calls for low 
inference coding, then a lower number should suffice in confirming inter-
coder agreement, whereas higher inference coding would necessitate a higher 
number of overlapping studies to more precisely quantify this agreement.

Intracoder agreement is assessed by having the same person code a sub-
set of studies twice. Because it is likely that the coder will be aware of previ-
ously coding the study, it is not possible to conceal the studies used to assess 
this reliability. However, if the coder is unaware during the first coding tri-
als of which studies they will recode (e.g., a random sample of studies is 
selected for recoding after the initial coding is completed), the overestima-
tion of reliability is likely reduced. One reason for assessing intracoder agree-
ment is to evaluate potential “drift”—changes in the coding process over 
time that could come about from the coding experience, increasing biases 
from “expecting” certain results and/or fatigue. A second reason is that it 
is not possible to assess intercoder agreement. This inability to assess inter-
coder agreement is certainly a realistic possibility if you are conducting the 
meta- analysis alone and you have no colleagues with sufficient expertise or 
time to code a subset of studies. Intracoder agreement is not a perfect substi-
tute for intercoder agreement because one coder might hold potential biases 
or consistently make the same coding errors during both coding sessions. 
However, it can serve as reasonable evidence of reliability if efforts are made 
to ensure the independence of the coding sessions. For example, the coder 
should work with unmarked copies of the studies (not with copies containing 
notes from the previous coding), and the coding sessions should be separated 
by as much time as practical.

Using either an intercoder or intracoder approach, it is useful to report the 
reliability of each coded study characteristic (i.e., each study characteristic, 
artifact correction, and effect size), just as you would report the reliability for 
each variable in a primary study. It is deceptive to report only a single reliabil-
ity across codes, as this might obscure important differences in coding reli-
ability across study characteristics (Yeaton & Wortman, 1993). Several indices 
are available for quantifying this reliability (see Orwin & Vevea, 2009), three 
of which are agreement rates, Cohen’s kappa, and Pearson correlation.8

4.3.2.a Agreement Rate

The most common index is the agreement rate (AR), which is simply the 
proportion of studies on which two coders (or single coder on two occasions) 
assign the same categorical code (Equation 4.1; from Orwin & Vevea, 2009, 
p. 187):
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equation 4.1: computing agreement rate (Ar)

AR =
No. of agreements

No. of studies

No. of agreements is the number of studies in which two coders •	
provided the same categorical coding for this study characteristic.
No. of studies is the number of studies that both coders provided •	
score for this study characteristic.

The agreement rate is simple and intuitive, and for these reasons is the 
most commonly reported index of coding reliability. At the same time, there 
are limitations to this index; namely, it does not account for base rates of 
coding (i.e., some values are coded more often than others) and the resulting 
chance levels of agreement.

4.3.2.b Cohen’s Kappa

An alternative index for reliability of categorical codes is Cohen’s kappa (k), 
which does account for chance level agreement depending on base rates for 
coding. Kappa is estimated using Equation 4.2 (from Orwin & Vevea, 2009, 
pp. 187–188):

equation 4.2: computing agreement rate (Ar)

k =
PO – PE

1 – PE

P•	 O is the observed proportion agreement (defined as AR in Equa-
tion 4.2).
P•	 E is the expected (chance) proportion agreement, derived from 
base rates (contingency table marginal sums) = 

C

i
ii nn

n 1
2

1

C•	  is the number of categories.
n•	  is the number of observations (i.e., number of studies coded by 
both coders).
n•	 i• is the number of studies coded at category i (i.e., base rate of 
this code) for first coder.
n•	 •i is the number of studies coded at category i (i.e., base rate of 
this code) for second coder.
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Cohen’s kappa is a very useful index of coding reliability for study char-
acteristics with nominal categorical levels. When used with ordinal coding, 
it has the limitation of not distinguishing between “close” and “far” disagree-
ments (e.g., a close agreement might be two coders recording 4 and 5 on a 
5-point ordinal scale, whereas far disagreement might be two coders record-
ing 1 and 5 on this scale). However, ordinal coding can be accommodated by 
using a weighted kappa index (see Orwin & Vevea, 2009, p. 188). The major 
limitation of using kappa is that it requires a fairly large number of studies to 
produce precise estimates of reliability. Although I cannot provide concrete 
guidelines as to how many studies is “enough” (because this also depends on 
the distributions of the base rate), I suggest that you use either the upper end 
of Lipsey and Wilson’s recommendations (i.e., about 40 to 50 studies) or all 
studies in your meta- analysis if it is important to obtain a precise estimate of 
coding reliability in your meta- analysis.

4.3.2.c Pearson Correlation

When study characteristics are coded continuously or on an ordinal scale 
with numerous categories, a useful index of reliability is the Pearson correla-
tion (r) between the two sets of coded values. One caveat is that the correla-
tion coefficient does not evaluate potential mean differences between coders/
coding occasions. For example, two coders might exhibit a perfect correlation 
between their recorded scores of mean ages of samples, but one coded the 
values in years and the other in months. This discrepancy would obviously 
be problematic in using the coded study characteristic “mean age of sample” 
for either descriptive purposes or moderator analyses. Given this limitation 
of the correlation coefficient, I suggest also examining difference scores, or 
equivalently, performing a repeated- measures (a.k.a. paired samples) t-test to 
ensure that such discrepancies have not emerged.

4.4 PrActIcAl MAtterS: creAtIng An orgAnIzed 
Protocol for codIng

Once you have decided what study characteristics to code, the next step is to 
plan to code them (likely coding effect sizes at the same time, as described 
in Chapter 5). The guidance for this coding comes from a coding protocol, 
which consists of both the interface coders used to record information from 
the studies as well as a coding manual providing instructions for this coding 
process (see Wilson, 2009). Through using this coding protocol, your goal is 
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to create a usable database for later meta- analyses. There are several consid-
erations for each aspect, which I describe next.

4.4.1 coding Interface

Considering first the interface coders use to record information, three 
options include using paper forms that coders complete, using a computer-
ized form to collect this information, or coding directly into the electronic 
format to be used for analyses. Part of an example paper coding form (from 
a meta- analysis of the association between relational aggression and peer 
rejection described throughout this book; Card et al., 2008) is shown in 
Figure 4.2.

Using paper forms would require coders to write information into pre-
defined questions (e.g., “Sample age in years:    ”), which would then be 
transferred into an electronic database for analyses. The advantages of this 
approach are (1) that coders need training only in the coding process (guided 
by the manual of instructions described in Section 4.4.2) rather than proce-
dures for entering data into a computer, and (2) the information is checked 
for plausibility when entered into the computer.

A computerized form would present the same information to coders but 
would require them to input the coded data electronically, perhaps using a 
relational database program (e.g., Microsoft Access). This type of interface 
would require only a small amount of training beyond using paper forms 
and would reduce the time (and potentially errors) in transferring informa-
tion from paper to the electronic format. However, this advantage is also a 
disadvantage in that it bypasses the check that would occur during this entry 
from paper forms.

A third option with regard to a coding interface is to code information 
directly into an electronic format (e.g., Microsoft Excel, SAS, SPSS) later used 
for analysis. This option is perhaps the most time- efficient of all in reducing 
the number of steps, but it is also the most prone to errors. I strongly discour-
age this third method if multiple coders will be coding studies.

4.4.2 coding Manual

A coding manual is a detailed collection of instructions describing how 
information reported in research reports is quantified for inclusion in your 
meta- analysis. Creating a detailed coding manual serves three primary pur-
poses. First, this coding manual provides a guide for coders to transfer infor-
mation in the study reports to the coding interface (e.g., paper forms). As 
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such, it should be a clear set of instructions for coding both “typical” studies 
and more challenging coding situations. Second (and relatedly), this coding 
manual aims to ensure consistency across multiple reporters9 by providing 
a clear, concrete set of instructions that each coder should study and have at 
hand during the coding process. Third, this coding manual serves as docu-
mentation of the coding process that should guide the presentation of the 
meta- analysis or be made available to others to ensure transparency of the 
coding (see beginning of this section).

With regard to the coding manual, the amount of instruction for each 
study characteristic coded depends on the level of inference of the coding: 
low- inference coding requires relatively little instruction, whereas high-

Date coded: 4/25    Date entered into database: 5/10

Initials: BS    Initials: NC

Study identifier

 1. Study #: 104

 2. Study authors: Crick & Grotpeter

 3. Year: 1995

Sample characteristics

 4. Sample size (N): 491

 5. Sample age (years): Not reported

 6. Sample grade(s): 3-6 (128 3rd grade, 126 4th grade, 126 5th grade, 111 6th grade)

 7. Proportion male: .52

 8. Proportion ethnic minority: .40

 9. Unique characteristics of sample: public school sample

Measurement

10. Aggression— source of information: peer nomination

11. Aggression—name of scale: author created

12. Rejection— source of information: peer nominations

13. Rejection—name of scale: Classified by Coie et al. criteria

. . .

fIgure 4.2. Part of an example study coding form. This example shows part of 
a coding form for a meta- analysis of associations between relational aggression and 
peer rejection (see Card et al., 2008). This coding form, used in conjunction with a 
detailed coding manual, requires coders to record information from studies that is 
later entered into a computerized database.
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 inference coding requires more instruction. In addition, the coding manual 
is most often a work in progress. Although an initial coding manual should 
be developed before beginning the coding, ambiguities discovered during the 
coding process likely will force ongoing revision.

Turning again to the example coding form of Figure 4.2, we should note 
that this form would be accompanied by a detailed coding manual that all 
coders have been trained in and have present while completing this form. 
To provide illustrations of the type of information that might be included in 
such a manual, we can consider two of the coded study characteristics. First, 
item 5 (mean age) might be accompanied by the rather simple instruction 
“Record the mean age of the sample in years.” However, even this relatively 
simple (low- inference) code requires fairly extensive elaboration: “If study 
analyzed a subset of the data, record the mean age of the subset used in analy-
ses. If study reported a range of ages but not the mean, record the midpoint 
of this range.” My colleagues and I also had to change the coding protocol 
rather substantially when we found that many studies failed to report ages, 
but did report the grades in school of participants. This led us to add the 
“grade” code (item 6) along with instructions for entering this information 
in the database: “If sample age is not reported in the study, then an estimated 
age can be entered from grade using the formula Age = Grade + 5.”10 A second 
study characteristic shown in Figure 4.2 that illustrates typical instruction 
is item 10 (aggression— source of information). The coding manual for this 
item specifies the choices that should be coded (self- report, peer nomination, 
peer rating, teacher report, parent report, researcher observations, or other) 
and definitions of each code.

4.4.3 database for Meta-Analysis

The product of your coding should be an electronic file with which to con-
duct your meta- analysis. Table 4.2 provides an example of what this database 
might look like (if complete, the table would extend far to the right to include 
other coded study characteristics, coded effect sizes [Chapter 5], information 
for any artifact corrections [Chapter 6], and several calculations for the actual 
meta- analysis [Chapters 8–10]). Although the exact variables (columns) you 
include will depend on the study characteristics you decide to code, the gen-
eral layout of this file sould be considered. Here, each row represents a single 
coded study, and each column represents a coded study characteristic.
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4.5 SuMMAry

In this chapter, I have described the process of coding study characteristics. 
This process spans from the initial planning stages, in which you consider 
the characteristics that are most informative to your research questions, to 
the coding itself, in which you strive to extract and quantify information 
from the study reports. Potentially interesting study characteristics to code 
include features of the sample, measurement, design, and the source itself. 
Study quality is another important consideration, though I recommend cod-
ing for specific aspects of quality rather than some single dimension. It is 
important that your coding process is transparent and replicable; the process 
should also be reliable across coders or within the same coder, and I have 
described methods of evaluating this reliability. Finally, after deciding which 
study characteristics to code, the coding protocol will guide this coding pro-
cess.

4.6 recoMMended reAdIngS

Orwin, R. G., & Vevea, J. L. (2009). Evaluating coding decisions. In H. Cooper, L. V. 
Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-
 analysis (2nd ed., pp. 177–203). New York: Russell Sage Foundation.—This chapter 
provides a thorough description of the sources of coding errors, ways to assess coder 
reliability, and uses of this information in analyses.

Valentine, J. C. (2009). Judging the quality of primary research. In H. Cooper, L. V. Hedges, 
& J. C. Valentine (Eds.), The handbook of research synthesis and meta- analysis (2nd 
ed., pp. 129–146). New York: Russell Sage Foundation.—This chapter describes the 
aspects of studies that collectively comprise “study quality,” as well as the relative 
advantages of excluding poor quality studies versus assessing coded quality features 
as moderators.

Wilson, D. B. (2009). Systematic coding. In H. Cooper, L. V. Hedges, & J. C. Valentine 
(Eds.), The handbook of research synthesis and meta- analysis (2nd ed., pp. 159–176). 
New York: Russell Sage Foundation.—This chapter provides thorough guidance in 
planning a coding strategy that is explicit and transparent.

noteS

 1. The year of publication is a crude proxy for the year the study was conducted, as it 
does not account for likely inconsistencies across studies in the lag between data 
collection and publication. However, year of publication is almost always avail-
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able, whereas the year of data collection is often not reported. Closer approxi-
mations of the year that data were collected might come from coding the dates 
the report was submitted for publication (which is reported in some journals), 
though this date will not reflect previous submissions of the work elsewhere or 
the variability in lag between data collection and submission. If accurately cod-
ing the year of data collection is critical in your meta- analysis, the best approach 
is to follow two steps. First, code the year of publication and the year of data col-
lection for all studies reporting this information, contacting study authors who 
do not report year of data collection for this information. Second, based on the 
likely complete data for year of publication and the partially complete informa-
tion for year of data collection that you are able to obtain, impute the missing val-
ues of year of data collection (see, e.g., Schafer & Graham, 2002 for a description 
of imputation approaches). If your review includes various formats and methods 
of coding year (e.g., year of conference presentation, year of defense), it will be 
useful to include the format as a predictor in the imputation model.

 2. A third recommendation is to give greater weight to studies of higher than lower 
quality. This recommendation is problematic in my view because there is no 
singularly defensible magnitude for these weights. For instance, if the quality of 
studies is rated on a 3-point scale (1 = low quality, 2 = medium quality, 3 = high 
quality) and these ratings are used as weights, then this weighting would assume 
that high- quality studies deserve three times the weight as low- quality studies; 
but this choice is as arbitrary as weighing them twice or four times as heavily. 
Furthermore, these weights would need to be multiplied by the weights due to 
the standard errors of effect sizes from studies (i.e., the inverse of these stan-
dard errors squared; see Chapter 8), but this would make it impossible to draw 
statistically defensible (1) inferences about the mean effect size of your meta-
 analysis or (2) conclusions about the heterogeneity of effect sizes (see Chapter 8). 
In short, any weighting by study quality is arbitrary, and I strongly recommend 
against this practice.

 3. Or, alternatively, are important enough to serve as inclusion/exclusion crite-
ria. As with other study features, the decision to exclude studies with certain 
problems of quality, or to code these qualities and evaluate them as moderators 
of effect sizes, depends on your interest in empirically evaluating the impact 
of study quality, your desire to draw conclusions about a homogeneous versus 
heterogeneous population of studies, and the number of studies that would be 
included in your meta- analysis (see Chapter 3).

 4. I do not describe the fourth broad type of validity, statistical conclusion validity, 
for two reasons. First, primary studies typically do not provide sufficient infor-
mation regarding threats to this aspect of validity. Second, even if it were pos-
sible to code, the associations of these threats with effect sizes are likely small 
and of little interest. One exception to these statements is the problem of artifi-
cial dichotomization of continuous variables, an unfortunately common practice 
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that substantially impacts the statistical conclusion validity (see e.g., Hunter & 
Schmidt, 1990; MacCallum, Zhang, Preacher, & Rucker, 2002). However, it is 
better to correct for (see Chapter 6), rather than code, this artificial dichotomiza-
tion.

 5. Methods of correcting effect sizes that are biased by range restriction (or range 
enhancement) are described in Chapter 6.

 6. Practically, it will not always be reasonable to report the many nuanced deci-
sions for some study characteristics, owing to page limits or limits in the likely 
audience’s interest in these minutiae. In these situations, it would be well to 
improve brevity or readability at the expense of transparency. However, I would 
recommend creating a complete documentation of these coding rules and study-
by-study decisions that you can make available to interested readers.

 7. This recommendation is another reason for coding aspects of study features 
(lower inference codes) rather than an overall study quality (a high- inference 
code), as I described in Section 4.2.

 8. An additional approach is to quantify reliability with the intraclass correlation. 
This approach has certain advantages, including the ability to model between-
rater variance and more realistic modeling of agreement across three or more 
coders (Orwin & Vevea, 2009). However, computing the intraclass correlation is 
more complicated than the three methods described in this chapter, and I believe 
that you will find the approaches I describe adequate if your goal is simply to 
evaluate and report the agreement of coding. Interested readers can consult 
Orwin and Vevea (2009, pp. 190–191) and the references cited in this work.

 9. This coding manual is just as important if you are coding the studies yourself 
as it is if you have multiple coders. The coding process will very likely take an 
extended period of time, get interrupted by other demands, and so on. In these 
situations it is critical that you have a coding manual that can be used to retrain 
yourself (i.e., ensure consistency of coding across time), just as it is for training 
multiple coders.

10. For the particular study (Crick & Grotpeter, 1995) shown in Figure 4.2, in which 
exact subsample sizes per grade were reported, we estimate grade as the weighted 
average, Age = [128(3+5) + 126(4+5) + 126(5+5) + 111(6+5)]/(128 + 126 + 126 + 
111).
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5

Basic Effect Size Computation

Effect sizes represent the most important information that you will extract from 
included studies. As such, carefully computing effect sizes from reported results 
is critical. In this chapter, I describe three common indices for representing 
effect sizes: r (Pearson correlation coefficient), g (one form of standardized 
mean difference), and o (odds ratio). I also describe how you can compute 
each from information commonly provided in empirical reports, such as reports 
of actual effect sizes, inferential statistics (e.g., t-tests), descriptive data, and 
statements of statistical significance. I then demonstrate how you can compare 
and transform among these three indices of effect sizes. Finally, I discuss a 
practical matter in computing effect sizes: using available effect size calcula-
tors within programs for conducting meta- analysis.

5.1 the coMMon MetrIcS: 
correlAtIon, StAndArdIzed MeAn dIfference, 
And oddS rAtIo

5.1.1 Significance tests Are not effect Sizes

Before describing what effect sizes are, I describe what they are not. Effect 
sizes are not significance tests, and significance tests are not effect sizes. 
Although you can usually derive effect sizes from the results of significance 
tests, and the magnitude of the effect size influences the likelihood of find-
ing statistically significant results (i.e., statistical power), it is important to 
distinguish between indices of effect size and statistical significance.
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Imagine that a researcher, Dr. A, wishes to investigate whether two 
groups (male versus female, two treatment groups, etc.) differ on a particular 
variable X. So she collects data from five individuals in each group (N = 10). 
She finds that Group 1 members have scores of 4, 4, 3, 2, and 2, for a mean of 
3.0 and (population estimated) standard deviation of 1.0, whereas Group 2 
members have scores of 6, 6, 5, 4, and 4, for a mean of 5.0 and standard devia-
tion of 1.0. Dr. A performs a t-test and finds that t(8) = 3.16, p = .013. Finding 
that Group 2 was significantly higher than Group 1 (according to traditional 
criteria of a = .05), she publishes the results.

Further imagine that Dr. B reads this report and is skeptical of the results. 
He decides to replicate this study, but collects data from only three individu-
als in each group (N = 6). He finds that individuals in Group 1 had scores of 
4, 3, and 2, for a mean of 3.0 and standard deviation of 1.0, whereas Group 2 
members had scores of 6, 5, and 4, for a mean of 5.0 and standard deviation 
of 1.0. His comparison of these groups results in t(4) = 2.45, p = .071. Dr. B 
concludes that the two groups do not differ significantly and therefore that 
the findings of Dr. A have failed to replicate.

Now we have a controversy on our hands. Graduate student C decides 
that she will resolve this controversy through a definitive study involving 10 
individuals in each group (N = 20). She finds that individuals in Group 1 had 
scores of 4, 4, 4, 4, 3, 3, 2, 2, 2, and 2, for a mean of 3.0 and standard devia-
tion of 1.0, whereas individuals in Group 2 had scores of 6, 6, 6, 6, 5, 5, 4, 4, 
4, and 4, for a mean of 5.0 and a standard deviation of 1.0. Her inferential test 
is highly significant, t(18) = 4.74, p = .00016. She concludes that not only do 
the groups differ, but also the difference is more pronounced than previously 
thought!

This example illustrates the limits of relying on the Null Hypothesis 
Significance Testing Framework in comparing results across studies. In each 
of the three hypothetical studies, individuals in Group 1 had a mean score 
of 3.0 and a standard deviation of 1.0, whereas individuals in Group 2 had a 
mean score of 5.0 and a standard deviation of 1.0. The hypothetical research-
ers’ focus on significance tests led them to inappropriate conclusions: Dr. B’s 
conclusion of a failure to replicate is inaccurate (because it does not consider 
the inadequacy of statistical power in the study), as is Student C’s conclusion 
of a more pronounced difference (which mistakenly interprets a low p value 
as informing the magnitude of an effect). A focus on effect sizes would have 
alleviated the confusion that arose from a reliance only on statistical signifi-
cance and, in fact, would have shown that these three studies provided per-
fectly replicating results. Moreover, if the researchers had considered effect 
sizes, they could have moved beyond the question of whether the two groups 
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differ to consider also the question of how much the two groups differ. These 
limitations of relying exclusively on significance tests have been the subject 
of much discussion (see, e.g., Cohen, 1994; Fan, 2001; Frick, 1996; Harlow, 
Mulaik, & Steiger, 1997; Meehl, 1978; Wilkinson & the Task Force on Statis-
tical Significance, 1999), yet this practice unfortunately persists.

For the purposes of most meta- analyses, I find it useful to define an effect 
size as an index of the direction and magnitude of association between two vari-
ables.1 As I describe in more detail later in this chapter, this definition includes 
traditional measures of correlation between two variables, differences between 
two groups, and contingencies between two dichotomies. When conducting 
a meta- analysis, it is critical that effect sizes be comparable across studies. In 
other words, a useful effect size for meta- analysis is one to which results from 
various studies can be transformed and therefore combined and compared. In 
this chapter I describe ways that you can compute the correlation (r), standard-
ized mean difference (g), or odds ratio (o) from a variety of information com-
monly reported in primary studies; this is another reason that these indexes 
are useful in summarizing or comparing findings across studies.

A second criterion for an effect size index to be useful in meta- analysis 
is that it must be possible to compute or approximate its standard error. 
Although I describe this importance more fully in Chapter 8, I should say a 
few words about it here. Standard errors describe the imprecision of a sam-
ple-based estimate of a population effect size; formally, the standard error 
represents the typical magnitude of differences of sample effect sizes around 
a population effect size if you were to draw multiple samples (of a certain size 
N) from the population. It is important to be able to compute standard errors 
of effect sizes because you generally want to give more weight to studies that 
provide precise estimates of effect sizes (i.e., have small standard errors) than 
to studies that provide less precise estimates (i.e., have large standard errors). 
Chapter 8 of this book provides further description of this idea.

Having made clear the difference between statistical significance and 
effect size, I next describe three indices of effect size that are commonly used 
in meta- analyses.

5.1.2 Pearson correlation

The Pearson correlation, commonly represented as r, represents the asso-
ciation between two continuous variables (with variants existing for other 
forms, such as rpb when one variable is dichotomous and the other is continu-
ous, φ when both are dichotomous). The formula for computing r (the sample 
estimate of the population correlation, ρ) within a primary data set is:
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equation 5.1: computing r
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x•	 i and yi are scores of individual i on the two variables.
x•	  and y are the sample means of the two variables.
N•	  is the sample size.
s•	 x and sy are the population estimated standard deviations of the 
two variables.
Z•	 X and ZY are standardized scores, computed as ZX = (xi – x)/sx.

The conceptual meaning of positive correlations is that individuals who 
score high on X (relative to the sample mean on X) also tend to score high on 
Y (relative to the sample mean on Y), whereas individuals who score low on X 
also tend to score low on Y. The conceptual meaning of negative correlations 
is that individuals who score high on one variable tend to score low on the 
other variable. The rightmost portion of Equation 5.1 provides an alternative 
representation that illustrates this conceptual meaning. Here, Z scores (stan-
dardized scores) represent high values as positive and low values as negative, 
so a preponderance of high scores with high scores (product of two positive) 
and low scores with low scores (product of two negative) yields a positive 
average cross product, whereas high scores with low scores (product of posi-
tive and negative) yield a negative average cross product.

You are probably already familiar with the correlation coefficient, but per-
haps are not aware that it is an index of effect size. One interpretation of the cor-
relation coefficient is in describing the proportion of variance shared between 
two variables with r2. For instance, a correlation between two variables of r = 
.50 implies that 25% (i.e., .502) of the variance in these two variables overlaps. 
It can also be kept in mind that the correlation is standardized, such that cor-
relations can range from 0 to ± 1. Given the widespread use of the correlation 
coefficient, many researchers have an intuitive interpretation of the magnitude 
of correlations that constitute small or large effect sizes. To aid this interpreta-
tion, you can consider Cohen’s (1969) suggestions of r = ± .10 representing small 
effect sizes, r = ± .30 representing medium effect sizes, and r = ± .50 representing 
large effect sizes. However, you should bear in mind that the typical magnitudes 
of correlations found likely differ across areas of study, and one should not be 
dogmatic in applying these guidelines to all research domains.

In conclusion, Pearson’s r represents a useful, readily interpretable index 
of effect size for associations between two continuous variables. In many 
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meta- analyses, however, r is transformed before effect sizes are combined or 
compared across studies (for contrasting views see Hall & Brannick, 2002; 
Hunter & Schmidt, 2004; Schmidt, Hunter, & Raju, 1988). Fisher’s transfor-
mation of r, denoted as Zr, is commonly used and shown in Equation 5.2.

equation 5.2: fisher’s transformation of r

r
rZr 1

1ln½

Z•	 r is Fisher’s transformation of r.
r•	  is the correlation coefficient.

The reason that r is often transformed to Zr in meta- analyses is because 
the distribution of sample r’s around a given population ρ is skewed (except in 
sample sizes larger than those commonly seen in the social sciences), whereas 
a sample of Zrs around a population Zr is symmetric (for further details see 
Hedges & Olkin, 1985, pp. 226–228; Schulze, 2004, pp. 21–28).2 This sym-
metry is desirable when combining and comparing effect sizes across studies. 
However, Zr is less readily interpretable than r both because it is not bounded 
(i.e., it can have values greater than ±1.0) and simply because it is unfamil-
iar to many readers. Typical practice is to compute r for each study, convert 
these to Zr for meta- analytic combination and comparison, and then convert 
results of the meta- analysis (e.g., mean effect size) back to r for reporting. 
Equation 5.3 converts Zr back to r.

equation 5.3: converting Zr back to r
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r•	  is the correlation coefficient.
Z•	 r is Fisher’s transformation of r.

Although I defer further description until Chapter 8, I provide the equa-
tion for the standard error here, as you should enter these into your meta-
 analytic database during the coding process. The standard error of Zr is 
shown in Equation 5.4.
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equation 5.4: Standard error of Zr
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N•	  is the sample size of the study.

This equation reveals an obvious relation inherent to all standard errors: 
As sample size (N) increases, the denominator of Equation 5.4 increases and 
so the standard error decreases. A desirable feature of Zr is that its standard 
error depends only on sample size (as I describe later, standard errors of some 
effects also depend on the effect sizes themselves).

5.1.3 Standardized Mean difference

The family of indices of standardized mean difference represents the mag-
nitude of difference between the means of two groups as a function of the 
groups’ standard deviations. Therefore, you can consider these effect sizes to 
index the association between a dichotomous group variable and a continu-
ous variable.

There are three commonly used indices of standardized mean difference 
(Grissom & Kim, 2005; Rosenthal, 1994).3 These are Hedges’s g, Cohen’s d, 
and Glass’s index (which I denote as gGlass),4 defined by Equations 5.5, 5.6, 
and 5.7, respectively:

equations 5.5–5.7: computing standardized mean differences

5.5: Hedges’s g: g =
M1 – M2

spooled

5.6: Cohen’s d: d = 
M1 – M2

sdpooled

5.7: Glass’s index: gGlass =
M1 – M2

s1

M•	 1 and M2 are the means of Groups 1 and 2.
s•	 pooled is the pooled estimate of the population standard deviation.
sd•	 pooled is the pooled sample standard deviation.
s•	 1 is the estimate of the population standard deviation from Group 
1 (control group).
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These three equations are identical in consisting of a raw (unstandard-
ized) difference of means as their numerators. The difference among them is 
in the standard deviations comprising the denominators (i.e., the standardiza-
tion of the mean difference). The equation (5.5) for Hedges’s g uses the pooled 
estimates5 of the population standard deviations of each group, which is the 
familiar 12 nxxs

i
. The equation (5.6) for Cohen’s d is similar but 

instead uses the pooled sample standard deviations, nxxsd i
2 . This 

sample standard deviation is a biased estimation of the population standard 
deviation, with the underestimation greater in smaller than larger samples. 
However, with even modestly large sample sizes, g and d will be virtually 
identical, so the two indices are not always distinguished.6 Often, people 
describe both indices as Cohen’s d, although it is preferable to use precise 
terminology in your own writing.7

The third index of standardized mean difference is gGlass (sometimes 
denoted with ∆ or g′), shown in Equation 5.7. Here the denominator consists 
of the (population estimate of the) standard deviation from one group. This 
index is often described in the context of therapy trials, in which the control 
group is said to provide a better index of standard deviation than the therapy 
group (for which the variability may have also changed in addition to the 
mean). One drawback to using gGlass in meta- analysis is that it is necessary 
for the primary studies to report these standard deviations for each group; 
you can use results of significance tests (e.g., t-test values) to compute g or d, 
but not gGlass. Reliance on only one group to estimate the standard deviation 
is also less precise if the standard deviations of the two populations are equal 
(i.e., homoscedastic; see Hedges & Olkin, 1985). For these reasons, meta-
 analysts less commonly rely on gGlass relative to g or d. On the other hand, if 
the population standard deviations of the groups being compared differ (i.e., 
heteroscedasticity), then g or d may not be meaningful indexes of effect size, 
and computing these indexes from inferential statistics reported (e.g., t-tests, 
F-ratios) can be inappropriate. In these cases, reliance on gGlass is likely more 
appropriate if adequate data are reported in most studies (i.e., means and 
standard deviations from both groups).8 If it is plausible that heteroscedastic-
ity might exist, you may wish to compare the standard deviations (see Shaf-
fer, 1992) of two groups among the studies that report these data and then 
base the decision to use gGlass versus g or d depending on whether or not 
(respectively) the groups have different variances.

Examining Equations 5.5–5.7 leads to two observations regarding the 
standardized mean difference as an effect size. First, these can be either posi-
tive or negative depending on whether the mean of Group 1 or 2 is higher. This 
is a desirable quality when your meta- analysis includes studies with potentially 
conflicting directions of effects. You need to be consistent in considering a par-
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ticular group (e.g., treatment vs. control, males vs. females) as Group 1 versus 
2 across studies. Second, these standardized mean differences can take on any 
values. In other words, they are not bounded by ± 1.00 like the correlation 
coefficient r. Like r, a value of 0 implies no effect, but standardized mean dif-
ferences can also have values greater than 1. For example, in the hypothetical 
example of three researchers given earlier in this chapter, all three researchers 
would have found g = (3 – 5)/1 = –2.00 if they considered effect sizes.

Although not as commonly used in primary research as r, these stan-
dardized mean differences are intuitively interpretable effect sizes. Knowing 
that the two groups differ by one-tenth, one-half, one, or two standard devia-
tions (i.e., g or d = 0.10, 0.50, 1.00, or 2.00) provides readily interpretable 
information about the magnitude of this group difference.9 As with r, Cohen 
(1969) provided suggestions for interpreting d (which can also be used with 
g or gGlass), with d = 0.20 considered a small effect, d = 0.50 considered a 
medium effect, and d = 0.80 considered a large effect. Again, it is important 
to avoid becoming fixated on these guidelines, as they do not apply to all 
research situations or domains. It is also interesting to note that transforma-
tions between r and d (described in Section 5.5) reveal that the guidelines for 
interpreting each do not directly correspond.

As I did for the standard error of Zr, I defer further discussion of weight-
ing until Chapter 8. However, the formulas for the standard errors of the 
commonly used standardized mean difference, g, should be presented here:

equation 5.8: Standard error of g
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n•	 1 and n2 are the sample sizes of Groups 1 and 2.
N•	 total is the total sample size of the study (assuming equal sample 
size per group).

I draw your attention to two aspects of this equation. First, you should use 
the first equation when sample sizes of the two groups are known; the second 
part of the equation is a simplified version that can be used if group sizes are 
unknown, but it is reasonable to assume approximately equal group sizes. Sec-
ond, you will notice that the standard errors of estimates of the standardized 
mean differences are dependent on the effect size estimates themselves (i.e., the 
effect size appears in the numerators of these equations). In other words, there 
is greater expected sampling error when the magnitudes (positive or negative) 
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of standardized mean differences are large than when they are small. As dis-
cussed later (Chapter 8), this means that primary studies finding larger effect 
sizes will be weighted relatively less (given the same sample size) than primary 
studies with smaller effect sizes when results are meta- analytically combined.

Before ending this discussion of standardized mean difference effect 
sizes, it is worth considering a correction that you should use when primary 
study sample sizes are small (e.g., less than 20). Hedges and Olkin (1985) 
have shown that g is a biased estimate of the population standardized mean 
differences, with the magnitude of overestimation becoming nontrivial with 
small sample sizes. Therefore, if your meta- analysis includes studies with 
small samples, you should apply the following correction of g for small sam-
ple size (Hedges & Olkin, 1985, p. 79; Lipsey & Wilson, 2001, p. 49):

equation 5.9: Small sample adjustment of g

gadjusted = g – 3g
4(n1 + n2) – 9

n•	 1 and n2 are the sample sizes of Groups 1 and 2.

5.1.4 odds ratio

The odds ratio, which I denote as o (OR is also commonly used), is a useful 
index of effect size of the contingency (i.e., association) between two dichoto-
mous variables. Because many readers are likely less familiar with odds ratios 
than with correlations or standardized mean differences, I first describe why 
the odds ratio is advantageous as an index of association between two dichot-
omous variables.10

To understand the odds ratio, you must first consider the definition of 
odds. The odds of an event is defined as the probability of the event (e.g., 
of scoring affirmative on a dichotomous measure) divided by the probabil-
ity of the alternative (e.g., of scoring negative on the measure), which can 
be expressed as odds = p / (1 – p), where p equals the proportion in the 
sample (which is an unbiased estimate of population proportion, Π) having 
the characteristic or experiencing the event. For example, if you conceptual-
ized children’s aggression as a dichotomous variable of occurring versus not 
occurring, you could find the proportion of children who are aggressive (p) 
and estimate the odds of being aggressive by dividing by the proportion of 
children who are not aggressive (1 – p). Note that you can also compute odds 
for nominal dichotomies; for example, you could consider biological sex in 
terms of the odds of being male versus female, or vice versa.
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The next challenge is to consider how you can compare probabilities or 
odds across two groups. This comparison actually indexes an association 
between two dichotomous variables. For instance, you may wish to know 
whether boys or girls are more likely to be aggressive, and our answer would 
indicate whether, and how strongly, sex and aggression are associated. Sev-
eral ways of indexing this association have been proposed (see Fleiss, 1994). 
The simplest way would be to compute the difference between probabilities 
in two groups, p1 – p2 (where p1 and p2 represent proportions in each group; 
in this example, these values would be the proportions of boys and girls who 
are aggressive). An alternative might be to compute the rate ratio (sometimes 
called risk ratio), which is equal to the proportion experiencing the event 
(or otherwise having the characteristics) in one group divided by the pro-
portion experiencing it in the other, RR = p1 / p2. A problem with both of 
these indices, however, is that they are highly dependent on the rate of the 
phenomenon in the study (for details, see Fleiss, 1994). Therefore, studies in 
which different base rates of the phenomenon are found (e.g., one study finds 
a high prevalence of children are aggressive, whereas a second finds that very 
few are aggressive) will yield vastly different differences and risk ratios, even 
given the same underlying association between the variables. For this reason, 
these indices are not desirable effect sizes for meta- analysis.

The phi (φ) coefficient is another index of association between two 
dichotomous variables. It is estimated via the following formula (where φ is 
the estimated population association):

equation 5.10: computing φ
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n•	 00 is the number of participants who scored negative on dichoto-
mous variables X and Y.
n•	 01 is the number of participants who scored negative on X and 
positive on Y.
n•	 10 is the number of participants who scored positive on X and 
negative on Y.
n•	 11 is the number of participants who scored positive on X and Y.
n•	 0• and n1• are the total number of participants who scored nega-
tive and positive (respectively) on X (i.e., the marginal sums).
n•	 •0 and n•1 are the total number of participants who scored nega-
tive and positive on Y.
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Despite the lack of similarity in appearance between this equation and 
Equation 5.1, φ is identical to computing r between the two dichotomous 
variables, X and Y. In fact, if you are meta- analyzing a set of studies involving 
associations between two continuous variables in which a small number of 
studies artificially dichotomize the variables, it is appropriate to compute φ 
and interpret this as a correlation (you might also consider correcting for the 
attenuation of correlation due to artificial dichotomization; see Chapter 6).

However, φ (like the difference in proportions and rate ratio) also suffers 
from the limitation that it is influenced by the rates of the variables of inter-
est (i.e., the marginal frequencies). Thus studies with different proportions 
of the dichotomies can yield different effect sizes given the same underlying 
association (Fleiss, 1994; Haddock, Rindskopf, & Shadish, 1998). To avoid 
this problem, the odds ratio (o) is preferred when one is interested in associa-
tions between two dichotomous variables. The odds ratio in the population 
is often represented as omega (ω) and is estimated from sample data using 
the following formula:

equation 5.11: computing odds ratio, o

o =
n00n11

n01n10

n•	 00 is the number of participants who scored negative on X and 
Y.
n•	 01 is the number of participants who scored negative on X and 
positive on Y.
n•	 10 is the number of participants who scored positive on X and 
negative on Y.
n•	 11 is the number of participants who scored positive on X and Y.

Although this equation is not intuitive, it helps to consider that it repre-
sents the ratio of the odds of Y being positive when X is positive [(n11/n1•) / 
(n10/n1•)] divided by the odds of Y being positive when X is negative [(n01/
n0•) / (n00/n0•)], algebraically rearranged.

The odds ratio is 1.0 when there is no association between the two 
dichotomous variables, ranges from 0 to 1 when the association is negative, 
and ranges from 1 to positive infinity when the association is positive. Given 
these ranges, the distribution of sample estimates around a population odds 
ratio is necessarily skewed. Therefore, it is common to use the natural log 
transformation of the odds ratio when performing meta- analytic combina-
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tion or comparison, expressed as ln(o). The standard error of this logged 
odds ratio is easily computed (whereas computing the standard error of an 
untransformed odds ratio is more complex; see Fleiss, 1994), using the fol-
lowing equation:

equation 5.12: Standard error of ln(o)
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n•	 00 is the number of participants who scored negative on X and 
Y.
n•	 01 is the number of participants who scored negative on X and 
positive on Y.
n•	 10 is the number of participants who scored positive on X and 
negative on Y.
n•	 11 is the number of participants who scored positive on X and Y.

5.2 coMPutIng r froM coMMonly rePorted reSultS

You can compute r from a wide range of results reported in primary studies. 
In this section, I describe how you can compute this effect size when primary 
studies report correlations, inferential statistics (i.e., t-tests or F-ratios from 
group comparisons, c2 from analyses of contingency tables), descriptive data, 
and probability levels of inferential tests. I then describe some more recent 
approaches to computing r from omnibus test results (e.g., ANOVAs with 
more than two groups). Table 5.1 summarizes the equations that I describe 
for computing r, as well as those for computing standardized mean differ-
ences (e.g., g) and odds ratios (o).

5.2.1 from reported correlations

In the ideal case, primary reports would always report the correlations 
between variables of interest. This reporting certainly makes our task much 
easier and reduces the chances of inaccuracies due to computational errors 
or rounding imprecision. When studies report correlation coefficients, these 
are often in a tabular form.
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tABle 5.1. Summary of equations for computing effect Sizes from results 
of Primary Studies

Pearson r Hedges’s g Odds ratio (o)

Definitional formula n00 n11 
n01 n10

Independent t-test with 
unequal group sizes

N/A

Independent t-test with 
equal group sizes

″ N/A

Independent F-ratio with 
unequal group sizes

N/A

Independent F-ratio with 
equal group sizes

″ N/A

Dependent (repeated-
 measures) t-test

N/A

Dependent (repeated-
 measures) F-ratio

N/A

2 × 2 (i.e., 1 df) 
contingency c2

Reconstruct 
contingency table

Probability levels from 
significance tests

Reconstruct 
contingency table
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Although it may be tempting to simply identify this correlation within a 
table and consider the study coded, it is still important to read the text of the 
report carefully. This reading may reveal additional information not included 
in the table that may be of interest, such as other effect sizes or correla-
tions separately for subgroups. The text (as well as notes to the tables) may 
also contain important information regarding the correlation itself, such as 
whether it was computed for only a subset of the data, was based on a smaller 
sample size due to pairwise deletion of missing data, or is actually a partial or 
semipartial correlation due to the control of some other variables.

Although you still need to carefully read studies reporting correlation 
coefficients, these are much easier to code accurately. Unfortunately, many 
studies do not report these correlations, so you must turn to other data to 
code effect sizes. The following can be considered options when studies fail 
to report actual correlations.

5.2.2 from Inferential Statistics

Primary studies will often report results of inferential tests without reporting 
actual effect sizes (despite recommendations against this practice). This situ-
ation can arise in several ways. First, the primary study may simply report 
the significance test of a correlation coefficient without reporting the coef-
ficient itself; most commonly, studies report this significance as a t-test. Sec-
ond, the authors of the primary study may have artificially dichotomized one 
of the variables to form two groups, then compared the groups using an inde-
pendent sample t-test or an ANOVA reported as a one degree of freedom (in 
numerator) F-ratio. Artificially dichotomizing a continuous variable attenu-
ates the effect size estimate (see Hunter & Schmidt, 1990; MacCallum et al., 
2002), so you might not only compute r as described below but also consider 
correcting for this dichotomization using the approaches described in Chap-
ter 6. A third situation is that the authors of the primary study dichotomized 
both variables involved in the correlation, then analyzed the data as contin-
gency tables and reported a c2 statistic with one degree of freedom (a situa-
tion in which you would also want to consider corrections for dichotomiza-
tion described in Chapter 6).

The following formulas allow us to compute correlations in each of these 
situations. When primary studies report a t-test value (either for the signifi-
cance of the correlation or in comparing two groups), the following equation 
can be used (Rosenthal, 1991, 1994):
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equation 5.13: computing r from t-test value

dft
tr 2

2

t•	  is the reported value of the t-test.
df•	  is the degrees of freedom of the test (df = N – 2 = n1 + n2 – 2).

Note that this equation provides either the positive or the negative 
square root, and it is important to take the value that reflects the direction of 
the effect in the same way across studies. For instance, if I am interested in 
the association between relational aggression and rejection, and compute r 
from a t-test comparing rejection in aggressive versus nonaggressive groups, 
I need to consider which group has a higher mean when computing the sign 
of r (positive if the aggressive group is more rejected and negative if the non-
aggressive group is more rejected).

Primary studies might alternatively conduct an analysis of variance 
(ANOVA) between two groups. The resulting inferential statistic is an F-ratio 
with 1 degree of freedom in the numerator (i.e., F(1,df)). Because this F-ratio 
is the same as the square of the parallel t-test, it follows that you can compute 
a correlation from this value with this equation:

equation 5.14: computing r from 1df F-ratio

dfF
F

r
df

df

,1

,1

df•	  here is the degrees of freedom in the denominator (N – No. of 
groups), also referred to as the dferror.

As with the t-test, you must be sure to take either the positive or the 
negative square root, depending on the direction of mean differences.

Equations 5.13 and 5.14 are for use in converting tests of independent 
sample t-tests or F-ratios to r. An alternative, albeit less frequent, situation 
occurs when primary studies report these statistics for repeated- measures 
(a.k.a. within- subject) comparisons. For instance, a study might report levels 
of rejection for a sample of children who were aggressive at one time point 
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but not at another. Some recommend against combining independent  sample 
and repeated- measures results in the same meta- analysis (e.g., Lipsey & Wil-
son, 2001, state that these should be considered in separate meta- analyses). 
However, when you believe that the two methodologies address the same 
effect, you should also explore the moderator variable “type of methodology” 
(i.e., independent sample versus repeated measures). When computing r, you 
can use the same formulas (Equations 5.13 and 5.14) for either the inde-
pendent sample or repeated- measures t-tests or F-ratios. This is not the case 
when computing standardize mean differences.

Primary studies might dichotomize both variables of interest and report 
results as a 2 × 2 contingency tables analysis with a reported c2 with 1 degree 
of freedom. The formula to convert this c2 into r is (Rosenthal, 1991, 1994):

equation 5.15: computing r from 1df chi- square (c2) value

N
r

2
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N•	  is the sample size.

As with computing r from the t-test or F-ratio, it is critical that you take 
the correct positive or negative square root. To determine which is correct, it 
is necessary to examine the reported contingency tables: A positive associa-
tion is indicated if observed cell frequencies are higher than expected (under 
the null hypothesis of no association) in the major diagonal (if the contin-
gency table is arranged with higher variable values as the lower row and right 
column), whereas a negative association is indicated if these frequencies are 
lower than expected. For example, you would consider aggression and rejec-
tion to be positively correlated if children who were aggressive and rejected 
and children who were not aggressive and not rejected occurred more fre-
quently than expected.

5.2.3 from descriptive data

Often primary studies do not report all results that you are interested in as 
significance tests, but will instead provide descriptive data (often in a table) 
that can be used to compute r.

Primary studies may present descriptive data (means and standard devi-
ations) for one variable based on two groups formed by dichotomizing the 
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other variable (paralleling the case of reported t-tests or F-ratios described 
above). In this case, it is convenient to compute a standardized mean differ-
ence (using Equation 5.5), then transform these into r using Equation 5.26. 
As with computing r from t-tests and F-ratios, you should consider correcting 
for the attenuation of effect size due to the artificial dichotomization of the 
grouping variable (see Chapter 6).

It is also common for primary studies to report results in 2 × 2 contin-
gency tables when both variables are dichotomized. In this situation, one 
can compute φ using Equation 5.8 and then interpret this φ as r. You should 
then correct this correlation for the dichotomization of both variables (see 
Chapter 6).

5.2.4 from Probability levels of Significance tests

In some situations, primary studies will not provide any other information 
other than results of significance tests. The first potential reason for this is 
simply inadequate reporting of results of a parametric inferential test (i.e., 
the authors report the statistical significance of a t-test, F-ratio, or c2 test of a 
contingency, but not the value itself). If the exact significance probability is 
reported for a t-test, two-group ANOVA, or 2 × 2 contingency analysis, one 
can simply find the corresponding t, F, or c2 value at that level of significance 
and then use Equation 5.13, 5.14, or 5.15 (respectively) to compute r.

A second reason why you might only have probabilities from a signifi-
cance test is the primary study’s report of probabilities from nontraditional 
inferential tests (e.g., nonparametric tests). In these situations in which other 
methods of computing effect size are unavailable, one can compute effect 
sizes from these significance tests. To do so, you first identify the exact prob-
ability, p, of the significance test and look up the standard normal deviate 
(i.e., Z) score corresponding to the given two- tailed p that is more extreme 
than this score (it is important to avoid confusion of this Z-score with the 
Fisher’s transformation of r, denoted as Zr, described earlier). For example, 
if a primary study reported a two- tailed (which is assumed if the study did 
not specify) p = .032, you would identify the one-tail p as .016 and the corre-
sponding Z = 2.14. You can find this corresponding Z-score in tables in many 
introductory statistics books, although you need to be careful to correctly 
use these tables (e.g., many tables will list p as the proportion or percentage 
of the normal distribution between the mean and Z, so it is necessary to look 
up the Z associated with 0.50 – p or 50 – p, for proportions and percentages, 
respectively). These tables are also often limited with very small values of p 
because they frequently do not list these extreme values with enough preci-
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sion to accurately identify Z. For these reasons, it is often useful to find Z 
using a computer to identify the inverse of the standard normal cumulative 
distribution; you can use basic programs such as Microsoft Excel (using the 
“normsinv” function) to compute exact Z from p.

After computing Z, it is straightforward to compute the corresponding 
effect size given this value and sample size. The following equation converts 
Z to r for a given sample size N:

equation 5.16: computing r from Z value of statistical significance

N
Zr

2

N•	  is the sample size.

As when computing r from significance tests (t or F), it is important to 
take either the positive or negative square root from Equation 5.16 to repre-
sent the direction of the effect.

In all-too-many primary studies, researchers report a range of probabil-
ity but not the exact probability (or associated t or F). For instance, it is not 
uncommon for primary studies to report that an association or comparison 
of groups was significant, and then only state that p < .05 (or some other 
value). In these instances, if the report provides no other information, you 
cannot compute an exact effect size. You then have two options. The option is 
to contact the study authors requesting more information, such as the actual 
effect size, inferential statistic (t or F), or exact significance probability (p). 
This option is certainly preferable in obtaining accurate effect sizes; unfortu-
nately, it is not always possible because authors have retired, left academia, 
are unwilling to respond to your request, or for any other of numerous rea-
sons. In these situations, the second option is to compute the best estimate of 
effect size given the reported results, which is typically the lower-bound effect 
size given the upper-bound probability. In other words, if a study reports that 
p < .05 (let’s say for a sample size of N = 100), you can make the conserva-
tive assumption that p = .05 and then compute the associated Z (=1.96) and r 
(from Equation 5.16, r = √(1.962/100) = .20). It is important to recognize that 
this value of r is a lower-bound estimate of the actual effect size found in the 
primary study. To illustrate, if the true p = .03, r = .22, if p = .01, r = .26, if p 
= .001, r = .33, and if p = .0001, r = .39, and so on. In other words, if a study 
only reports that p from a test of significance test is less than some value (e.g., 
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p < .05), you can only conclude that the effect size is greater than some value 
(e.g., r > .20). Common convention is to be conservative and conduct analyses 
using this minimum value.

A similar situation of inadequate reporting of data arises when primary 
studies report only that a particular effect is not statistically significant. In 
this situation, it is possible to compute a range of possible values of the effect 
size. To do so, you can compute the Z-score associated with the chosen a 
(assume a = .05 if not otherwise stated) and then apply Equation 5.15 to 
determine the maximum magnitude of r that would fail to yield a statisti-
cally significant effect given the sample size. You can conclude that the actual 
effect size of the study was greater than the negative r and less than the 
positive r. For example, if N = 100, you know that –.20 < r < .20. However, 
common convention is to take the smallest magnitude effect size—in other 
words, to assume r = .00.

Taking the minimal effect sizes from primary studies reporting only that 
the p is less than some value or that an effect size is not significant is clearly 
not an ideal situation. When this practice is used for a substantial number 
of studies, the result will be that the mean effect size will be biased toward 
smaller magnitude (and tests of heterogeneity and moderation also may be 
biased). The best way to avoid this problem would be to (1) carefully read 
primary studies for any other information from which effect sizes can be 
computed and (2) persistently seek further information from authors of the 
primary studies. If you are still forced to make lower-bound estimates of 
effect sizes for some studies, it is good practice to (1) report the percentage of 
included studies for which these lower-bound estimates were made; and (2) 
conduct a sensitivity analysis by comparing results obtained with these stud-
ies versus without them (e.g., conducting two sets of analyses including and 
excluding these studies, or else evaluating a dichotomous moderator vari-
able identifying these studies; one hopes that the impact of these studies is 
trivial). Alternatively, if many effect sizes (or coded study characteristics) are 
missing, it might be useful to rely on more recent methods of missing data 
management (see Pigott, 2009). In Chapters 9 and 10, I describe a structural 
equation modeling (SEM) representation of meta- analysis that uses sophis-
ticated full information maximum likelihood (FIML) methods of handling 
missing data (Cheung, 2008).

5.2.5 from results of omnibus tests

The effect sizes of interest to meta- analysts typically involve associations 
between two variables. As illustrated earlier, this information is sometimes 
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obtained from two group comparisons on a continuous variable (t-tests or 
F-ratios with 1 df in numerator). In contrast, some primary studies report 
results of omnibus tests involving differences among three or more groups 
(F-ratios with 2 or more numerator dfs). Although exceptions might exist, 
these omnibus results are generally of little direct use within a meta- analysis. 
As Rosenthal (1991) poignantly stated, “only rarely is one interested in know-
ing . . . that somewhere in the thicket of df there lurk one or more meaningful 
answers to meaningful questions that we had not the foresight to ask of our 
data” (p. 13). In other words, you are more often interested in identifying the 
linear (or other specified form) relations between two variables or the mag-
nitudes of differences between two specific groups, more so than whether a 
number of groups differ in some unspecified way. For example, you might 
be interested in the linear relation between aggression and rejection from 
results comparing rejection among children who are aggressive never, some-
times, or often, whereas the question of whether there are some differences 
among these groups (i.e., the omnibus ANOVA) is of less interest. Similarly, 
you might be interested in a specific comparison of psychosocial intervention 
versus control conditions from a three-level ANOVA of control, psychoso-
cial intervention, and pharmacological intervention conditions. These situa-
tions require us to extract meaningful information (i.e., effect sizes) from less 
meaningful omnibus tests.

Techniques for computing effect sizes from these omnibus tests are 
described in detail by Rosenthal, Rosnow, and Rubin (2000), and I refer read-
ers to this source for complete description. Here, I briefly outline the approach 
to computing r from descriptive data (i.e., means and standard deviations) or 
results of one-way ANOVAs with three or more groups. Procedures for man-
aging repeated- measures and factorial ANOVAs are described in Rosenthal 
et al. (2000).

5.2.5.a From Descriptive Statistics

The first situation I consider is when the primary study reports group sizes, 
means, and standard deviations from three or more groups. The first step 
in computing the linear association between the independent (i.e., group-
ing) and dependent (i.e., outcome) variables is to determine a set of contrast 
weights for the groups, denoted as λg for the g groups, such that these con-
trast weights sum to zero. The most typical choices of contrast weights are 
–1, 0, and 1 for three groups; –3, –1, 1, and 3 for four groups; and –2, –1, 0, 
1, and 2 for five groups (contrast weights for more groups could be obtained 
through tables of orthogonal contrast codes, e.g., Cohen, Cohen, West, & 
Aiken, 2003, p. 215; Rosenthal et al., 2000, p. 153).11
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After determining appropriate contrast weights (λg), the next step is to 
use these and the reported group sizes (ng) and means (Mg) to compute the 
average squared deviation due to the linear contrast, MScontrast:

equation 5.17: computing linear contrast (MScontrast) 
from descriptive data

g

g

gg
contrast

n

M
MS 2

2

λ•	 g are the contrast weights (see text).
M•	 g are the group means.
n•	 g are the group sample sizes.

Given this squared deviation due to the contrast, one can then evaluate 
the statistical significance of the linear contrast, if this is of interest. This 
statistical significance can be evaluated as the Fcontrast, which has 1 df in the 
numerator and dferror, or S(ng – 1), in the denominator. Regardless of whether 
you are interested in the significance of this contrast, the next step is to 
compute Fcontrast as MScontrast divided by MSwithin, where MSwithin might be 
reported in the primary study or can be computed as the group-size weighted 
average of within-group variances, S(ng sg

2) / Sng.
From this Fcontrast, the final step to computing an effect size from this 

three or more group situation is to compute r (called reffect size by Rosenthal 
et al., 2000) using the following equation:

equation 5.18: computing r from Fcontrast

withinbetweenbetween

contrast

dfdfF
F

r

F•	 between is the original omnibus test of group differences.
df •	 between is the degrees of freedom of the original omnibus test of 
group differences.

Because Fbetween and dfbetween are from the original omnibus test of 
group differences, primary studies typically report these values. If a study 
does not provide these values, you can easily compute these values from the 
reported sample sizes, means, and standard deviations.12
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5.2.5.b From df > 2 F-Ratio

Another common method of reporting results of comparisons of three or 
more groups in primary studies is to report the omnibus F-ratio. To compute 
an effect size from this F-ratio, the primary study must also report the means 
(but standard deviations are not necessary) of three or more groups. If the 
primary study does not report the means of the groups, it is not possible 
to compute an effect size indexing the association between the independent 
(grouping) and dependent (outcome) variables (note that simply using the 
formula for the two group ANOVAs, Equation 5.14, is not appropriate).

Computing r from reported means and an omnibus F-ratio is simi-
lar to the computation from means, standard deviations, and sample sizes 
described in the previous section. Specifically, you still (1) determine appro-
priate contrast weights (λg); (2) compute MScontrast using Equation 5.17; and 
(3) compute Fcontrast for use in subsequent computations as described earlier. 
The difference here is that you do not use the reported group standard devia-
tions to compute MSwithin (which is used to compute Fcontrast). If this value 
is reported in an ANOVA table, you can easily obtain this value. Otherwise, 
you must compute this MSwithin from the reported omnibus F-ratio, based on 
the fact that MSwithin = MSbetween/F. Although MSbetween will typically not be 
reported if an ANOVA table is not provided, this can be computed from the 
reported means from the G groups: MSbetween = S(Mg – GM)2/G – 1.

You then follow the same steps described in the previous section: (1) 
computing Fcontrast as MScontrast/MSwithin; (2) computing r using Equation 
5.18. Thus, obtaining r from data where there are three or more groups is 
similar when studies report either descriptive statistics or results of an omni-
bus one-way ANOVA.

5.2.5.c Final Words Regarding Computing r from Omnibus Tests

In this section, I provide only a brief overview of computing r from the 
results of omnibus tests reported in primary studies. Although the simple 
situations I have described will likely help in most situations, others that I 
have not described here may emerge. My recommendation to readers who 
commonly encounter these situations is to first consult the book by Rosen-
thal et al. (2000), which provides further details on computing r in situations 
I have described as well as others, including factorial designs and repeated-
 measures ANOVAs. These authors also describe alternative assignment of 
contrast weights that may be of interest.

If you encounter situations not described here or in Rosenthal et al. 
(2000), several options are available to you. First, I recommend consulting 
the literature for more recent treatments that might apply to this situation. 
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Computing effect sizes such as r from omnibus test results has only recently 
gained attention (due largely to the Rosenthal et al. book), and it is likely that 
more will be written on this topic. Second, you might be able to apply the 
logic of this approach to develop reasonable ways of computing a meaningful 
effect size from omnibus results. It seems safe to suggest that if you can (1) 
identify the amount of variance due to the desired effect (e.g., a linear rela-
tion between the independent and dependent variables) and (2) determine a 
direction of effect, then it is possible to compute an r that indexes this effect. 
A third option, of course, is to request further information from the authors 
of the primary studies. Although this approach might deprive you of the 
joys of discovering ingenious ways of computing an effect size, you should 
remember that this is usually the most straightforward and most accurate 
way of obtaining the desired information.

5.3 coMPutIng g froM coMMonly 
rePorted reSultS

As when computing r, you can compute standardized mean differences from 
a wide range of commonly reported information. Although I have presented 
three different types of standardized mean differences (g, d, and gGlass), I 
describe only the computation of g in detail in the following. If you are inter-
ested in using gGlass as the effect size in one’s meta- analysis, the primary 
studies must report means and standard deviations for both groups; if this is 
the case, then you can simply compute gGlass using Equation 5.7. If you prefer 
d to g (although, again, they are virtually identical with larger sample sizes), 
then you can use the methods described in this section to compute g and then 
transform g into d using the following equation with no loss of precision:

equation 5.19: computing d from g

df
Ngd

N•	  is the sample size.
df•	  is the degrees of freedom.

5.3.1 from descriptive data

The most straightforward situation arises when the primary study reports 
means and standard deviations for both groups of interest. In this situation, 
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you simply compute g directly from this information using Equation 5.5. For 
convenience, this equation is

g = 
M1 – Ms (Equation 5.5, reproduced)
spooled

5.3.2 from Inferential tests

5.3.2.a Continuous Dependent Variables

As when computing r, it is possible to compute g from the result of independent 
sample t-tests or 1 df F-ratios (see below for dependent sample or repeated-
 measures tests). For the independent sample t-test, the relevant equation is:

equation 5.20: computing g from independent sample t-test

N
t

nn
nnt

g 2

21

21

t•	  is the positive or negative value of the t-test.
n•	 1 and n2 are the sample sizes for Groups 1 and 2.
N•	  is the total sample size.

When these two group sizes are equal, this equation simplifies to the 
ratio on the right. In instances where the primary studies report the results 
of the t-test but not the sample sizes for each group (but instead only an 
overall sample size), this simplification can be used if the group sizes can be 
assumed to be approximately equal. Figure 5.1 (see similar demonstration 
in Rosenthal, 1991) shows the percentage underestimation in g when one 
incorrectly assumes that group sizes are equal. The x-axis shows the percent-
age of cases in the larger group, beginning at 50% (equal group sizes) to the 
left and moving to larger discrepancies in group size as one moves right. It 
can be seen that the amount of underestimation is trivial when groups are 
similar in size, reaching 5% underestimation at around a 66:34 (roughly 2:1) 
discrepancy in group sizes. The magnitude of this underestimation increases 
rapidly after this point, becoming what I consider unacceptably large when 
group sizes reach 3:1 or 4:1 (i.e., when 75–80% of the sample is in one of 
the two groups). If this unequal distribution is expectable (which might be 
determined by considering the magnitudes of group sizes in other studies 
reporting sample sizes by group), then it is probably preferable to use r as an 
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index of effect size given that it is not influenced by the magnitude of this 
unequal distribution.

As expected given the parallel between independent sample t-tests and 
two group ANOVAs, it is also possible to compute standardized mean differ-
ences from F-ratios with 1 df in the numerator using the following formulas:

equation 5.21: computing g from between-group F-ratio

N
F

nn
nnF

g dfdf ,1

21

21,1 2

F•	 (1,df) is the F-ratio from a 1 df numerator (i.e., 2 group) 
ANOVA.
df•	  is the df in the denominator (i.e., error df ).
n•	 1 and n2 are the sample sizes for Groups 1 and 2.
N•	  is the total sample size.

Because F-ratios are always positive, it is important that you carefully 
consider the direction of group differences and take the positive or negative 
square root of Equation 5.21, depending on whether Group 1 or 2 (respec-
tively) has the higher mean.

fIgure 5.1. Underestimation of standardized mean difference when group sizes 
are assumed equal.
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Although computing r was equivalent whether the results were from 
independent (between-group) or dependent (repeated- measures) results, 
this is not the case when computing g. Therefore, it is critically important 
that you be sure whether the reported t or F values are from independent 
or dependent tests. If the results are from dependent, or repeated measures, 
tests, the following equations should be used:

equation 5.22: computing g from dependent 
(repeated-measures) tests

N
F

N

t
g dfrepeateddependent ,1

t•	 dependent is the positive or negative value of the t-test for dependent 
means.
F•	 repeated(1,df) is the F-ratio from a repeated- measures ANOVA.
N•	  is the sample size.

Unlike Equations 5.20 and 5.21 for the independent sample situation 
in which there were separate formulas for unequal and equal group sizes, 
the dependent (repeated- measures) situation to which Equation 5.22 applies 
contains only an overall N, the size of the sample over time (or other type of 
repeated measures). It also merits mention that the same t or F values yield a 
standardized mean difference that is twice as large in the independent sam-
ple (between groups) than in the dependent (repeated- measures) situations, 
so a mistake in using the wrong formulas would have a dramatic impact on 
computed standardized mean effect size.

5.3.2.b Dichotomous Dependent Variables

Primary studies might also compare two groups on the percentage or propor-
tion of participants scoring affirmative on a dichotomous variable. This may 
come about either because the primary study authors artificially dichoto-
mized the variable or because the variable truly is dichotomous. If the latter 
case is consistent across all studies, then you might instead choose the odds 
ratio as a preferred index of effect size (i.e., associations between a dichoto-
mous grouping variable and dichotomous measure). However, there are also 
instances in which the standardized mean difference is appropriate in this 
situation, such as when the primary study authors artificially dichotomized 
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the variable on which the groups are compared (in which case corrections 
for this artificial dichotomization might be considered; see Chapter 6), or 
when you wish to consider the dichotomous variable of the study in relation 
to a continuous variable of other studies (in which case it might be useful 
to consider moderation across studies using continuous versus dichotomous 
variables; see Chapter 10).

When two groups are compared on a dichotomous or dichotomized vari-
able, you need to identify the 1 df c2 and direction of effect (i.e., which group 
has a higher percentage or proportion). This information might be reported 
directly, or you may need to construct a 2 × 2 contingency table from reported 
results. For instance, a primary study might report that 50% of Group 1 had the 
dichotomous characteristic, whereas 30% of Group 2 had this characteristic; 
you would use this information (and sample size) to compute a contingency 
table and c2. You then convert this c2 to g using the following equation:

equation 5.23: computing g from c2 of 2 × 2 contingency table

2
)1(

2
)1(2

N
g

N•	  is the sample size.

As with computing g from the F-ratio, it is critical that you take the 
correct positive or negative square root. The positive square root is taken 
if Group 1 has the higher percentage or proportion with the dichotomous 
characteristic, whereas the negative square root is taken if Group 2 more 
commonly has the characteristic.

5.3.3 from Probability levels of Significance tests

The practices of computing g from exact significance levels, ranges of signifi-
cance (e.g., p < .05), and reports that a difference was not significant follow 
the practices of computing r described earlier. Specifically, you determine 
the Z for the exact probability (e.g., Z = 2.14 from p = .032), the lower-bound 
Z when a result is reported significant at a certain level (e.g., Z = 1.96 for p 
< .05), or the maximum Z when a result is reported as not significant (e.g., 
maximum Z = ±1.96, although the conservative choice in this option is to 
assume g = 0), as described in Section 5.2.4. You then use the following equa-
tion to estimate the standardized mean difference from this Z: 13
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equation 5.24: computing g from Z value 
of statistical significance

N
Zg 2

N•	  is the sample size.

5.3.4 from omnibus test results

Although you might consider the grouping variable to most appropriately 
consist of two levels (i.e., two groups), there is no assurance that primary 
study authors have all reached the same conclusion. Instead, the groups of 
interest may be subdivided within primary studies, resulting in omnibus 
comparisons among three or more groups. For example, you might be inter-
ested in comparing aggressive versus nonaggressive children, but a primary 
study might further subdivide aggressive children into those who are aggres-
sive rarely versus frequently. Another example might be if you wish to com-
pare a certain type of psychotherapy versus control, but the primary study 
reports results for three groups: control, treatment by graduate students, and 
treatment by doctoral-level practitioners. Studies might also report omnibus 
tests involving groups that are not of interest to a particular meta- analysis. 
For instance, a meta- analysis comparing psychotherapy versus control might 
include a study reporting outcomes for three different groups: control, psy-
chotherapy, and medication. In each of these cases, it is necessary to reorga-
nize the results of the study to fit the two-group comparison of interest. Next, 
I describe ways of doing so from reported descriptive statistics and F-ratios 
with df > 2.

5.3.4.a From Descriptive Statistics

The simplest case is when studies report sample sizes, means, and standard 
deviations from three or more groups. Here, you can either select specific 
groups or else aggregate groups to derive data from the two groups of inter-
est.

When you are interested in only two groups from among those reported 
in a study (e.g., interested in control and psychotherapy from a study report-
ing control, psychotherapy, and medication), it is straightforward to use the 
reported means and standard deviations from those two groups to compute 
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g (using Equation 5.5). When doing so, it is important to code the sample 
size, N (used to compute the standard error of the effect size for subsequent 
weighting), as the combined sample sizes from the two groups of interest 
(N = n1 + n2) rather than the total sample size from the study.

When the primary study has subdivided one or both groups of interest, 
you must combine data from these subgroups to compute descriptive data for 
the groups of interest. For example, when comparing psychotherapy versus 
control from a study reporting data from two psychotherapy groups (e.g., 
those being treated by graduate students versus doctoral-level practitioners), 
you would need to combine data from these two psychotherapy groups before 
computing g. Combining the subgroup sample sizes is straightforward, ngroup 
= nsubgroup1 + nsubgroup2. The group mean is also reasonably straightforward, 
as it is computed as the weighted (by subgroup size) average of the subgroup 
means, Mgroup = (nsubgroup1Msubgroup1 + nsubgroup2Msubgroup2) / (nsubgroup1 + 
nsubgroup2).

The combined group standard deviation is somewhat more complex to 
obtain in that it consists of two components: (1) variance within each of the 
groups you wish to combine and (2) variance between the groups you wish 
to combine. Therefore, to obtain a combined group standard deviation, you 
must compute sums of squared deviations (SSs) within and between groups. 
The SSwithin is computed for each group g as sg

2*(ng – 1), and then these are 
summed across groups. The SSbetween is computed as S [(Mg – GM)2 * ng], 
(where GM is the grand mean of these two groups), summed over groups. 
You add the two SSs (i.e., SSwithin and SSbetween) to produce the total sum 
of squared deviations, SStotal. The (population estimated of the) variance for 
this combined group is then computed as SStotal / (ncombined – 1) and the 
(population estimate of the) standard deviation (scombined).

Combining more than two subgroups to form a group of interest is 
straightforward (e.g., averaging three or more groups). It may also be neces-
sary to combine subgroups to form both groups of interest (e.g., multiple 
treatment and multiple control groups). Once you obtain the descriptive data 
(sample sizes, means, and standard deviations) for the groups of interest, you 
use Equation 5.5 to compute g.

5.3.4.b From df > 2 F-Ratio

As when computing r, it is also possible to compute g from omnibus ANOVAs 
if the primary study reports the F-ratio and means from each group. Here, 
you follow the general procedures of selecting or aggregating subgroups 
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as described in the previous section. Doing this for the sample sizes and 
reported means is identical to the approach described in Section 5.3.4.a. The 
only difference in this situation is that you must infer the within-group stan-
dard deviations from the results of the ANOVA, as these are not reported (if 
they are, then you can simply use the procedures described in the previous 
subsection).

Because omnibus ANOVAs typically assume equal variance across 
groups, this search is in fact for one standard deviation common across 
groups (equivalent to a pooled standard deviation). The MSwithin of the 
ANOVA represents this common group variance, so the square root of this 
MSwithin represents the standard deviation of groups, which are then used 
as described in the previous subsection (i.e., you must still combine the SSs 
within and between groups to be combined). If the primary study reports 
an ANOVA table, you can readily find this MSwithin within the table. If the 
primary study does not report this MSwithin, it is possible to compute this 
value from the reported means and F-ratio. As described earlier, you first 
compute the omnibus MSbetween- omnibus = S(Mg – GM)2 / G – 1 across all 
groups comprising the reported ANOVA (i.e., this MSbetween- omnibus rep-
resents the amount of variance between all groups in the omnibus com-
parison), and then compute MSwithin = MSbetween/F. As mentioned, you then 
take the square root of MSwithin to obtain spooled, used in computing the 
SSwithin of the group to be combined. It is important to note that you should 
add the SSbetween of just the groups to be combined in computing the SStotal 
for the combined groups, which is used to estimate the combined group 
standard deviation.

5.4 coMPutIng o froM coMMonly 
rePorted reSultS

When you are interested in computing the odds ratio (o, sometimes denoted 
by OR), or the association between two dichotomous variables, the range of 
typically reported data is usually more limited than that described in the pre-
vious two sections. In this section, I describe computing an odds ratio from 
three common situations: studies reporting descriptive data such as propor-
tions or percentages in two groups, inferential tests (i.e., c2 statistic) from 2 
× 2 contingency tables, and studies reporting only the significance of such a 
test. I also describe the less common situations of deriving odds ratios from 
research reports involving larger (i.e., df > 1) contingency tables or those ana-
lyzing continuous variables.
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5.4.1 from descriptive data

The most straightforward way of computing o is by constructing a 2 × 2 
contingency table from descriptive data reported in primary studies. Many 
studies will report the actual cell frequencies, making it simple to construct 
this table. Many studies will alternatively report an overall sample size, the 
sample sizes of groups from one of the two variables, and some form of preva-
lence of the second variable by these two groups. For example, a study might 
report that 50 out of 300 children are aggressive and that 40% of the aggres-
sive children are rejected, whereas 10% of the nonaggressive children are 
rejected. This information could be used to identify the number of nonag-
gressive nonrejected children, n00 = (300 – 50)(1 – 0.10) = 225; the number 
of nonaggressive rejected children, n01 = (300 – 50)(0.10) = 25; the number of 
aggressive nonrejected children, n10 = (50)(1 – 0.40) = 30; and the number of 
aggressive rejected children, n11 = (50)(0.40) = 20.

After constructing this 2 × 2 contingency table, you can simply compute 
o from this information using Equation 5.11, which I reproduce as follows.

o = 
n00n11 (Equation 5.11, reproduced)
n01n10

For example, given the cell frequencies of aggression and rejection described 
above, you could compute o = (225*20)/(25*30) = 6.0.

Special consideration is needed if one or more cells of this contingency 
table are 0. In this situation, it is advisable to add 0.5 to each of the cell fre-
quencies (Fleiss, 1994). This solution tends to produce a downward bias in 
estimating o (Lipsey & Wilson, 2001, p. 54). Although the impact of having 
a small number of studies for which this is the case is likely negligible, this 
bias is problematic if many studies in a meta- analysis have small sample sizes 
(and 0 frequency cells). Meta- analysts for whom this is the case should con-
sult Fleiss (1994) for alternative methods of analysis.

5.4.2 from Inferential tests

Instead of fully reporting the contingency table (or descriptive data sufficient 
to reconstruct it), some studies might report a test of significance of this con-
tingency, the c2 statistic. In this situation, it is important to ensure that the 
reported value is from a 1 df c2, meaning that it is from a 2 × 2 contingency 
table (see Section 5.4.4 for use of larger contingency tables). The c2 statistic by 
itself is not sufficient to compute o, however; it is also necessary to know the 
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sample size and marginal proportions of this contingency. As described by 
Lipsey and Wilson (2001, pp. 197–198), values of the c2 statistic, overall sam-
ple size (N), and marginal proportions (p0• and p1• for the row, or variable 
1, marginal proportions; p•0 and p•1 for the column, or variable 2, marginal 
proportions) allow you to identify the cell frequencies of a 2 × 2 contingency 
table. Specifically, you compute the frequency of the first cell using the fol-
lowing equation:

equation 5.25: computing cell frequencies to reproduce 
a contingency table

N
pppp

ppNn 1010
2

0000

N•	  is the overall sample size.
c•	 2 is the significance test of a 2 × 2 contingency.
p•	 0• and p1• are the row, or variable 1, marginal proportions.
p•	 •0 and p•1 are the column, or variable 2, marginal proportions.

It is important to use the correct positive or negative square root given 
the presence of a positive or negative (respectively) association between the 
two dichotomous variables.

Then you compute the remaining cells of the 2 × 2 contingency table 
using the following: n01 = p0•N – n00; n10 = p•0N – n00; and n01 = N – n00 – 
n01 – n10. You then use this contingency table to compute o as described in 
the previous section (i.e., Equation 5.11).

5.4.3 from Probability levels of Significance tests

Given the possibility of computing o from values of c2 (along with N and 
marginal proportions), it follows that you can compute o from levels of statis-
tical significance of 2 × 2 contingency analyses. Given an exact significance 
level (p) and sample size (N), you can identify the corresponding c2 by either 
consulting a table of c2 values (at 1 df) or using a simple computer program 
like Excel (“chiinv” function).

Similarly, you can use a range of significance (e.g., p < .05) and sample 
size to compute a lower-bound value of c2 (i.e., assuming p = .05) and cor-
responding o. Given only a reported nonsignificant 2 × 2 contingency, you 
could compute the minimum (i.e., < 1.0) and maximum (i.e., > 1.0) values of 
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o from value of c2 at the type I error rate (e.g., p = .05), but a more conserva-
tive approach would be to assume o = 1 (null value for o). In both of these 
situations, however, it would be preferable to request more information (o or 
a contingency table) from the primary study authors.

5.4.4 from omnibus results

Some primary studies might report more than two levels of one or both vari-
ables that you consider dichotomous. For example, if you are considering 
associations between dichotomous aggression and dichotomous rejection 
statuses, you might encounter a primary study presenting results within a 
3 (nonaggressive, somewhat aggressive, frequently aggressive) × 3 (nonre-
jected, modestly rejected, highly rejected) contingency table.

If these larger contingency tables are common among primary studies, 
this might be cause for you to reconsider whether the variables of interest 
are truly dichotomous. However, if you are convinced that dichotomous rep-
resentations of both variables are best, then the challenge becomes one of 
deciding which of the distinctions made in the primary study are important 
or real and which are artificial. Given the example of the 3 × 3 aggression by 
rejection table, I might decide that the distinction between frequent aggres-
sion versus other levels (never and sometimes) is important, and that the 
distinction between nonrejected and the other levels (modestly and highly 
rejected) is important.

After deciding which distinctions are important and which are not, 
you then simply sum the frequencies within collapsed groups. Given the 
aggression and rejection example, I would combine frequencies of the never-
 aggressive nonrejected and the sometimes- aggressive nonrejected children 
into one group (n00); combine the frequencies of never- aggressive modestly 
rejected, sometimes- aggressive modestly rejected, never- aggressive highly 
rejected, and sometimes- aggressive highly rejected children into another 
group (n01); and so on. You could then use this reduced table to compute o as 
described above (Section 5.4.1).

5.4.5 from results Involving continuous variables

If you find that many studies represent one of the variables under consider-
ation as continuous, it is important to reconsider whether your conceptual-
ization of dichotomous variables is appropriate. Presumably the representa-
tion of variables in studies as continuous suggests that there is an under-
lying continuity of that variable, in which case you should not artificially 
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dichotomize this continuum (even if many studies in the meta- analysis do). 
You would then use a standardized mean difference (e.g., g) to represent the 
association between the dichotomous and continuous variable.

If you are convinced that the association of interest is between two truly 
dichotomous variables and that a primary study was simply misinformed 
in analyzing a variable as continuous, then an approximate transformation 
can be made. You would first compute g from this study, and then estimate 

3

g

eo . This equation is derived from the logit method of transforming log odds 
ratios to standardized mean differences (Haddock et al., 1998; Hasselblad & 
Hedges, 1995; for a comparison of this and other methods of transforming 
o to standardized mean difference, see Sánchez-Meca, Marín- Martinez, & 
Chacón- Moscoso, 2003) and is not typically used to transform g to o. Again, 
I stress that the first consideration if you encounter continuous representa-
tions of dichotomies in primary studies is to rethink your decision to concep-
tualize a variable as dichotomous.

5.5 coMPArISonS AMong r, g, And o

I have emphasized the importance of basing the decision to rely on r, g, or 
o on conceptualizations of the association involving two continuous vari-
ables, a dichotomous and a continuous variable, or two dichotomous vari-
ables, respectively. At the same time, it can be useful to understand that you 
can compute values of one effect size from values of another effect size. For 
example, r and g can be computed from one another using the following 
formulas:

equations 5.26 and 5.27: converting between r and g

5.26: computing r from g:
dfnnnng

nng
r

2121
2

21
2

5.27: computing g from r:
21

21

21 nn
nndf

r

rg

n•	 1 and n2 are the sample sizes of Groups 1 and 2.
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Similarly, g and o can be computed from one another using the following 
equations:

equations 5.28 and 5.29: converting between g and o

5.28: computing g from o: )ln(3 og

5.29: computing o from g: 3
g

eo

p•	  is the numeric value ≈ 3.14.

Finally, you can transform from o to r by reconstructing the contingency 
table (if sufficient information is provided), through intermediate transfor-
mations to g, or through one of several approximations of the tetrachoric cor-
relation (see Bonett, 2007). An intermediate transformation to g or algebraic 
rearrangement of the tetrachoric correlation approximations also allows you 
to transform from r to o.

This mathematical interchangeability among effect sizes has led to 
arguments that one type of effect size is preferable to another. For example, 
Rosenthal (1991) has expressed preference for r over d (and presumably other 
standardized mean differences, including g) based on four features. First, 
comparisons of Equations 5.13 and 5.14 for r versus 5.20 and 5.21 for g reveal 
that it is possible to compute r accurately from only the inferential test value 
and degrees of freedom, whereas computing g requires knowing the group 
sample sizes or else approximating this value by assuming that the group 
sizes are equal. To the extent that primary studies do not report group sizes 
and it is reasonable to expect marked differences in group sizes, r is prefer-
able to d. A second, smaller, argument for preferring r to g is that you use 
the same equations to compute r from independent sample versus repeated-
 measures inferential tests, whereas different formulas are necessary when 
computing g from these tests (see Equations 5.20 and 5.21 vs. 5.22). This 
should not pose too much difficulty for the competent meta- analyst, but con-
sideration of simplicity is not trivial. A third advantage of r over standardized 
mean differences, according to Rosenthal (1991), is in ease of interpretation. 
Whether r or standardized mean differences (e.g., g) are more intuitive to 
readers is debatable and currently is a matter of opinion rather than care-
ful study. It probably is the case that most scientists have more exposure to 
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r than to g or d, but this does not mean that they cannot readily grasp the 
meaning of the standardized mean difference. The final, and perhaps most 
convincing, argument for Rosenthal’s (1991) preference is that r can be used 
whenever d can (e.g., in describing an association between a dichotomous 
variable and a continuous variable), but it makes less sense to use g in many 
situations where r could be used (e.g., in describing an association between 
two continuous variables).

Arguments have also been put forth for preferring o to standardized 
mean differences (g or d) or r when both variables are truly dichotomous. 
The magnitudes of r (typically denoted with φ) or standardized mean differ-
ences (g or d) that you can compute from a 2 × 2 contingency table depend 
on the marginal frequencies of the dichotomies. This dependence leads to 
attenuated effect sizes as well as extraneous heterogeneity among studies 
when these effect size indices are used with dichotomous data (Fleiss, 1994; 
Haddock et al., 1998). This limitation is not present for o, leading many 
to argue that it is the preferred effect size to index associations between 
dichotomous data.

I do not believe that any type of effect size index (i.e., r, g, or o) is inher-
ently preferable to another. What is far more important is that you select the 
effect size that matches your conceptualization of the variables under con-
sideration. Linear associations between two variables that are naturally con-
tinuous should be represented with r. Associations between a dichotomous 
variable (e.g., group) and a continuous variable can be represented with a 
standardized mean difference (e.g., g) or r, with a standardized mean differ-
ence probably more naturally representing this type of association.14 Asso-
ciations between two natural dichotomies are best represented with o.

If you wish to compare multiple levels of variables in the same meta-
 analysis, I recommend using the effect size index representing the more con-
tinuous nature for both. For example, associations of a continuous variable 
(e.g., aggressive) with a set of correlates that includes a mixture of continuous 
and dichotomous variables (e.g., a continuous rejection variable and a dichot-
omous variable of being classified as rejected) could be well represented with 
the correlation coefficient, r (Rosenthal, 1991). Similarly, associations of a 
dichotomous variable (e.g., biological sex) with a set containing a combina-
tion of continuous (e.g., rejection) and dichotomous (e.g., rejection classifi-
cation) variables could be represented with a standardized mean difference 
such as g (Sánchez-Meca et al., 2003). In both cases, it would be important 
to evaluate moderation by the type (i.e., continuous versus dichotomous) of 
correlate.
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5.6 PrActIcAl MAtterS: uSIng effect SIze 
cAlculAtorS And MetA-AnAlySIS ProgrAMS

As I described in Chapter 1, several computer programs are designed to aid 
in meta- analysis, some of which are available for free and others for purchase. 
All meta- analytic programs perform two major steps: effect size calculation 
and effect size combination. Effect size combination (as well as comparison) 
is the process of aggregating results across studies, the topic of Chapters 8–10 
later in this book. Effect size calculation is the process of taking results from 
each study and converting these into a common effect size, the focus of this 
chapter.

Relying on an effect size calculator found in meta- analysis programs to 
compute effect sizes (as well as to combine results across studies) can be a 
time- saving tool. However, I discourage beginning meta- analysts from rely-
ing on them. All of the calculations described in this chapter can be per-
formed with a simple hand calculator or spreadsheet program (e.g., Excel), 
and the meta- analytic combination and comparison I describe later in this 
book can be performed using these spreadsheets or simple statistical analysis 
software (e.g., SAS or SPSS). In other words, I see little need for specific soft-
ware when conducting a meta- analysis.

Having said both that these programs can save time but that I recom-
mend not using them initially, you may wonder if I think that you have too 
much time on your hands. I do not. Instead, my concern is that these pro-
grams make it easy for beginning meta- analysts who are less familiar with the 
calculations to make mistakes. The value of struggling with the equations in 
this chapter is that doing so forces you to think about what the values mean 
and where to find them within the research report. The danger of using an 
effect size calculator is of mindless use, in which users put in whatever values 
they can find in the report that look similar to what the program asks for.

At the same time, I do not entirely discourage the use of these meta-
 analysis programs. They can be of great use in reducing the burden of tedious 
calculations after you understand these calculations. In other words, if you are 
just beginning to perform meta- analyses, I encourage you to compute some 
effect sizes by hand (i.e., using a calculator or spreadsheet program) as well 
as using one of these programs. Inconsistencies should alert you that either 
your hand calculations are inaccurate or that you are not providing the cor-
rect information to the program (or that the program is inaccurate, though 
this should be uncommon with the more commonly used programs). After 
you have confirmed that you obtain identical results by hand and the pro-
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gram, then you can decide if using the program is worthwhile. I offer this 
same advice when combining effect sizes, which I discuss later in this book.

5.7 SuMMAry

In this chapter, I have described effect sizes as indices of association between 
two variables, a definition that is somewhat restricted but that captures the 
majority of uses in meta- analysis. I also emphasized that effect sizes are not 
statistical significance tests.

I also described three classes of effect sizes. Correlations (r) index asso-
ciations between two continuous variables. Standardized mean differences 
(such as g) index associations between dichotomous and continuous vari-
ables. Odds ratios (o) are advantageous in indexing the associations between 
two dichotomous variables. I stressed that you should carefully consider the 
nature of the variables of interest, recognizing that primary studies may use 
other distributions (e.g., artificial dichotomization of a continuous variable). 
I also suggested that your conceptualization of the distributions of the vari-
ables of interest should guide your choice of effect size index. Finally, I con-
sidered the practical matter of using available effect size calculators in meta-
 analysis programs. Although you should be familiar enough with effect size 
computation that you can do so yourself, these effect size calculators can be 
a time- saving tool.

5.8 recoMMended reAdIngS

Fleiss, J. H. (1994). Measures of effect size for categorical data. In H. Cooper & L. V. 
Hedges (Eds.), The handbook of research synthesis (pp. 245–260). New York: Russell 
Sage Foundation.—This chapter provides a thorough and convincing description of 
the use of o as effect size for associations between two dichotomous variables. This 
chapter does not provide much advice on estimating o from commonly reported data, 
so readers should also look at relevant sections of Lipsey and Wilson (2001).

Grissom, R. J., & Kim, J. J. (2005). Effect sizes for research: A broad practical approach. 
Mahwah, NJ: Erlbaum.—Although not specifically written for the meta- analyst, this 
book provides a thorough description of methods of indexing effect sizes.

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta- analysis. Thousand Oaks, CA: 
Sage.—This short book (247 pages) provides a more thorough coverage than that 
of Rosenthal (1991), but is still brief and accessible. Lipsey and Wilson frame meta-
 analysis in terms of analysis of effect sizes, regardless of the type of effect size used. 
Although only part of one chapter (Chapter 4) is devoted to effect size computation, 
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the authors include computational details in an appendix (Appendix B) and the second 
author provides an Excel worksheet through his website that is useful in computing r 
and d.

Rosenthal, R. (1991). Meta- analytic procedures for social research (revised ed.). Newbury 
Park, CA: Sage.—This book is a very short (153 pages) and accessible introduction to 
basic meta- analytic procedures. Chapter 2 provides an accessible introduction to the 
practice of computing effect sizes for meta- analysis, with a focus on the use of r.

noteS

 1. I should note here that this is a restrictive definition of an effect size, used for 
convenience here. In Chapter 7, I describe other types of effect sizes that expand 
this definition. For example, an effect size might be the mean or proportion of 
a single variable, or some relations among more than two variables (e.g., semi-
partial correlations between two variables controlling for a third, internal con-
sistencies of many items of a scale). However, this definition of effect sizes as 
indexing the association between two variables is the most widely used.

 2. Although there is general support for this transformation (see, e.g., Alexander, 
Scozzaro, & Borodkin, 1989; Hedges & Olkin, 1985; James, Demaree, & Mulaik, 
1986), readers should be aware that some experts (see Hunter & Schmidt, 2004, 
p. 83) recommend against using this transformation.

 3. There has been some criticism of g and d (which also applies to gGlass) as effect 
sizes. The main source of critique is that these effect size estimates are not 
robust to violations of normality assumptions (see Algina, Keselman, & Pen-
field, 2005). Several alternatives have been suggested including indices based on 
dominance statistics, Windsorized data, and bootstrapping. These alternatives 
do not seem viable for use in meta- analyses, however, because you typically do 
not have access to the primary data. Therefore, you will typically need to rely on 
g or d (or, less often, gGlass) in computing standardized mean differences from 
information commonly reported in primary research. This necessity is probably 
not of too much concern for your meta- analysis given that the limits of tradi-
tional standardized mean differences lie primarily in the potential inaccuracy 
of confidence intervals rather than biases in point estimation. However, future 
quantitative research evaluating the impact of using nonrobust effect size esti-
mates on conclusions of mean, confidence intervals, and heterogeneity drawn 
from meta- analyses is needed to support this claim.

 4. Glass’s (e.g., Glass, McGraw, & Smith, 1981) standardized mean difference has 
been represented by numerous symbols. Rosenthal (1991, 1994) has denoted this 
index using the Greek uppercase delta (∆), although I avoid this practice because 
others use this symbol to denote a population parameter standardized mean 
difference. Hedges and Olkin (1985) use g′ (in contrast to g) to denote Glass’s 
standardized mean difference, which is clear, if not intuitive. Although it could 
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be argued that proliferation of more symbols is unnecessary, I use the symbol 
gGlass for clarity.

 5. Where “pooled estimates” refers to the combination of estimates from both 
groups, using

 
 2
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 for the pooled population estimate of standard deviation, or substituting sd for s 
when pooling sample standard deviations.

 6. Both are considered estimators of the same population parameter, (µ1 – µ2) / s. 
The difference in these two statistics is that d has a slight bias, whereas g is unbi-
ased, in estimating this common population parameter.

 7. It is also worth noting here that g and d also differ in that a correction exists for 
bias when estimating g from small samples that does not exist for d. I describe 
this small sample correction for g below.

 8. Other effect size indices under conditions of heteroscedasticity have been pro-
posed (see Grissom & Kim, 2001). However, these indices generally require 
access to raw data from primary studies, and those that do not require raw data 
have not been thoroughly enough studied to support their widespread use.

 9. Alternatively, one could consider the standardized mean difference in reference 
to the standard normal cumulative distribution function (denoted by F(g), F(d), 
or F(gGlass)) to determine the percentage of members of one group falling above 
the mean of the second group (Grissom & Kim, 2005; Hedges & Olkin, 1985). 
To put it in more comprehensible terms, one can look up the value of the stan-
dardized mean difference as a Z-score in a normal curve table to identify the per-
centage of the normal distribution that falls below (to the left of) that particular 
Z-score; this percentage represents the percentage of Group 1 members who are 
above the mean of Group 2. For example, a standardized mean difference of 0.75 
implies that 77% of Group 1 members are above the mean of Group 2, whereas a 
standardized mean difference of –0.50 implies that 31% of Group 1 members are 
above the mean of Group 2. This interpretation assumes a normal distribution in 
both populations.

10. There is some evidence that an alternative index may be superior to the odds 
ratio. This alternative is to transform the natural log of the odds ratio, ln(o), to a 
standardized mean difference:

 65.1

)ln(o
d Cox

.

 In a simulation study (Sánchez-Meca et al., 2003), dCox exhibited little bias, 
whereas ln(o) slightly underestimated associations, especially when the true 
(population) association was large. However, dCox has not yet been widely used 
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by meta- analysts. Nevertheless, you might consider this alternative effect size 
if your meta- analysis indexes associations between dichotomous variables that 
you expect may be large.

11. Assignment of orthogonal contrast weights, in which successive values are equi-
distant, assumes that the groups themselves are equidistant with respect to the 
underlying continuous construct. For example, if we assigned contrast weights of 
–1, 0, and +1 to groups defined as “never,” “sometimes,” or “often” experiencing 
an event, this coding would assume that the amount of difference in the underly-
ing group variable between “never” and “sometimes” is equal to the difference 
between “sometimes” and “often” groups. The extent to which this assumption 
is not valid will most likely attenuate the computed effect sizes using this tech-
nique. Of course, the meta- analyst might choose different contrast weights if 
there is reason to do so; the only restrictions on selecting contrast weights are 
that they make sense and that they sum to zero.

12. Using the equation Fbetween = MSbetween/MSwithin, where MSbetween = S(ng(Mg – 
GM)2)/dfbetween and MSwithin = S(ngsg

2)/Sng. The grand mean (GM) can be com-
puted from group sizes and means as GM = S(ngMg) / Sng . The other term needed 
is the numerator degrees of freedom of the omnibus test, or dfbetween = number 
of groups – 1.

13. Lipsey and Wilson (2001) recommend using t rather than Z in this equation 
(where you would find the appropriate value of t given p and df). With small 
sample sizes, the use of t seems more appropriate when the significance level is 
from a test in which the t-distribution is the appropriate comparison distribu-
tion. However, with a large sample, the difference in values resulting from the 
use of Z versus t becomes negligible, and the use of Z is likely more flexible.

14. McGrath and Meyer (2006) have pointed out that r is affected by base rates (i.e., 
relative group sizes) of the dichotomous variable, whereas standardized mean 
differences are not. Specifically, more extreme group size discrepancies will 
diminish values of r but not standardized mean differences. Therefore, differ-
ences in base rates across studies might contribute to heterogeneity among r but 
not standardized mean differences. Based on this consideration, I believe that 
standardized mean differences (e.g., g) are preferable to r when one of the vari-
ables is dichotomous, especially if the distribution of this dichotomy is extreme 
(with one group more than 2 or 3 times more common) or variable across stud-
ies. However, Rosenthal (1991) maintains a preference for r.
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6

Corrections to Effect Sizes

Several corrections can be made to the effect sizes described in Chapter 5. 
Some are made in order to produce more desirable statistical properties; for 
example, Fisher’s transformation of r (to Zr; Equation 5.2 in Chapter 5) and 
the log transformation of o (Section 5.1.4 in Chapter 5) aim to produce a 
more normal distribution of these effect sizes. Other corrections seek to allevi-
ate biases that are known to exist under certain conditions. For example, the 
adjustment to g for small sample sizes (Equation 5.9) corrects for the systematic 
overestimation of effect sizes under these conditions.

In this chapter, I describe a specific family of corrections to effect sizes, 
often called artifact corrections (Hunter & Schmidt, 2004). These artifact cor-
rections aim to correct for methodological features of primary studies that are 
known to bias (typically attenuate) effect sizes. The reasons for performing 
these corrections are twofold. First, the corrections provide a more accurate 
estimate of what effect sizes would have been if studies had not contained 
methodological imperfections. Second, the corrections may reduce hetero-
geneity (variability in effect sizes) across studies that is due to differences 
in methodological imperfections, thus allowing for the identification of more 
substantively interesting similarities or differences (i.e., moderators; see Chapter 
9) across effect sizes. As promising as these reasons seem, there are critics 
of artifact correction. Next, I provide a brief overview of the arguments for 
and against artifact correction, and then describe several artifact corrections. 
Finally, I discuss some practical considerations in deciding whether (and how) 
to correct for artifacts in a meta- analysis.
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6.1 the controverSy of correctIon

There is some controversy about correcting effect sizes used in meta- analyses 
for methodological artifacts. In this section I describe arguments for and 
against correction, and then attempt to reconcile these two positions.

6.1.1 Arguments for Artifact correction

Probably the most consistent advocates of correcting for study artifacts are 
John Hunter (now deceased) and Frank Schmidt (see Hunter & Schmidt, 
2004; Schmidt & Hunter, 1996; as well as, e.g., Rubin, 1990). Their argu-
ment, in a simplified form, is that individual primary studies report effect 
sizes among imperfect measures of constructs, not the constructs themselves. 
These imperfections in the measurement of constructs can be due to a variety 
of sources including unreliability of the measures, imperfect validity of the 
measures, or imperfect ways in which the variables were managed in primary 
studies (e.g., artificial dichotomization). Moreover, individual studies contain 
not only random sampling error (due to their finite sample sizes), but often 
biased samples that do not represent the population about which you wish to 
draw conclusions.

These imperfections of measurement and sampling are inherent to every 
primary study and provide a limiting frame within which you must inter-
pret the findings. For instance, a particular study does not provide a perfect 
effect size of the association between X and Y, but rather an effect size of the 
association between a particular measure of X with a particular measure of 
Y within the particular sample of the study. The heart of the argument for 
artifact correction is that we are less interested in these imperfect effect sizes 
found in primary studies and more interested in the effect sizes between 
latent constructs (e.g., the correlation between construct X and construct Y).

The argument seems reasonable and in fact provides much of the impetus 
for the rise of such latent variable techniques as confirmatory factor analysis 
(e.g., Brown, 2006) and structural equation modeling (e.g., Kline, 2005) in pri-
mary research. Our theories that we wish to evaluate are almost exclusively 
about associations among constructs (e.g., aggression and rejection), rather 
than about associations among measures (e.g., a particular self- report scale 
of aggression and a particular peer- report method of measuring rejection). As 
such, it makes sense that we would wish to draw conclusions from our meta-
 analyses about associations among constructs rather than associations among 
imperfect measures of these constructs reported in primary studies; thus, we 
should correct for artifacts within these studies in our meta- analyses.
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A corollary to the focus on associations among constructs (rather than 
imperfect measures) is that artifact correction results in the variability among 
studies being more likely due to substantively interesting differences rather 
than methodological differences. For example, studies may differ due to a 
variety of features, with some of these differences being substantively inter-
esting (e.g., characteristics of the sample such as age or income, type of inter-
vention evaluated) and others being less so (e.g., the use of a reliable versus 
unreliable measure of a variable). Correction for these study artifacts (e.g., 
unreliability of measures) reduces this variability due to likely less interest-
ing differences (i.e., noise), thus allowing for clearer illumination of differ-
ences between studies that are substantively interesting through moderator 
analyses (Chapter 9).

6.1.2 Arguments against Artifact correction

Despite the apparent logic supporting artifact correction in meta- analysis, 
there are some who argue against these corrections. Early descriptions of 
meta- analysis described the goal of these efforts as integrating the findings of 
individual studies (e.g., Glass, 1976); in other words, the synthesis of results 
was reported in primary studies. Although one might argue that these early 
descriptions simply failed to appreciate the difference between the associa-
tions between measures and constructs (although this seems unlikely given 
the expertise Glass had in measurement and factor analysis), some modern 
meta- analysts have continued to oppose artifact adjustment even after the 
arguments put forth by Hunter and Schmidt. Perhaps most pointedly, Rosen-
thal (1991) argues that the goal of meta- analysis “is to teach us better what is, 
not what might some day be in the best of all possible worlds” (p. 25, italics 
in original). Rosenthal (1991) also cautions that these corrections can yield 
inaccurate effect sizes, such as when corrections for unreliability yield cor-
relations greater than 1.0.

Another, though far weaker, argument against artifact correction is sim-
ply that such corrections add another level of complexity to our meta- analytic 
procedures. I agree that there is little value in making these procedures 
more complex than is necessary to best answer the substantive questions 
of the meta- analysis. Furthermore, additional data- analytic complexity often 
requires lengthier explanation when reporting meta- analyses, and our focus 
in most of these reports is typically to explain information relevant to our 
content-based questions rather than data- analytic procedures. At the same 
time, simplicity alone is not a good guide to our data- analytic techniques. 
The more important question is whether the cost of additional data- analytic 
complexity is offset by the improved value of the results yielded.
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6.1.3 reconciling Arguments regarding 
Artifact correction

Many of the critical issues surrounding the controversy of artifact correc-
tion can be summarized in terms of whether meta- analysts prefer to describe 
associations among constructs (those for correction) or associations as found 
among variables in the research (those against correction). In most cases, the 
questions likely involve associations among latent constructs more so than 
associations among imperfectly measured variables. Even when questions 
involve measurement (e.g., are associations between X and Y stronger when 
X is measured in certain ways than when X is measured in other ways?), 
it seems likely that one would wish to base this answer on the differences 
in associations among constructs between the two measurement approaches 
rather than the magnitudes of imperfections that are common for these mea-
surement approaches. Put bluntly, Hunter and Schmidt (2004) argue that 
attempting to meta- analytically draw conclusions about constructs without 
correcting for artifacts “is the mathematical equivalent of the ostrich with its 
head in the sand: It is a pretense that if we ignore other artifacts then their 
effects on study outcomes will go away” (p. 81). Thus, if you wish to draw 
conclusions about constructs, which is usually the case, it would appear that 
correcting for study artifacts is generally valuable.

At the same time, one must consider the likely impact of artifacts on the 
results. If one is meta- analyzing a body of research that consistently uses 
reliable and valid measures within representative samples, then the benefits 
of artifact adjustment are likely small. In these cases, the additional complex-
ity of artifact adjustment is likely not warranted. To adapt Rosenthal’s (1991) 
argument quoted earlier, if what is matches closely with what could be, then 
there is little value in correcting for study artifacts.

In sum, although I do not believe that all, or even any, artifact adjust-
ments are necessary in every meta- analysis, I do believe it is valuable to always 
consider each of the artifacts that could bias effect sizes. In meta- analyses in 
which these artifacts are likely to have a substantial impact on at least some 
of the included primary studies, it is valuable to at least explore some of the 
following corrections.

6.2 ArtIfAct correctIonS to conSIder

Hunter and Schmidt (2004; see also Schmidt, Le, & Oh, 2009) suggest several 
corrections to methodological artifacts of primary studies. These corrections 
involve unreliability of measures, poor validity of measured variables, arti-



130 CODING INDIVIDUAL STUDIES 

ficial dichotomization of continuous variables, and range restriction of vari-
ables. Next I describe the conceptual justification and computational details 
of each of these corrections. The computations of these artifact corrections 
are summarized in Table 6.1.

Before turning to these corrections, however, let us consider the general 
formula for all artifact corrections. The corrected effect size (e.g., r, g, o), 
which is the estimated effect size if there were no study artifacts, is a function 
of the effect size observed in the study divided by the total artifact correc-
tion1:

equation 6.1: general equation for artifact corrections

ESadjusted =
ESobserved

a

ES•	 adjusted is the adjusted (corrected) effect size.
ES•	 observed is the observed (uncorrected) effect size.
a•	  is the total correction for all study artifacts.

tABle 6.1. Summary of equations for Artifact corrections

Artifact Correction

Unreliabilitya

Imperfect validitya

Artificial dichotomizationb

Range restriction (direct)c

Range restriction (indirect)c

aThe correction for this artifact on both variables comprising the effect size is equal 
to the product of the correction on each variable.
bThe correction for this artifact on both variables comprising the effect size is 
approximated by the product of the correction on each variable in many cases (see 
text for details).
cThe correction for this artifact on both variables comprising the effect size requires 
special techniques described in the text.

xxunreliability ra

XTvalidity ra

PQ
cadichotomization

222 1 uruarange

xx

xxX
T r

ru
u

11
12
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Here, a is the total correction for all study artifacts and is simply the 
product of the individual artifacts described next (i.e., a = a1 * a2 * . . . , for the 
first, second, etc., artifacts for which you wish to correct).2 Each individual 
artifact (a1) and the total product of all artifacts (a) have values that are 1.0 
(no artifact bias) or less (with the possible exception of the correction for 
range restriction, as described below). The values of these artifacts decrease 
(and adjustments therefore increase) as the methodological limitations of the 
studies increase (i.e., larger problems, such as very low reliability, result in 
smaller values of a and larger corrections).

Artifact adjustments to effect sizes also require adjustments to standard 
errors. Because standard errors represent the imprecision in estimates of 
effect sizes, it makes conceptual sense that these would increase if you must 
make an additional estimate in the form of how much to correct the effect 
size. Specifically, the standard errors of effect sizes (e.g., r, g, or o; see Chap-
ter 5) are also adjusted for artifact correction using the following general 
formula:

equation 6.2: equation for adjusting standard errors 
for artifact corrections

SEadjusted =
SEobserved

a

SE•	 adjusted is the adjusted standard error.
SE•	 observed is the observed (uncorrected) standard error.
a•	  is the total correction for all study artifacts.

The one exception to this equation is when one is correcting for range 
restriction. This correction represents an exception to the general rule of 
Equation 6.2 because the effect size is used in the computation of a, the arti-
fact correction (see Equations 6.7 and 6.8). In this case of correcting for range 
restriction, you multiply arange by ESadjusted/ESobserved prior to correcting the 
standard error.

6.2.1 corrections for unreliability

This correction is for unreliability of measurement of the variables comprising 
the effect sizes (e.g., variables X and Y that comprise a correlation). Unreliabil-
ity refers to nonsystematic error in the measurement process (contrast with 
systematic error in measurement, or poor validity, described in Section 6.2.4). 
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Reliability, or the repeatability of a measure (or the part that is not unreliable), 
can be indexed in at least three ways. Most commonly, reliability is considered 
in terms of internal consistency, representing the repeatability of measurement 
across different items of a scale. This type of reliability is indexed as a func-
tion of the associations among items of a scale, most commonly through an 
index called Cronbach’s coefficient alpha, a (Cronbach, 1951; see, e.g., DeVel-
lis, 2003). Second, reliability can be evaluated in terms of agreement between 
multiple raters or reporters. This interrater reliability can be evaluated with 
the correlation between sets of continuous scores produced by two raters (or 
average correlations among more than two raters) or with Cohen’s kappa (k) 
representing agreement between categorical assignment between raters (for a 
full description of methods of assessing interrater reliability, see von Eye & 
Mun, 2005). A third index of reliability is the test– retest reliability. This test– 
retest reliability is simply the correlation (r) between repeated measurements, 
with the time span between measurements being short enough that the con-
struct is not expected to change during this time. Because all three types of 
reliability have a maximum of 1 and a minimum of 0, the relation between 
reliability and unreliability can be expressed as reliability = 1 – unreliability.

Regardless of whether reliability is indexed as internal consistency (e.g., 
Cronbach’s a), interrater agreement (r or k), or test– retest reliability (r), 
this reliability impacts the magnitude of effect sizes that a study can find. 
If reliability is high (e.g., near perfect, or close to 1) for the measurement of 
two variables, then you expect that the association (e.g., correlation, r) the 
researcher finds between these variables will be an unbiased estimate of the 
actual (latent) population effect size (assuming the study does not contain 
other artifacts described below). However, if the measurement of one or both 
variables comprising the association of interest is low (reliability far below 1, 
maybe even approaching 0), then the maximum (in terms of absolute value 
of positive or negative associations) effect size the researcher might detect 
is substantially lower than the true population effect size. This is because 
the correlation (or any other effect size) between the two variables of inter-
est is being computed not only from the true association between the two 
constructs, but also between the unreliable aspects of each measure (i.e., the 
noise, which typically is not correlated across the variables).

If you know (or at least have a good estimate of) the amount of unre-
liability in a measure, you can estimate the magnitude of this effect size 
attenuation. This ability is also important for your meta- analysis because you 
might wish to estimate the true (disattenuated) effect size from a primary 
study reporting an observed effect size and the reliability of measures. Given 
the reliability for variables X and Y, with these general reliabilities denoted as 
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rxx and ryy, you can estimate the corrected correlation (i.e., true correlation 
between constructs X and Y) using the following artifact adjustment (Baugh, 
2002; Hunter & Schmidt, 2004, pp. 34–36):

equation 6.3: correction for unreliability

yyxxunreliability rra

r•	 xx and ryy are the reliability estimates of variables X and Y.

As described earlier (see Equation 6.1), you estimate the true effect size 
by dividing the observed effect size by this (and any other) artifact adjust-
ment. Similarly, you increase the standard error (SE) of this true effect size 
estimate to account for the additional uncertainty of this artifact correction 
by dividing the standard error of the observed effect size (formulas provided 
in Chapter 5) by this (and any other) artifact adjustment (see Equation 6.2).

An illustration using a study from the ongoing example meta- analysis 
(Card et al., 2008) helps clarify this point. This study (Hawley, Little, & 
Card, 2007) reported a bivariate correlation between relational aggression 
and rejection of r = .19 among boys (results for boys and girls were each cor-
rected and later combined). However, the measures of both relational aggres-
sion and rejection exhibited marginal internal consistencies (as = .82 and .81, 
respectively), which might have contributed to an attenuated effect size of this 
correlation. To estimate the adjusted (corrected) correlation, I compute first 
aunreliability = 81.82.yyxxrr  = .815 and then 23.

815.

19.

a

r
r observed
adjusted

. 
The standard error of Fisher’s transformation of this uncorrected correlation 
is .0498 (based on N = 407 boys in this study); I also adjust this standard 
error to 0610.

815.

0498.
adjustedSE . This larger standard error represents the greater 

imprecision in the adjusted effect size estimated using this correction for 
unreliability.

This artifact adjustment (Equation 6.3) can also be used if you wish to 
correct for only one of the variables being correlated (e.g., correction for X but 
not Y). This may be the preference because the meta- analyst assumes that one 
of the variables is measured without error, because the primary studies fre-
quently do not report reliability estimates of one of the variables, or because 
the meta- analyst is simply not interested in one of the variables.3 If you are 
interested in correcting for unreliability in one variable, then you implicitly 
assume that the reliability of the other variable is perfect. In other words, 
correction for unreliability in only one variable is equivalent to substituting 
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1.0 for the reliability of the other variable in Equation 6.3, so this equation 
simplifies to the artifact correction being the square root of the reliability of 
the single variable.

Before ending discussion of correction for unreliability, I want to men-
tion the special case of latent variable associations. These latent variable asso-
ciations include (1) correlations between factors from an exploratory factor 
analysis with oblique factor rotation (e.g., direct oblimin, promax), and (2) 
correlations between constructs in confirmatory factor analysis models.4 You 
should remember that these latent correlations are corrected for measure-
ment error; in other words, the reliabilities of the latent variable are perfect 
(i.e., 1.0). Therefore, these latent correlations are treated as effect sizes already 
corrected for unreliability, and you should not further correct these effect 
sizes using Equation 6.3. This point can be confusing because many primary 
studies will report internal consistencies for these scales; but these internal 
consistencies are relevant only if the study authors had conducted manifest 
variable analyses (e.g., using summed scale scores) with these measures.

6.2.2 corrections for Imperfect validity

The validity of a measure refers to the systematic overlap between the mea-
sure and the intended construct (i.e., the thing the measure is meant to mea-
sure). It is important to distinguish between validity and reliability. Reli-
ability, described earlier, refers to the repeatability of a measure across items, 
raters, or occasions; high reliability is indicated by different items, raters, or 
occasions of measurement having high correspondence (i.e., being highly 
correlated). However, reliability does not tell us whether we are measuring 
what we intend to measure, but only that we are measuring the same thing 
(whatever it may be) consistently. In contrast, validity refers to the consis-
tency between the measure and the construct. For instance, “Does a par-
ticular peer nomination instrument truly measure victimization?”, “Does a 
parent- report scale really measure depression?”, and “Does a particular IQ 
test measure intelligence?” are all questions involving validity. Low valid-
ity means that the measure is reliably measuring something other than the 
intended construct. Reliability and validity are entirely independent phe-
nomena: A scale can have high reliability and low validity, and another scale 
can have low reliability and high validity (if one assesses validity by correct-
ing for attenuation due to unreliability, as in latent variable modeling; Little, 
Lindenberger, & Nesselroade, 1999).

You can conceptualize a measure’s degree of validity as the disattenu-
ated correlation between the measure and the construct. In other words, the 
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validity of a measure (X) in assessing a construct (T) is rXT when the mea-
sure is perfectly reliable. If the effect size of interest in your meta- analysis is 
the association between the true construct (T) and some other variable (Y; 
assuming for the moment that this variable is measured with perfect valid-
ity), then the association you are interested in might be represented as rTY 
(you could also apply this correction to other effect sizes, but the use of cor-
relations here facilitates understanding). Therefore, the observed association 
between the measure (X) and the other variable (Y) is equal to the product 
of the validity of the measure and the association of the construct with the 
other variable, rXY = rXT * rTY. To identify the association between the con-
struct (T) and the other variable (Y), which is what you are interested in, you 
can rearrange this expression to rTY = rXY/rXT. In other words, the adjustment 
for imperfect validity in a study is:

equation 6.4: correction for imperfect validity

avalidity = rXT

r•	 XT is the validity coefficient.

Here, rXT represents the validity coefficient or disattenuated (for mea-
surement unreliability) correlation between the measure (X) and intended 
construct (T).

This adjustment is mathematically simple, yet its use contains two chal-
lenges. The first challenge is that this adjustment assumes that whatever is 
specific to the measure (X) that is not part of the construct (T) is uncorrelated 
with the other variable (Y). In other words, the reliable but invalid portion of 
the measure (e.g., method variance) is assumed to not be related to the other 
variable of interest (either the construct TY or its measure, XY). The second 
challenge in applying this adjustment is simply in obtaining an estimate of 
the validity coefficient (rXT). This validity will almost never be reported in 
the primary studies of the meta- analysis (if a study contained this more valid 
variable, then you would simply use effect sizes from this variable rather than 
the invalid proxy). Most commonly, you need to obtain the validity coefficient 
from another source, such as from validity studies of the measure (X). When 
using the validity coefficient from other studies, however, you must be aware 
of both (unreliable) sampling error in the magnitude of this correlation and 
(reliable but unknown) differences in this correlation between the validity 
population and that of the particular primary study you are coding. For these 
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reasons, I suspect that many fields will not contain adequate information to 
obtain a good estimate of the validity coefficient, and therefore this artifact 
adjustment may be difficult to use.

6.2.3 corrections for Artificial dichotomization

It is well known that artificial dichotomization of a variable that is naturally 
continuous attenuates associations that this variable has with others, yet this 
practice is all too common in primary research (see MacCallum et al., 2002). 
An important distinction is whether a variable is artificially dichotomized 
or truly dichotomous. When analyzing associations between two continu-
ous variables (typically using r as an index of effect size; see Chapter 5), you 
might find that a primary study artificially dichotomized one of the vari-
ables in one of many possible ways, including median splits, splits at some 
arbitrary level (e.g., one standard deviation above the mean), or at some rec-
ommended cutoff level (e.g., at a level where a variable of maladjustment is 
considered “clinically significant”). Or you might find that the primary study 
dichotomized both variables of interest (again, through median splits, etc.). 
Finally, you might be interested in the extent to which two groups (a natu-
rally dichotomous variable) differ on a continuous variable, which is dichoto-
mized in some studies (e.g., the studies report the percentages of each group 
that have “clinically significant” levels of a maladjustment variable). In each 
of these cases, you need to recognize that the dichotomization of variables in 
the primary studies is artificial; that it does not represent the true continuous 
nature of the variable.

Corrections for one variable that is artificially dichotomized are straight-
forward. You need only to know the numbers, proportion, or percentages of 
individuals in the two artificial groups. Based on this information, the arti-
fact adjustment for dichotomization of one variable is (Hunter & Schmidt, 
1990; Hunter & Schmidt, 2004, p. 36; MacCallum et al., 2002):

equation 6.5: correction for artificial dichotomization

PQ
cadichotomization

P•	  and Q are the proportions in each group.
φ•	 (c) is the normal ordinate at the point c.
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The numerator, F(c), is the normal ordinate at the point c that divides 
the standard normal distribution into proportions P and Q. Because this 
value is unfamiliar to many, I have listed values of F(c), as well as the artifact 
adjustment for dichotomization of one variable (adichotomization), for various 
proportional splits in Table 6.2.

To illustrate this correction using the ongoing example (Card et al., 
2008), I consider a study by Crick and Grotpeter (1995). Here, the authors 
artificially dichotomized the relational aggression variable by classifying 
children with scores one deviation above the mean as relationally aggressive 
and the rest as not relationally aggressive. Of the 491 children in the study, 
412 (83.9%) were thus classified as not aggressive and 79 (16.1%) as rela-
tionally aggressive. The numerator of Equation 6.5 for this example is found 
in Table 6.2 to be .243. The denominator for this example is 161.839.  = 
.368. Therefore, adichotomization = .243/.368 = .664 (accepting some rounding 
error), as shown in Table 6.2. For this example, the uncorrected correlation 
between relational aggression and rejection was .16 (computed from F(1,486) = 
12.3) and the standard error of Zr was .0453 (from N = 491). The adjustment 
for artificial dichotomization yields radjusted = .16/.664 = .24 and SEadjusted = 
.0453/.664 = .0682. (Note that this adjustment is only for artificial dichoto-
mization; we ultimately corrected for unreliability as well, which is why this 
effect size differs from that used in our analyses and used later.)

If both of two continuous variables are dichotomized, the correction 
becomes complex (specifically, you must compute a tetrachoric correlation; 
see Hunter & Schmidt, 1990). Fortunately, a simple approximation holds in 
most cases you are likely to encounter. Specifically, the artifact adjustment 
for two artificially dichotomized variables can be approximated by:

equation 6.6: Approximation for dual dichotomization

aXY, dichotomization ≈ aX, dichotomization × aY, dichotomization

a•	 X and aY are the individual correction for dichotomization of X 
and Y.

In other words, the artifact adjustment for two variables is approximated 
by the product of each adjustment for the dichotomization of each variable. 
The feasibility of this approximation depends on the extremity of the dichot-
omization split and the corrected correlation (radjusted). Hunter and Schmidt 
(1990) showed that this approximation is reasonable when (1) one of the vari-
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ables has a median (P = .50) split and the corrected correlation is less than 
.70; (2) one of the variables has an approximately even split (.40 < P < .60) 
and the corrected correlation is less than .50; or (3) neither of the variables 
has extreme splits (.20 < P < .80) and the corrected correlation is less than 
.40. If any of these conditions apply, then this approximation is reasonably 
accurate (less than 10% bias). If the dichotomizations are more extreme or 
the corrected correlations are very large, then you should use the tetrachoric 
correlation described by Hunter and Schmidt (1990).

tABle 6.2. normal ordinates and Artifact corrections 
for Proportional dichotomizations

Split F(c) adichotomization Split F(c) adichotomization

.50 / .50 .3989 .7979 .25 / .75 .3178 .7339

.49 / .51 .3988 .7978 .24 / .76 .3109 .7279

.48 / .52 .3984 .7975 .23 / .77 .3036 .7215

.47 / .53 .3978 .7971 .22 / .78 .2961 .7148

.46 / .54 .3969 .7964 .21 / .79 .2882 .7076

.45 / .55 .3958 .7956 .20 / .80 .2800 .6999

.44 / .56 .3944 .7946 .19 / .81 .2714 .6917

.43 / .57 .3928 .7934 .18 / .82 .2624 .6830

.42 / .58 .3909 .7920 .17 / .83 .2531 .6737

.41 / .59 .3887 .7904 .16 / .84 .2433 .6637

.40 / .60 .3863 .7886 .15 / .85 .2332 .6530

.39 / .61 .3837 .7866 .14 / .86 .2226 .6415

.38 / .62 .3808 .7844 .13 / .87 .2115 .6290

.37 / .63 .3776 .7820 .12 / .88 .2000 .6156

.36 / .64 .3741 .7794 .11 / .89 .1880 .6010

.35 / .65 .3704 .7766 .10 / .90 .1755 .5850

.34 / .66 .3664 .7735 .09 / .91 .1624 .5674

.33 / .67 .3621 .7702 .08 / .92 .1487 .5480

.32 / .68 .3576 .7666 .07 / .93 .1343 .5262

.31 / .69 .3528 .7628 .06 / .94 .1191 .5016

.30 / .70 .3477 .7587 .05 / .95 .1031 .4732

.29 / .71 .3423 .7544 .04 / .96 .0862 .4398

.28 / .72 .3366 .7497 .03 / .97 .0680 .3989

.27 / .73 .3306 .7448 .02 / .98 .0484 .3458

.26 / .74 .3244 .7395 .01 / .99 .0267 .2679
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6.2.4 corrections for range restriction

Estimates of associations between continuous variables are attenuated in 
studies that fail to sample the entire range of population variability on these 
variables. As an example (similar to that described by Hunter, Schmidt, & 
Le, 2006), it might be the case that GRE scores are strongly related to success 
in graduate school, but because only applicants with high GRE scores are 
admitted to graduate school, a sample of graduate students might reveal only 
small correlations between GRE scores obtained and some index of success 
(i.e., this association is attenuated due to restriction in range). This does not 
necessarily mean that there is only a small association between GRE scores 
and graduate school success, at least if we define our population as all poten-
tial graduate students rather than just those admitted. Instead, the estimated 
correlation between GRE scores and graduate school success is attenuated 
(reduced) due to the restricted range of GRE scores for those students about 
whom we can measure success. Aside from GRE scores and graduate school 
success, it is easy to think of numerous other research foci for which restric-
tion of range may occur: Studies of correlates of job performance are limited 
to those individuals hired, educational research too often includes only chil-
dren in mainstream classrooms, and psychopathology research might only 
sample individuals who seek psychological services. Combination and com-
parison of studies using samples of differing ranges might prove difficult if 
you do not correct for restrictions in range of one or both variables under 
consideration.

The first step in adjusting effect sizes for range restriction in one vari-
able is to define some amount of typical (standard) deviation of that vari-
able in the population and then determine the amount of deviation within 
the primary study sample relative to this reference population. This ratio 
of study (restricted) deviation to reference (unrestricted) standard deviation 
is denoted as u = SDstudy/SDreference (Hunter & Schmidt, 2004, p. 37). With 
some studies, determining this u may be straightforward. For example, if a 
study reports the standard deviation of the sample on an IQ test (e.g., 10) with 
a known population standard deviation (e.g., 15), then we could compare the 
sample range on IQ relative to the population range (e.g., u = 10/15 = 0.67).

In other situations, the authors of primary studies select individuals scor-
ing in the top or bottom of a certain percentile range (e.g., selection of those 
above the median of a variable for inclusion is equivalent to selecting the top 
50th percentile). In these situations, it is possible to compute the amount 
that the range is restricted. Although such calculations are complicated (see 
Barr & Sherrill, 1999), Figure 6.1 shows the values of u given the proportion 
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of individuals selected for the study. The x-axis of this figure represents the 
proportion of individuals included in the study (e.g., selection of all individu-
als above the 10th percentile means retention of 0.90 of participants). It can 
be seen that the less selective a study is (i.e., a higher proportion is retained, 
shown on the right side of the figure), the less restricted the range (i.e., u 
approaches 1), whereas the more selective a study is (i.e., a lower proportion 
is retained, shown on the left side of the figure), the more restricted the range 
(i.e., u becomes smaller). Note that the computations on which Figure 6.1 
is based assume a normal distribution of the variable within the reference 
population and are only applicable with one-sided truncated data (i.e., the 
research selected individuals based on their falling above or below a single 
score or percentile cutoff).

In other situations, however, it may be difficult to determine a good esti-
mate of the sample variability relative to that of the population. Although a 
perfect solution likely does not exist, I suggest the following: Select primary 
studies from all included studies that you believe do not suffer restriction 
of range (i.e., those that were fully sampled from the population to which 
you wish to generalize). From these studies, estimate the population (i.e., 
unrestricted) standard deviation by meta- analytically combining standard 
deviations (see Chapter 7). Then use this estimate to compute the degree of 
range restriction (u) among studies in which participants were sampled in a 
restrictive way.
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fIgure 6.1. Restriction in range as a function of proportion of cases included in 
study.



  Corrections to Effect Sizes 141

The artifact adjustment for range restriction is based on this ratio of the 
sample standard deviation relative to the reference population standard devi-
ation (as noted: u = SDstudy/SDreference) as well as the correlation reported in 
the study.5 Specifically, this adjustment is (Hunter & Schmidt, 2004, p. 37):

equation 6.7: correction for range restriction

222 1 uruaRange

u•	  is the degree of range restriction (SDstudy/SDreference).
r•	  is the correlation coefficient (see text for other effect sizes).

A unique aspect of this artifact adjustment for range restriction is that 
it can yield a values greater than 1.0 (in contrast to my earlier statement that 
these adjustments are always less than 1.0). The situation in which this can 
occur is when the sample range is greater than the reference population range 
(i.e., range enhancement). Although range enhancement is probably far less 
common than range restriction, this situation is possible in studies where 
individuals with extreme scores were intentionally oversampled.

A more complex situation is that of indirect range restriction (in contrast 
to the direct range restriction I have described so far). Here, the variables 
comprising the effect size (e.g., X and Y) were not used in selecting partici-
pants, but rather a third variable (e.g., Z) that is related to one of the variables 
of interest was used for selection. If (1) the range of Z in the sample is smaller 
than that in the population, and (2) Z is associated with X or Y, then the 
effective impact of this selection is that the range of X or Y in the sample is 
indirectly restricted. Continuing the example I used earlier, imagine that we 
are interested in the association between IQ (X) and graduate school success 
(Y). Although students might not be directly selected based on IQ, the third 
variable GRE (Z) is correlated with IQ, and we therefore have indirect restric-
tion in the range of IQ represented in the sample.

This situation of indirect range restriction may be more common than 
that of direct range restriction that I have previously described (Hunter et 
al., 2006). It is also more complex to correct. Although I direct readers inter-
ested in a full explanation to other sources (Hunter & Schmidt, 2004, Ch. 3; 
Hunter et al., 2006; Le & Schmidt, 2006), I briefly describe this procedure. 
First, you need to consider both the sample standard deviation of the indi-
rectly restricted variable (e.g., IQ, if GRE scores are used for selection and are 
associated with IQ) as well as the reliability of this restricted variable. You 
then compute an alternative value of u for use in Equation 6.7. Specifically, 
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you compute this alternative ratio, denoted as uT by Hunter and Schmidt 
(2004; Hunter et al., 2006, p. 106) using the following formula:

equation 6.8: Alternative ratio for indirect range restriction

xx

xxX
T r

ru
u

11
12

u•	 X is the ratio of observed to population standard deviation of the 
variable that is indirectly restricted (e.g., IQ).
r•	 xx is the sample reliability estimate of that variable.

As mentioned, this alternative ratio uT is then applied as u in Equation 6.7.
Another situation of range restriction is that of restriction on both vari-

ables comprising the effect size. In the example involving GRE scores and 
graduate school success, the sample may be restricted in terms of both selec-
tion on GRE scores (i.e., only individuals with high scores are accepted into 
graduate schools) and graduate school success (e.g., those who are unsuccess-
ful drop out of graduate programs). This is an example of range restriction on 
both variables of the effect size, or double-range restriction (also called “dou-
bly truncated” by Alexander, Carson, Alliger, & Carr, 1987). Although no 
exact methods exist for simultaneously correcting range restriction on both 
variables (Hunter & Schmidt, 2004, p. 40), Alexander et al. (1987) proposed 
an approximation in which one corrects first for restriction in range of one 
variable and then for restriction of range on the second variable (using the r 
corrected for range restriction on the first variable in Equation 6.7). Alexan-
der et al. (1987) show that this approximation is generally accurate for most 
situations meta- analysts are likely to encounter, and Hunter and Schmidt 
(2004) report that this approximation can be used to correct for either direct 
or indirect range restriction.

6.3 PrActIcAl MAtterS: when (And how) 
to correct: concePtuAl, MethodologIcAl, 
And dIScIPlInAry conSIderAtIonS

6.3.1 general considerations

As I described earlier, one consideration in deciding whether to correct for 
artifacts is the expected magnitude of effects these artifacts have on the 
results. Given the numerous artifact adjustments described in the previous 
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section, you might reasonably choose to correct only for those that seem 
most pressing within the primary studies being synthesized.

How pressing a particular type of artifact is within a meta- analysis is 
partly a conceptual question and partly an empirical question. First, you 
must consider the collection of primary studies in light of your conceptual 
expertise of the area. Relevant questions include the following: How valid 
are the measures within this research in relation to the construct I am inter-
ested in? How representative are the samples relative to the population about 
which I want to draw conclusions? Again, there is not a statistical answer 
to such questions; rather, these questions must be answered based on your 
understanding of the field.

In addition to conceptual considerations, you might also base conclu-
sions on empirical grounds. Specifically, you can consider the data reported 
in primary studies to draw conclusions about the presence of important arti-
facts. For example, I recommend coding the internal consistencies of relevant 
measures within the primary studies, meta- analyzing these reliabilities (see 
Chapter 7), and determining (1) whether the collection of studies has gener-
ally high or low reliabilities of measures and (2) whether substantial variabil-
ity exists across studies in these reliabilities. Similarly, if many studies use 
similar measures of a variable (i.e., with the same scale), then you could code 
and evaluate standard deviations across studies (see Chapter 7) to determine 
whether some studies suffer from restricted ranges. In short, for each of the 
potential artifacts described in the previous section, you should consider the 
available empirical evidence to determine whether this artifact is uniformly 
or inconsistently present in the primary studies being analyzed. If a particu-
lar artifact is uniformly present, then correcting for it will yield more accurate 
overall effect size estimates (among latent constructs). If a particular artifact 
is present in some studies but not in others (or present in differing degrees 
across studies), then correcting for this artifact will reduce less interesting 
(i.e., artifactual) variability across studies and allow for a clearer picture of 
substantively interesting variability in effect sizes.

6.3.2 disciplinary considerations

Whereas I view the conceptual and empirical considerations as most impor-
tant in deciding whether and how to correct for artifacts, the reality is that 
these corrections are more common in some fields than in others. This means 
that one meta- analyst working within one field might be expected to correct 
for certain artifacts, whereas another meta- analyst working within another 
field might be met with skepticism if certain (or any) corrections were to be 
performed. These disciplinary practices are unfortunate, especially because 
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they are more often due to those who are influential in a field more so than 
consideration of particular needs of a field. Nevertheless, it is useful to recog-
nize the common practices within your particular field.

Notwithstanding recognition of these disciplinary practices, I want to 
encourage you to not feel restricted by these practices. In other words, do 
not base your decision to perform or not perform certain artifact corrections 
only on common practices within your field. Instead, carefully consider the 
conceptual and empirical basis for making certain corrections, and then use 
(or not) these corrections to obtain results that best answer your research 
questions.

6.4 SuMMAry

In this chapter I have described rationales for and against corrections of 
study artifacts, imperfections of primary studies that bias (typically attenu-
ate) effect size estimates. I described methods of correcting for several types 
of artifacts: unreliability of measures, artificial dichotomization of continu-
ous variables, range restriction, poor validity of measures, and covariation 
due to a third variable. Despite disciplinary differences in practices of artifact 
correction, I argue that the decision to correct or not to correct for certain 
artifacts should be based on conceptual and empirical grounds.

6.5 recoMMended reAdIngS

Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta- analysis: Correcting error and bias 
in research findings (2nd ed.). Thousand Oaks, CA: Sage.—This book provides a 
complete description of meta- analysis emphasizing the artifact corrections described 
in this chapter. The authors have been the most active advocates for artifact correction 
in the field of meta- analysis.

Schmidt, F. L., Le, H., & Oh, I.-S. (2009). Correcting for the distorting effects of study artifacts 
in meta- analysis. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook 
of research synthesis and meta-analysis (2nd ed., pp. 317–333). New York: Russell 
Sage Foundation.—This chapter represents a more concise overview of the practice of 
artifact correction in meta- analysis.



  Corrections to Effect Sizes 145

noteS

1. By describing artifact corrections of effect sizes of individual studies, I am 
implicitly prescribing one of two possible methods of meta- analysis with artifact 
correction. Specifically, I am recommending that you correct the effect sizes of 
each individual study and use these corrected effect sizes in subsequent meta-
 analytic computations (described in Chapters 8–12). This approach is described 
in Hunter and Schmidt (2004, Ch. 3). My selection of this approach makes my 
subsequent description of combining and comparing effect sizes across studies 
more straightforward. However, it also requires that most studies provide suffi-
cient information to make corrections (e.g., report internal consistency to correct 
for unreliability), and it may be necessary to substitute estimates of these correc-
tions for studies that do not provide sufficient information (e.g., meta- analytically 
compute a mean reliability that is used for studies that do not report internal con-
sistency). An alternative approach is to meta- analytically compute a distribution 
of uncorrected effect sizes across studies and distributions of corrections across 
studies. These techniques are more complex, yet may be useful when primary 
studies are inconsistent in reporting information needed to correct for artifacts. 
These techniques are described in Hunter and Schmidt (2004, Ch. 4).

2. An important caveat of this use of multiplicative combination of artifacts is that 
the artifacts are assumed to be independent of one another. Violations of this 
assumption can lead to inaccurate corrected effect sizes, including out-of- bounds 
effect sizes (e.g., r greater than 1.0).

3. I have arranged these reasons in what I consider the most to least justifiable. 
Not correcting for unreliability of one variable is acceptable if a convincing case 
can be made that it is highly reliably measured. Not correcting for reliability 
of one variable because primary studies do not report this reliability is weaker 
justification, though it is a reality you may have to deal with in some situations. 
It is likely that some studies in a meta- analysis will report reliability estimates, 
whereas others will not. In these cases it is preferable for you to seek reliability 
information from primary study authors. If it is still not possible to obtain reli-
ability estimates for some studies in the meta- analysis, I recommend performing 
a meta- analysis of reliabilities among studies in the meta- analysis (see Chapter 7) 
and using either the mean reliability or an estimated reliability predicted by other 
study features. The final reason listed, not correcting for unreliability of one vari-
able because you are not interested in the variable, is not acceptable. Expressing 
an interest in X but not Y ignores the fact that the association between these vari-
ables necessarily depends on the measurement properties (including reliability) 
of both variables, so unreliability in Y is going to adversely affect the association 
involving X, which you are interested in.

4. Latent correlations can also be found within structural equation models, or 
latent variable models that include directional (regression) paths. However, the 
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meta- analyst needs to be careful when determining latent correlations from such 
models. Although nondirection (i.e., bivariate) associations between exogenous 
(predictor) variables can be interpreted as latent correlations, nondirectional 
associations between endogenous variables (predicted variables) and directional 
associations cannot be interpreted as latent correlations. In these instances, the 
meta- analyst needs to derive the latent correlations through tracing rules, as 
described by Kline (2005) and Maruyama (1998).

5. When discussing range restriction, I focus on the use of r as the index of effect 
size. This is the most common situation, as range restriction is relevant only to 
continuous variables and is most often encountered in naturalistic studies. How-
ever, it is also possible to correct for range restriction of the continuous variable 
when considering standardized mean differences (e.g., g). For details regarding 
these corrections, see Hunter and Schmidt (2004) or Lipsey and Wilson (2001).
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7

Advanced and Unique 
Effect Size Computation

Although the three effect sizes (r, g, or other standardized mean differences, 
and o) described in Chapter 5 are most commonly used, you are not restricted 
to these indices of two- variable associations in your meta- analysis. Instead, 
you should consider the broad range of potential effect sizes as answers to the 
research questions relevant to your review. In this chapter, I describe some less 
commonly used effect sizes that are useful for meta- analysis of single variables 
(i.e., means, proportions, and variances or standard deviations), effect sizes 
that retain the meaningful metric of the variables involved (i.e., unstandardized 
effect sizes), effect sizes from multivariate regression analyses, and a variety 
of different effect sizes that have received less consideration (e.g., scale reli-
abilities, longitudinal change scores). I then describe some of the challenges 
of using less common effect sizes in your meta- analysis, as well as some of 
the opportunities.

7.1 deScrIBIng SIngle vArIABleS

There are relatively few instances of meta- analyzing single variables, yet this 
information could be potentially valuable. At least three types of information 
regarding single variables could be important: (1) the mean level of individu-
als on a continuous variable; (2) the proportions of individuals falling into a 
particular category of a categorical variable; and (3) the amount of variability 
(or standard deviation), in a continuous variable.
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7.1.1 Mean level on variable

Meta- analysis of reported means on a single variable may have great value. One 
potential is that meta- analytic combination (see Chapters 8 and 9) allows you to 
obtain a more precise estimate of this mean than might be obtained in primary 
studies, especially when those primary studies have small sample sizes. Perhaps 
more importantly, meta- analytic comparison (see Chapter 10) allows you to iden-
tify potential reasons why means differ across studies (e.g., methodological differ-
ences such as condition or reporter; sample characteristics such as age or ethnic-
ity). Thus, the meta- analysis of means of single variables has considerable value.

At the same time, there is also an important limiting consideration in the 
meta- analysis of means in that the primary studies must typically report this 
value in the same metric. For example, if one study measures the variable of 
interest on a 0–4 scale, whereas another uses a 1–100 scale, it usually does not 
make sense to combine or compare means across these studies.1 Some excep-
tions can be considered, however. The first exception is if the different scales 
are due to the primary study authors scoring comparable measures in differ-
ent ways, then it is usually possible to transform one of the scales to the metric 
of the other. For example, if two primary studies both use a 6-item scale with 
items having values from 1 to 5, one study may form a composite by averaging 
the items, whereas the other forms a composite by summing the items. In this 
case, it would be possible to transform one of the two means to the same scale 
of the other (i.e., multiplying the average by 6 to obtain the sum, or dividing 
the sum by 6 to obtain the average), and the means of the two studies could 
then be combined and compared. A second, more general exception is that it 
might usually be possible to transform studies using different scales into a 
common metric. From the example I provided of one study using a 0–4 scale 
and the other using a 1–100 scale, it is possible to transform a mean on one 
scale to an equivalent mean on the other using the following equation:

equation 7.1: transforming scores between two different scales

2
11

22
112 Min

MinMax
MinMax

MinXX

X•	 2 is the equivalent score on the second scale.
X•	 1 is the score on the first scale that you wish to transform.
Min•	 1 is the lowest possible score on the first scale.
Max•	 1 is the highest possible score on the first scale.
Min•	 2 is the lowest possible score on the second scale.
Max•	 2 is the highest possible score on the score scale.
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A caution in using different scales is that even if both studies use a com-
mon range of scores (e.g., 0–4), it is probably only meaningful to combine and 
compare means if the studies used the same anchor points (e.g., if one used 
response options of never, rarely, sometimes, often, and always, whereas the 
other used 0 times, once, 2–3 times, 4–6 times, and 7 or more times, it would 
make little sense to combine or compare these studies). This may prove an 
especially difficult obstacle if you are attempting to combine multiple scales 
in which scores from one scale are transformed to scores of another using 
Equation 7.1. This requirement of primary studies reporting the variable on 
the same—or at least a comparable— metric means that you will often include 
only studies using the same measure (e.g., a particular measure of depres-
sion, such as the Children’s Depression Inventory; Kovacs, 1992) or else very 
similar measures (e.g., child- and teacher- reported aggression using parallel 
items and response options). I suspect that this rather restrictive requirement 
is the primary reason why meta- analysis of means is not more common. If 
you are using different but similar measures, or transformations to place val-
ues of different measures on a common scale, I highly recommend evaluating 
the measure as a moderator (see Chapter 9).

If you do have a situation in which the combination or comparison 
of means is feasible, computing this effect size (and its standard error) is 
straightforward. The equation for computing a mean is well known, but I 
reproduce it here:

equation 7.2: computing the mean (X) from raw data

N
x

X i

x•	 i is scores of individual i.
N•	  is the sample size.

However, it is typically not necessary (or possible) for you to compute 
this mean, as this is usually reported within the primary study. Therefore, 
coding the mean, which is an effect size (of the central tendency of a single 
variable), is usually straightforward.

Occasionally, however, the primary studies will report frequency tables 
rather than means for variables with a small number of potential options. For 
example, a primary study might report the number or proportion of individ-
uals scoring 0, the number or proportion scoring 1, and so on, on a measure 
that has possible options of 0, 1, 2, 3, and 4. Here, you can use these frequen-
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cies of different scores to re- create the raw data and then compute the mean 
from these data (using Equation 7.2). An easier way to compute this mean is 
using the following equivalent formula provided by Lipsey and Wilson (2001, 
p. 176), summing over all potential values of a variable:

equation 7.3: computing the mean (X) from frequency data

f
xf

X

x•	  is a potential value of the variable.
f•	  is the frequency (number, percentage, or proportion) of individu-
als with the value x.

Before ending my discussion of calculating the mean as an effect size, 
it is important to consider the standard error of this estimate of the mean 
(which is used for weighting in the meta- analysis; see Chapter 8). To compute 
the standard error of a study’s estimate of the mean, you must obtain the 
(population estimate of the) standard deviation (s) and sample size (N) from 
that study, which are then used in the following equation:

equation 7.4: Standard error of a mean (SE X)

N
s

SE X
X

s•	  is the standard deviation of variable X.
N•	  is the sample size.

After computing the mean and standard error of the mean for each study, 
you can then meta- analytically combine and compare results across studies 
using techniques described later in this book (see Chapters 8–10).

7.1.2 Proportion of Individuals in categories

Whereas the mean is a useful effect size for the typical score (i.e., central 
tendency) of a single continuous variable, the proportion is a useful effect 
size for a particular category of a categorical variable. For example, we may 
be interested in the proportion of children who are aggressive or the propor-
tion of individuals who meet certain criteria for rejected social status, if we 
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believe the meaningful conceptualization of aggression or rejection is cat-
egorical. In these cases, we are interested in the prevalence of an affirmative 
instance of a single dichotomous variable.2

This proportion is often either directly reported in primary studies (as 
either a proportion or percentage, which can be divided by 100 to obtain the 
proportion), or else can be computed from the reported frequency falling in 
this category (k) relative to the total sample size (N):

equation 7.5: computing the proportion (p)

p = k
N

k•	  is the number of individuals in the category of interest.
N•	  is the sample size.

This proportion works well as an effect size in many situations, but is 
problematic when proportions are far from 0.50.3 For this reason, it is useful 
to transform proportions (p) into logits (l) prior to meta- analytic combina-
tion or comparison:

equation 7.6: computing logits (l) from proportions

p
p

l
1

ln

p•	  is the proportion of individuals in the category of interest.

This logit has the following standard error dependent on the proportion 
(p) and sample size (N) (Lipsey & Wilson, 2001, p. 40):

equation 7.7: Standard error of a logit (SEl)

1
11

pNNp
SEl

p•	  is the proportion of individuals in the category of interest.
N•	  is the sample size.
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Analyses would then be performed on the logit (l), weighted by the stan-
dard error (SEl) as described in Chapters 8 through 10. For reporting, it is 
useful to back- transform results (e.g., mean effect size) in logits (l) back to 
proportions (p), using the following equation:

equation 7.8: transforming logits to proportions

p = el

el + 1

p•	  is the proportion of individuals in the category of interest.
l•	  is the logit transformation.

7.1.3 variances and Standard deviations

Few meta- analyses have used variances, or the equivalent standard deviation 
(the square root of the variance), as effect sizes. However, the magnitude of 
interindividual difference is a potentially interesting focus, so I offer this 
brief description of using these as effect sizes for meta- analysis.

The standard deviation, which is the square root of the variance, is cal-
culated from raw data as follows:

equation 7.9: computing the standard deviation (s) 
or variance (s2) from raw data

1

2
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X•	 i is the score of individual i.
X•	  is the average of X across individuals.
N•	  is the sample size.

This equation is the unbiased estimate of population standard deviation 
(and the square root of variance) from a sample (versus a description of the 
sample variability, which would be computed using N rather than N – 1 in 
the denominator). This is also the statistic commonly reported in primary 
research. In fact, you will almost never need to calculate this standard devia-
tion, as doing so requires raw data that are typically not available. Fortu-
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nately, standard deviations (or variances) are nearly always reported as basic 
descriptive information in primary studies.4

To meta- analytically combine or compare standard deviations (or vari-
ances) across studies, you must also compute the standard error used for 
weighting (see Chapter 8). The standard error of the standard deviation is a 
function of the standard deviation itself and the sample size (Pigott & Wu, 
2008):

equation 7.10: Standard error of the standard deviation (SEs)

N
sSEs
2

s•	  is the (population estimate of the) standard deviation.
N•	  is the sample size.

The standard error of a variance estimate, as you might expect, is simply 
Equation 7.10 squared (i.e., NsSE s 22

2 ).
At this point, you may have concluded that meta- analysis of standard 

deviations (and therefore variances) is straightforward. To a large extent this 
is true, though three qualifiers should be noted. First, as with the mean, it is 
necessary that the studies included all use the same measure, or at least mea-
sures that can be placed on the same scale. Just as it would make little sense 
to combine means from studies’ incomparable scales, it does not make sense 
to combine magnitudes of individual difference (i.e., standard deviations) 
from incomparable scales. Second, standard deviations are not exactly nor-
mally distributed, especially with small samples. Following the suggestion of 
Pigott and Wu (2008), I suggest that you do not attempt to meta- analyze stan-
dard deviations if many studies have sample sizes less than 25. A third con-
sideration involves the possibility of diminished standard deviations due to 
ceiling or floor effects. Ceiling effects occur when most individuals in a study 
score near the top of the scale, and floor effects occur when most individuals 
score near the bottom of the scale. In both situations, estimates of standard 
deviation are lowered because there is less “room” for individuals to vary 
given the constraints of the scale. For example, if we administered a third-
grade math test to graduate students, we would expect that most of them 
would score near the maximum of the test, and the real individual variability 
in math skills would not be captured by the observed variability in scores on 
this test. I suggest two strategies for avoiding this potential biasing effect: (1) 
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visually observe the means of studies and consider excluding those studies 
where the mean is close to the bottom or top of the scale, and (2) compute 
a correlation across studies between means and standard deviations—the 
presence of an association suggests a potential floor or ceiling effect, whereas 
the absence of association would suggest this bias is not present.5

7.2 when the MetrIc IS MeAnIngful: 
rAw dIfference ScoreS

Paralleling the situation when you might want to meta- analyze means and 
standard deviations—that is, when included studies share a common (or 
comparable) scale for variable X—there may also be instances when we are 
interested in comparing two groups on a variable measured on a common 
scale across studies. For example, studies may all compare two groups on 
variable X using a common scale for X. Although Chapter 5 described the 
value of standardizing mean differences (e.g., g), in this situation of com-
mon scales across studies, it may be more meaningful to meta- analytically 
combine and compare studies on this common scale. In other words, it may 
sometimes be useful to retain the meaningful metric of the scale on which 
variables were measured in primary studies (see also Becker, 2003).

There are various circumstances in which you may prefer to compare 
two groups in terms of raw rather than standardized differences. For exam-
ple, gender differences in height may be more meaningful when expressed 
as inches than as number of standard deviations. Similarly, the effectiveness 
of a weight-loss program might be more meaningful if expressed in pounds 
(e.g., the treatment group lost, on average, 10 pounds more than the control 
group). If you are meta- analytically combining or comparing studies that all 
use the same measure of the variable of interest (or at least measures that use 
the same scale), it is straightforward to use these raw, or unstandardized, dif-
ferences as effect sizes.

The unstandardized mean is simply the raw difference in means between 
two groups (Lipsey & Wilson, 2001, p. 47):

equation 7.11: unstandardized mean difference (UM)

UM = M1 – M2

M•	 1 is the mean of Group 1.
M•	 2 is the mean of Group 2.
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You probably recognize this equation from Chapter 5, where we dis-
cussed the various standardized mean differences (Equations 5.5 to 5.7). In 
Equation 7.11, however, there is no denominator involving some variant of 
the standard deviation. This standard deviation denominator of Equations 
5.5 to 5.7 served to standardize the mean differences in terms of standard 
deviation units. Here, where the metric is meaningful, you do not wish to 
standardize this mean difference, but instead leave it in its unstandardized, 
or raw score, metric.

To estimate the standard error of this unstandardized mean difference 
(for weighting in your meta- analysis; see Chapter 8), you use the follow-
ing equation (see Bond, Wiitala, & Richard, 2003; Lipsey & Wilson, 2001, 
p. 47):

equation 7.12: Standard error of the unstandardized 
mean difference (SEUM)
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s•	 p is the pooled standard deviation from both groups.
n•	 1 and n2 are the sizes of Groups 1 and 2.
N•	 total is the total sample size of the study (assuming equal sample 
size per group).

Once you have computed unstandardized mean differences and associ-
ated standard errors for each study, it is then possible to meta- analytically 
combine and contrast these metrically meaningful effect sizes. However, 
Bond and colleagues (2003) discourage reliance on these traditional tech-
niques and suggest more complicated procedures.6 I suspect that their cau-
tions are most appropriate when studies have small sample sizes and that 
the increase in precision from their more advanced techniques diminishes 
with larger sample sizes. However, further quantitative studies are needed to 
evaluate this claim. Regardless, their alternative formulas do not affect the 
computation of a mean effect size, but rather inferences about this effect size 
and heterogeneity. For now, I encourage you to consider the alternative for-
mulas of Bond et al. (2003) if you are meta- analyzing unstandardized mean 
differences from studies with small sample sizes and your initial analyses 
of significance of the mean effect or test of heterogeneity are very close to 
your chosen level of statistical significance. In other cases, you may find the 
standard methods described in Chapter 8 more straightforward with little 
substantive impact on your results.
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7.3 regreSSIon coeffIcIentS And SIMIlAr 
MultIvArIAte effect SIzeS

7.3.1 regression coefficients

In many areas of study, researchers are interested in associations of one 
variable (X), with another variable (Y) controlling for other variables (Zs). 
For example, education researchers might wish to understand the relation 
between ethnicity and academic success, controlling for SES. Or a develop-
mental researcher might be interested in whether (and to what extent) chil-
dren’s use of relational aggression (e.g., gossiping about others, intentionally 
excluding someone from group activities) is associated with maladjustment, 
above and beyond their use of overt aggression (e.g., hitting, name calling, 
which is strongly correlated with relational aggression; see Card et al., 2008). 
In these cases, the central question involves the magnitude of unique, inde-
pendent association between X and Y after controlling for Z (or multiple Zs).

In primary research, this situation is handled through multiple regres-
sion and similar techniques. Specifically, in these situations you would 
regress the presumed dependent variable (Y) onto both the predictor of inter-
est (X) and other variables that you wish to control (one or more Zs). The 
well-known equation for this regression is (e.g., Cohen et al., 2003):

equation 7.13: Multiple regression of Y onto X and Z

Y = B0 + B1X + B2Z + e

Y•	  is the presumed dependent variable.
X•	  is the predictor variable of interest.
Z•	  is the variable one wishes to control.
B•	 0 is the intercept, or implied value of Y when all predictors equal 
0.
B•	 1 is the regression coefficient of X, representing the unstandard-
ized association of X with Y when Z is held constant.
B•	 2 is the regression coefficient of Z, representing the unstandard-
ized association of Z with Y when X is held constant.
e•	  is the error or residual term, representing the discrepancy between 
actual values and predicted values of Y.

Here, the regression coefficient of X (B1) is of most interest. However, 
this value by itself is often less intuitive than several alternative indexes. The 
first possibility is the standardized regression coefficient, b1, which is inter-
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pretably similar to the unstandardized regression coefficient but expressed 
according to a range from 0 (no unique association) to ±1 (perfect unique 
association).7 If the X and Y variables are all measured according to a com-
mon scale, then the unstandardized regression coefficient may be meta-
 analyzed. But the more common situation of X and Y measured on differ-
ent scales across different studies requires that we rely on the standardized 
regression coefficient. This standardized regression coefficient will often be 
reported in primary studies, but when only the component bivariate correla-
tions are reported, you can rely on the following definitional formula (Cohen 
et al., 2003, p. 68) to compute this coefficient from correlations:

equation 7.14: computing standardized 
regression coefficients (b1)

2
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r•	 Y1 is the correlation between the variable of interest (X) and Y.
r•	 Y2 is the correlation between the control variable (Z) and Y.
r•	 12 is the correlation between X and Z.

7.3.2 Semipartial correlations

Another index of the unique association is the semipartial correlation (sr), 
which is the (directional) square root of the variance of X that does not over-
lap with Z with all of Y (vs. the partial correlation, which quantifies the vari-
ance of this nonoverlapping part of X relative to the part of Y that does not 
overlap with Z). Although sr is often reported, you may need to calculate it 
from bivariate correlations using the following definitional formulas (Cohen 
et al., 2003, pp. 73–74):

equation 7.15: computing semipartial (sr) correlations
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r•	 Y1 is the correlation between the variable of interest (X) and Y.
r•	 Y2 is the correlation between the control variable (Z) and Y.
r•	 12 is the correlation between X and Z.
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As with r, it is preferable to transform sr using Fisher’s Z transformation 
(Equation 5.2) before analysis and then back- transform average Zsr to sr or 
pr for reporting.

7.3.3 Standard errors of Multivariate effect Sizes

Thus far, I have talked about three potential effect sizes for meta- analysis 
of associations of X with Y, controlling for Z. As I describe further in Chap-
ter 8, it is also necessary to compute standard errors for each for potential 
use in weighting meta- analytic combination and comparison across studies. 
The following formulas provide the standard errors for these four effect sizes 
(Cohen et al., 2003):

equation 7.16: Standard errors for independent effect sizes
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s•	 Y and sX are the standard deviations of Y and X.
2RX•	  is the variance in X predicted by other variables in the model  

( 2RXZ if there is only one control variable, Z).
2RY•	  is the variance in Y predicted in the model (by X and all Zs).

N•	  is the sample size.
p•	  is the number of predictors of Y (including X and all Zs).

Having described the computations of independent associations and 
their standard errors, I need to caution you about their potential use in meta-
 analysis. A critical limiting factor in using these effect sizes from multiple 
regression analyses is that every study should include the same covariates (Zs) 
in analyses from which results are drawn. In other words, it is meaningful to 
compare the independent association between X and Y only if every study 
included in our meta- analysis controls for the same Z or set of Zs. If different 
studies include fewer or more, or simply different, covariates, then it makes 
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no sense to combine the effect sizes of the type described here (i.e., regression 
coefficients, semipartial or partial correlations) from these studies.

If different studies do use different covariates, then you have two 
options, both of which require access to basic, bivariate correlations among 
all relevant variables (Y, X, and all Zs). The first option is to compute the 
desired effect sizes (i.e., regression coefficients, semipartial or partial correla-
tions) from these bivariate correlations for each study and then meta- analyze 
these now- comparable effect sizes. This requires that all included studies 
report the necessary bivariate correlations (or you are able to obtain these 
from the authors). The second option is to meta- analyze the relevant bivari-
ate correlations from each study in their bivariate form and then use these 
meta- analyzed bivariate correlations as sufficient statistics for multivariate 
analysis. This option is more flexible than the first one in that it can include 
studies reporting some but not all bivariate correlations. I discuss this latter 
approach in more detail in Chapter 12.

7.3.4 differential Indices

Differential indices capture the magnitude of difference between two correla-
tions within a study. Although these differential indices are rarely used, they 
do offer some unique opportunities to answer specific research questions. 
Next, I describe differential indices for both dependent and independent cor-
relations.

7.3.4.1 Differential Index for Dependent Correlations

Meta- analysis of partial and semipartial correlations answers questions of 
whether a unique association exists between two variables, controlling for a 
third variable. For example, I might consider semipartial correlations of the 
association of relational aggression with rejection, above and beyond overt 
aggression. A slightly different question would be whether relational or overt 
aggression was more strongly correlated to rejection (see Card et al., 2008). 
More generally, the differential index for dependent correlations indexes the 
direction and magnitude of difference of two variables’ association with a 
third variable.

This differential index for dependent correlation, ddependent, is computed 
in a way parallel to the significance test to compare differences between 
dependent correlations (see Cohen & Cohen, 1983, pp. 56–57). This effect 
size of differential correlation of two variables (A and B) with a third variable 
(Y) is computed from the three correlations among these variables (Card et 
al., 2008):
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equation 7.17: differential index for dependent correlations 
(ddependent)
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r•	 AY is the correlation of A with Y.
r•	 BY is the correlation of B with Y.
r•	 AB is the correlation between A and B.
N•	  is the sample size.
|•	 R| equals 1—r2AY—r2BY—r2AB + 2 rAY rBY rAB.
r•	  equals (rAY + rBY)/2.

This differential index will be positive when the correlation of A with Y 
is greater than the correlation of B with Y, zero when these two correlations 
are equal, and negative when the correlation of B with Y is larger. This dif-
ferential correlation can be meta- analytically combined and compared across 
studies to draw conclusions regarding the extent (or under what conditions) 
one association is stronger than the other.

7.3.4.2 Differential Index for Independent Correlations

The differential index can also be used to meta- analytically compare differences 
between independent correlations, that is, correlations drawn from different 
populations. Independent correlations may emerge within a single primary 
study when the primary research reports effect sizes for different subgroups. 
For example, in our example meta- analysis of relational aggression and rejec-
tion (Card et al., 2008), we were interested in evaluating gender differences 
in the magnitude of associations between relational aggression and rejection. 
This question is really one of moderation (Is the relational aggression with 
rejection link moderated by gender?), but here we compute the moderating 
effect within each study and subsequently meta- analyze the effect.

This differential index for independent correlations parallels the sig-
nificance test to compare differences between independent correlations (see 
Cohen & Cohen, 1983, pp. 54–55). Given separately reported correlations for 
subgroups A and B within a single primary study, we apply Fisher’s transfor-
mation to each and then use the following equation to index the differential 
association for the two subgroups (Card et al., 2008):
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equation 7.18: differential index for independent correlations 
(dindependent)
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Zr•	 A is the Fisher’s Z transformation of the correlation for subgroup 
A.
Zr•	 B is the Fisher’s Z transformation of the correlation for subgroup 
B.
n•	 A is the number of participants in subgroup A in the study.
n•	 B is the number of participants in subgroup B in the study.

This differential index for independent correlations will be positive when 
the correlation is more positive (i.e., stronger positive or weaker negative) 
for subgroup A than B, negative when the correlation is more negative (i.e., 
weaker positive or stronger negative) for subgroup A than B, and zero when 
groups A and B have the same correlation. Meta- analytic combination across 
multiple studies providing data for this index provides evidence of whether 
(and how strongly) subgroup classification moderates this correlation.

7.4 MIScellAneouS effect SIzeS

As I hope is becoming increasingly clear, you can include a wide range of 
options for effect sizes in your meta- analyses. Although this section on 
miscellaneous effect sizes could include dozens of possibilities, I limit my 
description to two that seem especially useful: scale internal consistency and 
longitudinal change scores.

7.4.1 Scale Internal reliability

Internal consistency, or the internal reliability of a scale, indexes the magni-
tude to which items of a scale are homogeneous. The most widely used index 
of this internal consistency is Cronbach’s alpha, a (Cronbach, 1951), which 
can be computed based on the number of items in a scale (j) and the average 
correlation among these items (r):
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equation 7.19: computing cronbach’s alpha (a) 
for internal consistency

rj
rj
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j•	  is the number of items of the scale.
r•	  is the average correlation among items.

There are two situations in which you might be interested in meta-
 analyzing internal consistency. One situation was raised in Chapter 6—when 
I described the situation in which you wish to correct for unreliability but this 
estimate is not provided in some studies. In this situation, a meta- analytically 
derived mean or predicted variable (i.e., predicted by characteristics of the 
study) provides a reasonable estimate of internal consistency to use when 
correcting for the artifact of unreliability. A second situation is when the 
internal consistency is itself of interest. For instance, you might be interested 
in knowing the average internal consistency of a scale across multiple studies 
(i.e., the mean internal consistency), or you might be interested in the con-
ditions under which internal consistency is higher or lower (i.e., moderator 
analyses across study characteristics). In both situations, meta- analysis of 
internal consistency estimates is valuable.

Although various methods of meta- analyzing reliability results have been 
proposed, I rely on the method described by Rodriguez and Maeda (2006) for 
Cronbach’s alpha. This approach is relatively simple, and Cronbach’s alpha is 
reported in most studies.8 This method relies on a transformation of Cron-
bach’s alpha as the effect size (Rodriguez & Maeda, 2006):

equation 7.20: transformation of cronbach’s alpha 
for meta-analysis

3 1ES

a•	  is the estimate of Cronbach’s alpha in the study.

The standard error of this transformed internal consistency is a function 
of the number of items on the scale used in the study, the sample size, and the 
estimate of internal consistency itself (Rodriguez & Maeda, 2006):
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equation 7.21: Standard error of transformed cronbach’s alpha
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J•	  is the number of items on the scale used in the study.
N•	  is the sample size of the study.
a•	  is the estimate of Cronbach’s alpha in the study.

After computing the mean transformed internal consistency (as well as 
confidence interval limits or predicted values at different levels of modera-
tors), you should back- transform results into the more interpretable Cron-
bach’s alpha:

equation 7.22: Back- transformation of cronbach’s alpha

31 ES

a•	  is the internal consistency Cronbach’s alpha.
ES•	 a is the transformed internal consistency found in the meta-
 analysis.

7.4.2 longitudinal change Scores

Longitudinal change is of central interest in many areas. In developmental 
science, much attention is given to change across age, which is often studied 
using naturalistic longitudinal designs (see Little et al., 2009). Longitudinal 
change is also relevant to experimental and quasi- experimental research; for 
instance, you might be interested in changes in some index of functioning 
from before to after an intervention. Given this empirical interest in longi-
tudinal change, it follows that you may be interested in meta- analytically 
combining and comparing this change across studies.

We can consider longitudinal change scores as indexing a two- variable 
association between time (X) and the variable that is potentially increas-
ing or decreasing (Y). Because most studies that you might potentially meta-
 analyze treat time as a categorical variable (e.g., Waves 1 and 2 of a survey, 
pre- and postintervention scores),9 you can represent these change scores as 
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either standardized mean change (e.g., g) or unstandardized mean change (if 
all studies use the same scale for the Y variable). Because it is more likely that 
you will want to meta- analyze studies using different measures of Y, I focus 
only on the standardized mean change here (for a description of unstandard-
ized mean change, see Lipsey & Wilson, 2001, pp. 42–44).

The standardized mean change effect size is defined by the following 
formula (Lipsey & Wilson, 2001, p. 44):

equation 7.23: computing standardized mean change (gchange)
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M•	 1 and M2 are the means at times 1 and 2.
s•	 1 and s2 are the standard deviations at times 1 and 2.

This equation is identical to that for the standardized mean difference 
(g) between independent groups shown in Chapter 5, if you recognize that 
the denominator is simply the pooled standard deviation across time. From 
this equation, you see that computing gchange from reported descriptive data 
is straightforward. One caveat is that you should be careful that the reported 
means and standard deviations at each time come from only the individuals 
who participated in both times. In other words, you need descriptive data 
from the nonattriting sample.10

Although most research reports will provide these descriptive data, 
you may find instances where they do not. If the primary study reports only 
a repeated- measures t-test or ANOVA (F-ratio), along with the correlation 
between Waves 1 and 2 (i.e., interindividual stability), you can use this infor-
mation to compute gchange using the following equation (which was also pro-
vided in Chapter 5):
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equation 7.24: computing gchange from repeated- measures 
inferential tests
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t•	  is the positive or negative value of the t-test for dependent 
means.
F•	 (1,df) is the F-ratio from a repeated- measures ANOVA.
N•	  is the sample size.
r•	  is the correlation between Wave 1 and Wave 2 scores (i.e., inter-
individual stability of the variable).

When using these equations, you should be sure that you are assigning 
the correct sign to the effect size. I strongly recommend always using positive 
scores to represent increases in the variable over time and negative scores to 
represent decreases. These equations also allow us to compute gchange from 
probability levels—be they exact (e.g., p = .034) or minimum effect sizes from 
a range (e.g., p < .05). Here, you simply look up the associated t or F value 
given the reported level of significance and degrees of freedom.

In addition to the effect size gchange, we also need to compute the stan-
dard error of this estimate for weighting in our meta- analysis. As you would 
expect, the standard error is dependent on the sample size; but it is also 
dependent on the interindividual stability (r) of the variable across time. It is 
critical to find this information in the research report for accurately comput-
ing this standard error; if it is not provided, you should seek to obtain this 
information from the study authors. The equation for the standard error for 
gchange is (Lipsey & Wilson, 2001, p. 44):

equation 7.25: computing standard error for gchange
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SE change
gchange 2
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r•	  is the interindividual stability of the variable across the time stud-
ied.
g•	 change is the standardized mean change effect size (see Equation 
7.24).
N•	  is the sample size.
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Before concluding this section on longitudinal change scores, I want 
to note that this approach is not limited only to longitudinal designs, even 
though that is where we are most likely to apply them. Instead, this approach 
can be used with any data that would typically be analyzed (in primary 
research) using paired- sample t-tests or two-group repeated- measures ANO-
VAs. For example, this effect size would be appropriate in treatment stud-
ies where individuals are matched into pairs, and then randomly assigned 
to treatment versus control groups (see e.g., Shadish et al., 2002, p. 118). 
Similarly, this effect size would be useful when meta- analyzing dyadic data 
in which individuals are interdependently linked, such as studies consider-
ing differences between husbands and wives or between older and younger 
siblings (see Kenny, Kashy, & Cook, 2006). Although these types of studies 
are likely less common in most fields, you can keep these possibilities in 
mind.

7.5 PrActIcAl MAtterS: the oPPortunItIeS 
And chAllengeS of MetA-AnAlyzIng 
unIQue effect SIzeS

7.5.1 the challenges of Meta-Analyzing 
unique effect Sizes

Meta- analyzing unique effect sizes carries a number of challenges. In this 
section, I describe some challenges to meta- analyzing unique effect sizes. 
These challenges apply not only to the effect sizes I have described in this 
chapter, but to a nearly unlimited range of other advanced effect sizes that 
we might consider.

One challenge of using unique effect sizes in meta- analysis is that the pri-
mary studies might often fail to report the necessary data. When I described 
basic effect sizes in Chapter 5, I mentioned that these effect sizes are often 
reported, or else sufficient information to compute such effect sizes are typi-
cally reported. In this chapter, I have focused attention on some effect sizes 
that are likely to be commonly reported (e.g., internal consistency), but this 
information is still less likely to be reported in all relevant studies. If you are 
using unique effect sizes (either those I have described here or others), it will 
be important for you to contact authors of studies that could provide relevant 
data that are not reported. Often, you will need to give explicit instructions 
to these authors on how to compute these unique effects, which might be less 
familiar to researchers than more basic effect sizes (e.g., correlations).
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A related challenge involves the inconsistencies in analytic methods and 
reporting of advanced effect sizes. Earlier in this chapter, I described this 
challenge when using independent effect sizes, such as regression coefficients 
or semipartial correlations from multiple regression analyses in which differ-
ent studies include different predictors/covariates. We can also imagine how 
this inconsistency would pose obstacles to the use of other effect sizes. For 
example, imagine that you wanted to meta- analytically combine results of 
exploratory factor analyses, such as factor loadings and commonality. If you 
looked at the relevant literature, you would find tremendous variability in the 
use of principal components versus true factor analysis models, methods of 
extraction, the way authors determined the number of factors to extract or 
interpret, and methods of rotation. Given this diversity, it would be difficult, 
if not impossible, to attempt to meta- analytically combine these results. This 
example illustrates the challenge of meta- analyzing unique effect sizes from 
studies that might vary in their analytic methods and reporting.

As I will discuss further in Chapter 8, meta- analysis of an effect size 
involves not only obtaining an estimate of that effect size for each study, but 
also computing a standard error for each effect size estimate for weighting. 
In other words, it is not enough to simply be able to find sufficient data in 
the primary study to compute the effect size, but you must also determine 
the correct formula and find the necessary information in the study to com-
pute the standard error. Some readers might agree that the equations just to 
compute effect sizes are daunting; the formulas to compute standard errors 
are usually even more challenging and are typically difficult to find in all 
but the most advanced texts (and in some cases, there is no consensus on 
what an appropriate standard error is). Furthermore, you typically need more 
information to calculate the standard errors than the effect sizes, and this 
information is more often excluded from reports (and more often puzzling to 
authors if you request this information). In short, you need to remember that, 
to use an advanced effect size in a meta- analysis, you must be able to compute 
both its point estimate and its standard error from primary studies.

7.5.2 Balancing the challenges with the opportunities 
of Meta-Analyzing unique effect Sizes

Although the use of unique effect sizes in meta- analysis poses several chal-
lenges, their use also offers several opportunities. Namely, if only unique 
effect sizes answer the questions you want to answer, then it is worth facing 
these challenges to answer these questions. How can you weigh the potential 
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reward versus the cost of using unique effect sizes? Although this is a dif-
ficult question to answer, I offer some thoughts next.

First, I suggest asking yourself whether the question you want to answer 
in your meta- analysis (see Chapter 2) really requires reliance on unique effect 
sizes. Can your question be effectively answered using traditional effect sizes 
such as r, g, or o? Is it possible that the question you are asking is similar to 
one involving these unique effect sizes? If so (to the last question), you might 
consider coding both the basic and the unique effect sizes from the studies 
included; you then can attempt to proceed using the unique effect sizes, but 
can revert to the basic effect sizes if you have to. One special consideration 
involves questions where you are truly interested in multivariate effect sizes, 
such as independent associations from multiple regression-type analyses. In 
these situations, you may want to read Chapter 12 before proceeding, and 
decide whether you might better answer these questions through multivari-
ate meta- analysis of basic effect sizes rather than through univariate meta-
 analysis of multivariate effect sizes.

Second, you will want to determine how readily available the necessary 
information is within the included effect sizes. It is invaluable to examine 
some of the primary studies that will be included in your planned meta-
 analysis to get a sense of what sort of information the authors report. When 
doing so, sample a few studies from different authors or research groups, as 
their reporting practices likely differ. If you find that the necessary informa-
tion is usually reported, then this can be taken as encouragement to proceed 
with meta- analysis of unique effect sizes. However, if the necessary infor-
mation is rarely or inconsistently reported, you need to assess whether you 
will be able to obtain this information. Consider both your own willingness 
to solicit this information from authors and the likely response you will get 
from them. If you think that the availability of this information will be incon-
sistent, then consider both (1) the expected total number of studies from 
which you could get the necessary information, and (2) the degree to which 
these studies are representative of all studies that have been conducted.

Finally, you need to realistically consider your own expertise with both 
meta- analysis and the relevant statistical techniques. If this is your first meta-
 analysis, I recommend against attempting to use unique effect sizes. Perform-
ing a good meta- analytic review of basic effect sizes is challenging enough, 
so I encourage you to get some experience using these before attempting to 
meta- analyze unique effect sizes (at a minimum, be sure to code both basic 
and unique effect sizes). If you feel ready to try to meta- analyze unique effect 
sizes, consider your level of expertise in that particular statistical area (i.e., 
that regarding the unique effect size). Do you feel you are fluent in computing 
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the effect size from commonly reported information? Are you familiar with 
the relevant standard errors and believe you can consistently calculate these 
from reported information? Do you feel comfortable in guiding researchers 
through the appropriate analyses when you need to request further informa-
tion from them?

This section might seem discouraging, but I do not intend it to be. Using 
unique effect sizes in your meta- analysis can provide exciting opportunities 
to answer unique research questions. At the same time, it is important that 
you are realistic about your ability to use these unique effect sizes, and pro-
ceed with caution (but do proceed).

7.6 SuMMAry

In this chapter, I have described how you can compute several unique effect 
sizes (i.e., those beyond the basic r, g, and o described in Chapter 5) and 
their standard errors. These include single- variable information, namely, 
means, proportions, and standard deviations; unstandardized mean differ-
ences, which are useful when studies use a common metric for the variable of 
interest; independent associations, such as those obtained through multiple 
regression; and two miscellaneous effect sizes (internal consistency and lon-
gitudinal change) in lesser detail. Although I see great opportunity in using 
these and other unique effect sizes in meta- analysis, there are also some chal-
lenges to doing so, and I have tried to offer practical advice to help you decide 
whether their use is appropriate for your particular meta- analysis.

7.7 recoMMended reAdIngS

Becker, B. J. (2003). Introduction to the special section on metric in meta- analysis. Psycho-
logical Methods, 8, 403–405.—This special section, consisting of this introduction 
and four papers, provides a useful discussion of the opportunities and challenges of 
capturing meaningful information of the scale in meta- analysis.

Borenstein, M. (2009). Effect sizes for continuous data. In H. Cooper, L. V. Hedges, & 
J. C. Valentine (Eds.), The handbook of research synthesis and meta- analysis (2nd 
ed., pp. 221–235). New York: Russell Sage Foundation.—This chapter represents an 
updated and thorough description of computing effect sizes, including coverage of 
unstandardized and longitudinal effect sizes.

Rodriguez, M. C., & Maeda, Y. (2006). Meta- analysis of coefficient alpha. Psychological 
Methods, 11, 306–322.—My choice of this article as a recommended reading might 
seem arbitrary, in that it is about one of several effect sizes I considered in this chapter. 
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However, I think it is worth reading for two reasons. First, meta- analysis of Cronbach’s 
alpha is valuable and represents a fairly small addition to your coding and analyses. 
Second, this article demonstrates a typical approach to how quantitative researchers 
describe and evaluate the meta- analysis of a unique effect size.

noteS

1. This requirement of identical scales can be violated when the different scales 
are due to the primary study authors scoring comparable measures in different 
ways. For example, if two primary studies both use a 6-item scale with items hav-
ing values from 1 to 5, one study may form a composite by averaging the items, 
whereas the other forms a composite by summing the items. In this case, it would 
be possible to transform one of the two means to the same scale of the other (i.e., 
multiplying the average by 6 to obtain the sum, or dividing the sum by 6 to obtain 
the average; see Equation 7.1), and the means of the two studies could then be 
combined and compared. More generally, it might even be possible to transform 
studies using different scales into a common metric (from the example I provided 
of one study using a 0–4 scale and the other using a 1–100 scale).

 2. In other situations, you may be interested in meta- analytically combining or 
comparing proportions of individuals falling into one of multiple categories (e.g., 
children who can be classified as victimized, aggressive, or both aggressive and 
victimized). In these cases, I recommend coding multiple dichotomous propor-
tions, akin to dummy variables coded for analysis of three or more groups in 
multiple regression (see e.g., Cohen et al., 2003). In the current example, you 
would code the proportion of children who are victimized only, the proportion 
who are aggressive only, and the proportion who are both aggressive and victim-
ized. You would then perform three separate meta- analyses of these three effect 
sizes (i.e., proportions).

 3. According to Lipsey and Wilson (2001, p. 39), using the proportion as an effect 
size becomes problematic with proportions less than 0.20 or greater than 0.80. 
In these cases, meta- analysis of proportions underestimates the confidence 
intervals of mean proportions (i.e., meta- analytically combined across studies) 
and overestimates the heterogeneity of these proportions across studies.

 4. If necessary, you could alternatively calculate standard deviations and variances 
from other reported information. For instance, you could determine the total 
variance from an ANOVA table by summing the model and error variances.

 5. If it is plausible that both floor and ceiling effects occur within a set of studies, 
also examine the quadratic association.

 6. Specifically, Bond and colleagues (2003) suggest two major alterations. First, 
they suggest that the usual formula for the standard error of the mean effects 
size,
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 7. Computationally, the standardized regression coefficient is found by multiplying 
the unstandardized coefficient by the ratio of the standard deviation of the pre-
dictor (X) to the standard deviation of the dependent variable (Y): bX = BX (sdX/
sdY) (Cohen et al., 2003, p. 82).

 8. Meta- analysis of other forms of reliability, such as test– retest or parallel forms 
reliabilities, can be performed using the correlation coefficient (r) that indexes 
these reliabilities. You should include only one type of reliability (e.g., internal 
consistency, parallel forms, or test– retest) in a meta- analysis; separate meta-
 analyses for each type of reliability would provide a comprehensive view of the 
reliability of an item.

 9. With the rising use of growth curve modeling, this is not necessarily the case. 
In these models, time can be analyzed continuously, yielding a standardized 



172 CODING INDIVIDUAL STUDIES 

association between time and the variable of interest. However, I do not believe 
that procedures for meta- analytically combining and comparing growth curve 
results across studies have yet been developed.

10. We could also compute gchange in an unbiased manner in the presence of attri-
tion if the attrition is completely at random (i.e., MCAR; see Little et al., 2000; 
Schafer & Graham, 2002). However, this is not a testable assumption. Further-
more, the presence of attrition would create difficulty in computing the standard 
error of gchange because this standard error is dependent on a common (nonat-
triting) sample size.



Part III

Putting the Pieces Together
Combining and Comparing 
Effect Sizes
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8

Basic Computations
Computing Mean Effect Size 
and Heterogeneity around This Mean

Now that—after months of hard work—you have a collection of effect sizes 
from the studies included in your meta- analytic review, you can begin the 
process of combining these effect sizes across studies in order to draw conclu-
sions about the typical effect size in this area of research. Specifically, you 
can answer two fundamental questions about this research. First, what is the 
typical effect size (e.g., correlation between X and Y, difference between two 
groups) found in the empirical literature? Second, is the diversity of effect sizes 
found in these studies greater than you would expect from sampling fluctuation 
alone? The answer to this second question will be important in qualifying your 
answer to the first question, and will likely guide decisions about whether you 
explore moderators, or explanations of diversity in effect sizes across studies 
(see Chapter 9), and the type of model you use to describe the typical effect 
size (see Chapter 10).

In this chapter, I first describe the logic of differentially weighting results of 
studies based on the precision of their effect size estimate (Section 8.1). I then 
discuss ways that you can summarize the typical effect size from a collection 
of studies, focusing especially on the weighted mean effect size (Section 8.2). 
Next, I describe how you can make inferences about this mean effect size, 
specifically in terms of statistical significance testing and confidence intervals 
around this mean (Section 8.3). The second half of the chapter turns to the 
analysis of variability in effect sizes across studies (Section 8.4), including 
statistically testing heterogeneity and an index for representing the amount of 
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heterogeneity (Section 8.5). In the “practical matters” section of this chapter, I 
consider an important preliminary step before drawing inferences about mean 
effect size or heterogeneity, the preparation of a set of independent effect 
sizes (Section 8.6).

8.1 the logIc of weIghtIng

Although the democratic process of giving equal weight to each study has 
some appeal, the reality is that some studies provide better effect size esti-
mates than others, and therefore should be given more weight than others 
in aggregating results across studies. In this section, I describe the logic of 
using different weights based on the precision of the effect size estimates.

The idea of the precision of an effect size estimate is related to the stan-
dard errors that you computed when calculating effect sizes (see Chapters 
5–7). Consider two hypothetical studies: the first study relied on a sample 
of 10 individuals, finding a correlation between X and Y of .20 (or a Fish-
er’s transformation, Zr, of . 203); and the second study relied on a sample of 
10,000 individuals, finding a correlation between X and Y of .30 (Zr = .310). 
Before you take a simple average of these two studies to find the typical corre-
lation between X and Y,1 it is important to consider the precision of these two 
estimates of effect size. The first study consisted of only 10 participants, and 
from the equation for the standard error of Zr (SE = 1/√(N – 3); see Chapter 5), 
I find that the expectable deviation in Zr from studies of this size is .378. The 
second study consisted of many more participants (10,000), so the parallel 
standard error is 0.010. In other words, a small sample gives us a point esti-
mate of effect size (i.e., the best estimate of the population effect size that can 
be made from that sample), but it is possible that the actual effect size is much 
higher or lower than what was found. In contrast, a study with a large sample 
size is likely to be much more precise in estimating the population effect size. 
More formally, the standard error of an effect size, which is inversely related 
to sample size,2 quantifies the amount of imprecision in a particular study’s 
estimate of the population effect size.

Figure 8.1 further illustrates this concept of precision of effect sizes. 
In this figure, I have represented five studies of varying sample size, and 
therefore varying precision in their estimates of the population effect sizes. 
In this figure, I am in the fortunate—if unrealistic— position of knowing the 
true population effect size, represented as a vertical line in the middle of the 
figure. Study 1 yielded a point estimate of the effect size (represented as the 
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circle to the right of this study) that was considerably lower than the true 
effect size, but this study also had a large standard error, and the resulting 
confidence interval of that study was large (represented as the horizontal 
arrow around this effect size). If I only had this study to consider, then my 
best estimate of the population would be too low, and the range of potential 
effect sizes (i.e., the horizontal range of the confidence interval arrow) would 
be very large. Note that the confidence interval of this study does include the 
true population effect size, but this study by itself is of little value in deter-
mining where this unknown value lies.

The second study of Figure 8.1 includes a large sample. You can see that 
the point estimate of the effect size (i.e., the circle to the right of this study) 
is very close to the true population effect size. You also see that the confi-
dence interval of this study is very narrow; this study has a small standard 
error and therefore high precision in estimating the population effect size. 
Clearly, the results of this study offer a great deal of information in determin-
ing where the true population effect size lies, and I therefore would want to 
give more weight to these results than to those from Study 1 when trying to 
determine this population effect size.

The remaining three studies in Figure 8.1 contain sample sizes between 
those of Studies 1 and 2. Two observations should be noted regarding these 
studies. First, although none of these studies perfectly estimates the popula-
tion effect size (i.e., none of the circles fall perfectly on the vertical line), the 
larger studies tend to come closer. Second, and related, the confidence inter-
vals all3 contain the true population effect size.

fIgure 8.1. Conceptual representation of imprecision of effect size estimates.

Range of effect sizes

Population 
effect size

Study 1: N = 10

Study 2: N = 10,000

Study 3: N = 100

Study 4: N = 500

Study 5: N = 1000
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The crucial difference between the hypothetical situation depicted in 
Figure 8.1 and reality is that you do not know the true population effect 
size when you are conducting a meta- analysis. In fact, one of the primary 
purposes of conducting a meta- analysis is to obtain a best estimate of this 
population effect size. In other words, you want to decide where to draw the 
vertical line in Figure 8.1. As I hope is clear at this point, it would make sense 
to draw this line so that it is closer to the effect size estimates from studies 
with narrow confidence intervals (i.e., small standard errors), and give less 
emphasis to ensuring that the line is close to those from studies with wide 
confidence intervals (i.e., large standard errors). In other words, you want to 
give more weight to some studies (those with small standard errors) than to 
others (those with large standard errors).

How do you quantify this differential weighting? Although the choices 
are virtually limitless,4 the statistically defensible choice is to weight effect 
sizes by the inverse of their variances in point estimates (i.e., standard errors 
squared). In other words, you should determine the weight of a particular 
study i (wi) from the standard error of the effect size estimate from that study 
(SEi) using the following equation:

equation 8.1: weight for study i

2

1

i
i SE

w

SE•	 i is the standard error of the effect size estimate for study i.

In all analyses I describe in this chapter, you will use this weight. I sug-
gest that you make a variable in your meta- analytic database representing 
this weight for each study in your meta- analysis. In the running example 
of this chapter, shown in Table 8.1, I consider 22 studies providing correla-
tions between relational aggression and peer rejection. In addition to listing 
the study, I have columns showing the sample size, corrected effect sizes 
in original r and transformed Zr metrics, and the standard errors (SEZr) of 
these estimates. Note that these effect sizes have been corrected for two 
artifacts (see Chapter 6)—unreliability and artificial dichotomization (when 
relevant)—so the standard errors are also adjusted and not directly comput-
able from sample size (for details, see Chapter 6). This table also shows the 
weight (w) for each study, computed from the standard errors using Equa-
tion 8.1.
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8.2 MeASureS of centrAl tendency In effect SIzeS

8.2.1 choices of Indices of central tendency

Turning momentarily away from the topic of weighting, I now consider the 
ways in which you can represent the central tendency of effect sizes from a 
series of studies in your meta- analysis. As with representing central tendency 
within a primary data analysis, you can consider the mode, median, and 
mean as possible indices.

The mode (the most commonly occurring value) is not a good choice 
for representing typical effect sizes in a meta- analysis. The problem is that 
effect sizes computed from multiple studies are likely to fall along such a 
fine- grained continuum that identifying the most commonly occurring value 
is meaningless. Although grouping effect sizes into categories might allevi-
ate the problem, such categorizations are arbitrary and likely lead to a loss of 
information. In short, I view the mode as a poor choice for describing typical 
effect sizes in a meta- analytic review.

The median (the middle value of a rank- ordered list of values, or the 
50th percentile) is a better choice for representing typical effect sizes in a 
meta- analysis. This value is easy to determine (e.g., in the example data of 
Table 8.1, the median effect size is r = .35) and is a valuable supplement in 
many situations because it is less influenced by skew in effect sizes than is 
the mean. At the same time, the disadvantage of the median, as typically 
computed, is that it does not differentially weight studies by the precision of 
their point estimates of effect sizes (see previous section). For this reason, I 
view the median as at best being a supplement to the mean.

The mean effect size is generally the most important index of central 
tendency in your meta- analyses. It is widely used in primary research, and 
therefore well understood by readers. Importantly, it is also possible to dif-
ferentially weight effect sizes, and therefore give more weight to some studies 
than to others, by computing a weighted mean effect size. This weighted mean 
effect size (or the random- effects variant I describe in Chapter 10) represents 
critical information that will be reported in your meta- analytic reviews.

8.2.2 computing the weighted Mean effect Size

The weighted mean effect size across studies is computed from the weights 
(wi) and effect sizes (ESi) from each of the studies i using the following equa-
tion:
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equation 8.2: weighted mean effect size (ES)

i

ii

w
ESw

SE

w•	 i is the weight for study i.
ES•	 i is the effect size estimate from study i.

In other words, the mean effect size is calculated by computing the prod-
uct of each study’s effect size by its weight (creating a separate variable repre-
senting this product in your database), summing these products across stud-
ies, and dividing this value by the sum of weights across studies. The logic of 
this equation is more obvious if you consider using w = 1 for all studies, or 
giving equal weight to all studies. Here, the mean is simply the sum of effect 
sizes divided by the number of effect sizes, the traditional formula for the 
(unweighted) mean.

Equation 8.2 is generic in that it can be used with any of the effect sizes 
I have described in this book. With those effect sizes that are typically trans-
formed (e.g., r is typically transformed to Zr), this formula is applied to the 
transformed effect size from each study, and the average effect size is then 
back- transformed to the more interpretable effect size for reporting.

To illustrate the calculation of this weighted mean effect size, consider 
again the data in Table 8.1. In this table (just to the right of w), I have added a 
column showing the product of w and the effect size (here, Zr) for each study. 
I then summed these values across the 22 studies (easily done within any 
spreadsheet or basic statistical software package) to obtain the value 2764.36, 
which is the numerator of Equation 8.2. Also shown at the bottom of Table 
8.1 is the sum of weights (w) across the 22 studies, 7152.21, which comprises 
the denominator of Equation 8.2. I then compute the weighted mean effect 
size as Zr = 2764.36/7152.21 = .387. For reporting, I would transform this 
mean Zr into mean r using Equation 5.3, yielding r = .368.

This average effect size is a crucially important result of your meta-
 analytic review (and it wasn’t nearly as difficult to compute as you might have 
thought!). After you compute this average effect size, you have valuable infor-
mation to describe the typical effect sizes in the area of your meta- analysis. 
However, it is also important to consider the effect size in terms of its statisti-
cal significance and confidence intervals, the topic to which I turn next.
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8.3 InferentIAl teStIng And confIdence IntervAlS 
of AverAge effect SIzeS

The key to making inferences regarding statistical significance about, or 
computing confidence intervals around, this (weighted) mean effect size is 
to compute a standard error of estimate. Here, I am referring to the standard 
error of estimating the overall, average effect size, as opposed to the standard 
error of effect size estimates from each individual study. The standard error 
of this estimate of average effect size is computed from the following equa-
tion:

equation 8.3: Standard error of the mean effect size (SEES)

i
SE w

SE 1

w•	 i is the weight for study i.

The logic of this equation is that you want to cumulate the amount of 
precision across studies to estimate the precision of your estimate of mean 
effect size. This logic is clear if you consider Zr effect size (without artifact 
corrections), in which the standard error for each study is 1 / √(N – 3) and 
the weight for each study is therefore N – 3. If there are many studies with 
large sample sizes, then the sum of ws (i.e., the denominator in Equation 8.3) 
will be large, and the standard error of estimate of the mean effect size will 
be small (i.e., the estimate will be precise). In contrast, if a meta- analysis 
includes just a few studies with small sample sizes, then the sum of ws is 
small and the standard error of the estimate of mean effect size will be rela-
tively large. Although the equations for standard errors of other effect sizes 
are not as straightforward (in that they are not as simply related to sample 
size), they all follow this logic.

After computing this standard error of the mean effect size, you can use 
this value to make statistical inferences and to compute confidence intervals. 
To evaluate statistical significance, one can perform a Wald test, which sim-
ply involves dividing a parameter estimate (i.e., the mean effect size) by its 
standard error:
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equation 8.4: Statistical significance test of the mean effect size

SESE
SEZ

ES•	  is the mean effect size across studies.
SE•	 ES is the standard error of the mean effect size.

This test is evaluated according to the standard normal distribution, 
sometimes called the Z test (note that this is different from Fisher’s Zr trans-
formation). The statistical significance of this test can be obtained by looking 
up the value of Z in any table of standard normal deviates (where e.g., |Z| > 
1.96 denotes p < .05). This test can also be modified from a test of an effect 
size of zero in order to test the difference from any other null hypothesis 
value, ES0, by changing the numerator to ES – ES0.

The standard error of the mean effect size can also be used to compute 
confidence intervals. Specifically, you can compute the lower (ESLB) and 
upper (ESUB) bounds for the effect size using the following equation:

equation 8.5: lower- and upper-bound effect sizes 
for confidence intervals

ESLB = ES – Z1–aSEES

ESUB = ES + Z1–aSEES

ES•	  is the mean effect size across studies.
Z•	 1 – a is the two- tailed standard normal deviate for a given level of 
significance.
SE•	 ES is the standard error of the mean effect size.

This equation can be used to compute any level of confidence interval 
desired, though 95% confidence intervals (i.e., two- tailed a = .05, so Z = 1.96) 
are typical. If the effect size you are using is one that is transformed (e.g., Zr, 
ln(o)), you should calculate the mean, lower-bound, and upper-bound effect 
sizes using these transformed values, and then back- translate each into inter-
pretable effect size metrics (e.g., r, o).

To illustrate these computations using the running example, I refer again 
to Table 8.1. I have already summed the weights (w) across the 22 studies, so 
I can apply Equation 8.3 to obtain the standard error of the mean effect size, 
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0118.21.715211 wSE
rZ

. I can use this standard error to evalu-
ate the statistical significance of the average effect size (Zr) using the Wald 
test of Equation 8.4, Z = .387/.0118 = 32.70, p < .001. I would therefore con-
clude that this average effect size is significantly greater than zero (i.e., there 
is a positive association between relational aggression and peer rejection). To 
create 95% confidence intervals, I would compute the lower-bound value of 
the effect size using Equation 8.5 as ZrLB = Zr – Z1–aSEES = .387 – 1.96*.0118 
= .363, which would then be transformed (using Equation 5.3) for reporting 
to a lower-bound r = .348. Similarly, I would compute the upper-bound value 
ZrUB = Zr + Z1–aSEES = .387 + 1.96 * .0118 = .410, which is converted to upper 
bound r = .388 for reporting. To summarize, the mean correlation of this 
example meta- analysis is .368, which is significantly greater than zero (p < 
.001), and the 95% confidence interval of this correlation ranges from .348 
to .388.

8.4 evAluAtIng heterogeneIty AMong effect SIzeS

In Figure 8.1, all of the studies had confidence intervals that contained the 
vertical line representing the overall population effect size. This situation is 
called homogeneity—most of the studies capture a common population effect 
size, and the differences that do exist among their point estimates of effect 
sizes (i.e., the circles in Figure 8.1) are no more than expected by random-
 sampling fluctuations. Although not every study’s confidence interval needs 
to overlap with a common effect size in order to conclude homogeneity (these 
are, after all, only probabilistic confidence intervals), most should. More for-
mally, there is an expectable amount of deviation among study effect size 
estimates, based on their standard errors of estimate, and you can compare 
whether the actual observed deviation among your study effect sizes exceeds 
this expected value.

If the deviation among studies does exceed the amount of expectable 
deviation, you conclude (with some qualifications I describe below) that the 
effect sizes are heterogeneous. In other words, the single vertical line in Fig-
ure 8.1 representing a single common effect size is not adequate. In the situa-
tion of heterogeneous effect sizes, you have three options: (1) ignore the het-
erogeneity and analyze the data as if it is homogeneous (as you might expect, 
the least justifiable choice); (2) conduct moderator analyses (see Chapter 9), 
which attempt to predict between-study differences in effect size using the 
characteristics of studies coded (e.g., methodological features, characteristics 
of the sample); or (3) fit an alternative model to that of Figure 8.1, in which 
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the population effect size is modeled as a distribution rather than a vertical 
line (a random- effects model; see Chapter 10).

8.4.1 Significance test of heterogeneity

The heterogeneity (vs. homogeneity) of effect sizes is frequently evaluated by 
calculating a statistic Q. This test is called either a homogeneity test or, less 
commonly, a heterogeneity test; other terms used include simply a Q test or 
Hedges’s test for homogeneity (or Hedges’s Q test). I prefer the term “heteroge-
neity test” given that the alternate hypothesis is of heterogeneity, and therefore 
a statistically significant result implies heterogeneity. This test involves com-
puting a value (Q) that represents the amount of heterogeneity in effect sizes 
among studies in your meta- analysis using the following equation (Cochran, 
1954; Hedges & Olkin, 1985, p. 123; Lipsey & Wilson, 2001, p. 116):

equation 8.6: Significance test for heterogeneity (Q)

i

ii
iiii w

ESw
ESwSEESwQ

2

22

dr = k – 1

w•	 i is the weight of study i.
ES•	 i is the effect size estimate from study i.
ES•	  is the mean effect size across studies.
k•	  is the number of studies.5

The left portion of this equation is the definitional formula for Q and is 
relatively straightforward to understand. One portion of this equation simply 
computes the (squared) deviation between the effect size from each study 
and the mean effect size across studies, which is your best estimate of the 
population effect size, or vertical line of Figure 8.1. This squared deviation is 
multiplied by the study weight, which you recall (Equation 8.1) is the inverse 
of the squared standard error of that study. In other words, the equation is 
essentially the ratio of the (squared) deviations between the effect sizes to the 
(squared) expected deviation. Therefore, when studies are homogeneous, you 
expect this ratio to be close to 1.0 for each study, and so the sum of this ratio 
across all studies is going to be approximately equal to the number of studies 
(k) minus 1 (the minus 1 is due to the fact that the population effect size is 
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estimated by your mean effect size from your sample of studies). When stud-
ies are heterogeneous, you expect the (squared) deviations between studies 
and mean effect sizes to be larger than the (squared) expected deviations, or 
standard errors. Therefore, the ratio will be greater than 1.0 for most stud-
ies, and the resulting sum of this ratio across studies will be higher than the 
number of studies minus 1.

Exactly how high should Q be before you conclude heterogeneity? Under 
the null hypothesis of homogeneity, the Q statistic is distributed as c2 with 
df = k – 1. Therefore, you can look up the value of the Q with a particular df 
in any chi- square table, such as that of Table 8.2,6 to determine whether the 
effect sizes are more heterogeneous than expected by sampling variability 
alone.

The equation in the right portion of Equation 8.5 provides the same 
value of Q as the definitional formula on the left (it is simply an algebraic 
rearrangement). However, this computational equation is easier to compute 
from your meta- analytic database. Specifically, you need three variables (or 
columns in a spreadsheet): the wi and wiESi that you already calculated to 
compute the mean effect size, and wiESi

2 that can be easily calculated. To 
illustrate, the rightmost column of Table 8.1 displays this wiESi

2 for each of 
the 22 studies in the running example, with the sum (SwiESi

2) found to be 
1359.60 (bottom of table). Given the previously computed (when calculating 
the mean effect size) sums, Swi = 7152.21 and SwiESi = 2764.36, you can com-
pute the heterogeneity statistic in this example using Equation 8.6,

 
 

17.291
21.7152

36.2764
60.1359

22

2

i

ii

ii
w

ESw
ESwQ

You can evaluate this Q value using df = k – 1 = 22 – 1 = 21. From Table 8.2, 
you see that this value is statistically significant (p < .001). As I describe in 
the next section, this statistically significant Q leads us to reject the null 
hypothesis of homogeneity and conclude the alternate hypothesis of hetero-
geneity.

8.4.2 Interpreting the test of heterogeneity

The Q statistic is used to evaluate the null hypothesis of homogeneity ver-
sus the alternate hypothesis of heterogeneity. If the Q exceeds the critical 
c2 value given the df and level of statistical significance chosen (see Table 
8.2), then you conclude that the effect sizes are heterogeneous. That is, you 
would conclude that the effect sizes are not all estimates of a single popula-
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tion value, but rather, multiple population values. If Q does not exceed this 
value, then you fail to reject the null hypothesis of homogeneity.

This description makes clear that evaluation of Q (i.e., of heterogeneity 
vs. homogeneity) is a statistical hypothesis test. This observation implies two 
cautions in interpreting findings regarding Q. First, you need to be aware 
that this test of heterogeneity provides us information about the likelihood 
of results being homogeneous versus heterogeneous, but does not tell us the 
magnitude of heterogeneity if it exists (a consideration you should be par-
ticularly sensitive to, given your attention to effect sizes as a meta- analyst). I 
describe an alternative way to quantify the magnitude of heterogeneity in the 
next Section (8.4.3). Second, you need to consider the statistical power of this 
heterogeneity test—if you have inadequate power, then you should be very 
cautious in interpreting a nonsignificant result as evidence of homogeneity 
(the null hypothesis). I describe the statistical power of this test in Section 
8.4.4.

8.4.3 An Alternative representation of heterogeneity

Whereas the Q statistic and associated significance test for heterogeneity can 
be useful in drawing conclusions about whether a set of effect sizes in your 
meta- analysis are heterogeneous versus homogeneous, they do not indicate 
how heterogeneous the effect sizes are (with heterogeneity of zero represent-
ing homogeneity). One useful index of heterogeneity in your meta- analysis is 
the I2 index. This index is interpreted as the percentage of variability among 
effect sizes that exists between studies relative to the total variability among 
effect sizes (Higgins & Thompson, 2002; Huedo- Medina, Sánchez-Meca, 
Marín-Martínez, & Botella, 2006). The I2 index is computed using the fol-
lowing equation (Higgins & Thompson, 2002; Huedo- Medina et al., 2006):

equation 8.7: computing I2 to index magnitude of heterogeneity

10

1%1001

ˆ
ˆ

22

2
2

kQwhen

kQwhen
Q
kQ

I

ˆ2•	  is the estimated between-study variability (see Chapter 10).
s•	 2 is the within-study variability (see Chapter 10).
Q•	  is the statistic computed for significance tests of heterogeneity 
(see Equation 8.6).
k•	  is the number of studies.
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The left portion of this equation uses terms that I will not describe until 
Chapter 10, so I defer discussion of this portion for now. The right portion 
of the equation uses the previously computed test statistic for heterogeneity 
(Q) and the number of studies in the meta- analysis (k). The right portion of 
the equation actually contains a logical statement, whereby I2 is bounded at 
zero when Q is less than expected under the null hypothesis of homogeneity 
(lower possibility), but the more common situation is the upper possibil-
ity. Here, the denominator consists of Q, which can roughly be considered 
the total heterogeneity among effect sizes, whereas the numerator consists of 
what can roughly be considered the total heterogeneity minus the expected 
heterogeneity given only sampling fluctuations. In other words, the ratio is 
roughly the between-study variability (total minus within-study sampling 
variability) relative to total variability, put onto a percentage (i.e., 0 to 100%) 
scale.

I2 is therefore a readily interpretable index of the magnitude of hetero-
geneity among studies in your meta- analysis, and it is also useful in com-
paring heterogeneity across different meta- analyses. Unfortunately, because 
it is rather new, it has not been frequently used in meta- analyses, and it is 
therefore difficult to offer suggestions about what constitutes small, medium, 
or large amounts of heterogeneity.7 In the absence of better guidelines, I offer 
the following suggestions of Huedo- Medina and colleagues (2006) that I2 
≈ 25% is a small amount of heterogeneity, I2 ≈ 50% is a medium amount of 
heterogeneity, and I2 ≈ 75% is a large amount of heterogeneity (as mentioned, 
I2 ≈ 0% represents homogeneity). In the example meta- analysis of relational 
aggression with peer rejection I described earlier, I2 = 92.8%.

8.4.4 Statistical Power in testing heterogeneity

Although the Q test of heterogeneity is a statistical significance test, many 
meta- analysts make conclusions of homogeneity when they fail to reject the 
null hypothesis. This practice is counter to the well-known caution in pri-
mary data analysis that you cannot accept the null hypothesis (rather, you 
simply fail to reject it). On the other hand, if there is adequate statistical 
power to detect heterogeneity and the results of the Q statistic are not sig-
nificant, then perhaps conclusions of homogeneity—or at least the absence 
of substantial heterogeneity—can be reasonably made. The extent to which 
this argument is tenable depends on the statistical power of your heterogene-
ity test.

Computing the statistical power of a heterogeneity test is extremely 
complex, as it is determined by the number of studies, the standard errors of 
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effect size estimates for these studies (which is largely determined by sample 
size), the magnitude of heterogeneity, the theoretical distribution of effect 
sizes around a population mean (e.g., the extent to which an effect size index 
is normally [e.g., Zr is approximately normally distributed] vs. non- normally 
[e.g., r is skewed, especially at values far from zero] distributed), and the 
extent to which assumptions of the effect size estimates from each study are 
violated (e.g., assuming equal variance between two groups when this is not 
true) (see, e.g., Alexander, Scozzaro, & Borodkin, 1989; Harwell, 1997). In 
this regard, computing the statistical power of the heterogeneity test for your 
particular meta- analysis is very difficult, and likely precisely possible only 
with complex computer simulations.

Given this complexity, I propose a less precise but much simpler approach 
to evaluating whether your meta- analysis has adequate statistical power to 
detect heterogeneity. First, you should determine a value of I2 (see previous 
subsection) that represents the minimum magnitude of heterogeneity that 
you believe is important (or, conversely, the maximum amount of heterogene-
ity that you consider inconsequential enough to ignore). Then, consult Figure 
8.2 to determine whether the number of studies in your meta- analysis can 
conclude that your specified amount of heterogeneity (I2) will be detected. 
This figure displays the minimum level of I2 that will result in a statistically 
significant value of Q for a given number of studies, based on p = .05. If the 
figure indicates that the number of studies in your meta- analysis could detect 
a smaller level of I2 than what you specified, it is reasonable to conclude that 
the test of heterogeneity in your meta- analysis is adequate. I stress that this is 
only a rough guide, which I offer only as a simpler alternative to more com-
plex power analyses; however, I feel that it is likely adequate for most meta-
 analyses.8 Accepting Figure 8.2 as a rough method of determining whether 
tests of heterogeneity have adequate statistical power, it becomes clear that 
this test is generally quite powerful. Based on the suggestions of I2 ≈ 25%, 
50%, and 75% representing small, medium, and large amounts of heteroge-
neity, respectively, you see that meta- analyses consisting of 56 studies can 
detect small heterogeneity, those with as few as 9 studies can detect medium 
heterogeneity, and all meta- analyses (i.e., combination of two or more stud-
ies) can detect large heterogeneity.

Before concluding that the test of heterogeneity is typically high in sta-
tistical power, you should consider that the I2 index is the percentage ratio 
of between-study variance to total variance, with total variance made up of 
both between- and within-study variance. Given the same dispersion of effect 
sizes from a collection of studies with large standard errors (small samples) 
rather than small standard errors (large samples), the within-study variance 
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will be larger and the I2 will therefore be smaller (because this larger within-
study variance goes into the numerator or Equation 8.7). Given these situ-
ations of large standard errors (small sample sizes) among studies, the test 
of heterogeneity can actually have low power because the I2 is smaller than 
expected (see Harwell, 1997, for a demonstration of situations in which the 
test has low statistical power). For this reason, it is important to carefully 
consider what values of I2 are meaningful given the situation of your own 
meta- analysis and those in similar situations, more so than relying too heav-
ily on guidelines such as those I have provided.

8.5 PrActIcAl MAtterS: nonIndePendence 
AMong effect SIzeS

An important qualifier to the analyses I have described in this chapter (and 
those I will describe in subsequent chapters) is that they should be per-
formed with a set of independent effect sizes. In primary data analysis, it is 
well known that a critical assumption is of independent observations; that 
each case (e.g., person) is a random sample from the population independent 
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of the likelihood of another participant being selected. In meta- analysis, this 
assumption is that each effect size in your analysis is independent from oth-
ers; this assumption is usually considered satisfied if each study of a particu-
lar sample of individuals provides one effect size to your meta- analysis.

As you will quickly learn when coding effect sizes, this assumption is 
often violated— single studies often provide multiple effect sizes. This mul-
titude of effect sizes from single studies creates nonindependence in meta-
 analytic datasets in that effect sizes from the same study (i.e., the same sam-
ple of individuals) cannot be considered independent.

These multiple effect sizes arise for various reasons, and the reason 
impacts how you handle these situations. The end goal of handling each type 
of nonindependence is to obtain one single effect size from each study for any 
particular analysis.

8.5.1 Multiple effect Sizes from Multiple Measures

One potential source of multiple effect sizes from a single study is that the 
authors report multiple effect sizes based on different measures. For exam-
ple, the study by Rys and Bear (1997) in the example meta- analysis of Table 
8.1 provided effect sizes of the association between relational aggression and 
peer rejection based on a peer- report (corrected r = .556) and teacher- report 
(corrected r = .338) measures of relational aggression. Or a single study might 
examine an association at two distinct time points. For example, Werner and 
Crick (2004) studied children in second through fourth grades and then re- 
administered measures to these same children approximately one year later, 
finding concurrent correlations between relational aggression and rejection 
of r = .479 and .458 at the first and second occasions, respectively.

In these situations, you have two options for obtaining a single effect 
size. The first option is to determine if one effect size is more central to your 
interests and to use only that effect size. This decision should be made in 
consultation with your study inclusion/exclusion criteria (see Chapter 3), and 
you should only reach this decision if it is clear that one effect size should be 
included whereas the other should not. Using the two example studies men-
tioned, I might choose one of the two measurement approaches of Rys and 
Bear (1997) if I had a priori decided that peer reports of relational aggression 
were more important than teacher reports (or vice versa). Or I might decide 
to use only the first measurement occasion of the study by Werner and Crick 
(2004) if something occurred after this first data collection so as to make the 
subsequent results less relevant for my meta- analysis (e.g., if they had imple-
mented an intervention and I was only interested in the association between 
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relational aggression and rejection in normative situations). These decisions 
should not be based on which effect size estimate best fits your hypotheses 
(i.e., do not simply choose the largest effect size); it is best if you can make 
this decision without looking at the value of the effect size.

The second, and likely more common, option is to average these multiple 
effect sizes. Here, you should compute the average effect size (see Equation 
8.2) among these multiple effect sizes and use this average as your single 
effect size estimate for the study (if the effect size is one that is typically 
transformed, such as Zr or ln(o), then you should average the transformed 
effect sizes).9 To illustrate, I combined the two effect sizes from Rys and Bear 
(1997) by converting both correlations (.556 and .338 for peer and teacher 
reports) to Zr (.627 and .352) and then averaged these values to yield the 
Zr = .489 shown in Table 8.1; I back- transformed this value to r = .454 for 
summary in this table. Similarly, I converted the correlations at times 1 and 
2 from Werner and Crick (2004), r = .479 and .458 to Zr = .522 and .495, 
and computed the average of these two, which is shown in Table 8.1 as Zr = 
.509 (and the parallel r = .469). If Rys and Bear (1997) had more than two 
measurement approaches, or if Werner and Crick (2004) had more than two 
measurement occasions, I could compute the average of these three or more 
effect sizes in the same way to yield a single effect size per study.

8.5.2 Multiple effect Sizes from Subsets of Participants

A second potential source of multiple effect sizes from a single study is that 
the effect sizes are separately reported for subgroups of the sample. For exam-
ple, effect sizes might be reported separately by gender, ethnicity, or multiple 
treatment groups. If each of these groups should be included in your meta-
 analysis given your inclusion/exclusion criteria, then your goal is to compute 
an average effect size for these multiple groups.10 Two considerations distin-
guish this situation from that of the previous subsection, however. First, if 
you average effect sizes across multiple subgroups, your effective sample size 
for the study (used in computing the standard error for the study) is now the 
sum of the multiple combined groups. Second, the average in this situation 
should be a weighted average so that larger subgroups have greater contribu-
tion to the average than smaller subgroups.

To illustrate, a study by Hawley et al. (2007) used data from 407 boys 
and 522 girls, reporting information to compute effect sizes for boys (cor-
rected r = .210 and Zr = .214) and girls (corrected r = .122 and Zr = .122), but 
not for the overall sample. To obtain one common effect size for this sample, 
I computed the weighted average effect size using Equation 8.2 to obtain 
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the value Zr = .162 (and r = .161) shown in Table 8.1. The standard error 
of this effect size is based on the total sample size, combining the sizes of 
the multiple subgroups (here, 407 + 522 = 929). It is important to note that 
this computed effect size is different from what would have been obtained if 
you could simply compute the effect size from the raw data. Specifically, this 
effect size from combined subgroups represents the association between the 
variables of interest controlling for the variable on which subgroups were created 
(in this example, gender). If you expect that this covariate control will—or 
even could— change the effect sizes (typically reduce them), then it would be 
useful to create a dichotomous variable for studies in which this method of 
combining subgroups was used for evaluation as a potential moderator (see 
Chapter 9).

It is also possible that some studies will report multiple effect sizes for 
multiple subgroups. In fact, the Rys and Bear (1997) study I described earlier 
actually reported effect sizes separately by measure of aggression and gender, 
so that the coded data consisted of correlations of peer- reported relational 
aggression with rejection for 132 boys (corrected r = .590, Zr = .678) and 134 
girls (corrected r = .520, Zr = .577) and correlations of teacher- reported rela-
tional aggression with rejection for these boys (corrected r = .270, Zr = .277) 
and girls (corrected r = .402, Zr = .427). In this type of situation, I suggest a 
two-step process in which you average effect sizes first within groups and 
then across groups (summing the sample size in the second round of averag-
ing). For this example of the Rys and Bear (1997) study, I would first average 
the effect sizes from peer and teacher reports within the 132 boys (yielding 
Zr = .478), and then compute this same average within the 134 girls (yielding 
Zr = .502). I would then compute the weighted average of these effect sizes 
across boys and girls, which produces the Zr = .489 (and transformation to 
r = .454) shown in Table 8.1. You could also reverse the steps of this two-
step process—in this example, first computing a weighted average effect size 
across gender for each of the two measures, and then averaging across the two 
measures (the order I took to produce the effect sizes described earlier)—to 
obtain the same results.

8.5.3 effect Sizes from Multiple reports 
of the Same Study

A third potential source of nonindependence is when data from the same 
study are disseminated in multiple reports (e.g., multiple publications, a dis-
sertation that is later published). It is important to keep in mind that when 
I refer to a single effect size per study, I mean one effect size per sample of 
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participants. Therefore, the multiple reports that might arise from a single 
primary dataset should be treated as a single study. If the two reports pro-
vide different effect size estimates (presumably due to analysis of different 
measures, rather than a miscalculation in one or the other report), then you 
should average these as I described earlier. If the two reports provide some 
overlapping effect size estimates (e.g., the two reports both provide the cor-
relation between relational aggression and rejection; both reports provide a 
Time 1 correlation but the second report also contains the Time 2 correla-
tion), these repetitive values should be omitted.

Unfortunately, the uncertainty that arises from this sort of multiple 
reporting is greater than I have described here. Often, it is unclear if authors 
of separate reports are using the same dataset. In this situation, I recommend 
comparing the descriptions of methods carefully and contacting the authors 
if you are still uncertain. Similarly, authors might report results that seem to 
come from the full sample in one report and only a subset in another. Here, I 
suggest selecting values from the full sample when effect sizes are identical. 
Having made these suggestions, I recognize that every meta- analyst is likely 
to come across unique situations. As with much of my previous advice on 
these difficult issues, I strongly suggest contacting the authors of the reports 
to obtain further information.

8.6 SuMMAry

In this chapter, I have described initial efforts of combining effect sizes 
across studies. Specifically, I described the logic of weighting studies accord-
ing to the precision of their effect size estimates, methods of computing a 
weighted average effect size and drawing inferences about this mean, and a 
way of evaluating the heterogeneity—or between-study variability—of effect 
sizes across studies. This last topic will guide my foci for the next two chap-
ters: systematically predicting between-study differences through moderator 
analysis (Chapter 9) and modeling the heterogeneity of effect sizes through 
random- effects models (Chapter 10).

8.7 recoMMended reAdIngS

Huedo- Medina, T. B., Sánchez-Meca, J., Marín-Martínez, F., & Botella, J. (2006). Assess-
ing heterogeneity in meta- analysis: Q statistic or I 2 index? Psychological Methods, 
11, 193–206.—This chapter provides a thoughtful overview of the relative strengths of 
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using statistical tests of heterogeneity versus the heterogeneity effect size I described 
in this chapter.

Shadish, W. R., & Haddock, C. K. (1994). Combining estimates of effect size. In H. Coo-
per & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 261–281). New 
York: Russell Sage Foundation.—This chapter offers an overview of the entire process 
of combining effect sizes within a concise 21 pages. The chapter also contains an 
appendix with basic SAS code to aid in these analyses.

noteS

 1. Actually, you would not simply average the correlation coefficients, r. Instead, 
you would average the Fisher’s transformed correlation, Zr, to obtain the average 
Zr, and then back- transform this Zr to r for reporting (see Chapter 5).

 2. The standard error is always inversely related to sample size, but in some 
instances it is related to other factors. For some effect sizes (e.g., g, see Chapter 
5), the standard error is related to the effect size itself. Adjusting effect sizes for 
artifacts also affects the standard error (see Chapter 6). Nevertheless, you can 
always conceptually think of standard error as an index of imprecision.

 3. In real meta- analyses with more studies, you should not expect all studies to 
have confidence intervals that overlap with a true population effect size. Because 
confidence intervals are probabilistic, only an expectable percentage of stud-
ies should have confidence intervals containing the population effect size. For 
example, 95% confidence intervals imply that 95% of studies will contain the 
population effect size, but 5% will not. If your meta- analysis contains 40 studies, 
you should expect that 2 (on average) should not contain this effect size within 
their 95% confidence interval. If many more than this 5% do not contain a single 
population effect size, however, heterogeneity may exist, as I describe later in 
this chapter.

 4. Some meta- analysts also give weight to the quality of the study; however, I rec-
ommend against this practice. A problem with this practice is that any choice of 
weighting based on study quality is arbitrary. If you believe that study quality 
influences the effect sizes in your meta- analysis, I suggest that you instead code 
study quality (or better yet, specific features of the methodology that you believe 
constitute the quality of studies) and evaluate these as potential moderators of 
effect sizes.

 5. Here and throughout the book, I refer to k as the number of studies. It is more 
accurate to think of k as the number of effect sizes, though this is identical to 
the number of studies when each study provides one (and only one) effect size to 
your meta- analysis. For further consideration of this issue, see Section 8.5.
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 6. This table was made in MS Excel using the “chiinv” function. You can use this 
function to determine the exact p for any values of Q and df.

 7. Though it is possible to calculate this value from prior meta- analyses in your 
area of interest. To do so, you would just identify the reported Q and number of 
studies, and then calculate I2 from this information.

 8. As I will stress in later chapters, I do not believe that the significance test for 
heterogeneity is especially critical in guiding your choice to examine moderators 
(Chapter 9) or in deciding between fixed- versus random- effects models (Chap-
ter 10).

 9. Strictly speaking, this practice is problematic because the weight you use for this 
study does not account for the number of effect sizes nor the extent to which the 
effect sizes are very similar versus different (similar effect sizes would suggest 
smaller standard errors and larger weights than different effect sizes). Despite the 
limits of this approach, this approach of averaging multiple effect sizes within a 
study is the most common practice in published meta- analyses.

10. An alternative practice sometimes used is to simply treat the subgroups as sep-
arate samples—and therefore separate cases— within your meta- analysis. The 
advantage of this practice is that you are better able to test the subgroup features 
(e.g., sex) as a moderator. I have some reservations about this practice, however, 
in that it is likely that the two “cases” are partially interdependent because of 
the methodological (e.g., recruitment practices, measures) features of the study. 
If most of the studies report results separately for the same subgroups, then it 
seems that a better approach would be to compute an effect size representing the 
difference in effect sizes between the subgroups within each study (i.e., the dif-
ferential index for independent correlations described in Chapter 7) and meta-
 analytically combine this index across studies. However, if many studies do not 
report results separately by the same subgroups, and it is valuable to your goals 
to separate subgroup results for moderator analyses, then you might consider the 
following: Initially treat the subgroup results as separate cases within your meta-
 analysis. However, compute the intraclass correlation coefficient (ICC), indexing 
the similarity of effect sizes within studies. If this value is low—I suggest ICC 
< .05 as a reasonable criterion—then you are likely safe in treating effect sizes 
from multiple subgroups in some studies as if they were independent. However, 
if the ICC > .05, then the assumption of independence is violated and I recom-
mend averaging subgroup effect sizes within studies. I should emphasize that my 
recommendations have not been empirically evaluated.
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9

Explaining Heterogeneity 
among Effect Sizes
Moderator Analyses

When meta- analyses contain substantial heterogeneity in effect sizes across 
studies (see Chapter 8), it is usually informative to investigate the sources of this 
heterogeneity through moderator analyses. In fact, these moderator analyses 
are often of more interest than the average effect sizes, depending on the 
research questions you wish to answer (see Chapter 2).

Before describing these analyses, it is useful to take a step back to con-
sider the general approach of these analyses. These analyses attempt to 
explain the heterogeneity of effect sizes across studies using coded study 
characteristics as predictors. In other words, the goal of conducting these 
moderator analyses is to identify characteristics of the studies that are associ-
ated with studies finding higher or lower effect sizes. The reason that these 
analyses are called “moderator analyses” becomes clear if you recall that the 
most commonly used effect sizes are of associations of two variables, X and Y 
(see Chapter 5). Given that moderation is defined as an association between 
two variables varying at different levels of the moderator (e.g., Baron & Kenny, 
1986; Little, Card, Bovaird, Preacher, & Crandall, 2007), you can think of 
moderator analyses in meta- analysis as investigating whether the association 
between X and Y (i.e., the effect size) varies consistently based on the level of 
the moderator (i.e., study characteristics).

The potential moderators evaluated in meta- analysis can be either categori-
cal (e.g., studies using one type of measure versus another) or continuous (e.g., 
average age of participants), and it is possible—and often useful—to investigate 
multiple predictors simultaneously. I discuss these three situations in the next three 
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sections (Sections 9.1 to 9.3, respectively). I then describe an alternative way 
of performing these analyses within a structural equation modeling (SEM) frame-
work (Section 9.4). Finally, I discuss the practical matter of considering the limits 
to interpreting results of meta- analytic moderator analyses (Section 9.5).

9.1 cAtegorIcAl ModerAtorS

9.1.1 evaluating the Significance 
of a categorical Moderator

The logic of evaluating categorical moderators in meta- analysis parallels the 
use of ANOVA in primary data analysis. Whereas ANOVA partitions variability 
in scores across individuals (or other units of analysis) into variability existing 
between and within groups, categorical moderator analysis in meta- analysis 
partitions between-study heterogeneity into that between and within groups of 
studies (Hedges, 1982; Lipsey & Wilson, 2001, pp. 120–121). In other words, 
testing categorical moderators in meta- analysis involves comparing groups of 
studies classified by their status on some categorical moderator.

Given this logic of partitioning heterogeneity, it makes sense to start 
with the heterogeneity equation (Equation 8.6) from Chapter 8, reproduced 
here for convenience:

equation 9.1: Q statistic for heterogeneity

i

ii
iiiitotal w

ESw
ESwSEESwQ

2

22

1kdf total

w•	 i is the weight of study i.
ES•	 i is the effect size estimate from study i.
ES•	  is the mean effect size across studies.
k•	  is the number of studies.

You might have noticed that I have changed the notation of this equation 
slightly, now giving the subscript “total” to this Q statistic. The reason for 
this subscript is to make it explicit that this is the total, overall heterogeneity 
among all effect sizes. The logic of testing categorical moderators is based on 
the ability to separate this total heterogeneity (Qtotal) into two components, 
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the between-group heterogeneity (Qbetween) and the within-group heteroge-
neity (Qwithin), such that:

equation 9.2: Partitioning of total heterogeneity  
into between- and within-group components

Qtotal = Qbetween + Qwithin

Q•	 total is the heterogeneity among all study effect sizes.
Q•	 between is the heterogeneity accounted for by between-group dif-
ferences.
Q•	 within is the heterogeneity within the groups.

The key question when evaluating categorical moderators is whether 
there is greater-than- expectable between-group heterogeneity. If there is, 
then this implies that the groups based on the categorical study character-
istic differ and that the categorical moderator is therefore reliably related to 
effect sizes found in the studies. If the groups do not differ, then this implies 
that the categorical moderator is not related to effect sizes (or, in the language 
of null hypothesis significance testing, that you have failed to find evidence 
for this moderation).

The most straightforward way to compute the between-group heterogene-
ity (Qbetween) is to rearrange Equation 9.2, so that Qbetween = Qtotal – Qwithin. 
Because you have already computed the total heterogeneity (Qtotal; Equation 
9.1), you only need to compute and subtract the within-group heterogeneity 
(Qwithin) to obtain the desired Qbetween. To compute the heterogeneity within 
each group, you apply a formula similar to that for total heterogeneity to just 
the studies in that group:

equation 9.3: heterogeneity within group g (Qg)

i

ii
iigiig w

ESw
ESwSEESwQ

2
22

1gg kdf

w•	 i is the weight of study i.
ES•	 i is the effect size estimate from study i.
ES•	 g is the mean effect size across studies within group g.
k•	 g is the number of studies in group g.
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That is, you compute the heterogeneity within each group (g) using the 
same equation as for computing total heterogeneity, restricting the included 
studies to only those studies within group g. After computing the within-group 
heterogeneity (Qg) for each of the groups, you compute the within-group 
heterogeneity (Qwithin) simply by summing the heterogeneities (Qgs) from all 
groups. More formally:

equation 9.4: within-group heterogeneity (Qwithin)

G

g
gwithin QQ

1

Gkdfdf
G

g
gwithin

1

G•	  is the number of groups.
Q•	 g is the heterogeneity within group g.
df•	 within is the within- groups degrees of freedom.
df•	 g is the degrees of freedom within group g (dfg = kg – 1, where 
kg is the number of studies in group g).
k•	  is the total number of studies (across all groups).
G•	  is the number of groups.

As mentioned, after computing the total heterogeneity (Qtotal) and the 
within-group heterogeneity (Qwithin), you compute the between-group het-
erogeneity by subtracting the within-group heterogeneity from the total het-
erogeneity (i.e., Qbetween = Qtotal – Qwithin; see Equation 9.2). The statistical 
significance of this between-group heterogeneity is evaluated by considering 
the value of Qbetween relative to dfbetween, with dfbetween = G – 1. Under the 
null hypothesis, Qbetween is distributed as c2 with dfbetween, so you can con-
sult a chi- square table (such as Table 8.2; or use functions such as Microsoft 
Excel’s “chiinv” as described in footnote 6 of Chapter 8) to evaluate the sta-
tistical significance to make inferences about moderation.

To illustrate this test of categorical moderators, consider again the exam-
ple meta- analysis of 22 studies reporting associations between children and 
adolescents’ relational aggression and rejection by peers. As shown in Chap-
ter 8, these studies yield a mean effect size Zr = .387 (r = .368), but there was 
significant heterogeneity among these studies around this mean effect size, 
Q(21) = 291.17, p < .001. This heterogeneity might suggest the importance of 
explaining this heterogeneity through moderator analysis, and I hypothe-
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sized that one source of this heterogeneity might be due to the use of different 
reporters to assess relational aggression. As shown in Table 9.1, these studies 
variously used observations, parent reports, peer reports, and teacher reports 
to assess relational aggression, and this test of moderation evaluates whether 
associations between relational aggression and rejection systematically differ 
across these four methods of assessing aggression.

I have arranged these 27 effect sizes (note that these come from 22 inde-
pendent studies; I am using effect sizes involving different methods from the 
same study as separate effect sizes1) into four groups based on the method 
of assessing aggression. To compute Qtotal, I use the three sums across all 27 
studies (shown at the bottom of Table 9.1) within Equation 9.1:

 
 
 

71.350
64.7857

26.2889
09.1413

22

2

i

ii

iitotal
w

ESw
ESwQ

I then compute the heterogeneity within each of the groups using the 
sums from each group within Equation 9.3. For the three observational stud-
ies, this within-group heterogeneity is

 
 

68.1
94.293

53.28
45.4

2

=within observationsQ

Using the same equation, I also compute within-group heterogeneities 
of Qwithin_parent = 0.00 (there is no heterogeneity in a group of one study), 
Qwithin_peer = 243.16, and Qwithin_teacher = 40.73. Summing these values yields 
Qwithin = 1.68 + 0.00 + 243.16 + 40.73 = 285.57. Given that Qbetween = Qtotal 
– Qwithin, the between-group heterogeneity is Qbetween = 350.71 – 285.57 = 
65.14. This Qbetween is distributed as chi- square with df = G – 1 = 4 – 1 = 3 
under the null hypothesis of no moderation (i.e., no larger-than- expected 
between group differences). The value of Qbetween in this example is large 
enough (p < .001; see Table 8.2 or any chi- square table) that I can reject this 
null hypothesis and accept the alternate hypothesis that the groups differ 
in their effect sizes. In other words, moderator analysis of the effect sizes in 
Table 9.1 indicates that method of assessing aggression moderates the asso-
ciation between relational aggression and peer rejection.

9.1.2 follow-up Analyses to a categorical Moderator

If you are evaluating a categorical moderator consisting of two levels—in 
other words, a dichotomous moderator variable—then interpretation is 
simple. Here, you just conclude whether the between-group heterogeneity 
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is significant, then inspect the within-group mean effect sizes (i.e., weighted 
means computed using studies from each group separately). The decision 
and interpretation is then straightforward as to which group of studies yields 
stronger effect sizes.

The situation is more complex when the categorical moderator has three 
or more levels—that is, when the moderator test is an omnibus compari-
son. Here, the significant between-group heterogeneity indicates that at least 
some groups differ from others, but exactly where those differences lie is 
unclear. This situation is akin to follow-up analyses conducted with a three 
or more level ANOVA, and decisions of how to handle these situations in 
meta- analysis are as thorny as they are for ANOVAs used in primary studies. 
However, the variety of possibilities that exist for ANOVA follow-up analyses 
have not been translated into a meta- analytic framework. Therefore, the two 
choices are between an overly liberal and an overly conservative approach.

9.1.2.a The Liberal Approach

This approach is liberal in that one makes no attempt to control cumulative 
(a.k.a. family-wise) type I errors when following up a finding of significant 
between-group heterogeneity. Instead, you just perform a series of all pos-
sible two-group comparisons to identify which groups differ in the magni-
tudes of their effect sizes. To perform these comparisons, you would use the 
same logic described in the previous subsection for testing between-group 
heterogeneity, but would (1) restrict the calculation of total heterogeneity 
(Qtotal) to studies from the two groups, (2) sum the within-group heteroge-
neity (Qwithin) only from these two groups, and (3) evaluate the resultant 
between-group heterogeneity (Qbetween) as a 1 df c2 test (because G = 2 in 
this comparison, so dfbetween = 2 – 1). You would then repeat this two-group 
comparison for all possible combinations among the groups of the categorical 
moderator (the total number of comparisons is G(G-1)/2).

This approach parallels Fisher’s Least Significant Difference test in 
ANOVA (see e.g., Keppel, 1991, p. 171). Like this test in ANOVA, the obvi-
ous problem with using this approach in categorical moderator analyses in 
ANOVA is that it allows for higher-than- desired rates of type I error in the 
follow-up comparisons (i.e., not controlling for cumulative, or family-wise, 
type I error). A second problem with this approach occurs when different 
groups have different effective sample sizes (i.e., many studies with large 
samples vs. few studies with small samples) or amounts of within-group het-
erogeneity. In these situations, this approach can yield surprising results, in 
which groups that appear to have quite different average effect sizes are not 
found to differ (because the groups have small effective sample sizes or large 
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heterogeneity), whereas groups that seem to have more similar average effect 
sizes are found to differ (because the groups have large effective sample sizes 
or small heterogeneity).

9.1.2.b The Conservative Approach

A conservative approach to multiple follow-up comparisons of a significant 
omnibus moderator result parallels the approach in ANOVA commonly called 
Bonferroni correction (a.k.a. Dunn test; see Keppel, 1991, p. 167). Using this 
approach, you make the same series of comparisons between all possible two-
group combinations as in the liberal approach, but the resultant Qbetweens are 
evaluated using an adjusted level of statistical significance (i.e., some value 
smaller than the chosen type I error rate, e.g., a = .05). Specifically, you divide 
the desired type I error rate (e.g., a = .05) by the number of comparisons2 
made (i.e., by G(G – 1)/2). This Bonferroni- adjusted level of significance (aB) 
is then used as the basis for making inferences about whether the between-
group heterogeneity statistics (Qbetween) provide evidence to reject the null 
hypotheses (i.e., concluding that groups differ).

There are two limitations to this approach. First, like this approach 
used in ANOVAs in primary studies, it is overly conservative and leads to 
diminished statistical power (i.e., higher type II error rates). The extent to 
which this limitation is problematic will depend on the sample sizes and 
numbers of studies in the groups you wish to compare. If all groups of the 
categorical moderator contain a large number of studies with large sample 
sizes (i.e., there is high statistical power), then the cost of this overly conser-
vative approach might be minimal. However, if even some of the groups have 
a small number of studies or small sample sizes, then the loss of statistical 
power is problematic. The second limitation of this conservative approach is 
similar to that of the liberal approach—that seemingly larger differences in 
group mean effect sizes might not be significantly different, whereas seem-
ingly small differences are found to be different.

9.1.2.c Conclusions Regarding Follow-Up Analyses

The choice between an overly liberal and an overly conservative approach 
is not an easy one to make. In weighing between these approaches, I sug-
gest that you consider (1) the relative cost of type I (erroneously concluding 
differences) versus type II (failing to detect differences) errors, and (2) the 
expectable power of your meta- analysis (meta- analyses with many studies 
with large sample sizes tend to have high power). Alternatively, you might 
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avoid this problem by specifying meaningful planned contrasts that can be 
evaluated within a regression framework (see below).

9.2 contInuouS ModerAtorS

Continuous moderators in meta- analysis are coded study variables that can 
be considered to vary along a continuum of possible values. For example, 
mean characteristics of the sample (age, SES, percentage of ethnic minorities, 
percentage male or percentage female) or methodology (e.g., dose of a drug, 
number of therapy sessions in intervention) might be evaluated as continu-
ous moderators. Just as the evaluation of categorical moderators relied on an 
adaptation of ANOVA, the evaluation of continuous moderators relies on an 
adaptation of regression. Specifically, test of continuous moderation involves 
(weighted) regression of the effect sizes (dependent variable) onto the con-
tinuous moderator (independent variable, or predictor). Significant predic-
tion indicates that the effect sizes vary in a linear manner with the continu-
ous moderator; in other words, this moderator systematically relates to the 
association between X and Y.

The adaptation of standard regression of effect sizes onto a continuous 
predictor that is key to meta- analytic moderator analysis is the “weighted” I 
parenthetically stated. Here, the regression analysis is weighted by the inverse 
variance weight, w (see Chapter 8). This weighting has three implications. 
First, as is desirable (see Chapter 8), studies with more precise effect size esti-
mates will be given more weight in the analysis than those with less precise 
estimates. Second, the mean squares of the regression (standard output, often 
in an ANOVA table, of all standard statistical packages such as SPSS or SAS) 
represents the heterogeneity among the effect sizes that is accounted for by 
the linear prediction of the continuous moderator. You use this value to eval-
uate the statistical significance of the regression model. Third, this weight-
ing impacts the standard errors of the regression coefficients. Although the 
regression coefficients themselves are accurate and directly interpretable (e.g., 
are effect sizes larger or smaller when values of the moderator are greater?), 
the standard errors of the regression coefficients are not correct and need to 
be hand calculated (which, fortunately, is simple).

Because this weighted regression approach to testing continuous moder-
ators is most clearly illustrated through example, let me return to the sample 
meta- analysis of associations between relational aggression and peer rejec-
tion. As shown in Table 9.2, I coded the mean age (in years) of the samples 
for these 22 studies, and I want to evaluate whether age moderates the asso-
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ciations between relational aggression and rejection. To do so, I regress the 
effect sizes (Fisher’s transformation of the correlation between relational 
aggression and rejection, Zr) onto the hypothesized continuous moderator 
age, using the familiar regression equation. Zr = B0 + B1(Age) + e, with w as a 
weight. To do this, I use a standard statistical software package such as SPSS 
or SAS. In SPSS, I would specify Zr as the dependent variable, age as the inde-
pendent variable, and w as the WLS (weighted least squares) weight.

The results give six pieces of information of interest: from an ANOVA 
table, (1) the sum of square of the regression model (SSregression or SSmodel) 
= 9.312; (2) the residual sum of squares3 (SSresidual or SSerror) = 281.983; 
and (3) the residual mean squares (MSresidual or MSerror) = 14.099; and from 
a table of coefficients, (4) the unstandardized regression coefficient (B1) = 
–.0112 with (5) an associated standard error = .0138; and (6) the intercept 
(B0) = .496. The SSregression is the heterogeneity accounted for by the linear 
regression model; it is often reported in published meta- analyses as Qregres-

sion and is evaluated for statistical significance by comparing the value to a c2 
distribution (Table 8.2 or using calculators such as Excel’s “chiinv” function) 
with df = number of predictors (here, df = 1). In this example, the value of 
9.312 is considered statistically significant by standard criteria (p = .0023), 
so I conclude that there is moderation of the association between relational 
aggression and rejection by age.

Because this analysis included only one predictor, the statistical signifi-
cance of the model informs the statistical significance of the single predictor. 
However, when including multiple predictors (see next section), it is useful to 
also evaluate statistical significance by examining the regression coefficients 
and their standard errors. In this example, the unstandardized regression 
coefficient was –.0112, and its standard error, as computed by the statistical 
analysis program, was .0138. However, this standard error is inaccurate, and 
must be adjusted. This adjustment is to divide the standard error from the 
output by the square root of the residual mean square:

 00368.
099.14

0138.

residual

output
adjusted

MS

SE
SE

I then evaluate the statistical significance of this predictor by dividing the 
regression coefficient (B1) by this adjusted standard error, Z = –.0112/.00368 
= –3.05, considering this Z value according to the standard normal deviate 
(i.e., Z) distribution to yield a two- tailed p (here, p = .0023). Note that in this 
example with a single predictor, the statistical significance of the regression 
model and of the single regression coefficient are identical, given that Z2 = 
c2

(df=1) (i.e., –3.052 = 9.31).
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To interpret this moderation, it is useful to compute implied effect sizes 
at different levels of the continuous moderator. Given the intercept (B0 = 
.096) and regression coefficient of age (B1 = –.0112), I can compute the pre-
dicted effect sizes at various ages using the equation Zr = B0 + B1 (Age) = 
.496 – .0112 (Age). For illustration of this moderation, I would choose rep-
resentative values of the moderator (age) that fall within the range observed 
among these studies and make some conceptual sense; in this example, I 
might choose the ages of 5, 10, and 15 years. I then successively insert these 
values for age into the prediction equation, yielding implied Zrs = .440, .384, 
and .328, respectively. I then back- transform these implied Zrs (or any other 
transformed effect sizes) into their meaningful metric for reporting: implied 
rs = .41, .37, and .32, respectively.

9.3 A generAl MultIPle regreSSIon frAMework 
for ModerAtIon

After considering the regression approach to analyzing continuous modera-
tors (previous section), you are probably wondering whether this approach 
allows for evaluation of multiple moderators—it does. However, before con-
sidering inclusion of multiple moderators, I think it is useful to take a step 
back to consider how a regression approach can serve as a general approach 
to evaluating moderators in meta- analysis (in this context, the analyses are 
sometimes referred to as meta- regression). In this section, I describe how an 
empty (intercept-only) model accomplishes basic tests of mean effect size and 
heterogeneity (9.3.1), how you can evaluate categorical moderators in this 
framework through the use of dummy codes (9.3.2), and how this flexible 
approach can be used to consider unique moderation of a wide range of coded 
study characteristics (9.3.3). I will then draw general conclusions about this 
framework and suggest some more complex possibilities. I write this section 
with the assumption that you have a solid grounding in multiple regression; 
if not, you can read this section trying to obtain the “gist” of the ideas (for a 
thorough instruction of multiple regression, see Cohen et al., 2003).

9.3.1 the empty Model for computing Average effect 
Size and heterogeneity

An empty model in regression is one in which the dependent variable is 
regressed against no predictors, but only a constant (i.e., the value of 1 for all 
cases). This is represented in the following equation, which includes only an 
intercept (constant) as a predictor:

ˆ
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equation 9.5: empty model used to estimate mean effect size 
and heterogeneity

ESi = B0(1) + ei

ES•	 i is the effect size (e.g., Zr) for study i.
B•	 0 is the model intercept (interpreted as the mean in this empty 
model).
e•	 i is the deviation of the effect size of study i from the mean effect 
size (with the variance interpreted as the heterogeneity).

Performing a weighted regression of effect sizes predicted only by a 
constant will yield information about the weighted mean effect size and the 
heterogeneity, and therefore might serve as a useful initial analysis that is 
less tedious than the hand-spreadsheet- calculations I described in Chapter 
8. Considering the example of 22 studies of relational aggression and peer 
rejection summarized in Table 9.2, I perform the following steps: First, I 
place the effect sizes (Zrs) and inverse variance weights (w) into a statistical 
software package (e.g., SPSS or SAS). I then create a variable in which every 
study had the value 1 (the constant). Finally, I regress effect sizes onto this 
constant, weighted by w, specifying no intercept (i.e., having the program 
not automatically include the constant in the model, as I am using the con-
stant as a predictor). The unstandardized regression coefficient is .387, which 
represents the mean effect size (as Zr). The standard error of this regression 
coefficient from the program is adjusted as described above,

 0118.
865.113

0440.

residual

output
adjusted

MS

SE
SE

to yield the standard error of this mean effect size for use in significance test-
ing or estimating confidence intervals. Finally, the residual sum of squares 
(SSresidual or SSerror) = 291.17 is the heterogeneity (Q) statistic, evaluated as 
c2 with 21 (number studies – 1) degrees of freedom. These results are identi-
cal to those reported in Chapter 8 and illustrate how the empty model can be 
used to compute the mean effect size, make inferences about this mean, and 
evaluate the heterogeneity of effect sizes across studies.

9.3.2 evaluating categorical Moderators

In primary data analysis, it has long been recognized that ANOVA is sim-
ply a special case of multiple regression (e.g., Cohen, 1968). The same com-
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parability applies to meta- analytic evaluation of categorical moderators. As 
with translation of ANOVA into multiple regression in primary analysis, the 
“trick” is to create a series of dichotomous variables that fully capture the 
different groups. The most common approach is through the use of dummy 
variables.

To illustrate the use of dummy variables in analyzing continuous mod-
erators, consider the data from Table 9.3, which consists of 27 effect sizes 
(from 22 studies, as in Table 9.2) using four methods of measuring rela-
tional aggression (previously summarized in Table 9.1). As with the ANOVA 
approach, I want to evaluate whether the method of assessing aggression 
moderates the associations between relational aggression and rejection. To 
perform this same evaluation in a regression framework, I need to compute 
three dummy codes (number of groups minus 1) to represent group member-
ship. If I selected observational methods as my reference group, then I would 
assign the value 0 for all three dummy codes for studies using observational 
methods. I could make the first dummy code represent parent report (vs. 
observation) and assign values of 1 to this variable for all studies using this 
method and values of 0 for all studies that do not. Similarly, I could make 
dummy variable 2 represent peer report and dummy variable 3 represent 
teacher report. These dummy codes are displayed in Table 9.3 as DV1, DV2, 
and DV3 (for now, ignore the column labeled “Age” and everything to the 
right of it; I will use these data below).

To evaluate moderation by reporter within a multiple regression frame-
work, I regress effect sizes onto the dummy variables representing group 
membership (in this case, three dummy variables), weighted by the inverse 
variance weight, w. This is expressed in the following equation:

equation 9.6: using dummy variables to evaluate 
categorical moderators

ESi = B0 + B1(DV1) + B2(DV2) + B3(DV3) + ei

ES•	 i is the effect size (e.g., Zr) for study i.
B•	 0 is the model intercept.
B•	 1, B2, and B3 are the regression coefficients for the dummy vari-
ables.
DV1, DV2, and DV3 are the dummy variables created to indicate •	
group membership (with number of dummy variables = number of 
groups – 1).
e•	 i is the residual deviation of the effect size of study i from the 
group effect size (with the variance interpreted as the residual, or 
within-group, heterogeneity).
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Using a statistical software package (e.g., SPSS or SAS), I regress the effect 
sizes (Zrs) onto the three dummy variables (DV1, DV2, and DV3), weighted 
by the inverse variance weight (w) (here, I am requesting that the program 
include the constant in the model because I have not used the constant as a 
predictor). The output from the ANOVA table of this regression parallels the 
results from the ANOVA I described in Section 9.1: The total sum of squares 
(SStotal) provides the total heterogeneity (Qtotal) = 350.71; the residual or error 
sum of squares (SSresidual or SSerror) provides the within-group heterogeneity 
(Qwithin) = 285.57; and the regression or model sum of squares (SSregression or 
SSmodel) provides the between-group heterogeneity (Qbetween) = 65.14. This 
last value is compared to a c2 distribution (e.g., Table 8.2) to evaluate whether 
the categorical moderator is significant. This regression analysis also yields 
coefficients and their (incorrect) standard errors. If I adjust these standard 
errors, I can evaluate the statistical significance of the regression coefficients 
as indicative of whether each group differs from the reference group. To illus-
trate: In this example, in which I coded observational methods as the refer-
ence group, I could consider the regression coefficient of DV2 (denoting use 
of peer reports) = .301 by dividing it by the corrected standard error

 
 
 

0597).
416.12

2102.

residual

output
adjusted

MS

SE
(SE

to yield Z = .301 / .0597 = 5.05. I would thus conclude that studies using 
peer- report methods yield larger effect sizes than studies using observational 
methods. More generally, I could compute the implied values of each of the 
four methods via the prediction equation comprised of the intercept and 
regression coefficients for the dummy variables:

 3095.2301.1486.097.321ˆ
210 DVDVDVDVBDVBDVBBZ r 3

Because I used observational methods as my reference group, the implied 
mean effect size for this group is Zr = .097. For studies using parent reports 
(the first dummy variable), the implied effect size is Zr = .583 (.097 + .486); 
for studies using peer reports (the second dummy variable), the implied effect 
size is Zr = .398 (.097 + .301); and so on. When using transformed effect sizes 
such as Zr, you should transform these implied values back to the more intui-
tive metric (e.g., r) for reporting.

As in primary analysis (see Cohen & Cohen, 1983), dummy variables 
represent just one of several options for coding group membership in meta-
 analytic tests of categorical moderators. Dummy variables have the advan-
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tages of explicitly comparing all groups to a reference group, which might be 
of central interest in some analyses. However, dummy variables have the dis-
advantages of not allowing for easy comparisons between groups that are not 
the reference group (e.g., between peer and teacher reports in the example 
just presented) and that are not centered around 0 (a consideration I describe 
below). Effects coding (see Cohen & Cohen, 1983, p. 198) still relies on a ref-
erence group, but centers on the independent variables. For example, effects 
for four groups would use three effects codes, which might be –½, –½, and 
–½ for the reference group; ½, 0, and 0 for the second group; 0, ½, and 0 for 
the third group; and 0, 0, and ½ for the fourth group.4 Another alternative is 
contrast coding (Cohen & Cohen, 1983, p. 204), which allows for flexibility 
in creating specific planned comparisons among subsets of groups.

9.3.3 evaluating Multiple Moderators

Having considered the regression framework for analyzing mean effect sizes, 
categorical moderators, and a single continuous moderator, you have likely 
inferred that this multiple regression approach can be used to evaluate multi-
ple moderators. Doing so is no more complex than entering multiple categori-
cal (represented with one or more dummy variables, effects codes, or contrast 
codes) or continuous predictors in this meta- analytic multiple regression.

However, one important consideration is that of centering (i.e., subtract-
ing the mean value of a predictor from the values of this predictor). Although 
the statistical significance of either the overall model or individual predictors 
will not be influenced by whether or not you center, centering does offer two 
advantages. First, it permits more intuitive interpretation of the intercept as 
the mean effect size across studies. Second, it removes nonessential colinear-
ity when evaluating interaction or power polynomial terms. To appropriately 
center predictors for this type of regression, you perform two steps. First, you 
compute the weighted (by inverse variance weights, w) average value of each 
predictor. Second, you compute a centered predictor variable by subtracting 
this weighted mean from scores on the original (uncentered) variable for 
each study. This process works for either continuous variables or dichoto-
mous variables (this method of centering dummy variables converts them to 
effects codes).

To illustrate centering and evaluation of multiple moderators, I turn 
again to the example meta- analysis of the associations between relational 
aggression and rejection. In this illustration, I want to evaluate moderation 
both by method of measuring aggression and by age. Specifically, I want to 
evaluate whether either uniquely moderates these effect sizes (controlling for 
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any overlap between method and age that may exist among these studies; see 
Section 9.4). Table 9.3 displays these 27 effect sizes (from 22 studies), as well 
as values for the two predictors: three dummy variables denoting the four 
categorical levels of method, and the continuous variable age. To create the 
centered variables, I first computed the weighted mean for each of the three 
dummy variables and age; these values were .0265, .8206, .1155, and 9.533, 
respectively.5 I then subtracted these values from scores on each of these four 
variables, resulting in the four centered variables shown on the right side of 
Table 9.3. I have labeled the three centered dummy codes as effects codes 
(EC1, EC2, and EC3), and the centered age variable “C_Age.”

When I then regress the effect size (Zr) onto these four predictors (EC1, 
EC2, EC3, and C_Age), weighted by w, I obtain SSregression = 93.46. Evaluat-
ing this amount of heterogeneity explained by the model (Qregression) as a 4 df 
(df = number of predictors), I conclude that this model explains a significant 
amount of heterogeneity in these effect sizes. Further, each of the four regres-
sion coefficients is statistically significant: EC1 = .581 (adjusted SE = .092, Z = 
6.29, p < .001), EC2 = .415 (adjusted SE = .063, Z = 6.54, p < .001), EC3 = .152 
(adjusted SE = .068, Z = 2.23, p < .05), and centered Age6 = –.020 (adjusted 
SE = .004, Z = –5.32, p < .001). Inspection of the regression coefficient (with 
corrected standard errors) allows me to evaluate whether age is a significant 
unique moderator (i.e., above and beyond moderation by method), but I can-
not directly evaluate the unique moderation of method beyond age because 
this categorical variable is represented with three effects codes (though in 
this example the answer is obvious, given that each effects code is statistically 
significant). To evaluate the unique prediction by this categorical variable (or 
any other multiple variable block), I can perform a hierarchical (weighted) 
multiple regression in which centered age is entered at step 1 and the three 
effects codes are entered at step 2. Running this analysis yields SSregression 
= 3.56 at step 1 and SSregression = 93.46 at step 2. I conclude that the unique 
heterogeneity predicted by the set of effects codes representing the categori-
cal method moderator is significant (Q(df=2) = 93.64 – 3.56 = 90.08, p < .001). 
I could similarly re- analyze these data with the three effects codes at step 1 
and centered age at step 2 to evaluate the unique prediction by age. This is 
equivalent to inspecting the regression weight relative to its corrected stan-
dard error in the final model (as is the case for the unique moderation of any 
single variable predictor).7

Two additional findings from this weighted multiple regression analysis 
merit attention. First, the intercept estimate (B0) is .368, with a corrected 
standard error of .0113; these values are identical to those obtained by fitting 
an empty model to these 27 effect sizes. This means that I can still interpret 
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the mean effect size and its statistical significance and confidence intervals 
within the moderator analysis, demonstrating the value of centering these 
predictors. Second, the residual sum of squares should be noted (SSresidual or 
SSerror = 257.24), as this represents the heterogeneity among effect sizes left 
unexplained by this model (Qresidual; which can be evaluated for statistical 
significance according to a chi- square distribution with df = k – no. of pre-
dictors – 1). As I elaborate below, the size of this residual, or unexplained, 
heterogeneity is one consideration in evaluating the adequacy of the modera-
tion model.

9.3.4 conclusions and extensions of Multiple 
regression Models

As I hope is clear, this weighted multiple regression framework for analyz-
ing moderators in meta- analysis is a flexible approach. Extending from an 
empty model in which mean effect sizes and heterogeneity are estimated, this 
framework can accommodate any combination of multiple categorical or con-
tinuous moderator variables as predictors. This general approach also allows 
for the evaluation of more complex moderation hypotheses. For example, one 
can test interactive combinations of moderators by creating product terms. 
Similarly, one can evaluate nonlinear moderation by the creation of power 
polynomial terms. These possibilities represent just a sample of many that are 
conceivable—if conceptually warranted—within this regression framework.

9.4 An AlternAtIve SeM APProAch

Cheung (2008) described an approach to meta- analysis within an SEM frame-
work that can be used for moderator analyses as described in this chapter, 
as well as estimating fixed- effects means as described in Chapter 8 and more 
complex models (random- and mixed- effects models) described in Chapter 
10. You should be aware that this is not SEM in the sense of multivariate, 
latent variable analyses (such as described in Chapter 12), but instead uses 
the flexibility of the SEM approach and software (e.g., ability to place model 
constraints) to fit meta- analytic models of a single effect size and coded 
study characteristics as predictors. In the context of moderator analyses, this 
approach is also advantageous over the regression approach I have described 
earlier in that it can use the advanced methods of missing data management 
in SEM when some studies do not report values for the characteristics you 
wish to evaluate as moderators.8
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Although this alternative SEM approach is flexible, it does require an 
understanding of SEM as well as the use of specialized software.9 Given this 
restriction, I will write this section with the assumption that you are familiar 
with SEM (if you are not, I recommend Kline, 2010, as an accessible introduc-
tion). Next, I describe the data transformation central to this approach, how 
this model can be used to estimate (fixed- effects) mean effect sizes (Chapter 
8), and how this model can be used for moderator analyses. I consider this 
model again in Chapter 10 when I describe how it can be used for random- 
and mixed- effects models.

9.4.1 transformations to Produce equal errors 
across Studies

As you recall, different studies in a meta- analysis are believed to have differ-
ent sampling variances (i.e., squared standard errors) that provided the basis 
for differentially weighting the studies (see Chapter 8). The initial “key” to 
this SEM approach to meta- analysis is to rescale effect sizes and their predic-
tors for each study so that the studies have equal sampling errors. This allows 
you to treat each study as an equally weighted case in the analyses because 
the weighting is accounted for by a transformation of study effect sizes and 
their predictors (i.e., study characteristics). This transformation factor is the 
square root of the weight you would normally use for a fixed- effects analysis 
(i.e., wi = 1 / SEi

2). You apply this transformation factor by multiplying it 
by the effect sizes and predictors (including the intercept) (Cheung, 2008, 
p. 186):

equation 9.7: transformations of effect sizes and predictors 
to produce equal errors across studies

iii WESES

iii WXX

ES•	 i* is the transformed effect size for study i.
ES•	 i is the original (untransformed) effect size for study i.
W•	 i is the weight, equal to 1 / (SEi 2), for study i.
X•	 i* is the transformed value of the predictor (including intercept) 
for study i.
X•	 i is the original (untransformed) value of the predictor (including 
intercept, 1) for study i.
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Once these transformed effect sizes and predictors are created, the anal-
yses within an SEM context do not require additional weighting, so each 
study is treated as an equally weighted case (to be clear, studies are still dif-
ferentially weighted, but this occurs in the transformation rather than in the 
analyses). Next, I describe and illustrate how this approach can be used to 
estimate (fixed- effects) mean effect sizes and to evaluate moderators. This 
presentation follows closely that of Cheung (2008), but I use the example 
meta- analysis of relational aggression and peer rejection to illustrate these 
analyses.

9.4.2 estimating Mean effect Sizes

Although you already know how to estimate mean effect sizes (Chapter 8), 
it is useful to revisit these issues within this SEM approach. To evaluate a 
mean effect size, a model is fit in which the transformed effect size (ES*) is 
regressed onto the transformed intercept (X0*). The intercept is just a con-
stant 1.0 (literally, a variable with the value of 1 for each study) that is then 
transformed using Equation 9.7. Although the model is simple and could 
otherwise be performed using traditional software for regression, there are 
two important constraints you need to place on this model that require SEM 
software: (1) you fix the variance of ES* to 1.0, and (2) you fix the indicator 
intercept of ES* to 0. Given these constraints, the mean effect size is repre-
sented as the regression coefficient from the transformed intercept.

I demonstrate this SEM representation by estimating the mean of the 
relational aggression with rejection association among the 22 studies shown 
in Table 9.2. To illustrate the computations of Equation 9.7, consider the first 
study (Blachman, 2003), which had an effect size Zr = .583 and weight (W) 
= 208.12. Using Equation 9.7, I find that the transformed effect size, Zr*, is 
equal to .583√208.12 = 8.411. The predictor in this model is a transformed 
intercept 1.0, computed using Equation 9.7 to be 1√208.12 = 14.426. I also 
apply these transformations of effect sizes and intercept to the other 21 stud-
ies in Table 9.2.

The path diagram representing this analysis, as well as Mplus syntax,10 is 
shown in Figure 9.1. From this figure, you see that the transformed effect size 
(Fisher’s Zr, subjected to the transformation of Equation 9.7 to obtain Zr*) is 
regressed onto the transformed intercept (the constant 1.0 transformed with 
Equation 9.7 to obtain X*). The regression coefficient (b0) in this example 
is estimated to be .386, which is identical (within rounding error) to the 
mean Zr from these studies using the methods I described in Chapter 8. The 
standard error of this estimate is .012, which is also identical to the standard 
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error of the mean effect size computed in Chapter 8. Therefore, the statistical 
significance (Z = .386/.012 = 32.68, p < .001) is also identical (within round-
ing) to the previously obtained results. In short, this approach yields identi-
cal values to those if you used the methods described in Chapter 8.

9.4.3 evaluating Moderators

From here, it is straightforward to add predictors to evaluate (categorical or 
continuous) moderators of this effect size. You simply make the same trans-
formation described in Equation 9.7 (i.e., multiplying by the square root of 
the weight) to these predictors, and then add them to the predictive model.

I illustrate this analysis using the meta- analysis summarized in Table 
9.3, in which I want to evaluate age (a continuous variable) and method of 
measuring aggression (three dummy coded variables) as potential modera-
tors of the relational aggression with peer rejection association. As I did ear-
lier using the multiple regression approach, I center these variables to assist 
interpretation.

fIgure 9.1. Path diagram and Mplus syntax to estimate (fixed- effects) mean 
effect size.

Path diagram: 

Mplus syntax:  
 
TITLE: Fixed-effects mean 
DATA: File is Table9_2.txt; 
VARIABLE: NAMES N r Zr W interc; 
    USEVARIABLES ARE Zr interc; 
DEFINE: w2 = SQRT(W); 
    Zr = w2 * Zr; 
    interc = w2 * interc; 
MODEL: 
    [Zr@0.0];  !Fixes intercept at 0 
    Zr@1.0;  !Fixes variance at 1 
    Zr ON interc;   !Regress transformed Zr on transformed intercept 
OUTPUT: 

Intercept* Zr* 

1.0* 

1 

0* 

b0 = .386

mailto:Zr@0.0]
mailto:Zr@1.0
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Considering the first study, the effect size and intercept are transformed 
as already described. For this study, the centered values of the moderators 
(i.e., the values of Table 9.3 minus their means) are C_Age = –0.33 (= 9.2 
– 9.53), EC1 = 0.97 (= 1 – .03), EC2 = –0.82, and EC3 = –0.12. When these 
four predictors are transformed (Equation 9.7) by multiplying by the square 
root of the study weight, the transformed values are C_Age* = –4.76, EC1* = 
13.99, EC2* = –11.83, and EC3* = –1.73.

Figure 9.2 shows the path diagram and Mplus script for adding cen-
tered age and the three effects codes representing measurement type, to 
evaluate these coded study characteristics as moderators of the association 
between relational aggression and rejection. You evaluate moderator effects 
by inspecting the regression coefficients of the transformed moderators pre-
dicting transformed effect size. In this example, as when performed within 
a regression context, each of the three effects codes (EC1: b1 = 0.582, SE = 
.092, Z = 6.30, p < .001; EC2: b2 = 0.415, SE = .063, Z = 6.55, p < .001; EC3: b3 
= 0.152, SE = .068, Z = 2.24, p < .05) as well as centered age (b4 = –0.020, SE 
= .004, Z = 5.33, p < .001) were significant moderators. Further, the intercept 
was significant and represents the overall mean Zr (b0 = 0.370, SE = .011, Z 
= 32.78, p < .001). All of these values are identical (within rounding error) to 
those found through regression analyses. However, the key advantage of this 
SEM approach is that it could have accommodated all studies even if some 
had missing values for the study characteristics age or method of assessing 
aggression.

9.5 PrActIcAl MAtterS: the lIMItS of InterPretIng 
ModerAtorS In MetA-AnAlySIS

Notwithstanding the considerable flexibility of a regression framework and 
the SEM approach for moderator analysis in meta- analysis, you should con-
sider three potential limits when drawing conclusions from moderator analy-
ses.

9.5.1 empirically confounded Moderators

Just as you want to avoid highly correlated predictors in a multiple regression 
analysis of primary data, it is important to ensure that the moderator vari-
ables (i.e., predictors) are not too highly correlated in meta- analysis. If they 
are, then two problems can emerge. First, it might be difficult to detect the 
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Path diagram: 

Mplus syntax:  
 
TITLE: Moderator analysis 
DATA: File is Table9_3.txt; 
VARIABLE: NAMES N r Zr W EC1 EC2 EC3 C_Age interc; 
    USEVARIABLES ARE Zr EC1 EC2 EC3 C_Age interc; 
DEFINE: w2 = SQRT(W); 
    Zr = w2 * Zr; 
    EC1 = w2 * EC1; 
    EC2 = w2 * EC2; 
    EC3 = w2 * EC3; 
    C_Age = w2 * C_Age; 
    interc = w2 * interc; 
MODEL: 
    [Zr@0.0]; !Fixes intercept at 0 
    Zr@1.0; !Fixes variance at 1 
    Zr ON EC1 EC2 EC3 C_Age interc; 

!Regress transformed Zr on transformed moderators 
OUTPUT: 

C_Age* 

Zr(12)* 

1.0* 

1 

0* 

Intercept* b0=.370

EC3* 

EC2* 

EC1* 

b3=.152

b2=.063

b1=.582 

b4= –.020

fIgure 9.2. Path diagram and Mplus syntax to evaluate moderation.

mailto:Zr@0.0]
mailto:Zr@1.0
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unique association of a moderator above and beyond the other highly corre-
lated moderators. Second, if they are extremely highly correlated, you can get 
inaccurate regression estimates that have large standard errors (the so- called 
bouncing beta problem).

Fortunately, it is easy— though somewhat time- consuming—to evaluate 
multicolinearity in meta- analytic moderator analyses. To do so, you regress 
each moderator (predictor) onto the set of all other moderators, weighted by 
the same weights (i.e., inverse variances of effect size estimates) as you have 
used in the moderator analyses. To illustrate using the example data shown 
in Table 9.3, I would regress age onto the three dummy variables representing 
the four categorical methods of assessing aggression. Here, R2 = .41, far less 
than the .90 that is often considered too high (e.g., Cohen et al., 2003, p. 424). 
I would then repeat the process for other moderator variables, successively 
regressing (weighted by w) them on the other moderator variables.

9.5.2 conceptually confounded (Proxy) Moderators

A more difficult situation is that of uncoded confounded moderators. These 
include a large range of other study characteristics that might be correlated 
across studies with the variables you have coded. For example, studying 
a particular type of sample (e.g., adolescents vs. young children) might be 
associated with particular methodological features (e.g., using self- reports 
vs. observations; if I had failed to code this methodology, then this feature 
would potentially be an uncoded confounded moderator). Here, results indi-
cating moderation by the sample characteristics might actually be due to 
moderation by methodology. Put differently, the moderator in my analysis is 
only a proxy for the true moderator. Moreover, because the actual moderator 
(type of measure) is conceptually very different from the moderator I actu-
ally tested (age), my conclusion would be seriously compromised if I failed to 
consider this possibility.

There is no way to entirely avoid this problem of conceptually con-
founded, or proxy, moderators. But you can reduce the threat it presents by 
coding as many alternative moderator variables as possible (see Chapter 5). 
If you find evidence of moderation after controlling for a plausible alternative 
moderator, then you have greater confidence that you have found the true 
moderator (whereas if you did not code the alternative moderator, you could 
not empirically evaluate this possibility). At the same time, a large number of 
alternative possibilities might be argued to be the true moderator, of which 
the predictor you have considered is just a proxy, and it is impossible to 
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anticipate and code all of these possibilities. For this reason, some argue that 
findings of moderation in meta- analysis are merely suggestive of moderation, 
but require replication in primary studies where confounding variables could 
arguably be better controlled. I do not think there is a universal answer for 
how informative moderator results from meta- analysis are; I think it depends 
on the conceptual arguments that can be made for the analyzed moderator 
versus other, unanalyzed moderators, as well as the diversity of the existing 
studies in using the analyzed moderator across a range of samples, meth-
odologies, and measures. Despite the ambiguities inherent in meta- analytic 
moderator effects, assessing conceptually reasonable moderators is a worth-
while goal in most meta- analyses in which effect sizes are heterogeneous (see 
Chapter 8).

9.5.3 ensuring Adequate coverage 
in Moderator Analyses

When examining and interpreting moderators, an important consideration is 
the coverage, or the extent to which numerous studies represent the range of 
potential moderator values considered. The literature on meta- analysis has 
not provided clear guidance on what constitutes adequate coverage, so this 
evaluation is more subjective than might be desired. Nevertheless, I try to 
offer my advice and suggestions based on my own experience.

As a first step, I suggest creating simple tables or plots showing the num-
ber of studies at various levels of the moderator variables. If you are testing 
only the main effects of the moderators, it is adequate to look at just the 
univariate distributions.11 For example, in the meta- analysis of Table 9.3, 
I might create frequency tables or bar charts of the methods of assessing 
aggression, and similar charts of the continuous variable age categorized into 
some meaningful units (e.g., early childhood, middle childhood, early adoles-
cence, and middle adolescence; or simply into, e.g., 2-year bins). Whether or 
not you report these tables or charts in a manuscript, they are extremely use-
ful in helping you to evaluate the extent of coverage. Considering the method 
of assessing aggression, I see that these data contained a reasonable number 
of effect sizes from peer- (k = 17) and teacher- (k = 6) report methods, but 
fewer from observations (k = 3) and only one using parent reports. Similarly, 
examining the distribution of age among these effect sizes suggests a gap in 
the early adolescence range (i.e., no studies between 9.5 and 14.5 years).

What constitutes adequate coverage? Unfortunately, there are no clear 
answers to this question, as it depends on the overall size of your meta-
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 analysis, the correlations among moderators, the similarity of your included 
studies on characteristics not coded, and the conceptual certainty that 
the moderator considered is the true moderator rather than a proxy. At an 
extreme, one study representing a level of a moderator (e.g., the single study 
using parent report in this example) or one study in a broad area of a con-
tinuous moderator (e.g., if there was only one study during early childhood) 
is not adequate coverage, as it is impossible to know what other features of 
that study are also different from those of the rest of the studies. Conversely, 
five studies covering an area of a moderator probably constitute adequate 
coverage for most purposes (again, I base this recommendation on my own 
experience; I do not think that any studies have more formally evaluated this 
claim). Beyond these general points of reference, the best advice I can provide 
is to carefully consider these studies: Do they all provide similar effect sizes? 
Do they vary among one another in other characteristics (which might point 
to the generalizability of these studies for this region of the moderator)? Are 
the studies comparable to the studies at other levels of the moderator (if not, 
then it becomes impossible to determine whether the presumed moderator is 
a true or proxy moderator)?

9.6 SuMMAry

In a meta- analysis, moderator variables are coded study characteristics that 
are evaluated as predictors of effect sizes. It is possible to evaluate categorical 
moderators in an approach similar to ANOVA, continuous moderators in an 
approach similar to regression, and to evaluate flexible combinations of these 
in either a general multiple regression or SEM framework. In this chapter, I 
have described each of these approaches as well as some limitation in inter-
preting moderator effects in meta- analysis.

9.7 recoMMended reAdIngS

Lipsey, M. W. (2003). Those confounded moderators in meta- analysis: Good, bad, and 
ugly. The Annals, 587, 69–81.—This article provides an accessible and thoughtful 
conceptual consideration for interpreting moderator effects from meta- analysis.

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta- analysis. Thousand Oaks, CA: 
Sage.—This book provides a clear and concise description of the ANOVA and regres-
sion approaches to moderator analyses that I have described in this chapter (see 
especially pp. 120–124 and 135–140).



  Moderator Analyses 227

noteS

 1. Although using multiple effect sizes from the same study violates the assump-
tion of independence, I believe that this practice is acceptable when analyzing 
categorical moderators and the interdependent effect sizes are placed in different 
groups. Because it is reasonable to expect multiple effect sizes from the same 
study to be more similar (i.e., positively correlated) than independent effect 
sizes, the impact of this interdependence will be to attenuate between-group 
differences. Therefore, violation of the independence assumption in this case is 
likely to impose a conservative bias (i.e., increase in type II error rates). I believe 
that this negative consequence is outweighed by the advantage of being able to 
include all relevant effect sizes in this example.

 2. The formula I have provided for the number of comparisons differs from that 
sometimes provided in textbooks on ANOVA (e.g., Keppel, 1991, p. 167). My 
formula assumes that you are only interested in comparing two groups with each 
other (i.e., pairwise mean comparisons in ANOVA terminology), so the number 
of possible comparisons is G(G – 1)/2 (e.g., for 4 groups, the number of compari-
sons is 4(4 – 1)/2 = 6). I assume that you will not compare different combinations 
of groups (e.g., whether the mean effect sizes of Groups 1 and 2 combined differ 
from the mean effect sizes of Groups 3 and 4 combined). If these multigroup 
comparisons are of interest, then the total number of comparisons that can be 
made using G groups is 1 + (3G – 1)/2 – 2G. Using this correction will result in 
very conservative comparisons, and I strongly recommend considering planned 
comparisons rather than this approach if you are interested in these combined 
group comparisons.

 3. I do not use the residual sum of squares in this section, but it is useful to record. 
This value represents the residual heterogeneity (Qresidual), or heterogeneity 
effect sizes not accounted for by the regression model.

 4. These effects codes would assume that all groups have equal sizes (here, equal 
numbers of studies). Effects codes derived from centering (described below) can 
accommodate different group sizes.

 5. Because not all programs readily provide this weighted average, it is useful to 
keep in mind that you can compute this weighted average of the predictor by 
regressing the predictor variable onto a constant, weighted by the inverse vari-
ance weights (w).

 6. There is an interesting suppressor effect among these 27 effect sizes: By itself, age 
is only a marginally significant predictor (Qregression(1) = 3.56, p = .059). How-
ever, when controlling for these effects for method, the effect of age is statisti-
cally significant.

 7. In the hierarchical multiple regression, (Qregression(1) = 28.33, p < .001). In the 
simultaneous regression, the regression coefficient was statistically significant 
according to a Z-test: Z = –.0203 / .00382 = –5.32. Note that (–5.32)2 = 28.33.
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 8. Namely, this approach allows you to use FIML techniques of missing data man-
agement (see, e.g., Arbuckle, 1996). This approach is superior to the practice of 
removing studies that have missing study characteristics in that FIML will pro-
vide less biased and more statistically powerful results. This approach is espe-
cially valuable when simultaneously evaluating multiple moderators, for which 
many studies might otherwise be removed for missing values on one of the sev-
eral coded study characteristics (moderators).

 9. For reasons I describe in the next chapter on random- and mixed- effects models, 
I recommend using Mplus or Mx SEM packages.

10. Note that the Mplus syntax in this figure calculates the transformations of Equa-
tion 9.7 directly from the raw effect size (Zr) and intercept (1.0).

11. If you are interested in evaluating interactions among moderators, it would be 
valuable to consider multivariate distributions. For example, if I were interested 
in the interaction of age and method of assessing aggression in the example 
meta- analysis, I would create a two- dimensional plot with method on one axis 
and age on the other, then plot the studies within this space. Here, I would look 
for any areas of this space where there are few or no studies.



 229

10

Fixed-, Random-, 
and Mixed-Effects Models

In Chapter 8, I presented an approach to computing mean effect sizes and 
drawing inferences or computing confidence intervals about these means. In 
Chapter 9, I described methods of evaluating moderators in the presence of ini-
tial heterogeneity. Both of these analyses assumed homogeneity at some level; 
in Chapter 8, this assumption was that the effect sizes were homogeneous 
(i.e., no more variability than expected due to random- sampling fluctuations), 
and in Chapter 9, this assumption was that the effect sizes were homogeneous 
after accounting for differences by moderator variables (i.e., conditional homo-
geneity). These models assuming homogeneity (or conditional homogeneity) 
are termed fixed- effects models.

In this chapter, I present an alternative approach, known as random-
 effects models (e.g., Hedges, 1983; Hedges & Vevea, 1998; Overton, 
1998; Raudenbush, 1994), in which you model this unexplained heterogene-
ity. In Section 10.1 I compare the fixed- effects models discussed in Chapter 
8 with these random- effects models, and in Section 10.2 I describe how you 
compute the mean effect size (and draw inferences and compute confidence 
intervals) within these random- effects models. In Section 10.3 I describe how 
to analyze moderators while also modeling unexplained heterogeneity (mixed-
 effects, or conditionally random, models). I then continue from the introduction 
of the SEM representation of meta- analysis from Chapter 9 to discuss how 
this approach can be used to estimate random- and mixed- effects models 
(Section 10.4). Finally, I consider some practical matters in choosing among 
these models, presenting both conceptual and statistical power considerations 
(Section 10.5).
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10.1 dIfferenceS AMong ModelS

It is easiest to begin with the simple case in which you are interested only 
in the mean effect size among a set of studies, both in identifying the mean 
effect size and in computing its standard errors for inferential testing or 
for computing of confidence intervals. Even in this simple case, there are a 
number of conceptual, analytic, and interpretive differences between fixed- 
and random- effects meta- analytic models (see also Hedges & Vevea, 1998; 
Kisamore & Brannick, 2008).

10.1.1 conceptual differences

The conceptual differences between fixed- and random- effects models can be 
illustrated through Figure 8.1, which I have reproduced in the top of Figure 
10.1. As you recall, the top of Figure 10.1 displays effect sizes from five stud-
ies, all (or at least most) of which have confidence intervals that overlap with 
a single population effect size, now denoted with θ using traditional symbol 
conventions (e.g., Hedges & Vevea, 1998). This overlap with a single popu-
lation effect size, with deviations of study effect sizes due to only sampling 
fluctuations (i.e., study- specific confidence intervals), represents the fixed-
 effects model of meta- analysis.

The bottom portion of Figure 10.1 displays the random- effects model. 
Here, the confidence intervals of the individual study effect sizes do not nec-
essarily overlap with a single population effect size. Instead, they overlap 
with a distribution of population effect sizes. In other words, random- effects 
models conceptualize a population distribution of effect sizes, rather than 
a single effect size as in the fixed- effects model. In a random- effects model, 
you estimate not only a single population mean effect size (θ), but rather a 
distribution of population effect sizes represented by a central tendency (µ) 
and standard deviation (t).

10.1.2 Analytic differences

These conceptual differences in fixed- versus random- effects models can also 
be expressed in equation form. These equations help us understand the com-
putational differences between these two models, described in Section 10.2.

Equation 10.1 expresses this fixed- effects model of study effect sizes 
being a function of a population effect size and sampling error:
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equation 10.1: equation for effect sizes for studies 
in fixed-effects model

ESi = θ + εi

ES•	 i is the (observed) effect size for study i.
θ•	  is the (single) population effect size.
ε•	 i is the deviation of study i from the population effect size.

Range of effect sizes 

Population 
effect size, µ

Study 1

Study 2

Study 3

Study 4

Study 5

Random-effects model 

Range of effect sizes

Population 
effect size, 

 
Study 1

Study 2

Study 3

Study 4

Study 5

Fixed-effects model 

fIgure 10.1. Conceptual representation of fixed- versus random- effects models.
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In this fixed- effects model, the effect sizes for each study (ESi) are 
assumed to be a function of two components: a single population effect size 
(θ) and the deviation of this study from this population effect size (εi). The 
population effect size is unknown but is estimated as the weighted average 
of effect sizes across studies (this is often one of the key values you want to 
obtain in your meta- analysis). The deviation of any one study’s effect size 
from this population effect size (εi) is unknown and unknowable, but the dis-
tribution of these deviations across studies can be inferred from the standard 
errors of the studies. The test of heterogeneity (Chapter 8) is a test of the null 
hypothesis that this variability in deviations is no more than what you expect 
given sampling fluctuations alone (i.e., homogeneity), whereas the alternative 
hypothesis is that these deviations are more than would be expected by sam-
pling fluctuations alone (i.e., heterogeneity).

I indicated in Chapter 9 that the presence of significant heterogeneity 
might prompt us to evaluate moderators to systematically explain this hetero-
geneity. An alternative approach would be to model this heterogeneity within 
a random- effects model. Conceptually, this approach involves estimating not 
only a mean population effect size, but also the variability in study effect 
sizes due to the population variability in effect sizes. These two estimates are 
shown in the bottom of Figure 10.1 as µ (mean population effect size) and t 
(population variability in effect sizes). In equation form, this means that you 
would conceptualize each study effect size arising from three sources:

equation 10.2: equation for effect sizes for studies 
in random-effects model

ESi = µ + ξ + εi

ES•	 i is the (observed) effect size for study i.
µ•	  is the mean of the distribution of population effect sizes.
ξ•	 i is the reliable (not due to sampling deviation) deviation of study i 
from the mean of the distribution of population effect sizes.
ε•	 i is the conditional deviation (sampling deviation) of study i from 
the distribution of population effect sizes.

As shown by comparing the equations for fixed- versus random- effects 
models (Equation 10.1 vs. Equation 10.2, respectively), the critical difference 
is that the single parameter of the fixed- effects model, the single population 
effect size (θ), is decomposed into two parameters (the central tendency and 
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study deviation, µ and ξi) in the random- effects model. As I describe in more 
detail in Section 10.2, the central tendency of this distribution of population 
effect sizes is best estimated by the weighted mean of effect sizes from the 
studies (though with a different weight than used in a fixed- effects model). 
The challenge of the random- effects model is to determine how much of the 
variability in each study’s deviation from this mean is due to the distribution 
of population effect sizes (ξis, sometimes called the random- effects variance; 
e.g., Raudenbush, 1994) versus sampling fluctuations (εis, sometimes called 
the estimation variance). Although this cannot be determined for any single 
study, random- effects models allow you to partition this variability across the 
collection of studies in your meta- analysis. I describe these computations in 
Section 10.2.

10.1.3 Interpretive differences

Before turning to these analyses, however, it is useful to think of the differ-
ent interpretations that are justified when using fixed- versus random- effect 
models. Meta- analysts using fixed- effects models are only justified in drawing 
conclusions about the specific set of studies included in their meta- analysis 
(what are sometimes termed conditional inferences; e.g., Hedges & Vevea, 
1998). In other words, if you use a fixed- effects model, you should limit your 
conclusions to statements of the “these studies find . . . ” type.

The use of random- effects models justifies inferences that generalize 
beyond the particular set of studies included in the meta- analysis to a popu-
lation of potential studies of which those included are representative (what 
are sometimes termed unconditional inferences; Hedges & Vevea, 1998). In 
other words, random- effects models allow for more generalized statements of 
the “the literature finds . . . ” or even “there is this magnitude of association 
between X and Y” type (note the absence of any “these studies” qualifier).1 
Although meta- analysts generally strive to be comprehensive in their inclu-
sion of relevant studies in their meta- analyses (see Chapter 3), the truth is 
that there will almost always be excluded studies about which you still might 
wish to draw conclusions. These excluded studies include not only those that 
exist that you were not able to locate, but also similar studies that might be 
conducted in the future or even studies that contain unique permutations of 
methodology, sample, and measures that are similar to your sampled studies 
but simply have not been conducted.

I believe that most meta- analysts wish to make the latter, generalized 
statements (unconditional inferences) most of the time, so random- effects 
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models are more appropriate. In fact, I often read meta- analyses in which 
the authors try to make these conclusions even when they used fixed- effects 
models; such conclusions are inappropriate. I recommend that you frame 
your conclusions carefully in ways that are appropriate given your statistical 
model (i.e., fixed- vs. random- effects), and consider the conclusions you wish 
to make when deciding between these models. I return to this and other con-
siderations in selecting between fixed- and random- effects models in Section 
10.5.

10.2 AnAlySeS of rAndoM-effectS ModelS

A random- effects model in meta- analysis can be estimated in four general 
steps: (1) estimating the heterogeneity among effect sizes, (2) estimating pop-
ulation variability in effect sizes, (3) using this estimate of population vari-
ability to provide random- effects weights of study effect sizes, and (4) using 
these random- effects weights to estimate a random- effects mean effect size 
and standard errors of this estimate (for significance testing and confidence 
intervals). I illustrate each of these steps using the example meta- analysis 
dataset of 22 studies providing associations between relational aggression 
and peer rejection. These studies, together with the variables computed to 
estimate the random- effects model, are summarized in Table 10.1.

10.2.1 estimating heterogeneity

The first step is to estimate the heterogeneity, indexed by Q, in the same way 
as described in Chapter 8. As you recall, the heterogeneity (Q) is computed 
using Equation 8.6, reproduced here:

equation 10.3: estimating heterogeneity (Q)

i

ii
iiii w

ESw
ESwSEESwQ

2

22

df = k – 1

w•	 i is the weight of study i.
ES•	 i is the effect size estimate from study i.
ES•	 i is the mean effect size across studies.
k•	  is the number of studies.



 235

tA
B
le

 1
0
.1

. 
ex

a
m

p
le

 r
a
n
d

o
m

- e
ff

ec
ts

 M
o
d

el
 o

f 
(A

rt
if

a
ct

-c
o
rr

ec
te

d
) 

c
o
rr

el
a

ti
o
n
s 

b
et

w
ee

n
 r

el
a

ti
o
n
a

l A
g

g
re

ss
io

n
 

a
n
d
 P

ee
r 

r
ej

ec
ti
o
n

St
u

dy
Sa

m
pl

e 
si

ze
 (

N
)

A
ge

 
(y

ea
rs

)
E

ff
ec

t 
si

ze
 (

Z
r)

St
an

da
rd

 
er

ro
r 

(S
E

)
W

ei
gh

t 
(w

)
w

E
S

w
E

S2
w

2
w

*
w

*E
S

B
la

ch
m

an
 (

20
03

)
22

8
9.

2
.5

83
0.

06
93

20
8.

12
12

1.
27

70
.6

6
43

31
5.

0
21

.9
4

11
.5

1
C

ri
ck

 &
 G

ro
tp

et
er

 (
19

95
)

49
1

9.
4

.2
01

0.
05

79
29

7.
81

59
.7

4
11

.9
8

88
69

3.
4

22
.6

6
4.

49
C

ri
ck

 e
t 

al
. (

19
97

)
65

4.
5

.3
22

0.
13

25
56

.9
5

18
.3

4
5.

90
32

42
.9

17
.1

4
5.

34
G

ei
ge

r 
(2

00
3)

45
8

8.
0

.6
24

0.
04

84
42

7.
07

26
6.

55
16

6.
37

18
23

88
.9

23
.2

0
12

.8
5

H
aw

le
y 

et
 a

l. 
(2

00
7)

92
9

14
.7

.1
62

0.
03

46
83

5.
96

13
5.

72
22

.0
3

69
88

29
.8

23
.8

3
3.

84
H

en
in

gt
on

 (
19

96
)

90
4

7.
5

.3
49

0.
03

47
83

1.
95

29
0.

69
10

1.
57

69
21

41
.3

23
.8

3
8.

00
Jo

h
n

so
n

 (
20

03
)

74
6.

0
.4

19
0.

12
23

66
.8

9
28

.0
2

11
.7

3
44

74
.6

17
.9

5
7.

11
L

ef
f 

(1
99

5)
15

1
9.

5
.7

21
0.

08
55

13
6.

66
98

.4
8

70
.9

7
18

67
5.

3
20

.8
0

12
.8

4
M

il
le

r 
(2

00
1)

15
0

16
.0

.6
28

0.
08

45
13

9.
90

87
.9

0
55

.2
3

19
57

0.
9

20
.8

7
11

.6
2

M
u

rr
ay

-C
lo

se
 &

 C
ri

ck
 (

20
06

)
59

0
9.

0
.6

55
0.

04
26

55
0.

97
36

1.
12

23
6.

69
30

35
65

.1
23

.4
8

13
.5

1
N

el
so

n
 e

t 
al

. (
20

05
)

18
0

4.
8

.0
39

0.
08

31
14

4.
75

5.
70

0.
22

20
95

3.
4

20
.9

8
0.

83
O

st
ro

v 
(u

n
de

r 
re

vi
ew

)a
13

9
3.

6
.3

75
0.

08
92

12
5.

71
47

.1
4

17
.6

8
15

80
2.

7
20

.5
2

7.
35

O
st

ro
v 

&
 C

ri
ck

 (
20

07
)

13
2

4.
1

.0
49

0.
09

22
11

7.
70

5.
81

0.
29

13
85

3.
1

20
.3

0
1.

00
O

st
ro

v 
et

 a
l. 

(2
00

4)
b

60
4.

6
.0

00
0.

13
86

52
.0

5
0.

00
0.

00
27

09
.6

16
.6

7
0.

00
P

ak
as

la
h

ti
 &

 K
el

ti
ka

n
ga

s-
Jä

rv
in

en
 (

19
98

)
83

9
14

.5
.3

39
0.

03
81

68
9.

52
23

3.
68

79
.1

9
47

54
42

.6
23

.6
9

7.
73

P
h

il
li

ps
en

 e
t 

al
. (

19
99

)
26

2
8.

7
–.

04
8

0.
06

42
24

2.
93

–1
1.

73
0.

57
59

01
6.

0
22

.2
8

–1
.0

7
R

ys
 &

 B
ea

r 
(1

99
7)

26
6

9.
5

.4
89

0.
06

36
24

6.
94

12
0.

85
59

.1
5

60
97

7.
2

22
.3

1
10

.1
2

Sa
lm

iv
al

li
 e

t 
al

. (
20

00
)

20
9

15
.5

.2
58

0.
07

15
19

5.
52

50
.5

4
13

.0
6

38
22

6.
3

21
.7

9
5.

51
To

m
ad

a 
&

 S
ch

n
ei

de
r 

(1
99

7)
31

4
9.

0
.1

62
0.

05
89

28
8.

73
46

.7
1

7.
56

83
36

7.
0

22
.6

1
3.

63
W

er
n

er
 (

20
00

)
88

1
8.

0
.5

19
0.

03
51

81
0.

71
42

0.
41

21
8.

01
65

72
55

.5
23

.8
1

11
.3

5
W

er
n

er
 &

 C
ri

ck
 (

20
04

)
51

7
8.

0
.5

09
0.

04
55

48
2.

45
24

5.
37

12
4.

79
23

27
56

.5
23

.3
4

10
.9

4
Z

al
ec

ki
 &

 H
in

sh
aw

 (
20

04
)

22
8

9.
0

.6
51

0.
07

02
20

2.
92

13
2.

06
85

.9
4

41
17

4.
7

21
.8

8
12

.5
2

Su
m

 (
S)

71
52

.2
1

27
64

.3
6

13
59

.6
0

37
56

43
2

47
5.

89
16

1.
02

N
ot

e.
 H

an
d 

ca
lc

u
la

ti
on

s 
of

 t
h

es
e 

va
lu

es
 m

ay
 n

ot
 p

ro
du

ce
 e

xa
ct

 r
ep

li
ca

ti
on

s 
du

e 
to

 r
ou

n
di

n
g 

er
ro

rs
.

a A
rt

ic
le

 w
as

 u
n

de
r 

re
vi

ew
 d

u
ri

n
g 

th
e 

pr
ep

ar
at

io
n

 o
f 

th
is

 m
et

a-
 an

al
yt

ic
 r

ev
ie

w
. I

t 
h

as
 s

u
bs

eq
u

en
tl

y 
be

en
 p

u
bl

is
h

ed
 a

s 
O

st
ro

v 
(2

00
8)

.
b E

ff
ec

t 
si

ze
 is

 lo
w

er
-b

ou
n

d 
es

ti
m

at
e 

ba
se

d 
on

 a
u

th
or

’s 
re

po
rt

in
g 

on
ly

 n
on

si
gn

ifi
ca

n
t 

as
so

ci
at

io
n

s.



236 COMBINING AND COMPARING EFFECT SIZES 

As in Chapter 8, I estimate Q in the example meta- analysis by creating 
three columns (variables)—w, wES, and wES2—shown in Table 10.1. This 
yields Q = 291.17, which is high enough (relative to a c2 distribution with 
21 df) to reject the null hypothesis of homogeneity and accept the alternate 
hypothesis of heterogeneity. Put another way, I conclude that the observed 
variability in effect sizes across these 22 studies is greater than expectable 
due to sampling fluctuation alone. This conclusion, along with other con-
siderations described in Section 10.5, might lead me to use a random- effects 
model in which I estimate a distribution, rather than single point, of popula-
tion effect sizes.

10.2.2 estimating Population variability

To estimate population variability, you partition the observed heterogene-
ity into that expectable due to sampling fluctuations and that representing 
true deviations in population effect sizes. Although you can never know the 
extent to which one particular study’s deviation from the central tendency 
is due to sampling fluctuation versus its place in the distribution of popu-
lation effect sizes, you can make an estimate of the magnitude of popula-
tion variability based on the observed heterogeneity (total variability) and 
that which is expectable given the study standard errors. Specifically, you 
estimate population variability in effect sizes (t2) using the following equa-
tion:

equation 10.4: estimating population variability in effect sizes (t2)

i

i
i w

w
w

kQ
2

2 1

Note: Equation is used if Q ≥ k – 1. If Q < k – 1, t2 = 0.

Q•	  is the heterogeneity statistic (see Equation 10.3).
k•	  is the number of studies.
w•	 i is the weight of study i.

Although the denominator of this equation is not intuitive, you can 
understand this equation well enough by considering the numerator. Because 
the expected value of Q under the null hypothesis of homogeneity is equal to 



  Fixed-, Random-, and Mixed- Effects Models 237

the degrees of freedom (k – 1), a homogeneous set of studies will result in a 
numerator equal to zero, and therefore the population variance in effect sizes 
is estimated to be zero.2 In contrast, when there is considerable heterogene-
ity, then Q is larger than the degrees of freedom (k – 1), and this heterogeneity 
beyond that expected by sampling fluctuation results in a large estimate of 
the population variance, t2 (recalling that Q is a significance test based on the 
number of studies and total sample size in the meta- analysis, the denomina-
tor adjusts for the sums of weights in a way that makes the estimate of popu-
lation variance similar for small and large meta- analyses).

To estimate the population variance in the example meta- analysis shown 
in Table 10.1, I compute a new variable (column) w2. I then apply Equation 
10.4 to obtain

 
 
 

0408.
6627

17.270

21.7152

3756432
21.7152

12217.2911
2

2

i

i

i
w

w
w

kQ

10.2.3 computing random-effects weights

Having estimated the population variability in effect sizes, the next step is 
to compute new, random- effects weights for each study. Before describing 
this computation, it is useful to consider the logic of these random- effects 
weights. As shown in Chapter 8, the reason for weighting effect sizes in a 
meta- analysis is to account for the imprecision of effect sizes, so as to give 
more weight to studies providing more precise effect size estimates than to 
those providing less precise estimates. In the fixed- effects model described 
in Chapter 8, imprecision in study effect sizes was assumed to be due only to 
the standard error of that particular effect size. This can be seen in Equation 
10.1, which shows that each study’s effect size is conceptualized as a function 
of the single population effect size and sampling deviation from that value. 
As seen in Equation 10.2, random- effects models consider two sources of a 
deviation of effect sizes around a mean: population variance (ξi, which has 
an estimated variance of t2) and sampling fluctuation (εi). In other words, 
random- effects models consider two sources of imprecision in effect size esti-
mates: population variability and sampling fluctuation.

To account for these two sources of imprecision, random- effects weights 
are comprised of both an overall estimated population variance (t2) and a 
study- specific standard error (SEi) for sampling fluctuation. Specifically, 
random- effects weights (wi*) are computed using the following equation:



238 COMBINING AND COMPARING EFFECT SIZES 

equation 10.5: computing random- effects weights (wi*)

22

1

i
i SE

w

t•	 2 is the estimated population variance of effect sizes.
SE•	 i is the standard error (i.e., sampling fluctuation) of the effect size 
of study i.

To illustrate this computation, consider the first study in Table 10.1 
(Blachman, 2003). This study had a weight of 208.12 in the fixed- effects 
model (based on w = 1/(.06932), allowing for rounding error). In the random-
 effects model, I compute a new weight as a function of the estimated popula-
tion variance (t2 = .0408) and the study- specific standard error (SE = .0693, 
to yield a study- specific sampling variance SE2 = .0048):

 
 

94.21
0693.0408.

11
222

i

i
SE

w

The random- effects weights of all 22 studies are shown in Table 10.1 (second 
column from right). You should make two observations from these weights. 
First, these random- effects weights are smaller (much smaller in this exam-
ple) than the fixed- effects weights. The implication of these smaller weights 
is that the sum of weights across studies will be smaller, and the standard 
error of the average mean will therefore be larger, in the random- relative to 
fixed- effects model. Second, although the studies still have the same relative 
ranking of weights using random- or fixed- effects models (i.e., studies with 
the largest weights for one had the largest weights for the other), the dis-
crepancies in weights across studies is less for random- than for fixed- effects 
models. This fact impacts the relative influence of studies that are extremely 
large (outliers in sample size). I further discuss these and other differences 
between fixed- and random- effects models in Section 10.5.

10.2.4 estimating and drawing Inferences 
about random-effects Means

The final step of the random- effects analysis is to estimate the mean effect 
size and to make inferences about it (through significance testing or comput-
ing confidence intervals). These computations parallel those for fixed- effects 
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models described in Chapter 8, except that the ws of the fixed- effects mod-
els are replaced with the random- effects weights, w*. To illustrate using this 
example of 22 studies (see the rightmost columns of Table 10.1), I compute 
the random- effects mean effect size (see Equation 8.2).

 
 

338.
89.475

02.161

w

Zw
Z

r

r

(which I would transform to report as the random- effects mean correlation, 
r = .326). Note that the random- effects mean is not identical to that of the 
fixed- effects mean computed in Chapter 8 (Zr = .387, r = .367), though in this 
example they are reasonably close.

The standard error of this mean effect size is computed as (see Equation 
8.3):

 
 

0458.
89.475

11

w
SE

rZ

This standard error can then be used for significance testing (Z = .338 / .0458 
= 7.38, p < .001) of computing confidence intervals (95% confidence inter-
val of Zr is .249 to .428, translating to a confidence interval for r of .244 to 
.404). Note that the standard error from the random- effects model is consid-
erably larger than that computed in Chapter 8 under the fixed- effects model 
(.0118), resulting in lower Z values of the significance test (7.38 vs. 32.70 for 
the fixed- effects model) and wider confidence intervals (vs. 95% confidence 
interval for r of .348 to .388).

10.3 MIxed-effectS ModelS

Mixed- effects models, sometimes called conditionally random models, com-
bine the (fixed- effects) moderator analyses of Chapter 9 with the estimation 
of variance in population effect sizes (random- effects) described earlier in 
this chapter. These models are useful when you want to evaluate moderators 
in meta- analysis, and you (1) either want the generalizability provided by 
random- effects models, or (2) fixed- effects moderator analyses (as described 
in Chapter 9) indicate significant residual heterogeneity (i.e., Qwithin in 
ANOVA framework or Qresidual in regression framework).

Mixed- effects models follow the logic of moderator analyses within a 
general regression framework (see Chapter 9.3). However, these models 
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include additional terms representing population variability in effect sizes, 
above and beyond systematic variability accounted for by moderators as well 
as sampling fluctuations. The general equation for mixed- effects models can 
be represented by the following equation:

equation 10.6: general equation for mixed- effects models

ESi = B0 + B1(X1) + B2(X2) + . . . + ξi + εi

ES•	 i is the effect size (e.g., Zr) for study i.
B•	 0 is the model intercept (interpretable as mean if moderators are 
centered.
B•	 1, B2, . . . are the regression coefficients for the moderator vari-
ables.
X•	 1, X2, . . . are the moderator variables.
ξ•	 i is the reliable (not due to sampling deviation) deviation of study i 
from the predicted value (given the values of the moderators).
ε•	 i is the sampling deviation of study i.

Unfortunately, estimating mixed- effects models requires intensive, fairly 
complex methods. Specifically, estimating mixed- effects models requires 
iterative matrix algebra (or analysis within an SEM framework, which I 
 present in the next section). I describe and illustrate this estimation using 
the example meta- analysis (Table 10.1) of 22 studies next, evaluating sample 
age as a moderator in the context of between-study heterogeneity. However, 
I forewarn you that the material presented in the remainder of this section 
is complex.

Before describing the estimation of mixed- effects models, however, it 
is useful to begin by describing the analysis of a moderator variable within 
a fixed- effects framework using matrix algebra. After describing this fixed-
 effects framework, I will describe and illustrate the estimation of mixed-
 effects models through an iterative matrix algebra.

10.3.1 Matrix Algebra of fixed-effects 
Moderator Analysis

The general regression framework of analyzing moderators within the fixed-
 effects context (Section 9.3) can be solved using matrix algebra given the fol-
lowing equation (from Overton, 1998):
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equation 10.7: Matrix equation for general regression 
framework of fixed- effects moderator analysis

B = (x’ v–1 x)–1 x’ v–1 y

B•	  is an m × 1 vector (where m is the number of predictors + 1) con-
taining the unstandardized regression coefficients of the intercept 
(first row) and predictors.
x•	  is a k × m matrix (where k is the number of studies and m is the 
number of predictors + 1) consisting of 1s in the first column (inter-
cept) and values of the moderators in the other cells.
v•	  is a k × k matrix with squared standard errors for the k studies on 
the diagonal and zeros on the off- diagonal elements.
y•	  is a k × 1 vector of effect sizes from k studies.

To illustrate this computation with the example meta- analysis of 22 
studies summarized in Table 9.4, in which I am interested in whether age 
moderates the association between relational aggression and peer rejection 
the following matrices are created:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.91

......

4.91

2.91

X(22 × 2) = 

0049.000

0.........

0...0034.0

0...00048.

V(22 × 22) = 

651.

...

201.

583.

Y(22 × 1) = 

Working through the matrix algebra to solve Equation 10.7 (using any 
basic matrix algebra calculator) yields the following matrix:
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 0112.

4957.
B(2  1) = 

The value in the first row (.4957) represents the intercept, and the value 
in the second row (–.0112) represents the regression coefficient of the first 
predictor, age (additional rows would contain additional regression coeffi-
cients if I had included additional predictors).

Variances of these estimates of the regression coefficients are obtained 
via the diagonal of the m × m matrix, ξ = (X′ V–1 X)–1. In this example,

 
 

(2  2)

−

000013.00013.

00013.00143.

Standard errors of these estimates can be computed as the square roots 
of these values. In this example, the standard error of the estimate of the 
intercept is .0378 (√.00143), and the standard error of the regression coeffi-
cient (i.e., moderation by age) is .0037 (√.000013). Note that these values are 
identical to those reported in Chapter 9.

10.3.2 estimation of Mixed-effects Models

Mixed- effects models are estimated iteratively (see simulation by Overton, 
1998)—that is, through a series of estimations of B using V, recomputing the 
weights in this new solution to yield a new set of values for V, and then using 
these new values of V to reestimate B, with the process repeating itself until 
a certain standard of convergence is reached (see Overton, 1998).

10.3.2.a Iteration 1

The fixed- effects estimation of B serves as the first iteration. Here, the matrix 
of weights (V) assumes that t2 = 0. From this solution, you compute the 
model predicted values of the effect size for each study using the following 
matrix equation (Overton, 1998):
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equation 10.8: Matrix equation for predicted effect sizes 
given model

y= x B = x (x’ v–1 x)–1 x’ v–1 y

y•	  is a k × 1 vector (where k is the number of studies) of predicted 
effect sizes for each of k studies.
x•	  is a k × m matrix (where k is the number of studies and m is the 
number of predictors + 1) consisting of 1s in the first column (inter-
cept) and values of the moderators in the other cells.
B•	  is a m × 1 vector (where m is the number of predictors + 1) con-
taining the unstandardized regression coefficients of the intercept 
(first row) and predictors.
v•	  is a k × k matrix with squared standard errors for the k studies on 
the diagonal and zeros on the off- diagonal elements.
y•	  is a k × 1 vector of effect sizes from k studies.

To illustrate using the example meta- analysis of 22 studies:

 
 
 
 395.

...

391.

393.

Y(22  1) =ˆ

You then consider the discrepancies between the actual (observed) effect 
sizes of the studies and these predicted (by the intercept and any moderators) 
values. Specifically, you compute a matrix, D, representing k squared devia-
tions that serve as estimates of the population conditional variance (t2):

equation 10.9: Matrix equation  
for computing deviation matrix (d)

d = (y – y)2 – (v u)

y•	  is a k × 1 vector of observed effect sizes from k studies.
•	y is a k × 1 vector of predicted effect sizes for each of k studies.

v•	  is a k × k matrix with squared standard errors for the k studies on 
the diagonal and zeros on the off- diagonal elements.
u•	  is a k × 1 vector constant (all cells = 1).

ˆ

ˆ

ˆ
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To illustrate with the example meta- analysis, the D from the first itera-
tion (i.e., fixed- effects model) is:

 
 
 
 
 

D(22  1)

0604.

...

0328.

0312.

You then take the weighted average of these k estimates (22 in this exam-
ple) in D to provide a single estimate of the population conditional variance 
(t2) using the following equation:

equation 10.10: estimation of t2 as weighted average  
of elements of d

t2 = u’ v–2 d (u’ v–2 u)–1

u•	  is a k × 1 vector constant (all cells = 1).
v•	  is a k × k matrix with squared standard errors for the k studies on 
the diagonal and zeros on the off- diagonal elements.
d•	  is a k × 1 vector containing estimates of t2.

Applying this equation to the example data of 22 studies yields an esti-
mated t2 = .0240.

10.3.2.b Subsequent Iterations

This estimated t2 is now added to the standard errors of each study (sam-
pling fluctuations), such that vi* = t2 + SEi

2. For example, the first study in 
the example dataset would receive the value that v1* = .0240 + (.0693)2 = 
.0288. These k vi*s would be entered in the diagonal of the new matrix V* 
for iteration 2. Equation 10.7 is then recomputed using V* to yield a new set 
of estimated regression coefficients. In the example data, these values at the 
second iteration are B0 = .2700 and B1 = .0112.

These regression coefficients are used to compute new predicted scores 
using Equation 10.8, new discrepancy scores are estimated, and a new D is 
computed using Equation 10.9 (note that at this step, the original V is used 
because you want to subtract out only the sampling variance). The t2 is then 
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reestimated using Equation 10.10 (using V*). This process continues until 
the estimated t2 changes minimally between successive iterations. Although 
the convergence criteria have not been well studied, Overton (1998, citing 
Erez et al., 1996) suggested that ∆ t2 less than 10-10 is adequate and usually 
achieved by the seventh iteration. Using the example meta- analysis of 22 
studies, I achieved this level of convergence in six iterations.

Overton (1998) has shown that a small correction for t2 following the 
final iteration improves the estimation of mixed- effects models. This correc-
tion multiplies the obtained t2 by k/(k – m), where k = the number of studies 
and m = number of predictors (including constant). Applying this correction 
within the example meta- analysis yields the final estimates of t2 = .0499, 
with regression weights estimated as B0 = .2548 (intercept) and B1 = .0128 
(moderating effect of age).

10.4 A StructurAl eQuAtIon ModelIng APProAch 
to rAndoM- And MIxed-effectS ModelS

In Chapter 9, I introduced an alternative approach to meta- analysis based 
on Cheung’s (2008) description of meta- analysis within the context of struc-
tural equation modeling. Here, I extend the logic of this approach to describe 
how it can be used to estimate random- and mixed- effects models (follow-
ing closely the presentation by Cheung, 2008). As when I introduced this 
approach in Chapter 9, I should caution you that this material requires a 
fairly in-depth understanding of SEM, and you might consider skipping this 
section if you do not have this background. If you do have a solid background 
in SEM, however, this perspective may be advantageous in two ways. First, 
if you are familiar with SEM programs that can estimate random slopes (e.g., 
Mplus, MX; I elaborate on this requirement below), then you might find it 
easier to use this approach than the matrix algebra required for the mixed-
 effects model that I described earlier. Second, as I mentioned in Chapter 9, 
this approach uses the FIML method of missing data management of SEM, 
which allows you to retain studies that have missing values of study charac-
teristics that you wish to evaluate as moderators.

Next, I describe how this SEM representation of meta- analysis can 
be used to estimate random- and mixed- effects models. To illustrate these 
approaches, I consider the 22 studies reporting correlations between rela-
tional aggression with rejection shown in Table 10.1.
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10.4.1 estimating random-effects Models

The SEM representation of random- effects meta- analysis (Cheung, 2008) 
parallels the fixed- effects model I described in Chapter 9 (see Figure 9.2) but 
models the effect size predicted by intercept path as a random slope (see, e.g., 
Bauer, 2003; Curran, 2003; Mehta & Neale, 2005; Muthén, 1994). In other 
words, this path varies across studies, which captures the between-study 
variance of a random- effects meta- analysis. Importantly, this SEM represen-
tation can only estimate these models using software that perform random 
slope analyses.3

One4 path diagram convention for denoting randomly varying slopes is 
shown in Figure 10.2. This path diagram contains the same representation 
of regressing the transformed effect size onto the transformed intercept as 

fIgure 10.2. Path diagram and Mplus syntax to estimate random- effects model.

Path diagram: 

 
Mplus syntax:  
 
TITLE: Random-effects analysis 
DATA: File is Table10_1.txt; 
VARIABLE: NAMES N Age r Zr W interc; 
    USEVARIABLES ARE Zr interc; 
DEFINE: w2 = SQRT(W); 
    Zr = w2 * Zr; 
    interc = w2 * interc; 
ANALYSIS: TYPE=RANDOM;   !Specifies random slopes analysis 
MODEL: 
    [Zr@0.0];   !Fixes intercept at 0 
    Zr@1.0;   !Fixes variance at 1 
    u | Zr ON interc;   !U as random effect 
    [u*];   !Specifies estimation of random-effects mean 
    u*;   !Specifies estimation of variance of random effect 
OUTPUT: 

Zr* 

1.0* 

1 

0* 

Intercept* 

b0

u 

u 

m 

mailto:Zr@0.0]
mailto:Zr@1.0
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does the fixed- effects model of Chapter 9 (see Figure 9.1). However, there is 
a small circle on this path, which indicates that this path can vary randomly 
across cases (studies). The label u next to this circle denotes that the newly 
added piece to the path diagram—the latent construct labeled u—represents 
the random effect. The regression path (b0) from the constant (i.e., the tri-
angle with “1” in the middle) to this construct captures the random- effects 
mean. The variance of this construct (m, using Cheung’s 2008 notation) is 
the estimated between-study variance of the effect size (what I had previously 
called t2).

To illustrate, I fit the data from 22 studies shown in Table 10.1 under 
an SEM representation of a random- effects model. As I described in Chap-
ter 9, the effect sizes (Zr) and intercepts (the constant 1) of each study are 
transformed by multiplying these values by the square root of the study’s 
weight (Equation 9.7). This allows each study to be represented as an equally 
weighted case in the analysis, as the weighting is accomplished through these 
transformations.

The Mplus syntax shown in Figure 10.2 specifies that this is a random-
 slopes analysis by inserting the “TYPE=RANDOM” command, specifying 
that U represents the random effect with estimated mean and variance. The 
mean of U is the random- effects mean of this meta- analysis; here, the value 
was estimated to be 0.369 with a standard error of .049. This indicates that 
the random- effects mean Zr is .369 (equivalent r = .353) and statistically sig-
nificant (Z = .369/.049 = 7.53, p < .01; alternatively, I could compute confi-
dence intervals). The between-study variance (t2) is estimated as the variance 
of U; here, the value is .047.

The random- effects mean and estimated between-study variance obtained 
using this SEM representation are similar to those I reported earlier (Section 
10.2). However, they are not identical (and the differences are not due solely 
to rounding imprecision). The differences in these values are due to the dif-
ference in estimation methods used by these two approaches; the previously 
described version used least squares criteria, whereas the SEM representa-
tion used maximum likelihood (the most common estimation criterion for 
SEM). To my knowledge, there has been no comprehensive comparison of 
which estimation method is preferable for meta- analysis (or—more likely—
under what conditions one estimator is preferable to the other). Although I 
encourage you to watch for future research on this topic, it seems reasonable 
to conclude for now that results should be similar, though not identical, for 
either approach.
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10.4.2 estimating Mixed-effects Models

As you might anticipate, this SEM approach (if you have followed the mate-
rial so far) can be rather easily extended to estimate mixed- effects models, 
in which fixed- effects moderators are evaluated in the context of random 
between-study heterogeneity. To evaluate mixed- effects models in an SEM 
framework, you simply build on the random- effects model (in which the 
transformed intercept predicting transformed effect size slope randomly var-
ies across studies) by adding transformed study characteristics (moderators) 
as fixed predictors of the effect size.

I demonstrate this analysis using the 22 studies from Table 10.1, in 
which I evaluate moderation by sample age while also modeling between-
study variance (paralleling analyses in Section 10.3). This model is graphi-
cally shown in Figure 10.3, with accompanying Mplus syntax. As a reminder, 
the effect size and all predictors (e.g., age and intercept) are transformed for 
each study by multiplying by the square root of the study weight (Equation 
9.7). To evaluate the moderator, you evaluate the predictive path between 
the coded study characteristic (age) and the effect size. In this example, the 
value was estimated as b1 = .013, with a standard error of .012, so it was not 
statistically significant (Z = .013/.012 = 1.06, p = .29). These results are simi-
lar to those obtained using the iterative matrix algebra approach I described 
in Section 10.3, though they will not necessarily be identical given different 
estimator criteria.

10.4.3 conclusions regarding SeM representations

As with fixed- effects moderator analyses, the major advantage of estimating 
mixed- effects meta- analytic model in the SEM framework (Cheung, 2008) is 
the ability to retain studies with missing predictors (i.e., coded study char-
acteristics in the analyses). If you are fluent with SEM, you may even find 
it easier to estimate models within this framework than using the other 
approaches.

You should, however, keep in mind several cautions that arise from the 
novelty of this approach. It is likely that few (if any) readers of your meta-
 analysis will be familiar with this approach, so the burden falls on you to 
describe it to the reader. Second, the novelty of this approach also means that 
some fundamental issues have yet to be evaluated in quantitative research. For 
instance, the relative advantages of maximum likelihood versus least squares 
criteria, as well as modifications that may be needed under certain condi-
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tions (e.g., restricted maximum likelihood or other estimators with small 
numbers of studies) represent fundamental statistical underpinnings of this 
approach that have not been fully explored (see Cheung, 2008). Nevertheless, 
this representation of meta- analysis within SEM has the potential to merge 
to analytic approaches with long histories, and there are many opportuni-
ties to apply the extensive tools from the SEM field in your meta- analyses. 
For these reasons, I view the SEM representation as a valuable approach to 
consider, and I encourage you to watch the literature for further advances in 
this approach.

Path diagram:

Mplus syntax:

TITLE: Mixed-effects analysis
DATA: File is Table10_1.txt;
VARIABLE: NAMES N Age r Zr W interc;
    USEVARIABLES ARE Age Zr interc;
DEFINE: w2 = SQRT(W);
    Zr = w2 * Zr;
    interc = w2 * interc;
    Age = w2 * Age;
ANALYSIS: TYPE=RANDOM;  !Specifies random slope analysis
MODEL:
    [Zr@0.0];   !Fixes intercept at 0
    Zr@1.0;   !Fixes variance at 1
    u | Zr ON interc;   !U as random effect
    Zr ON Age;   !Age as fixed-effect predictor
    [u*];   !Specifies estimation of random-effects mean 
    u*;   !Specifies estimation of variance of random effect
OUTPUT:

Age*

Zr*

1.0*

1

0*

b1

Intercept*

b0

u

u

m

fIgure 10.3. Path diagram and Mplus syntax to estimate mixed- effects model.

mailto:Zr@0.0]
mailto:Zr@1.0
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10.5 PrActIcAl MAtterS: whIch Model 
Should I uSe?

In Sections 10.1 and 10.2, I have presented the random- effects model for 
estimating mean effect sizes, which can be contrasted with the fixed- effects 
model I described in Chapter 8. I have also described (Section 10.3) mixed-
 effects models, in which (fixed) moderators are evaluated in the context of 
conditional random heterogeneity; this section can be contrasted with the 
fixed- effects moderator analyses of Chapter 9. An important question to ask 
now is which of these models you should use in a particular meta- analysis. 
At least five considerations are relevant: the types of conclusions you wish 
to draw, the presence of unexplained heterogeneity among the effect sizes in 
your meta- analysis, statistical power, the presence of outliers, and the com-
plexity of performing these analyses. I have arranged these in order from 
most to least important, and I elaborate on each consideration next. I con-
clude this section by describing the consequences of using an inappropriate 
model; these consequences serve as a further set of considerations in select-
ing a model.

Perhaps the most important consideration in deciding between a fixed- 
versus random- effects model, or between a fixed- effects model with modera-
tors versus a mixed- effects model, is the types of conclusions you wish to 
draw. As I described earlier, conclusions from fixed- effects models are lim-
ited to only the sample of studies included in your meta- analysis (i.e., “these 
studies show . . . ” type conclusions), whereas random- and mixed- effects 
models allow more generalizable conclusions (i.e., “the research shows . . . ” 
or “there is...” type of conclusions). Given that the last-named type of conclu-
sions are more satisfying (because they are more generalizable), this consid-
eration typically favors the random- or mixed- effects models. Regardless of 
which type of model you select, however, it is important that you frame your 
conclusions in a way consistent with your model.

A second consideration is based on the empirical evidence of unexplained 
heterogeneity. By unexplained heterogeneity, I mean two things. First, in the 
absence of moderator analysis (i.e., if just estimating the mean effect size), 
finding a significant heterogeneity (Q) test (see Chapter 8) indicates that the 
heterogeneity among effect sizes cannot be explained by sampling fluctuation 
alone. Second, if you are conducting fixed- effects moderator analysis, you 
should examine the within-group heterogeneity (Qwithin; for ANOVA ana-
logue tests) or residual heterogeneity (Qresidual; for regression analog tests). 
If these are significant, you conclude that there exists heterogeneity among 
effect sizes not systematically explained by the moderators.5 In both situa-
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tions, you might use the absence versus presence of unexplained heteroge-
neity to inform your choice between fixed- versus random- or mixed- effects 
models (respectively). Many meta- analysts take this approach. However, I 
urge you to not make this your only consideration because the heterogene-
ity (i.e., Q) test is an inferential test that can vary in statistical power. In 
meta- analyses with many studies that have large sample sizes, you might find 
a significant residual heterogeneity that is trivial, whereas a meta- analysis 
with few studies having small sample sizes might fail to detect potentially 
meaningful heterogeneity. For this reason, I recommend against basing your 
model decision only on empirical findings of unexplained heterogeneity.

A third consideration is the relative statistical power of fixed- versus 
random- effects models (or fixed- effects with moderators versus mixed-
 effects models). The statistical power of a meta- analysis depends on many 
factors— number of studies, sample sizes of studies, degree to which effect 
sizes must be corrected for artifacts, magnitude of population variance in 
effect size, and of course true mean population effect size. Therefore, it is not 
a straightforward computation (see e.g., Cohn & Becker, 2003; Field, 2001; 
Hedges & Pigott, 2001, 2004). However, to illustrate this difference in power 
between fixed- and random- effects models, I have graphed some results of 
a simulation by Field (2001), shown in Figure 10.4. These plots make clear 
the greater statistical power of fixed- effects versus random- effects models. 
More generally, fixed- effects analyses will always provide as high (when t2 
= 0) or higher (when t2 > 0) statistical power than random- effects models. 
This makes sense in light of my earlier observation that the random- effects 
weights are always smaller than the fixed- effects weights; therefore, the sum 
of weights is smaller and the standard error of the average effect size is larger 
for random- than for fixed- effects models. Similarly, analysis of moderators 
in fixed- effects models will provide as high or higher statistical power as 
mixed- effects models. For these reasons, it may seem that this consideration 
would always favor fixed- effects models. However, this conclusion must be 
tempered by the inappropriate precision associated with high statistical 
power when a fixed- effects model is used inappropriately in the presence 
of substantial variance in population effect sizes (see below). Nevertheless, 
statistical power is one important consideration in deciding among models: 
If you have questionable statistical power (small number of studies and/or 
small sample sizes) to detect the effects you are interested in, and you are 
comfortable with the other considerations, then you might choose a fixed-
 effects model.

The presence of studies that are outliers in terms of either their effect 
sizes or their standard errors (e.g., sample sizes) is better managed in ran-
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fIgure 10.4. Examples of different statistical power of fixed- versus random-
 effects models. Values from simulation by Field (2001) showing power to detect 
mean effect, by number of studies (k) of various sample sizes (N), at population 
r = .10, .30, and .50 for fixed- effects (solid lines; homogeneous population effect size) 
and random- effects (dashed lines; heterogeneous population effect size) models.
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dom- than fixed- effects models. Outliers consisting of studies that have 
extreme effect sizes have more influence on the estimated mean effect size 
in fixed- effects analysis because the analyses—to anthropomorphize—must 
“move the mean” substantially to fall within the confidence interval of the 
extreme effect size (see top of Figure 10.1). In contrast, studies with extreme 
effect sizes impact the population variance (t2) more so than the estimated 
mean effect size in random- effects models. Considering the bottom of Figure 
10.1, you can imagine that an extreme effect size can be accommodated by 
widening the spread of the population effect size distribution (i.e., increasing 
the estimate of t) in a random- effects model.

A second type of outlier consists of studies that are extreme in their 
sample sizes, especially those with much larger sample sizes than other 
studies. Because sample size is strongly connected to the standard error of 
the study’s effect size, and these standard errors in turn form the weight in 
fixed- effects models (see Chapter 8), you can imagine that a study with an 
extremely large sample could be weighted much more heavily than other 
studies. For example, in the 22 study meta- analyses I have presented (see 
Table 10.1), four studies with large samples (Hawley et al., 2007; Henington, 
1996; Pakaslahti and Keltikangas-Järvinen, 1998; Werner, 2000) comprise 
44% of the total weight in the fixed- effects analysis (despite being only 18% 
of the studies) and are given 13 to 16 times the weight of the smallest study 
(Ostrov, Woods, Jansen, Casas, & Crick, 2004). Although I justified the use 
of weights in Chapter 8, this degree of weighting some studies far more than 
others might be too undemocratic (and I have seen meta- analyses with even 
more extreme weighting, with single studies having more weight than all 
other studies combined). As I have mentioned, random- effects models reduce 
these discrepancies in weighting. Specifically, because a common estimate of 
t2 is added to the squared standard error for each study, the weights become 
more equal across studies as t2 becomes larger. This can be seen by inspect-
ing the random- effects weights (w*) in Table 10.1: Here the largest study is 
only weighted 1.4 times the smallest study. In sum, random- effects models, 
to the extent that t2 is large, use weights that are less extreme, and there-
fore random- (or mixed-) effects models might be favored in the presence of 
sample size outliers.

Perhaps the least convincing consideration is the complexity of the mod-
els (the argument is so unconvincing that I would not even raise it if it was 
not so commonly put forward). The argument is that fixed- effects models, 
whether for only computing mean effect sizes (Chapter 8) or for evaluating 
moderators (Chapter 9) are far simpler than random- and mixed- effects mod-
els. Although simplicity is not a compelling rationale for a model (and a ratio-
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nale that will not go far in the publication process), I acknowledge that you 
should be realistic in considering how complex of a model you can use and 
report. I suspect that most readers will be able to perform computations for 
random- effect models, so if you are not analyzing moderators and the other 
considerations point you toward this model, I encourage you to use it. Mixed-
 effects models, in contrast, are more complex and might not be tractable for 
many readers. Because less-than- optimal answers are better than no answers 
at all, I do think it is reasonable to analyze moderators within a fixed- effects 
model if this is all that you feel you can do—with the caveat that you should 
recognize the limitations of this model. Even better, however, is for you to 
enlist the assistance of an experienced meta- analyst who can help you with 
more complex—and more appropriate— models.

At this point, you might see some advantages and disadvantages to 
each type of model, and you might still feel uncertain about which model to 
choose. I think this decision can be aided by considering the consequences 
of choosing the “wrong” model. By “wrong” model, I mean that you choose 
(1) a random- or mixed- effects model when there is no population variability 
among effect sizes, or (2) a fixed- effects model when there really exists sub-
stantial population variability among effect sizes. In the first situation, using 
random- effects models in the absence of population variability, there is little 
negative consequence other than a little extra work. Random- and mixed-
 effects models will yield similar results as fixed- effects models when there is 
little population variability in effect sizes (e.g., because estimated t2 is close 
to zero, Equation 10.2 functionally reduces to Equation 10.1). If you decide on 
a random- (or mixed-) effects model only to find little population variability 
in effect sizes, you still have the advantage of being able to make generaliz-
able conclusions (see the first consideration above). In contrast, the second 
type of inappropriate decision (using a fixed- effects model in the presence 
of unexplained population variability) is problematic. Here, the failure to 
model this population variability leads to conclusions that are inappropri-
ately precise—in other words, artificially high significance tests and overly 
narrow confidence intervals.

In conclusion, random- effects models offer more advantages than fixed-
 effects models, and there are no disadvantages to using random- effects mod-
els in the absence of population variability in effect sizes. For this reason, I 
generally recommend random- effects models when the primary goal is esti-
mated and drawing conclusions about mean effect sizes. When the focus of 
your meta- analysis is on evaluating moderators, then my recommendations 
are more ambivalent. Here, mixed- effects models provide optimal results, 
but the complexity of estimating them might not always be worth the effort 
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unless you are able to enlist help from an experienced meta- analyst. For 
moderator analyses, I do view fixed- effects models as acceptable, provided 
you examine unexplained (residual) heterogeneity and are able to show that 
it is either not significant or small in magnitude.6

10.6 SuMMAry

Random- effects models conceptualize the population of effect sizes as fall-
ing along a distribution with both a mean and variance, above and beyond 
variance due to sampling fluctuations of individual studies. These random 
effects can be contrasted with the fixed- effects models described in Chapter 
8, which conceptualize a single population effect size with any variability 
among effect sizes in studies due to sampling fluctuations. In this chapter, I 
have highlighted the differences between these models, and I have described 
how to estimate random- effects models for meta- analysis. I then described 
mixed- effects models, which are the random- effects extensions of the (fixed-
 effects) moderator analyses of Chapter 9. I also showed how both random- 
and mixed- effects models can be represented as structural equation models 
with random slopes. To assist in selecting between fixed- versus random- or 
mixed- effects models, I have encouraged you to consider several factors.

10.7 recoMMended reAdIngS

Cheung, M. W.-L. (2008). A model for integrating fixed-, random-, and mixed- effects meta-
 analyses in structural equation modeling. Psychological Methods, 13, 182–202.—This 
article presents the approach to modeling meta- analysis within an SEM framework that 
I describe in this chapter.

Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random- effects models in meta- analysis. 
Psychological Methods, 3, 486–504.—This article is one of the seminal early articles 
describing fixed- versus random- effects models. Although somewhat challenging, the 
paper is worth reading given that it provides the foundation for much subsequent work 
on this topic.

Overton, R. C. (1998). A comparison of fixed- effects and mixed (random- effects) mod-
els for meta- analysis tests of moderator variable effects. Psychological Methods, 3, 
354–379.—This is a challenging article to read; however, it is one of the best sources 
of information for conducting mixed- effects analyses.

Raudenbush, S. W. (1994). Random effects models. In H. Cooper & L. V. Hedges (Eds.), The 
handbook of research synthesis (pp. 301–321). New York: Russell Sage Foundation.—
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This chapter is the most comprehensive summary of the topic, including a nice mixture 
of accessible and challenging information.

noteS

1. This does not mean that you extend conclusions beyond the general types of 
studies in your meta- analysis, but that you expand beyond the specific studies. 
For instance, I might perform a meta- analysis of three studies using samples that 
are 10, 12, and 14 years old. Under a fixed- effects model, I can only make conclu-
sions about studies of 10-, 12-, and 14-year-olds; I should not make conclusions 
about results involving 11- or 13-year-olds. Under a random- effects model, I can 
make conclusions about the more generalized period of early adolescence from 
10–14 years (including 11- and 13-year-olds). Neither model would allow me to 
safely extrapolate conclusions beyond these limits; so neither would inform my 
understanding of 4-year-old children or 40-year-old adults.

2. The note to Equation 10.4 fixes the variance at 0 for those occasions when Q is 
lower than this expected value, thus avoiding estimates of negative population 
variance.

3. At the time of this writing, I am aware of only two programs that can do this: 
Mplus and MX.

4. For alternate ways of representing random slopes in path diagrams, see Curran 
and Bauer (2007); Mehta and Neale (2005).

5. Some meta- analysts make it their explicit goal to continue to examine modera-
tors until the residual heterogeneity is not significant. Although I see value in this 
approach—in attempting to systematically explore differences in the findings 
of studies until you can systematically explain all differences beyond sampling 
fluctuation—I do not think this must be the goal of every meta- analysis. If you 
have evaluated all moderators that you are interested in, and residual heteroge-
neity still exists, I see nothing wrong with simply acknowledging that there still 
remain differences among studies that you have not explained.

6. A reasonable— though untested— suggestion might be that the residual heteroge-
neity produces an I2 of 25% or less (see Chapter 8).



 257

11

Publication Bias

In Chapter 2, I described publication bias as a threat to both narrative and 
meta- analytic reviews. In Chapter 3, I emphasized the importance of thorough 
and systematic searching of the literature as one way of reducing the likely 
impact of this bias. Although search procedures are the most effective remedy 
to this file drawer problem, it is also possible to evaluate the presence of pub-
lication bias after studies have been collected and coded.

In this chapter, I first revisit the problem of publication bias in more depth 
than I did earlier in the book. I then review a range of analytic and graphi-
cal techniques that have been developed within the field of meta- analysis to 
detect the presence of publication. Finally, in the “practical matters” section, I 
provide what I view as a pragmatic perspective on the ever- present threat of 
publication bias.

11.1 the ProBleM of PuBlIcAtIon BIAS

Publication bias refers to the possibility that studies finding null (absence 
of statistically significant effect) or negative (statistically significant effect 
in opposite direction expected) results are less likely to be published than 
studies finding positive effects (statistically significant effects in expected 
direction).1 This bias is likely due both to researchers being less motivated 
to submit null or negative results for publication and to journals (editors 
and reviewers) being less likely to accept manuscripts reporting these results 
(Cooper, DeNeve, & Charlton, 1997; Coursol & Wagner, 1986; Greenwald, 
1975; Olson et al., 2002).
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The impact of this publication bias is that the published literature might 
not be representative of the studies that have been conducted on a topic, in 
that the available results likely show a stronger overall effect size than if all 
studies were considered. This impact is illustrated in Figure 11.1, which is a 
reproduction of Figure 3.2. The top portion of this figure shows a distribu-
tion of effect sizes from a hypothetical population of studies. The effect sizes 
from these studies center around a hypothetical mean effect size (about 0.20), 
but have a certain distribution of effect sizes found due to random- sampling 
error and, potentially, population-level between-study variance (i.e., het-
erogeneity; see Chapters 8 and 9). Among those studies that happen to find 
small effect sizes, results are less likely to be statistically significant (in this 
hypothetical figure, I have denoted this area where studies find effect sizes 
less than ± 0.10, with the exact range depending on the study sample sizes 
and effect size considered). Below this population of effect sizes of all stud-
ies conducted, I have drawn downward arrows of different thicknesses to 

fIgure 11.1. Illustration of publication bias in a hypothetical sample drawn from 
a population of studies.
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represent the different likelihoods of the study being published, with thicker 
arrows denoting higher likelihood of publication. Consistent with the notion 
of publication bias, the hypothetical studies that fail to find significant effects 
are less likely to be published than those that do. This differential publication 
rate results in the distribution of published studies shown in the lower part 
of Figure 11.1. It can be seen that this distribution is shifted to the right, such 
that the mean effect size is now approximately 0.30. If the meta- analysis only 
includes this biased sample of published studies, then the estimate of the 
mean effect size is going to be considerably higher (around 0.30) than that in 
the true population of studies conducted. Clearly, this has serious implica-
tions for a meta- analysis that does not consider publication bias.

This publication bias is sometimes referred to by alternative names. Some 
have referred to it as the “file- drawer problem” (Rosenthal, 1979), conjuring 
images of researchers’ file drawers containing manuscripts reporting null or 
negative (i.e., in the opposite direction expected) results that will never be 
seen by the meta- analyst (or anyone else in the research community). Another 
term proposed is “dissemination bias” (see Rothstein, Sutton, & Borenstein, 
2005a). This latter term is more accurate in describing the broad scope of this 
problem, although the term “publication bias” is the more commonly used 
one (Rothstein et al., 2005a). Regardless of terminology used, the breadth of 
this bias is not limited just to significant results being published and non-
significant results not being published (even in a probabilistic rather than 
absolute sense). One source of breadth of the bias is the existence of “gray lit-
erature,” research that is between the file drawer and publication, such as in 
the format of conference presentations, technical reports, or obscure publica-
tion outlets (Conn, Valentine, Cooper, & Rantz, 2003; Hopewell, Clarke, & 
Mallett, 2005; also referred to as “fugitive literature” by, e.g., M. C. Rosenthal, 
1994). There is evidence that null findings are more likely to be reported only 
in these more obscure outlets than are positive findings (see Dickersin, 2005; 
Hopewell et al., 2005) If the literature search is less exhaustive, these reports 
are less likely to be found and included in the meta- analysis than reports 
published in more prominent outlets.

Another source of breadth in publication bias may be in the underem-
phasis of null or negative results. For example, researchers are likely to make 
significant findings the centerpiece of an empirical report and only report 
nonsignificant findings in a table. Such publications, though containing the 
effect size of interest, might not be detected in key word searches or in brows-
ing the titles of published works. Similarly, null or counterintuitive findings 
that are published may be less likely to be cited by others; thus, backward 
searches are less likely to find these studies.
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Finally, an additional source of breadth in considering publication bias 
is due to the time lag of publication. There is evidence, at least in some fields, 
that significant results are published more quickly than null or negative 
results (see Dickersin, 2005). The impact on meta- analyses, especially those 
focusing on topics with a more recently created empirical basis, is that the 
currently published results are going to overrepresent significant positive 
findings, whereas null or negative results are more likely to be published 
after the meta- analysis is performed.

Recognizing the impact and breadth of publication bias is important 
but does not provide guidance in managing it. Ideally, the scientific process 
would change so that researchers are obligated to report the results of study 
findings.2 In clinical research, the establishment of clinical trial registries (in 
which researchers must register a trial before beginning the study, with some 
journals motivating registration by only considering registered trials for 
publication) represents a step in helping to identify studies, although there 
are some concerns that registries are incomplete and that the researchers 
of registered trials may be unwilling to share unexpected results (Berlin & 
Ghersi, 2005). However, unless you are in the position to mandate research 
and reporting practices within your field, you must deal with publication bias 
without being able to prevent it or even fully know of its existence. Neverthe-
less, you do have several methods of evaluating the likely impact publication 
bias has on your meta- analytic results.

11.2 MAnAgIng PuBlIcAtIon BIAS

In this section, I describe six approaches to managing publication bias within 
meta- analysis. I also illustrate some of these approaches through the example 
meta- analysis I have used throughout this book: a review of 22 studies report-
ing associations between relational aggression and peer rejection among chil-
dren and adolescents. In Chapter 8, I presented results of a fixed- effects3 
analysis of these studies indicating a mean r = .368 (SE = .0118; Z = 32.70, p 
< .001; 95% confidence interval = .348 to .388). When using this example in 
this section, I evaluate the extent to which this conclusion about the mean 
association is threatened by potential publication bias.

Table 11.1 displays these 22 studies. The first five columns of this table 
are the citation, sample size, untransformed effect size (r), transformed effect 
size (Zr), and standard error of the transformed effect size (SE). The remain-
ing columns contain information that I explain when using these data to 
illustrate methods of evaluating publication bias.
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11.2.1 Moderator Analyses

One of the best methods to evaluate the potential impact of publication bias 
is to include unpublished studies in the meta- analysis and empirically evalu-
ate whether these studies yield smaller effect sizes than published studies. 
In the simplest case, this involves evaluating the moderation of effect sizes 
(Chapter 10) by the dichotomous variable, published versus unpublished 
study. Two caveats to this approach merit consideration. First, it is necessary 
to make sure that the meta- analysis includes a sufficient number of unpub-
lished studies to draw reliable conclusions about potential differences. Sec-
ond, it is important to consider other features on which published versus 
unpublished studies might differ, such as the quality of the methodology 
(e.g., internal validity of an experimental design) and measures (e.g., use of 
reliable vs. unreliable scales). You should control for such differences when 
comparing published and unpublished studies.

A more elaborate variant of this sort of moderator analysis is to code 
more detailed variables regarding publication status. For instance, you might 
code a more continuous publication quality variable (e.g., distinguishing 
unpublished data, dissertations, conference presentations, low-tier journal 
articles, and top-tier journal articles, if this captures a meaningful contin-
uum within your field). You might also code whether the effect size of inter-
est is a central versus peripheral result in the study; for instance, Card et al. 
(2008) considered whether terms such as “gender” or “sex” appeared in titles 
of works reporting gender differences in childhood aggression.

Regardless of which variables you code, the key question is whether these 
variables are related to the effect sizes found in the studies (i.e., whether these 
act as moderators). If you find no differences between published and unpub-
lished studies (or absence of moderating effects of other variables such as 
publication quality and centrality), and there is adequate power to detect such 
moderation, then it is safe to conclude that there is no evidence of publication 
bias within this area. If differences do exist, you have the choice of either (1) 
interpreting results of published and unpublished studies separately, or (2) 
performing corrections for publication bias described below (Section 11.3).

To illustrate this approach to evaluating publication bias, I consider one 
approach I have described: moderation by the categorical moderator “pub-
lished.” This categorical variable is shown in the sixth column of Table 11.1 
and is coded as 1 for studies that were published (k = 15) and 0 for unpub-
lished studies (k = 7). Notice that this comparison is possible only because I 
included unpublished studies in this meta- analysis and the search was thor-
ough enough to obtain a sufficient number of unpublished studies for com-
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parison. Moderator analyses (Chapter 9) indicated a significant difference 
between published and unpublished studies (Qbetween(1df) = 77.47, p < .001). 
In the absence of publication bias, I would not expect this moderator effect, 
so its presence is worrisome. When I inspect the mean effects sizes within 
each group, I find that the unpublished studies yield higher associations (r = 
.51) than the published studies (r = .31). This runs counter to the possibility 
that nonsignificant/low effect size studies are less likely to be published; if 
there is a bias, it appears that studies finding large effect sizes are less likely 
to be published and therefore any publication bias might serve to diminish the 
effect size I find in this meta- analysis. However, based on my knowledge of 
the field (and conversations with other experts about this finding), I see no 
apparent reason why there would be a bias against publishing studies find-
ing strong positive correlations. I consider this finding further in light of my 
other findings regarding potential publication bias below.

11.2.2 funnel Plots

Funnel plots represent a graphical way to evaluate publication bias (Light 
& Pillemer, 1984; see Sterne, Becker, & Egger, 2005). The funnel plots are 
simply a scatterplot of the effect sizes found in studies relative to their sample 
size (with some variants on this general pattern). In other words, you would 
simply plot points for each study denoting their effect size relative to their 
sample size. Figure 11.2 shows a hypothetical outline of a funnel plot, with 
the effect size Zr on the y-axis and sample size (N) on the x-axis.4 Specifi-
cally, the solid lines within this figure represent the 95% confidence interval 
of effect sizes centered around r = .30 (Zr = .31; see below) at various sample 
sizes5; if you plot study effect sizes and sample sizes from a sample with this 
mean effect size, then most (95%) of the points should fall within the area 
between these solid lines. On the left, you can see that there is considerably 
larger expectable variability in effect sizes with small sample sizes; conceptu-
ally, you expect that studies with small samples will yield a wider range of 
effect sizes due to random- sampling variability. In contrast, as sample sizes 
increase, the expectable variability in effect sizes becomes smaller (i.e., the 
standard errors become smaller), and so the funnel plot shows a narrower 
distribution of effect sizes at the right of Figure 11.2. Evaluation of publica-
tion bias using funnel plots involves visually inspecting these plots to ensure 
symmetry and this general triangular shape.

Let’s now consider how publication bias would affect the shape of this 
funnel plot. Note the dashed line passing through the funnel plot. This line 
represents the magnitude of effect size needed to achieve statistical signifi-
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cance (p < .05) at various sample sizes. The area above and to the right of 
this dashed line would denote studies finding significant effects, whereas 
the area below and to the left of it would contain studies that do not yield 
significant effects. If publication bias exists, then you would see few points 
(i.e., few studies in your meta- analysis) that fall within this nonsignificant 
region. This would cause your funnel plot to look asymmetric, with small 
sample studies finding large effects present but small studies finding small 
effects absent.

Publication bias is not the only possible cause of asymmetric funnel 
plots. If studies with smaller samples are expected to yield stronger effect 
sizes (e.g., studies of intervention effectiveness might be able to devote more 
resources to a smaller number of participants), then this asymmetry may not 
be due to publication bias. In these situations, you would ideally code the 
presumed difference between small and large sample studies (e.g., amount of 
time or resources devoted to participants) and control for this6 before creat-
ing the funnel plot.

Several variants of the axes used for funnel plots exist. You might con-
sider alternative choices of scale on the effect size axis. I recommend relying 
on effect sizes that are roughly normally distributed around a population 
effect size, such as Fisher’s transformation of the correlation (Zr), Hedges’s g, 
or the natural log of the odds ratio (see Chapter 5). Using normally distrib-
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fIgure 11.2. Hypothetical funnel plot.
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uted effect sizes, as opposed to non- normal effect sizes (e.g., r or o) allows 
for better examination of the symmetry of funnel plots. Similarly, you have 
choices of how to scale the sample size axis. Here, you might consider using 
the natural log of sample size, which aids interpretation if some studies use 
extremely large samples that compress the rest of the studies into a narrow 
range of the funnel plot. Other choices include choosing standard errors, 
their inverse (precision), or weights (1 / SE2) on this axis; this option is rec-
ommended when you are analyzing log odds ratios (Sterne et al., 2005) and 
might also be useful when the standard error is not perfectly related to sam-
ple size (e.g., when you correct for artifacts). I see no problem with examin-
ing multiple funnel plots when evaluating publication bias. Given that the 
examination of funnel plots is somewhat subjective, I believe that examining 
these plots from several perspectives (i.e., several different choices of axis 
scaling) is valuable in obtaining a complete picture about the possibility of 
publication bias.

To illustrate the use of funnel plots—as well as the major challenges 
in their use—I have plotted the 22 studies from Table 11.1 in Figure 11.3. 

fIgure 11.3. Funnel plot of 22 studies in example meta- analysis.

–0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 100 200 300 400 500 600 700 800 900 1000

Ef
fe

ct
 s

iz
e 

(Z
r)

Sample size



266 COMBINING AND COMPARING EFFECT SIZES 

I created this plot simply by constructing a scatterplot with transformed 
effect size (fourth column in Table 11.1) on the vertical axis and sample size 
(second column in Table 11.1) on the horizontal axis. My inspection of this 
plot leads me to conclude that there is no noticeable asymmetry or sparse 
representation of studies in the low effect size—low sample size area (i.e., 
where results would be nonsignificant). I also perceive that the effect sizes 
tend to become less discrepant with larger sample sizes—that is, that the 
plot becomes more vertically narrow from the left to the right. However, you 
might not agree with these conclusions. This raises the challenge of using 
funnel plots—that the interpretations you take from these plots are neces-
sarily subjective. This subjectivity is especially prominent when the number 
of studies in your meta- analysis is small; in my example with just 22 studies, 
it is extremely difficult to draw indisputable conclusions.

11.2.3 regression Analysis

Extending the logic of funnel plots, you can more formally test for asymme-
try by regressing effect sizes onto sample sizes. The presence of an associa-
tion between effect sizes and sample sizes is similar to an asymmetric funnel 
plot in suggesting publication bias. In the case of a positive mean effect size, 
publication bias will be evident when studies with small sample sizes yield 
larger effect size estimates than studies with larger samples; this situation 
would produce a negative association between sample size and effect size. In 
contrast, when the mean effect size is negative, then publication bias will be 
indicated by a positive association (because studies with small samples yield 
stronger negative effect size estimates than studies with larger samples). The 
absence of an association, given adequate statistical power to detect one, par-
allels the symmetry of the funnel plot in suggesting an absence of publication 
bias.

Despite the conceptual simplicity of this approach, recommended prac-
tices (see Sterne & Egger, 2005) build on this conceptual approach but make 
it somewhat more complex. Specifically, two variants of this regression 
approach are commonly employed. The first involves considering an adjusted 
rank correlation between studies’ effect sizes and standard errors (for details, 
see Begg, 1994; Sterne & Egger, 2005). To perform this analysis, you use the 
following two equations to compute, for each study i, the variance of the 
study’s effect size from the mean effect size (vi

*) and the standardized effect 
size for study (ESi

*):
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equations 11.1 and 11.2: equations used in adjusted rank 
correlation approach

11.1: adjusted variance of estimate:

2

2

1
1

SE

SEv ii

11.2: adjusted effect size:
i

ESi
i

v

MESES

M•	 ES is the mean effect size.
SE•	 i is the standard error for study i.

2

1
SE

•	  is the summation of inverse variances across all studies (or 
the sum of weights calculated in previous meta- analytic equations; 
see Chapter 8).

After computing these variables, you then estimate Kendall’s rank cor-
relation between vi

* and ESi
*. A significant correlation indicates funnel plot 

asymmetry, which may suggest publication bias. An absence of correlation 
contraindicates publication bias, if power is adequate.

A comparable approach is Egger’s linear regression, in which you regress 
the standard normal deviate of the effect size of each study from zero (i.e., 
for study i, zi = ESi / SEi) onto the precision (the inverse of the SE, or 1/ SEi): 
zi = B0 + B1precisioni + ei. Somewhat counterintuitively, the slope (B1) repre-
sents the average effect size (because both the DV and predictor have SE in 
their denominator, this is similar to regressing the ES onto a constant, which 
yields the mean ES). The intercept (B0, which is similar to regressing the 
ES onto the SE) is expected to be zero, and a nonzero intercept (the signifi-
cance of which can be evaluated using common statistical software) indicates 
asymmetry in the funnel plot, or the possibility of publication bias.

These regression approaches to evaluating funnel plot asymmetry (which 
can be indicative of publication bias) are advantageous over visual inspection 
of funnel plots in that they reduce subjectivity by providing results that can 
be evaluated in terms of statistical significance. However, these regression 
approaches depend on the absence of statistically significant results to con-
clude an absence of publication bias (which is typically what you hope to 
demonstrate). Therefore, their utility depends on adequate statistical power 
to detect asymmetry. Although the number of simulation studies are lim-
ited (for a review, see Sterne & Egger, 2005), preliminary guidelines for the 
number of studies needed to ensure adequate power can be provided. When 
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publication bias is severe (and targeting 80% power), at least 17 studies are 
needed with Egger’s linear regression approach, and you should have at least 
40 studies for the rank correlation method (note that this is an extrapolation 
from previous simulations and should be interpreted with caution). When 
publication bias is moderate, you should have at least 50 to 60 studies for 
Egger’s linear regressions and at least 150 studies for the rank correlation 
approaches. However, I emphasize again that these numbers are extrapolated 
well beyond previous studies and should be viewed with extreme caution 
until further studies investigate the statistical power of these approaches.

Considering again the 22 studies of my example meta- analysis, I eval-
uated the association between effect size and sample size using both the 
adjusted rank correlation approach and Egger’s linear regression approach. 
Columns seven and eight in Table 11.1 show the two transformed variables for 
the former approach, and computation of Kendall’s rank correlation yielded a 
nonsignificant value of –.07 (p = .67). Similarly, Egger’s regression of the val-
ues in the ninth column onto those in the tenth was nonsignificant (p = .62). 
I would interpret both results as failing to indicate evidence of publication 
bias. However, I should be aware that my use of just 22 studies means that 
I only have adequate power to detect severe publication bias using Egger’s 
linear regression approach, and I do not have adequate power with the rank 
correlation method.

11.2.4 failsafe N

11.2.4.a Definition and Computation

Failsafe numbers (failsafe N) help us evaluate the robustness of a meta-
 analytic finding to the existence of excluded studies. Specifically, the failsafe 
number is the number of excluded studies, all averaging an effect size of zero, 
that would have to exist for their inclusion in the meta- analysis to lower 
the average effect size to a nonsignificant level.7 This number, introduced by 
Rosenthal (1979) as an approach to dealing with the “file drawer problem,” 
also can be thought of as the number of excluded studies (all with average 
effect sizes equal to zero) that would have to be filed away before you would 
conclude that no effect actually exists (if the meta- analyst had been able to 
analyze results from all studies conducted). If this number is large enough, 
you conclude that it is unlikely that you could have missed so many stud-
ies (that researchers’ file drawers are unlikely to be filled with so many null 
results), and therefore that this conclusion of the meta- analysis is robust to 
this threat.
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The computation of a failsafe number begins with the logic of an older 
method of combining research results, known as Stouffer’s or the sum-of-Zs 
method (for an overview of these earlier methods of combining results, see 
Rosenthal, 1978). This method involves computing the significance level of 
the effect from each study (the one- tailed p value), converting this to a stan-
dard normal deviate (Zi, with positive values denoting effects in expected 
direction), and then combining these Zs across the k studies to obtain an 
overall combined significance (given by standardized normal deviate, Zc):

equation 11.3: Stouffer’s method of combining levels 
of significance

k

Z
Z i

c

Z•	 i is the standard normal deviate of significance from study i.
Z•	 c is the combined standard normal deviate of significance across 
studies.
k•	  is the number of studies.

Failsafe N extends this approach by asking the question, How many 
studies could be added to those in the meta- analysis (going from k to k + N in 
the denominator term of Equation 11.4), all with zero effect sizes (Zs = 0, so 
the numerator term does not change), before the significance level drops to 
some threshold value (e.g., Zc = Za = 1.645 for one- tailed p = .05)? The equa-
tion can be rearranged to yield the computation formula for failsafe N:

equation 11.4: computing failsafe N

k
Z
ZkN c

2

k•	  is the number of studies.
Z•	 c is the combined standard normal deviate of significance across 
studies.
Z•	 a is the threshold value of significance (e.g., 1.645 for one- tailed 
p = .05).
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Examination of these equations makes clear the two factors that impact 
the failsafe N. The first is the level of statistical significance (Zc) yielded from 
the included results (which is a function of effect size and sample size of the 
study); the larger this value, the larger the failsafe N. The second factor is 
the number of included studies, k. Increasing numbers of included studies 
results in increasing failsafe Ns (because the first occurrence of k in Equa-
tion 11.5 is multiplied by a ratio greater than 1 [when results are significant], 
this offsets the subtraction by k). This makes intuitive sense: Meta- analyses 
finding a low p value (e.g., far below .05) from results from a large number 
of studies need more excluded, null results to threaten the findings, whereas 
meta- analyses with results closer to what can be consider a “critical” p value 
(e.g., just below .05) from a small number of studies could be threatened by a 
small number of excluded studies.

How large should failsafe N be before you conclude that results are robust 
to the file drawer problem? Despite the widespread use of this approach over 
about 30 years, no one has provided a statistically well- founded answer. 
Rosenthal’s (1979) initial suggestion was for a tolerance level (i.e., adequately 
high failsafe N) equal to 5k + 10, and this initial suggestion seems to have been 
the standard most commonly applied since. Rosenthal (1979) noted what is a 
plausible number of studies filed away likely depends on the area of research, 
but no one has further investigated this speculation. At the moment, the 5k + 
10 is a reasonable standard, though I hope that future work will improve on 
(or at least provide more justification for) this value.

11.2.4.b Criticisms

Despite their widespread use, failsafe numbers have been criticized in sev-
eral ways (see Becker, 2005). Although these criticisms are valuable in point-
ing out the limits of using failsafe N exclusively, I do not believe that they 
imply that you should not use this approach. Next, I briefly outline the major 
criticisms against failsafe N and suggest considerations that temper these 
critiques.

One criticism is of the premise of computing the number of studies with 
null results. The critics argue that other possibilities could be considered, 
such as studies in the opposite direction as those found in the meta- analysis. 
It is true that any alternative effect size could be chosen; but it seems that 
selection of null results (i.e., those with effect sizes close to 0), which are the 
studies expected to be suppressed under most conceptualizations of publica-
tion bias, represents the most appropriate single value to consider.
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A second criticism of the failsafe number is that it does not consider 
the sample sizes of the excluded studies. Sample sizes of included studies 
are indirectly considered in that larger samples sizes yield larger Zis than 
smaller studies, given the same effect size. In contrast, excluded studies are 
assumed to have effect sizes of zero and therefore Zs equal to zero regard-
less of sample size. So, the failsafe number would not differentiate between 
excluded studies with sample sizes equal to 10 versus 10,000. I believe this 
is a fair critique of failsafe N, though the impact depends on excluded studies 
with zero effect sizes (on average) having larger sample sizes than included 
studies. This seems unlikely given the previous consideration of publication 
bias and funnel plots. If there is a bias, I would expect that excluded studies 
are primarily those with small (e.g., near zero) effect sizes and small sample 
sizes (however, I acknowledge that I am unaware of empirical support for 
this expectation).

A third criticism involves the failure of failsafe N to model heterogeneity 
among obtained results. In other words, the Stouffer method of obtaining the 
overall significance (Zc) among included studies, which is then used in the 
computation of failsafe N, makes no allowance for whether these studies are 
homogeneous (centered around a mean effect size with no more deviation 
than expected by sampling error) or heterogeneous (deviation around mean 
effect size is greater than expected by sampling error alone; see Chapter 10). 
This is a valid criticism that should be kept in mind when interpreting fail-
safe N. I especially recommend against using failsafe N when heterogeneity 
necessitates the use of random- effects models (Chapter 9).

A final criticism of Rosenthal’s (1979) failsafe N is the focus on statisti-
cal significance. As I have discussed throughout this book, one advantage of 
meta- analysis is a focus on effect sizes; a number that indicates the number of 
excluded studies that would reduce your results to nonsignificance does not 
tell you how these might affect your results in terms of effect size. For this, an 
alternative failsafe number can be considered, which I describe next.

11.2.4.c An Effect Size Failsafe N

An alternative approach that focuses on effect sizes was proposed by Orwin 
(1983; see also Becker, 2005). Using this approach, you select an effect size8 
(smaller than that obtained in the meta- analysis of sampled studies) that rep-
resents the smallest meaningful effect size (either from guidelines such as r 
= ±.10 for a small effect size, or preferably an effect size that is meaningful in 
the context of the research). This value is denoted as ESmin.9 You then com-
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pute a failsafe number (NES) from the meta- analytically combined average 
effect size (ESM) from the k included studies using:

equation 11.5: effect size failsafe N

excluded

ES
ES ESES

ESMk
N

min

min

k•	  is the number of studies.
M•	 ES is the average effect size from the meta- analysis.
ES•	 min is the smallest meaningful effect size.
ES•	 excluded is the average effect size of excluded studies.

The denominator of this equation introduces an additional term that I 
have not yet described, ESexcluded. This represents the expected (i.e., speci-
fied by the meta- analyst) average effect size of excluded studies. A reasonable 
choice, paralleling the assumption of Rosenthal’s (1979) approach, might be 
zero. In this case, the failsafe number (NES) would tell us how many excluded 
studies with an average effect size of zero would have to exist before the true 
effect size would be reduced to the smallest meaningful effect size (ESmin). 
Although this is likely a good choice for many situations, the flexibility to 
specify alternative effect sizes of excluded studies addresses the first criti-
cism of traditional approaches described above.

Although this approach to failsafe N based on minimum effect size alle-
viates two critiques of Rosenthal’s original approach, it is still subject to the 
other two criticisms. First, this approach still assumes that the excluded 
studies have the same average sample size as included studies. I believe that 
this results in a conservative bias in most situations; if the excluded studies 
tend to have smaller samples than the included studies, then the failsafe N 
is smaller than necessary. Second, this approach also does not model het-
erogeneity, and therefore is not informative when you find significant het-
erogeneity and rely on random- effects models. A third limitation, unique 
to this approach, is that there do not exist solid guidelines for determining 
how large the failsafe number should be before you conclude that results are 
robust to the file drawer problem. I suspect that this number is smaller than 
Rosenthal’s (1979) 5k + 10 rule, but more precise numbers have not been 
developed.

To illustrate computation of these failsafe numbers, I again consider the 
example meta- analysis of Table 11.1. Summing the Zs (not the Zrs) across 
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the 22 studies yields 127.93, from which I compute Zc = 127.93 / √22 = 27.27. 
To compute Rosenthal’s (1979) failsafe number of studies with effect sizes of 
zero needed to reduce the relational aggression with rejection association to 
nonsignificance, I apply Equation 11.4:

 
 

602622
645.1

27.27
22

22

k
Z

Z
kN c

This means that there could exist up to 6,026 studies, with an average cor-
relation of 0, before my conclusion of a significant association is threatened. 
This is greater than the value recommended by Rosenthal (1979) (i.e., 5k + 10 
= 5*22 + 10 = 120), so I would conclude that my conclusion of an association 
between relational aggression and rejection is robust to the file drawer prob-
lem. However, it is more satisfying to discuss the robustness of the magni-
tude, rather than just the significance of this association, so I also use Orwin’s 
(1983) approach of Equation 11.5. Under the assumption that excluded stud-
ies have effect sizes of 0 (i.e., in Equation 11.5, ESexcluded = 0), I find that 5 
excluded studies could reduce the average correlation to .30, 19 could reduce 
it to .20, and 59 would be needed to reduce it to .10. Although there are no 
established guidelines for Orwin’s failsafe numbers, it seems reasonable to 
conclude that it is plausible that the effect size could be less than a medium 
correlation (i.e., less than the standard of r = ±.30) but perhaps implausible 
that the effect size could be less than a small correlation (i.e., less than the 
standard of r = ±.10).

11.2.5 trim and fill

The trim and fill method is a method of correcting for publication bias (see 
Duval, 2005) that involves a two-step iterative procedure. The conceptual 
rationale for this method is illustrated by considering the implications of 
publication bias on funnel plots (recall that the corner of the funnel denoting 
studies with small sample sizes and small effect sizes is underrepresented), 
which causes bias in estimating both the mean effect size and the heteroge-
neity around this effect size. The trim and fill approach uses a two-step cor-
rection that attempts to provide more accurate estimates of both mean and 
spread in effect sizes.

The first step of this approach is to temporarily “trim” studies contribut-
ing to funnel plot asymmetry. Considering Figure 11.2 (in which the funnel 
plot is expected to be asymmetric in having more studies in the upper left 
section than the lower left section when there is publication bias), this trim-
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ming involves temporarily removing studies until you obtain a symmetric 
funnel plot (often shaped like a bar in the vertical middle of this plot). You 
then estimate an unbiased mean effect size from the remaining studies for 
use in the second step.

The second step involves reinstating the previously trimmed studies 
(resulting in the original asymmetric funnel plot) and then imputing studies 
in the underrepresented section (lower left of Figure 11.2) until you obtain a 
symmetric funnel plot. This symmetric funnel plot allows for accurate esti-
mation of both the mean and heterogeneity (or between-study variance) of 
effect sizes. This two-step process is repeated several times until you reach 
a convergence criterion (in which trimming and filling produce little change 
to estimates).

As you might expect, this is not an approach performed by hand, and 
the exact statistical details of trimming and filling are more complex than I 
have presented here (for details, see Duval, 2005). Fortunately, this approach 
is included in some software packages for meta- analysis (this represents an 
exception to my general statement that meta- analysis can be conducted by 
hand or with a simple spreadsheet program, though you could likely program 
this approach into traditional software packages). There also exist variations 
depending on modeling of between-study variability beyond sampling fluctu-
ation (random- versus fixed- effects) and choice of estimation method. These 
methods have not yet been fully resolved.

Despite the need for specialized software and some unresolved statisti-
cal issues, the trim and fill method represents a useful way to correct for 
potential publication bias. Importantly, this method is not to be used as the 
primary reporting of results of a meta- analysis. In other words, you should 
not impute study values, analyze the resulting dataset including these values, 
and report the results as if this was what was “found” in the meta- analysis. 
Instead, you should compute results using the trim and fill method for com-
parison to those found from the studies actually obtained. If the estimates are 
comparable, then you conclude that the original results are robust to publica-
tion bias, whereas discrepancies suggest that the obtained studies produced 
biased results.

11.2.6 weighted Selection Approaches

An additional method of managing publication bias is through selection 
method approaches (Hedges & Vevea, 2005), also called weighted distribu-
tion theory corrections (Begg, 1994). These methods are complex, and I do 
not attempt to fully describe them fully here (see Hedges & Vevea, 2005). The 
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central concept of these approaches is to construct a distribution of inclu-
sion likelihood (i.e., a selection model) that is used for weighting the results 
obtained. Specifically, studies with characteristics that are related to lower 
likelihood of inclusion are given more weight than studies with characteris-
tics related to higher likelihood of inclusion.

This distribution of inclusion likelihood is based on characteristics of 
studies that are believed to be related to inclusion in the meta- analysis. For 
example, you might expect the likelihood to be related to the level of sta-
tistical significance, such that studies finding significant results are more 
likely to be included than those that do not. Because it is usually difficult 
to empirically derive values for this likelihood distribution, the most com-
mon practice is to base these on a priori models. A variety of models have 
been suggested (see Begg, 1994; Hedges & Vevea, 2005), including models 
that propose equal likelihood for studies with p < .05 and then a gradually 
declining likelihood, as well as models that consist of steps corresponding to 
diminished likelihood at ps that are psychologically salient (e.g., ps = .01, .05, 
.10). Other models focus more on effect sizes, sometimes in combination with 
standard errors. Your choice of one of these models should be guided by the 
underlying selection process that you believe is operating, though this deci-
sion can be difficult to make in the absence of field- specific information. It is 
also necessary for these approaches to be applied within a meta- analysis with 
a large number of studies. In sum, this weighted selection approach appears 
promising, but some important practical issues need to be resolved before 
they can be widely used.

11.3 PrActIcAl MAtterS: whAt IMPAct do SAMPlIng 
BIASeS hAve on MetA-AnAlytIc concluSIonS?

The short answer to the question, “What impact do sampling biases have on 
the conclusions of a meta- analysis?” is “I don’t know.” As a meta- analyst you 
do not know, your readers do not know, and it is not possible to know unless 
you could obtain every study that has ever been conducted on the topic of the 
meta- analysis. Because obtaining every study is almost never possible (and if 
you did, there is by definition no bias because you have obtained the popula-
tion of studies), this question is impossible to answer.

The magnitude of sampling bias likely varies considerably from field 
to field and even from one meta- analysis to another. So, it is appropriate to 
always be concerned about the extent to which publication bias impacts the 
findings of a meta- analysis. Does this mean every meta- analysis should be 
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viewed as untrustworthy and uninformative? Absolutely not. You should 
remember that the available literature is all that we as scientists have, so if 
you dismiss this literature as not valuable, then we have nothing on which 
to base our empirical sciences. Moreover, it is important to remember that 
a meta- analytic review is no more subject to sampling bias than other lit-
erature reviews. In fact, meta- analysis offers two advantages over traditional 
approaches to literature review that allow us to face the challenge of sam-
pling bias. First, meta- analysts typically are more exhaustive in searching 
the literature than those performing narrative reviews, and the search proce-
dures are made transparent in the reporting of meta- analyses. Second, only 
meta- analysis allows you to evaluate and potentially correct for publication/
sampling bias. Although there is no guarantee that these methods will per-
fectly fix the problem, they are far better than simply ignoring it.

11.4 SuMMAry

Publication bias poses a threat to the conclusions drawn in a meta- analysis. 
Fortunately, there exist several methods for detecting potential bias, as well 
as various methods of correction (though none are universally agreed upon). 
I recommend considering multiple approaches to identifying these threats 
(especially for publication bias, for which there are numerous approaches). 
The value of considering multiple approaches was illustrated through an 
ongoing example meta- analysis, in which some approaches suggested poten-
tial bias whereas others did not. The more evidence you can bring to bear on 
these potential problems, the more likely you are to come to satisfying con-
clusions. I also recommend keeping updated with the literature on these top-
ics, as these represent some of the most active areas of quantitative research 
on meta- analysis.

11.5 recoMMended reAdIngS

Begg, C. B. (1994). Publication bias. In H. Cooper & L. V. Hedges (Eds.), The handbook of 
research synthesis (pp. 399–409). New York: Russell Sage Foundation.—This chapter 
is a reasonably comprehensive, yet concise, overview of the issues involved in consid-
ering and evaluating publication bias in meta- analysis.

Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.). (2005b). Publication bias in meta-
 analysis: Prevention, assessment and adjustments. Hoboken, NJ: Wiley.—This is the 
book to read if you want to learn as much as possible about publication bias. This 
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edited book contains 16 chapters, each considering in depth different methodological 
and statistical approaches to avoiding, detecting, or correcting publication bias.

noteS

1. Although this statement is accurate for most types of publication bias, others 
could exist. For example, if a particular therapy has a potential adverse side 
effect, it is plausible that studies demonstrating this effect are more likely to be 
suppressed. In this case, publication bias might be in the direction of overrep-
resentation of null (absence of adverse effects of the therapy) or negative (lower 
rates of adverse effects with the therapy) results.

2. Some (Antes & Chalmers, 2003; Chalmers, 1990) have argued that a researcher 
conducting a study but not fully reporting the results is unethical. This point is 
easy to see when you consider clinical work in which side effects (unexpected 
findings) are not reported or when studies failing to support a treatment are sup-
pressed. The same argument applies, however, to basic research. Not reporting or 
selectively reporting results poses costly (in terms of time and effort) obstacles 
to the progression of basic science, even if the immediate impact on individuals 
is not as evident as in applied research. Moreover, studies are often conducted 
using external funding (public or private) and involve the time of the individuals 
participating in the study; relegating the findings from these investments to the 
file drawer represents a waste of the limited resources available to science.

3. To evaluate publication bias for the random- effects model I presented in Chapter 
10, the test of moderation by publication status would rely on a mixed- effects 
model. Examination of funnel plots and the effect size with sample size associa-
tion do not differ whether you use a fixed- or random- effects model. Computation 
of failsafe numbers assumes a fixed- effects model and has not yet been extended 
to the random- effects framework.

4. It is also common to denote the effect sizes on the x-axis and the sample sizes on 
the y-axis. Either choice is acceptable, as they allow the same examination. My 
choice of plotting effect sizes on the y-axis and sample size on the x-axis is simply 
because this is more consistent with the regression-based methods (in which you 
examine whether effect sizes are predicted by sample size) described in the next 
subsection.

5. This particular plot assumes homogeneity, or the absence of between-study vari-
ability beyond expectable sampling fluctuations (i.e., the standard errors of effect 
sizes). In the presence of heterogeneity, you expect greater dispersion of effect 
sizes (i.e., a wider vertical span between the two solid lines), but the funnel plot 
should retain this symmetric shape.

6. A method of “controlling for” this variable would be to regress effect sizes onto 
this variable and then plot residuals (instead of effect sizes) in relation to sample 
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size. Although this funnel plot would not display the mean effect size, you could 
still evaluate the symmetry for presence of publication bias. This same method 
can be useful if there exist moderators of effect sizes that make visual inspection 
of effect size funnel plots difficult.

7. This number is only meaningful when you have found a significant result. If the 
obtained result is nonsignificant, then it is not meaningful to ask how many more 
null results would be needed to reduce it to nonsignificance (it is already there). 
In fact, using nonsignificant results in the equations for failsafe N will yield nega-
tive numbers.

8. I recommend conducting these analyses with the same scale of effect size used in 
the meta- analysis. For instance, if Fisher’s Zr transformation of the correlation, 
or the natural logarithm of the odds ratio, were used in the meta- analysis, these 
should also be used in this computation.

9. I use different terminology here than that of Orwin (1983) and others (e.g., 
Becker, 2005). My rationale for this terminology is to ensure consistency with 
terminology used in my earlier presentation of Rosenthal’s (1979) approach. It is 
also worth noting here that I do not believe that you are limited to only selecting 
one minimum meaningful value. I see value in reporting multiple failsafe Ns, 
such as the number needed to reduce an effect size to a medium magnitude and 
to a small magnitude.
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12

Multivariate Meta-Analytic Models

In Chapter 7 (Section 7.3), I described the difficulties of using multivariate 
statistics (e.g., regression coefficients) as effect sizes in meta- analyses. How-
ever, this does not mean that we cannot answer multivariate questions through 
meta- analysis. Rather than inserting multivariate statistics into our meta- analysis, 
we can use meta- analysis to obtain bivariate statistics (e.g., correlations) that 
are then used in multivariate analyses. This approach avoids the problems of 
using multivariate statistics as effect sizes (e.g., the necessity that all studies use 
the same variables in multivariate analyses), but itself contains some difficulties 
of analytic complexity and requires that studies have collectively examined all 
bivariate relations informing the multivariate analysis.

In this chapter, I introduce the cutting-edge practice of using meta- analysis 
to obtain sufficient statistics for multivariate analysis. I first describe the gen-
eral logic of this practice and then provide an overview of two statistical 
approaches to fitting these multivariate meta- analytic models. Finally, I turn to 
the practical matter of connecting meta- analytic findings to theories, a connec-
tion especially relevant to multivariate models that better evaluate theoretical 
propositions than simpler models.

Before beginning this chapter, I want to make you aware of three important 
cautions. First, I should warn you that the material presented in this chapter is 
more technically challenging than most of the rest of this book. The techniques 
I describe here rely on familiarity with matrix representations of multivariate 
analyses, which I recognize many readers do not consider in their day-to-day 
analyses. Second, I have not attempted to fully explain some nuances of these 
approaches, as they quickly become even more technically challenging than 
the material I do present. Third, because the techniques I describe here are 
relatively new, many unresolved issues remain. Although I attempt to provide 
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an up-to-date, nontechnical overview of what we currently know and make 
speculations about what I think are answers to unresolved issues (making clear 
what is established vs. speculation), you should bear in mind that the state 
of the art in this area is rapidly changing, so if you use these techniques you 
should consult the most recent research.

12.1 MetA-AnAlySIS to oBtAIn SuffIcIent StAtIStIcS

12.1.1 Sufficient Statistics for Multivariate Analyses

As you may recall (fondly or not) from your multivariate statistics courses, 
nearly all multivariate analyses do not require the raw data. Instead, you 
can perform these analyses using sufficient statistics— summary information 
from your data that can be inserted into matrix equations to provide esti-
mates of multivariate parameters. Typically, the sufficient statistics are the 
variances and covariances among the variables in your multivariate analysis, 
along with some index of sample size for computing standard errors of these 
parameter estimates. For some analyses, you can instead use correlation to 
obtain standardized multivariate parameter estimates. Although the analysis 
of correlation matrices, rather than variance/covariance matrices, is often 
less than optimal, a focus on correlation matrices is advantageous in the 
context of multivariate meta- analysis for the same reason that correlations 
are generally preferable to covariances in meta- analysis (see Chapter 5). I 
next briefly summarize how correlation matrices can be used in multivariate 
analyses, focusing on multiple regression, exploratory factor analysis, and 
confirmatory factor analysis. Although these represent only a small sampling 
of possible multivariate analyses, this focus should highlight the wide range 
of possibilities of using multivariate meta- analysis.

12.1.1.a Multiple Regression

Multiple regression models fit linear equations between a set of predictors 
(independent variables) and a dependent variable. Of interest are both the 
unique prediction each independent variable has to the dependent variable 
above and beyond the other predictors in the model (i.e., the regression coef-
ficient, B) and the overall prediction of the set (i.e., the variance in the depen-
dent variable explained, R2). Both the standardized regression coefficients of 
each predictor and overall variance explained (i.e., squared multiple correla-
tion, R2) can be estimated from (1) the correlations among the independent 
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variables (a square matrix, Rii, with the number of rows and columns equal 
to the number of predictors), and (2) the correlations of each independent 
variable with the dependent variable (a column vector, Riy, with the number 
of rows equal to the number of predictors, using the following equations1 
(Tabachnick & Fidell, 1996, p. 142):

equation 12.1: Matrix equations for multiple regression

iyiii RRB 1

iiyR BR2

B•	 i is a k × 1 vector of standardized regression coefficients.
r•	 ii is a k × k matrix of correlations among independent variables.
r•	 iy is a k × 1 vector of correlations of independent variables with 
the dependent variable.
R•	 2 is the proportion of variance in the dependent variable pre-
dicted by the set of independent variables.
k•	  is the number of predictors.

12.1.1.b Exploratory Factor Analysis

Exploratory factor analysis (EFA) is used to extract a parsimonious set of fac-
tors that explain associations among a larger set of variables. This approach 
is commonly used to determine (1) how many factors account for the associa-
tions among variables, (2) the strengths of associations of each variable on 
a factor (i.e., the factor loadings), and (3) the associations among the factors 
(assuming oblique rotation). For each of these goals, exploratory factor anal-
ysis is preferred to principal components analysis (PCA; see, e.g., Widaman, 
1993, 2007), so I describe EFA only. I should note that my description here is 
brief and does not delve into the many complexities of EFA; I am being brief 
because I seek only to remind you of the basic steps of EFA without providing 
a complete overview (for more complete coverage, see Cudeck & MacCallum, 
2007).

Although the matrix algebra of EFA can be a little daunting, all that is 
initially required is the correlation matrix (R) among the variables, which is 
a square matrix of p rows and columns (where p is the number of variables). 
From this correlation matrix, it is possible to compute a matrix of eigenvec-
tors, V, which has p rows and m columns (where m is the number of factors).2 
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To determine the number of factors that can be extracted, you extract the 
maximum number of factors3 and then examine the resulting eigenvalues 
contained in the diagonal matrix (m × m) L:

equation 12.2: Matrix equations for computing eigenvalues 
from efA factor extraction

l = v′rv

l•	  is a m × m diagonal matrix of eigenvalues.
v•	  is a p × m matrix of eigenvectors.
r•	  is a p × p matrix of correlations among variables.
p•	  is the number of variables.
m•	  is the number of factors.

You decide on the number of factors to retain based on the magnitudes 
of the eigenvalues contained in L. A minimum (i.e., necessary but not suf-
ficient) threshold is known as Kaiser’s (1970) criterion, which states that the 
eigenvalue is greater than 1.0. Beyond this criterion, it is common to rely on a 
scree plot, sometimes with parallel analysis, as well as considering the inter-
pretability of rival solutions, to reach a final determination of the number of 
factors to retain.

The analysis then proceeds with a specified number of factors (i.e., 
some fixed value of m that is less than p). Here, the correlation matrix (R) 
is expressed in terms of a matrix of unrotated factor loadings (A), which are 
themselves calculated from the matrices of eigenvectors (V) and eigenvalues 
(L):

equation 12.3: Matrix equations for computing unrotated factor 
loadings in efA

r = AA′
LVA

r•	  is a p × p matrix of correlations among variables.
v•	  is a p × m matrix of eigenvectors.
l•	  is a m × m diagonal matrix of eigenvalues.
p•	  is the number of variables.
m•	  is the number of factors.



  Multivariate Meta- Analytic Models 283

In order to improve the interpretability of factor loadings (contained in 
the matrix A), you typically apply a rotation of some sort. Numerous rota-
tions exist, with the major distinction being between orthogonal rotations, 
in which the correlations among factors are constrained to be zero, versus 
oblique rotations, in which nonzero correlations among factors are estimated. 
Oblique rotations are generally preferable, given that it is rare in social sci-
ences for factors to be truly orthogonal. However, oblique rotations are also 
more computationally intensive (though this is rarely problematic with mod-
ern computers) and can yield various solutions using different criteria, given 
that you are attempting to estimate both factor loadings and factor intercor-
relations simultaneously. I avoid the extensive consideration of alternative 
estimation procedures by simply stating that the goal of each approach is to 
produce a reproduced (i.e., model implied) correlation matrix that closely 
corresponds (by some criterion) to the actual correlation matrix (R). This 
reproduced matrix is a function of (1) the pattern matrix (A), which here 
(with oblique rotation) represents the unique relations of variable with fac-
tors (controlling for associations among factors), and (2) the factor correla-
tion matrix (F), which represents the correlations among the factors4:

equation 12.4: Matrix equation for reproduced correlation 
matrix in efA

r = AFA′

•	r is a p × p matrix of model- implied correlations among vari-
ables.
A•	  is a p × m matrix of unique associations between variables and 
factors (controlling for associations among factors).
F•	  is a m × m matrix of correlations among factors.
p•	  is the number of variables.
m•	  is the number of factors.

When the reproduced correlation matrix (R) adequately reproduces the 
observed correlation matrix (R), the analysis is completed. You then interpret 
the values within the pattern matrix (A) and matrix of factor correlations (F) 
to address the second and third goals of EFA described above.

ˆ

ˆ

ˆ
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12.1.1.c Confirmatory Factor Analysis

In many cases, it may be more appropriate to rely on a confirmatory, rather 
than an exploratory, factor analysis. A confirmatory factor analysis (CFA) is 
estimated by fitting the data to a specified model in which some factor load-
ings (or other parameters, such as residual covariances among variables) are 
specified as fixed to zero versus freely estimated. Such a model is often a more 
realistic representation of your expected factor structure than is the EFA.5

Like the EFA, the CFA estimates associations among factors (typically 
called “constructs” or “latent variables” in CFA) as well as strengths of asso-
ciations between variables (often called “indicators” or “manifest variables” 
in CFA) and constructs. These parameters are estimated as part of the general 
CFA matrix equation6:

equation 12.5: Matrix equation for cfA

S = ΛΨΛ′ + Θ

S•	  is a p × p matrix of model- implied variances and covariances 
among manifest variables.
Λ•	  is a p × m matrix of factor loadings of manifest variables regressed 
onto constructs.
Ψ•	  is a m × m matrix of variances and covariances among con-
structs (latent variables).
Θ•	  is a p × p matrix of residual variances and covariances among 
manifest variables.
p•	  is the number of manifest variables.
m•	  is the number of constructs (latent variables).

To estimate a CFA, you place certain constraints on the model to set the 
scale of latent constructs (see Little, Slegers, & Card, 2006) and ensure iden-
tification (see Kline, 2010, Ch. 6). For example, you might specify that there 
is no factor loading of a particular indicator on a particular construct (vs. an 
EFA, in which this would be estimated even if you expected the value to be 
small). Using Equation 12.5, a software program (e.g., Lisrel, EQS, Mplus) is 
used to compute values of factor loadings (values within the Λ matrix), latent 
variances and covariances (values within the Ψ matrix), and residual vari-
ances (and sometimes residual covariances; values within the Θ matrix) that 
yield a model implied variance/covariance matrix, S. The values are selected 
so that this model- implied matrix closely matches the observed (i.e., from the 
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data) variances and covariance matrix (S) according to some criterion (most 
commonly, the maximum likelihood criterion minimizing a fit function). For 
CFA of primary data, the sufficient statistics are therefore the variances and 
covariances comprising S; however, it is also possible to use correlation coef-
ficients such as would be available from meta- analysis to fit CFAs (see Kline, 
2010, Ch. 7).7

12.1.2 the logic of Meta-Analytically deriving 
Sufficient Statistics

The purpose of the previous section was not to fully describe the matrix 
equations of multiple regression, EFA, and CFA. Instead, I simply wish to 
illustrate that a range of multivariate analyses can be performed using only 
correlations. Other multivariate analyses are possible, including canonical 
correlations, multivariate analysis of variance or covariance, and structural 
equation modeling. In short, any analysis that can be performed using a cor-
relation matrix as sufficient information can be used as a multivariate model 
for meta- analysis.

The “key” of multivariate meta- analysis then is to use the techniques 
of meta- analysis described throughout this book to obtain average correla-
tions from multiple studies. Your goal is to compute a meta- analytic mean 
correlation for each of the correlations in a matrix of p variables. Therefore, 
your task in a multivariate meta- analysis is not simply to perform one meta-
 analysis to obtain one correlation, but to perform multiple meta- analyses 
to obtain all possible correlations among a set of variables. Specifically, the 
number of correlations in a matrix of p variables is equal to p(p –1)/2. This 
correlation matrix (R) of these mean correlations is then used in one of the 
multivariate analyses described above.

12.1.3 the challenges of using Meta-Analytically 
deriving Sufficient Statistics

Although the logic of this approach is straightforward, several complications 
arise (see Cheung & Chan, 2005a). The first is that it is unlikely that every 
study that provides information on one correlation will provide information 
on all correlations in the matrix. Consider a simple situation in which you 
wish to perform some multivariate analysis of variables X, Y, and Z. Study 
1 might provide all three correlations (rXY, rXZ, and rYZ). However, Study 2 
did not measure Z, so it only provides one correlation (rXY); Study 3 failed to 
measure Y and so also provides only one correlation (rXZ); and so on. In other 
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words, multivariate meta- analysis will almost always derive different average 
correlations from different subsets of studies.

This situation poses two problems. First, it is possible that different cor-
relations from very different sets of studies could yield a correlation matrix 
that is nonpositive definite. For example, imagine that three studies report-
ing rXY yield an average value of .80 and four studies reporting rXZ yield an 
average value of .70. However, the correlation between Y and Z is reported in 
three different studies, and the meta- analytic average is –.50. It is not logi-
cally possible for there to exist, within the population, a strong positive cor-
relation between X and Y, a strong positive correlation between X and Z, but 
a strong negative correlation between Y and Z.8 Most multivariate analyses 
cannot use such nonpositive definite matrices. Therefore, the possibility that 
such nonpositive definite matrices can occur if different subsets of studies 
inform different correlations within the matrix represents a challenge to 
multivariate meta- analysis.

Another challenge that arises from the meta- analytic combination of 
different studies for different correlations within the matrix has to do with 
uncertainty about the effective sample size. Although many multivariate 
analyses can provide parameter estimates from correlations alone, the stan-
dard errors of these estimates (for significance testing or constructing confi-
dence intervals) require knowledge of the sample size. When the correlations 
are meta- analytically combined from different subsets of studies, it is unclear 
what sample size should be used (e.g., the smallest sum of participants among 
studies for one of the correlations; the largest sum; or some average?).

A final challenge of multivariate meta- analysis is how we manage hetero-
geneity among studies. By computing a matrix of average correlations, we are 
implicitly assuming that one value adequately represents the populations of 
effect sizes. However, as I discussed earlier, it is more appropriate to test this 
homogeneity (vs. heterogeneity; see Chapter 8) and to model this population 
heterogeneity in a random- effects model if it exists (see Chapter 9). Only one 
of the two approaches I describe next can model between-study variances in 
a random- effects model.

12.2 two APProAcheS to MultIvArIAte 
MetA-AnAlySIS

Given the challenges I described in the previous section, multivariate meta-
 analysis is considerably more complex than simply synthesizing several corre-
lations to serve as input for a multivariate analysis. The development of models 
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that can manage these challenges is an active area of research, and the field has 
currently not resolved which approach is best. In this section, I describe two 
approaches that have received the most attention: the meta- analytic structural 
equation modeling (MASEM) approach describe by Cheung and Chan (2005a) 
and the generalized least squares (GLS) approach by Becker (e.g., 2009). I 
describe both for two reasons. First, you might read meta- analyses using either 
approach, so it is useful to be familiar with both. Second, given that research 
on both approaches is active, it is difficult for me to predict which approach 
might emerge as superior (or, more likely, superior in certain situations). How-
ever, as the state of the field currently stands, the GLS approach is more flex-
ible in that it can estimate either fixed- or random- effects mean correlations 
(whereas the MASEM approach is limited to fixed- effects models9). For this 
reason, I provide considerably greater coverage of the GLS approach.

To illustrate these approaches, I expand on the example described ear-
lier in the book. Table 12.1 summarizes 38 studies that provide correlations 
among relational aggression (e.g., gossiping), overt aggression (e.g., hitting), 
and peer rejection.10 Here, 16 studies provide all three correlations among 
these variables, 6 provide correlations of both relational and overt aggression 
to peer rejection, and 16 provide the correlation between overt and relational 
aggression. This particular example is somewhat artificial, in that (1) a selec-
tion criterion for studies in this review was that results be reported for both 
relational and overt forms of aggression (otherwise, there would not be per-
fect overlap in the correlations of these two forms with peer rejection), and 
(2) for simplicity of presentation, I selected only the first 16 studies, out of 
82 studies in the full meta- analysis, that provided only the overt with rela-
tional aggression correlation. Nevertheless, the example is realistic in that 
the three correlations come from different subsets of studies, and contain 
different numbers of studies and participants (for rrelational-overt, k = 32, N = 
11,642; for rrelational- rejection and rovert- rejection, k = 22, N = 8,081). I next use 
this example to illustrate how each approach would be used to fit a multiple 
regression of both forms of aggression predicting peer rejection.

12.2.1 the MASeM Approach

One broad approach to multivariate meta- analysis is the MASEM approach 
described by Cheung and Chan (2005a). This approach relies on SEM meth-
odology, so you must be familiar with this technique to use this approach. 
Given this restriction, I write this section with the assumption that you are at 
least somewhat familiar with SEM (if you are not, I highly recommend Kline, 
2010, as an accessible introduction).
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tABle 12.1. example Multivariate Meta- Analysis of correlations 
among relational Aggression, overt Aggression, and Peer rejection

Study
Sample 
size (N)

Relational–
overt r

Relational– 
rejection r

Overt– 
rejection r

Andreou (2006) 403 .472
Arnold (1998) 110 .707
Berdugo- Arstark (2002) 128 .549
Blachman (2003) 228 .440 .483 .592
Brendgen et al. (2005) 468 .420
Butovskaya et al. (2007) 212 .576
Campbell (1999) 139 .641
Carpenter (2002) 75 .260
Carpenter & Nangle (2006) 82 .270
Cillessen & Mayeux (2004) 607 .561
Cillessen et al. (2005) 224 .652
Côté et al. (2007) 1183 .345
Coyne & Archer (2005) 347 .540
Crain (2002) 134 .870
Crick (1995) 252 .656
Crick (1996) 245 .770
Crick (1997) 1166 .630
Crick & Grotpeter (1995) 491 .540 .121 .228
Crick et al. (1997) 65 .607 .280 .367
Geiger (2003) 458 .650 .520 .480
Hawley et al. (2007) 929 .669 .146 .089
Henington (1996) 904 .561 .310 .295
Johnson (2003) 74 .735 .368 .527
Leff (1995) 151 .790 .570 .570
Miller (2001) 150 .530 .530 .420
Murray-Close & Crick (2006) 590 .700 .540 .510
Nelson et al. (2005) 180 .584 .030 .304
Ostrov (under review)a 139 .403 .332 .402
Ostrov & Crick (2007) 132 .030 .045 .155
Ostrov et al. (2004) 60 .000b .100
Pakaslahti & Keltikangas-Järvinen (1998) 839 .580 .269 .250
Phillipsen et al. (1999) 262 –.045 .013
Rys & Bear (1997) 266 .423 .378
Salmivalli et al. (2000) 209 .681 .240 .385
Tomada & Schneider (1997) 314 .666 .153 .240
Werner (2000) 881 .440 .430
Werner & Crick (2004) 517 .440 .430
Zalecki & Hinshaw (2004) 228 .440 .516 .562

aArticle was under review during the preparation of this meta- analytic review. It has subsequently been 
published as Ostrov (2008).
bEffect size is lower-bound estimate based on author’s reporting only nonsignficant associations.
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In this approach, you treat the correlation matrix from each study as 
sufficient statistics for a group in a multigroup SEM. In other words, each 
study is treated as a group, and the correlations obtained from each study 
are entered as the data for that group. Although the multigroup approach is 
relatively straightforward if all studies provided all correlations, this is typi-
cally not the case. The MASEM approach accounts for situations in which 
some studies do not include some variables, by not estimating the parameters 
involving those variables for that “group.” However, the parameter estimates 
are constrained equal across groups, so identification is ensured (assuming 
that the overall model is identified). Note that this approach considers the 
completeness of studies in terms of variables rather than correlations (in con-
trast to the GLS approach described in Section 12.2.2). In other words, this 
approach assumes that if a variable is present in a study, the correlations of 
that variable with all other variables in the study are present. To illustrate 
using the example, if a study measured relation aggression, overt aggression, 
and peer rejection, then this approach requires that you obtain all three cor-
relations among these variables. If a study measured all three variables, but 
failed to report the correlation between overt aggression and rejection (and 
you could not obtain this correlation), then you would be forced to treat the 
study as if it failed to measure either overt aggression or rejection (i.e., you 
would ignore either the relational-overt or the relational- rejection correla-
tion).

The major challenge to this approach comes from the equality constraints 
on all parameters across groups. These constraints necessarily imply that the 
studies are homogeneous. For this reason, Cheung and Chan (2005a) recom-
mended that the initial step in this approach be to evaluate the homogene-
ity versus heterogeneity of the correlation matrices. They propose a method 
in which you evaluate heterogeneity through nested-model comparison of 
an unrestricted model in which the correlations are freely estimated across 
studies (groups) versus a restricted model in which they are constrained 
equal.11 If the change is nonsignificant (i.e., the null hypothesis of homo-
geneity is retained), then you use the correlations (which are constrained 
equal across studies) and their asymptotic covariance matrix as sufficient 
statistics for your multivariate model (e.g., multiple regression in my example 
or, as described by Cheung & Chan, 2005a, within an SEM). However, if the 
change is significant (i.e., the alternate hypothesis of heterogeneity), then it 
is not appropriate to leave the equality constraints in place. In this situation 
of heterogeneity, this original MASEM approach cannot be used to evaluate 
models for the entire set of studies (but see footnote 9). Cheung and Chan 
(2005a) offer two recommendations to overcome this problem. First, you 
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might divide studies based on coded study characteristics until you achieve 
within-group homogeneity. If you take this approach, then you must focus 
on moderator analyses rather than make overall conclusions. Second, if the 
coded study characteristics do not fully account for the heterogeneity, you 
can perform the equivalent of a cluster analysis that will empirically clas-
sify studies into more homogeneous subgroups (Cheung & Chan, 2005b). 
However, the model results from these multiple empirically identified groups 
might be difficult to interpret.

Given the requirement of homogeneity of correlations, this approach 
might be limited if your goal is to evaluate an overall model across studies. 
In the illustrative example, I found significant heterogeneity (i.e., increase in 
model misfit when equality constraints across studies were imposed). I sus-
pect that this heterogeneity is likely more common than homogeneity. Fur-
thermore, I was not able to remove this heterogeneity through coded study 
characteristics. To use this approach, I would have needed to empirically 
classify studies into more homogeneous subgroups (Cheung & Chan, 2005b); 
however, I was dissatisfied with this approach because it would have provided 
multiple sets of results without a clear conceptual explanation. Although this 
MASEM approach might be modified in the future to accommodate hetero-
geneity (look especially for work by Mike Cheung), it currently did not fit 
my needs within this illustrative meta- analysis of relational aggression, overt 
aggression, and peer rejection. As I show next, the GLS approach was more 
tractable in this example, which illustrates its greater flexibility.

12.2.2 the glS Approach

Becker (1992; see 2009 for a comprehensive overview) has described a GLS 
approach to multivariate meta- analysis. This approach can be explained in 
seven steps; I next summarize these steps as described in Becker (2009) and 
provide results for the illustration of relational and overt aggression predict-
ing peer rejection.

12.2.2.a Data Management

The first step is to arrange the data in a way that information from each 
study is summarized in two matrices. The first matrix is a column vector of 
the Fisher’s transformed correlations (Zr) from each study i, denoted as zi. 
The number of rows of this matrix for each study will be equal to the num-
ber of correlations provided; for example, from the data in Table 12.1, this 
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matrix will have one row for the Andreou (2006) study, three rows for the 
Blachman (2003) study, and two rows for the Ostrov et al. (2004) study. The 
second matrix for each study is an indicator matrix (Xi) that denotes which 
correlations are represented in each study. The number of columns in this 
matrix will be constant across studies (the total number of correlations in 
the meta- analysis), but the number of rows will be equal to the number of 
correlations in the particular study. To illustrate these matrices, consider the 
33rd study in Table 12.1, that by Rys and Bear (1997); the matrices (note that 
the z matrix contains Fisher’s transformations of rs shown in the table) for 
this study are:

 
 100

010
33, X

398.

451.
33z

Note that this study, which provides two of the three correlations, is 
represented with matrices of two rows. The indicator matrix (X33) specifies 
that these two correlations are the second and third correlations under con-
sideration (the order is arbitrary, but needs to be consistent across studies; 
here, I have followed the order shown in Table 12.1).

12.2.2.b Estimating Variances and Covariances of Study Effect 
Size Estimates

Just as it was necessary to compute the standard errors of study effect size 
estimates in all meta- analyses (see Chapters 5 and 8), we must do so in this 
approach to multivariate meta- analysis. Here, I describe the variances of esti-
mates of effect sizes, which is simply the standard error squared: Var(Zr) = 
SEZr

2. So the variances of each Zr effect size are simply 1 / (Ni – 3). However, 
for a multivariate meta- analysis, in which multiple effect sizes are consid-
ered, you must consider not only the variance of estimate of each effect size, 
but also the covariances among these estimates (i.e., the uncertainty of esti-
mation of one effect size is associated with the uncertainty of estimation of 
another effect size within the same study). The covariance of the estimate 
of the Fisher’s transformed correlation between variables s and t with the 
estimate of the transformed correlation between variables u and v (where u 
or v could equal s or t) from Study i is computed from the following equation 
(Becker, 1992, p. 343; Beretvas & Furlow, 2006, p. 161)12:
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equation 12.6: covariance of estimate of fisher’s transformed 
correlation between variables s and t with the estimate of the 
transformed correlation between variables u and v in Study i

22

2222

11

5.0

,
iuvisti

ivuivtivsiuviutiusitvituitsisvisuist

ituisvitvisuitvituisvisuiuvist

iuvist
N

ZZCov

Z•	 ist is the Fisher’s transformed estimate of the correlation between 
variables s and t from Study i.
Z•	 iuv is the Fisher’s transformed estimate of the correlation between 
variables u and v from Study i.
ρ•	 ist is the population correlation between variables s and t for Study 
i (see text).
ρ•	 iuv is the population correlation between variables u and v for 
Study i (see text).
ρ•	 isu is the population correlation between variables s and u for 
Study i (see text).
ρ•	 isv is the population correlation between variables s and v for 
Study i (see text).
ρ•	 itu is the population correlation between variables t and u for 
Study i (see text).
ρ•	 itv is the population correlation between variables t and v for 
Study i (see text).
N•	 i is the sample size of Study i.

In this equation, the covariances of estimates are based on two types of 
information: (1) the sample size, contained in the denominator, is known for 
each study; and (2) the population correlations, are unknown. Although this 
population correlation is study- specific (in the sense of assuming a popula-
tion distribution of effect sizes consistent with a random effects model; see 
Chapter 10), simulation studies (Furlow & Beretvas, 2005) have shown that 
the mean correlation across the studies of your meta- analysis is a reason-
able estimate of the population correlations for use in this equation. Becker 
(2009) demonstrates the use of simple sample-size- weighted mean correla-
tions as estimates of these population correlations; that is,

 iii NrNr
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From the ongoing example of data shown in Table 12.1, I find sample-
size- weighted mean correlations of .565, .318, and .330 for the relational-
overt, relational- rejection, and overt- rejection associations, respectively. 
Inserting these mean correlations into Equation 12.6, I can then compute the 
variances and covariances of estimates for each study based on the study’s 
effect size. For instance, the fourth study (Blachman, 2003), which had a 
sample size (N4) of 228, has the following matrix of variances and covari-
ances of estimates:

 
 
 0035.0019.0006.

0019.0035.0007.

0006.0007.0020.

4zCov

Studies that do not report all three correlations will have matrices that 
are smaller; specifically, their matrices will have numbers of columns and 
rows equal to the number of reported effect sizes.

12.2.2.c Estimating a Fixed-Effects Mean Correlation Matrix

After computing effect size (zi), indicator (Xi), and estimation variance/cova-
riance (Cov(zi)) matrices for each study (i), you then create three large matri-
ces that combine these matrices across the individual studies. The first of 
these is z, which is a column vector of all of the individual effect sizes vectors 
from the studies (zis) stacked. In the example from Table 12.1, this vector 
would be:

 
 
 
 
 
 
 
 
 
 
 635.

571.

448.

681.

527.

472.

617.

881.

512.



z

The first three values of this vector (.512, .881, and .617) are the Zrs from 
the single effect sizes provided by the first three studies (Andreou, 2006; 
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Arnold, 1998; and Berdugo- Arstark, 2002 from Table 12.1). The next three 
values (.472, .527, and .681) are the three Zrs from the fourth study (Blach-
man, 2003), which provided three effect sizes. The next value (.448) is the 
single Zr from the fifth study (Brendgen et al., 2005). I have omitted the val-
ues of this matrix until the last (38th) study (Zalecki & Hinshaw, 2004), 
which provided two effect sizes (Zrs = .571 and .635). In total, this z vector 
has 76 rows (i.e., a 76 × 1 matrix) that contain the 76 effect sizes from these 
38 studies.

The second large matrix is X, which is a stacked matrix of the indica-
tor matrices of the individual studies (Xi). Because all of the study indicator 
matrices had three columns, this matrix also has three columns. However, 
each study provides a number of rows to this matrix equal to the number of 
effect sizes; therefore there will be 76 rows in the X matrix in the example. 
Specifically, this matrix will look as follows:

 
 
 
 
 
 
 
 
 
 
 100

010

001

100

010

001

001

001

001



X

The first three rows indicate that the first three studies provide effect sizes 
for the relational-overt association (the first column, as in Table 12.1). Rows 
four to six are from the fourth study (Blachman, 2003), indicating that the 
three effect sizes (corresponding to values in the z vector) are Fisher’s trans-
formations of the relational-overt, relational- rejection, and overt- rejection 
correlations, respectively. Row seven indicates that the fifth study (Brend-
gen et al., 2005) contributed an effect size of the relational-overt (i.e., first) 
association. Again, I have omitted further values of this matrix until the last 
(38th) study (Zalecki & Hinshaw, 2004), which has two rows in this matrix 
indicating that it provided effect sizes for the second (relational- rejection) 
and third (overt- rejection) associations. In total, this X matrix has a number 
of rows equal to the total number of effect sizes (76 in this example) and a 
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number of columns equal to the number of correlations you are considering 
(3 in this example).

The final combined matrix is Ψ, which contains the variances/covari-
ances of estimates from the individual studies. Specifically, this matrix is a 
blockwise diagonal matrix in which the estimate variance/covariance matrix 
from each study i is placed near the diagonal, and all other values are 0. This 
is probably most easily understood by considering this matrix in the context 
of my ongoing example:

 
 
 
 
 
 
 
 
 
 
 0035.0019.00000000

0019.0035.00000000

00

000010.000000

0000035.0019.0006.000

0000019.0035.0007.000

0000006.0007.0020.000

0000000036.00

00000000042.0

000000000011.

ˆ

















Ψ

Here, the first three elements along the diagonal represent the variances 
of the estimates of the single effect sizes provided by these three studies. 
The next study is represented in the square starting in cell 4, 4 (fourth row, 
fourth column) to cell 6, 6. These values represent the variances and covari-
ances among estimates of the three effect sizes from this study, which were 
shown above as Cov(z4). The variance of the single effect size of study 5 is 
shown next along the diagonal. I have again omitted the remaining values 
until the last (38th) study (Zalecki & Hinshaw, 2004). This study provided 
two effect sizes, and the variances (both .0035) and covariance (.0019) of 
these estimates are shown as a square matrix around the diagonal. Note that 
all other values in this matrix are 0. In total, this Ψ matrix is a square, sym-
metric matrix with 76 (total number of effect sizes in this example) rows and 
columns.

These three matrices, z, X, and, Ψ are then used to estimate (via gener-
alized least squares methods) fixed- effects mean effect sizes, which are con-
tained in the column vector ζ. The equation to do so is somewhat daunting 
looking, but is a relatively simple matter of matrix algebra (Becker, 2009, 
p. 389):

ˆ

ˆ

ˆ

ˆ
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equation 12.7: generalized least squares estimation 
of fixed-effects mean effect sizes

ζ = (x′Ψ–1x)–1x′Ψ –1z

•	ζ is a column vector of fixed- effects estimated mean effect sizes, 
with dimensions of number of effect sizes of interest × 1.
x•	  is the indicator matrix, with dimensions of number of effect sizes 
reported across all studies × number of effect sizes of interest.

•	Ψ is the blockwise diagonal matrix of variances/covariances of 
estimates of effects sizes in the studies, which is a square matrix 
with numbers of rows and columns equal to the number of effect 
sizes reported across all studies.
z•	  is the column vector of effect sizes reported in the studies, with 
dimensions of number of effect sizes reported across all studies 
× 1.

In the ongoing example, working through the matrix algebra yields the 
following:

 
 

343.

330.

664.

ζ̂

These findings indicate that the fixed- effects mean Zrs are .66, .33, and 
.34 for the relational-overt, relational- rejection, and overt- rejection associa-
tions, respectively. Back- transforming these values to the more interpretable 
r yields .58, .32, and .33. If these fixed- effects values are of interest (see Sec-
tion 12.2.2.d on evaluating heterogeneity), then you are likely interested in 
drawing inference about these mean effect sizes. Variances of the estimates of 
the mean Zrs (i.e., the squared standard errors) are found on the diagonal of 
the matrix obtained using the following equation (Becker, 2009, p. 389):

equation 12.8: variances of estimates of fixed- effects mean 
effect sizes

Var(ζ) = (x′Ψ –1x)–1

•	ζ is a column vector of fixed- effects estimated mean effect sizes.
x•	  is the indicator matrix.

•	Ψ is the blockwise diagonal matrix of variances/covariances of 
estimates of effects sizes in the studies.

ˆ ˆ ˆ

ˆ

ˆ

ˆ ˆ

ˆ

ˆ
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12.2.2.d Evaluating Heterogeneity of Effect Sizes

Just as when you are analyzing a single effect size, the appropriateness of a 
fixed- effects model depends on whether effect sizes are homogeneous versus 
heterogeneous. If they are heterogeneous, then you should use a random-
 effects model (see Chapter 10), which precludes the MASEM approach 
( Cheung & Chan, 2005a). The test of heterogeneity in the multivariate case 
is an omnibus test of whether any of the effect sizes significantly vary across 
studies (more than expected by sampling fluctuation alone; see Chapter 8). 
Becker (2009) described a significance test that relies on a Q value as in the 
univariate case, but here this value must be obtained through matrix algebra 
using the following equation (Becker, 2009, p. 389):

equation 12.9: omnibus test of heterogeneity (Q) of a set 
of effect sizes

Q = z′(Ψ –1 – Ψ –1x(x′Ψ –1x)–1x′Ψ –1)z

z•	  is the column vector of effect sizes reported in the studies, with 
dimensions of number of effect sizes reported across all studies × 1.

•	Ψ is the blockwise diagonal matrix of variances/covariances of 
estimates of effect sizes in the studies, which is a square matrix with 
numbers of rows and columns equal to the number of effect sizes 
reported across all studies.
x•	  is the indicator matrix, with dimensions of number of effect sizes 
reported across all studies × number of effect sizes of interest.

This Q value is evaluated as a c2 distribution, with df equal to the num-
ber of effect sizes reported across all studies minus the number of effect sizes 
of interest.

In the example meta- analysis of studies in Table 12.1, Q = 1450.90. Eval-
uated as a c2 value with 73 df (i.e., 76 reported effect sizes minus 3 effect sizes 
of interest), this value is statistically significant (p < .001). This significant 
heterogeneity indicates (1) the need to rely on a random effects model to 
obtain mean effect sizes, or (2) the potential to identify moderators of the 
heterogeneity in effect sizes.

12.2.2.e Estimating a Random-Effects Mean Correlation Matrix

As you recall from Chapter 10, one method of dealing with between-study 
heterogeneity of a single effect size is to estimate the between-study vari-

ˆ ˆ ˆ ˆ

ˆ
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ance (t2), and then account for this variance as uncertainty in the weights 
applied to studies when computing the (random- effects) mean effect size. 
The same logic applies here, except now you must estimate and account for 
several between-study variances—one for each effect size in your multivari-
ate model.

The first step, then, is to estimate between-study variances. Although 
there likely also exists population-level (i.e., beyond sampling fluctuation) 
covariation in effect sizes across studies, Becker (2009) stated that in practice 
these covariances are intractable to estimate and that accounting only for 
between-study variance appears adequate.13 Therefore, you simply estimate 
the between-study variance (t2) for each effect size of interest (as described in 
Chapter 10). In the ongoing example, the estimated between-study variances 
are .0372, .0357, and .0296 for the relational-overt, relational- rejection, and 
overt- rejection effect sizes.

As you recall from Chapter 10, the estimated between-study variance 
for a single effect size (t2) is added to the study- specific sampling variance 
(SEi

2) to represent the total uncertainty of the study’s point estimate to the 
effect size, and the random- effects weight is the inverse of this uncertainty: 
wi* = 1/(t2 + SEi

2). In this GLS approach, we modify the previously described 
matrix of variances/covariances of estimates of studies (Ψ) by adding the 
appropriate between-study variance estimate to the variances (i.e., diagonal 
elements) to produce a random- effects matrix, ΨRE. To illustrate using the 
ongoing example:

 
 
 
 
 
 
 
 
 
 
 0331.0019.00000000

0019.0392.00000000

00

000382.000000

0000331.0019.0006.000

0000019.0392.0007.000

0000006.0007.0393.000

0000000408.00

00000000414.0

000000000384.

ˆ RE

















Comparison of the values in this matrix relative to those in the fixed-
 effects Ψ is useful. Here we see that the first value on the diagonal (for the 
first study, Andreou, 2006) is .0384, which is the sum of t2 (.0372) for the 
effect size indexed by this value (relational-overt) and the study- specific 

ˆ

ˆ

ˆ
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variance of this estimate from the fixed- effects matrix (.0011) (note that 
rounding error might produce small discrepancies). Similarly, the second 
value on the diagonal is for the second study, which also provided an effect 
size of the relational-overt association, and this value (.0414) is the sum of 
the same t2 (.0372) as Study 1 (because they both report relational-overt 
effect sizes) plus that study’s sample-size specific variance of sampling error 
from the fixed- effects matrix (.0042). Consider next the fourth through 
sixth values on the diagonal, which are for the three effect sizes from Study 
4 (Blachman, 2003). The first value (.0393) is for the relational-overt effect 
size estimate, which is the sum of the t2 for that effect size (.0372) plus the 
sampling variance for this study and this effect size (.0020). The second 
value for this study is .0392, which is the sum of the t2 for the relational-
 rejection effect size (.0357) and the sampling variance for this study and 
this effect size found in the parallel cell of the fixed- effects matrix (Ψ), 
.0035. The third value for this study (.0331) is similarly the sum of the t2 for 
the overt- rejection effect size (.0296) and sampling variance (.0035). Note 
that the off- diagonal elements (covariances of effect size estimates) do not 
change in this approach because we have assumed no between-study cova-
riance of population effect sizes.

After computing this matrix of random- effects variances and covari-
ances of estimates (ΨRE), it is relatively straightforward to estimate a matrix 
of random- effects mean effect sizes. You simply use Equation 12.7, but insert 
ΨRE rather than Ψ. Standard errors of these random- effects mean effect 
sizes can be estimated using Equation 12.8. In the ongoing illustration, the 
random- effects mean correlations (back- transformed from Zrs) are .59 (95% 
confidence interval = .54 to .63) for relational-overt, .32 (95% confidence 
interval = .24 to .39) for relational- rejection, and .36 (95% confidence interval 
= .29 to .43) for overt- rejection.

12.2.2.f Fitting a Multivariate Model to the Matrix 
of Average Correlations

After obtaining the meta- analytically derived matrix of average correlations, 
it is now possible to fit a variety of multivariate models. Considering the 
ongoing example, I am interested in fitting a multiple regression model in 
which relational and overt aggression are predictors of rejection. Recalling 
that multiple regression analyses partition the correlation matrix into depen-
dent and independent variables (see Equation 12.1), it is useful to display 
the results of the random- effects mean correlations (which I express more 
precisely here) as follows:

ˆ

ˆ
ˆ

ˆ
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 15877.3623.

5877.13197.

3623.3197.1

R

This overall correlation matrix is then partitioned into matrices of (1) 
the correlations of the dependent variable (rejection) with the predictors 
(relational and overt aggression), Riy; and (2) the correlations among the pre-
dictors, Rii:

 
 
 
 

3623.

3197.
iyR

15877.

5877.1
iiR

Applying these matrices within Equation 12.1 yields regression coeffi-
cients of .16 for relational aggression and .27 for overt aggression. These two 
predictors explained 14.9% of the variance in the dependent variable in this 
model (i.e., R2 = .149).

12.3 PrActIcAl MAtterS: the InterPlAy 
Between MetA-AnAlytIc ModelS And theory

As with any data- analytic approach, meta- analytic techniques are most valu-
able when applied in the service of theories relevant to the content of your 
review. I place this discussion on the interplay between meta- analysis and 
theory in this chapter on multivariate meta- analysis because many of our 
theories are multivariate and therefore benefit from multivariate analyses. 
However, consideration of theory is important for any meta- analysis— 
univariate or multivariate—just as it is for any form of data analysis in pri-
mary research.

A full philosophical consideration of what constitutes a “theory” lies far 
beyond the scope of this book. Instead, I next frame my discussion of the 
interplay between theories and meta- analytic results in terms of the meta-
phor of a “nomological net” (called a “nomological network” by Cronbach & 
Meehl, 1955). In this metaphor, the knots of the net represent constructs, and 
the webbing among the knots represent associations among the constructs. 
The coverage of the net represents the scope of the theory in terms of the 
phenomena the theory attempts to explain. Theory specifies expectations for 
this net in terms of what the knots are (i.e., what constructs are relevant); the 
webbing among the knots (i.e., what directions and magnitudes of associa-
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tions among the constructs are expected); and the coverage of the net (i.e., 
what, when, and for whom the theory is applicable). Different theories may 
specify nets that differ in terms of their knots, webbing, and coverage; in fact, 
potentially infinite nets (theories) could be specified.14 Thus, theory informs 
your meta- analysis in the very fundamental ways of specifying the constructs 
you consider (i.e., your definition of constructs of interest), the associations 
you investigate (i.e., the effect sizes you meta- analyze), and the scope (i.e., 
breadth of samples and designs included) you include in your meta- analysis 
(i.e., the inclusion criteria; see Chapter 3).15

Having described how theory guides your meta- analysis, I next turn to 
how your meta- analysis can evaluate theories. I organize this consideration 
around the three pieces of the nomological net metaphor: constructs (knots), 
associations (webbing), and scope (coverage). Following this consideration 
of how meta- analysis can evaluate theories, I then turn to the topic of model 
evaluation and building with multivariate meta- analysis.

12.3.1 evaluating variables and constructs 
to Inform concepts

It is useful to consider the indirect way by which theories inform measure-
ment in science (for more in-depth treatments, see, e.g., Britt, 1997; Jaccard & 
Jaccoby, 2010). When theories describe things, the things that they describe 
are concepts. Concepts are the most abstract representation of something—
the ideas we hold in our minds that a thing exists. For example, any layperson 
will have a concept of what aggression is. Well- articulated theories go further 
than abstract concepts to articulate constructs, which are more specifically 
defined instances of the concept. For example, an aggression scholar might 
define the construct of aggression “as behavior that is aimed at harming or 
injuring another person or persons” (Parke & Slaby, 1983, p. 550). Such a 
definition of a construct is explicit in terms of what lies within and outside 
of the boundaries (e.g., an accident that injures someone is not aggression 
because that was not the “aim”). Constructs might be hierarchically orga-
nized; for instance, the construct of “aggression” might encompass more spe-
cific constructs such as “relational aggression” and “overt aggression” such 
as I consider in the illustrative example of this chapter. Theories may differ 
in terms of whether they focus on separable lower-order constructs (within 
the nomological net metaphor: multiple knots) or singular higher-order con-
structs (a single, larger knot in the net).

Despite their specificity, constructs cannot be directly studied. Instead, 
a primary research study must use variables, which are rules for assigning 
numbers that we think reasonably capture the level of the construct. These 
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variables might be single items (e.g., frequency of punching) or the aggrega-
tion of multiple items (frequency of punching, calling names, and spreading 
rumors). They may have either meaningful (e.g., number of times observed in 
a week) or arbitrary (e.g., a 5-point Likert-type scale) metrics. They may have 
different levels of measurement, ranging from continuous (e.g., number of 
times a child is observed enacting aggression), to ordinal (e.g., a child’s aver-
age score among multiple Likert-type items), to dichotomous (e.g., the pres-
ence versus absence of a field note recording a child’s aggression). Regard-
less, variables are the researcher’s rule-bound system of assigning values to 
represent constructs. However, there are an infinite number of variables (i.e., 
ways of assigning values) that could represent a construct, and every primary 
study will need to select a limited subset of these variables.

Meta- analysis is a powerful tool to evaluate variables and constructs to 
inform theoretical concepts. As mentioned, any single primary study must 
select a limited subset of variables; however, the collection of studies likely 
contains a wider range of variables. Meta- analytic combination of these mul-
tiple studies—each containing a subset of variables representing the con-
struct—will provide a more comprehensive statement of the construct itself. 
This is especially true if (1) the individual studies use a small subset of vari-
ables, but the collection of studies contains many subsets with low overlap so 
as to provide coverage of many ways to measure the construct; and (2) you 
correct for artifacts so as to eliminate less interesting heterogeneity across 
methods of measurement (e.g., correcting for unreliability). Tests of modera-
tion across approaches to measuring variables can also inform whether some 
approaches are better representations of the construct than others.

Furthermore, meta- analysis can clarify the hierarchical relations among 
constructs by informing the magnitude of association among constructs that 
might be theoretically separable (or not). For example, I provided the exam-
ple of a hierarchical organization of the construct of aggression, which might 
be separated into relational and overt forms (i.e., two lower-order constructs) 
on theoretical grounds. Meta- analysis can inform whether the constructs are 
indeed separate by combining correlations from studies containing variables 
representing these constructs. If the correlation is not different from 1.0 (or 
–1.0 for constructs that might be conceptualized as opposite ends of a single 
continuum), then differentiation of the constructs is not supported; however, 
if the confidence intervals of the correlation do not include ±1.0, then this is 
evidence supporting their differentiation.16 For instance, in the full, artifact-
 corrected meta- analysis of 98 studies reporting associations between rela-
tional and overt aggression (this differs from the limited illustrative example 
above; see Card et al., 2008), we found an average correlation of .76 with 
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a 95% confidence interval ranging from .72 to .79, supporting the separate 
nature of these two constructs.

12.3.2 evaluating Associations

As I mentioned in Chapter 5, the most common effect sizes used in meta-
 analyses are two variable associations, which can be considered between two 
continuous variables (e.g., r), between a dichotomous grouping variable and 
a continuous variable (e.g., g), or between two dichotomous variables (o). 
These associations represent the webbing of the nomological net.

If well- articulated, theories should offer hypotheses about the presence, 
direction, and strength of various associations among constructs. These 
hypotheses can directly be tested in a meta- analysis by combining all avail-
able empirical evidence. Meta- analytic synthesis provides an authoritative 
(in that it includes all available empirical evidence) and usually precise (if a 
large number of studies or studies with large samples are included) estimate 
of the presence, direction, and magnitude of these associations, and thus play 
a key role in evaluating hypothesized associations derived from a theory. If 
you correct for artifacts (see Chapter 6), then it is possible to summarize 
and evaluate associations among constructs, which are more closely linked 
to theoretically derived hypotheses than potentially imperfectly measured 
variables, as I described earlier.

A focus on associations can also help inform the structure of constructs 
specified by theories. I described in the previous section how meta- analysis 
can be used to evaluate whether lower-order constructs can be separated (i.e., 
the correlation between them is smaller than ±1.0). Meta- analysis can also 
tell us if it is useful to separate constructs by evaluating whether they dif-
ferentially relate to other constructs. If there is no evidence supporting dif-
ferential relations to relevant constructs,17 then the separation is not useful 
even if it is possible (i.e., even if the correlation between the constructs is not 
±1.0), whereas differential associations would indicate that the separation of 
the constructs is both possible and useful. In the meta- analysis of relational 
and overt aggression, my colleagues and I evaluated associations with six 
constructs, finding differential relations for each and thus supporting the 
usefulness of separating these constructs.

Most meta- analyses will only evaluate one or a small number of these 
hypotheses. Because most useful theories will specify numerous associations 
(typically more than could be evaluated in a single meta- analysis), a single 
meta- analysis is unlikely to definitively confirm or refute a theory. Through 
many separate meta- analyses evaluating different sections of the webbing of 
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the net, however, meta- analysis provides a cumulative approach to gathering 
evidence for or against a theory.

12.3.3 evaluating Scope

In the metaphor of the nomological net, the coverage (size and location) of 
the net represents the scope of phenomena the theory attempts to explain. As 
I mentioned in Section 12.3.2, a series of meta- analyses can inform empirical 
support for a theory across this scope, thus showing which sections of the net 
are sound versus in need of repair.

Meta- analysis can also inform the scope of a theory through moderator 
analyses. As you recall from Chapter 9, moderator analyses tell us whether 
the strength, presence, or even direction of associations differs across differ-
ent types of samples and methodologies used by studies. Theories predicting 
universal associations would lead to expectations that associations (i.e., the 
webbing in the net) are consistent across a wide sampling or methodological 
scope, and therefore moderation is not expected.18 If moderation is found 
through meta- analysis, then the theory might need to be limited or modified 
to account for this nuance in scope. In contrast, some theories explicitly pre-
dict changes in associations.19 Evaluating moderation within a meta- analysis, 
in which studies may vary more in their sample or methodological features 
than is often possible in a single study, provides a powerful evaluation of 
the scope of theories. However, you should still be aware of the samples and 
methodologies represented among the studies of your meta- analysis in order 
to accurately describe the scope that you can evaluate versus that which is 
still uncertain.

12.3.4 Model Building and evaluation

Perhaps the most powerful approach to comparing competing theories is to 
evaluate multivariate models predicted by these theories. Models are portray-
als of how multiple constructs relate to one another in often complex ways. 
Within the metaphor of the nomological net, associations can be said to be 
small pieces consisting of a piece of webbing between two knots, whereas 
models are larger pieces of the net (though usually still just a piece of the 
net) consisting of several knots and the webbing among them. Because virtu-
ally all contemporary theorists have knowledge of a similar body of existing 
empirical research, different theories will often agree on the presence, direc-
tion, and approximate magnitude of a single association.20 However, theories 
often disagree as to the relative importance or proximity of causation among 
the constructs.
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These disagreements can often be explicated as competing models, which 
can then be empirically tested. After specifying these competing models, you 
then use the methods of multivariate meta- analysis to synthesize the avail-
able evidence as sufficient data to fit these competing models (as described 
earlier in this chapter). Within these models, it is possible to compare relative 
strengths of association to evaluate which constructs are stronger predictors 
of others and to pit competing meditational models to evaluate which con-
structs are more proximal predictors than others. Such model comparisons 
can empirically evaluate the predictions of competing theories, thus provid-
ing relative support for one or another. However, you should also keep in 
mind that your goal might be less about supporting one theory over the other 
than about reconciling discrepancies. Toward this goal, meta- analytic mod-
erator analyses can be used to evaluate under what conditions (of samples, 
methodology, or time) the models derived from each theory are supported. 
Such conclusions would serve the function of integrating the competing the-
ories into a broader, more encompassing theory.

In the structural equation modeling literature, it is well known that a 
large number of equivalent models can fit the data equally well (e.g., Mac-
Callum, Wegener, Uchino, & Fabrigar, 1993). In other words, you can evalu-
ate the extent to which a particular model explains the meta- analytically 
derived associations, and even compare multiple models in this regard, but 
you cannot conclude that this is the only model that explains the associa-
tions. Because multivariate meta- analytic synthesis provides a rich set of 
associations among multiple constructs— perhaps a set not available in any 
one of the primary studies—these data can be a valuable tool in evaluating 
alternate models. Although I discourage entirely exploratory data mining, it 
is useful to explore alternate models that are plausible even if not theoreti-
cally derived (as long as you are transparent about the exploratory nature of 
this endeavor). Such efforts have the potential to yield unexpected models 
that might suggest new theories. In this regard, meta- analysis is not limited 
to only evaluating existing theories, but can serve as the beginning of an 
inductive theory to be evaluated in future research.

12.4 SuMMAry

In this chapter, I have described how you can use meta- analysis to evalu-
ate multivariate models. I first reminded you that most multivariate models 
can be estimated using correlation matrices, and then I described the general 
logic and challenges of using meta- analysis to derive these correlation matri-
ces. Next I presented two cutting-edge approaches to performing multivariate 
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meta- analysis, focusing especially on the GLS approach (e.g., Becker, 2009) 
given its greater current flexibility. I then described the interplay between 
theory and meta- analysis—a topic relevant to all meta- analyses but especially 
applicable to multivariate meta- analysis. Specifically, I considered how meta-
 analyses are informed by, and can be used to evaluate, three pieces of the 
nomological net metaphor of theories: constructs (knots), associations (web-
bing), and scope (coverage). Finally, I described the possibilities of evaluating 
competing theoretically derived models using multivariate meta- analysis.

12.5 recoMMended reAdIngS

Becker, B. J. (2009). Model-based meta- analysis. In H. Cooper, L. V. Hedges, & J. C. 
Valentine (Eds.), The handbook of research synthesis and meta- analysis (2nd ed., 
pp. 377–395). New York: Russell Sage Foundation.—This chapter represents a 
complete overview of the GLS approach to multivariate meta- analysis. Although the 
approach is technically challenging, this chapter is relatively accessible to readers 
without extensive statistical training.

Cheung, M. W.-L., & Chan, W. (2005a). Meta- analytic structural equation modeling: A 
two-stage approach. Psychological Methods, 10, 40–64.—This article is the seminal 
introduction to the MASEM approach. Although I have not emphasized this approach 
as much as the GLS approach in this chapter, it is worth becoming familiar with this 
approach, given that advances that address the shortcomings (i.e., necessity of homo-
geneity; see footnote 9) may be developed in the near future.

Miller, N., & Pollock, V. E. (1994). Meta- analytic synthesis for theory development. In H. 
Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 457–483). 
New York: Russell Sage Foundation.—This chapter is one of very few writings devoted 
entirely to the interplay between theory and meta- analysis. Although my own presenta-
tion did not follow that of this chapter closely, this work is a valuable reading for further 
consideration of this interplay.

noteS

1. In this section, I do not describe matrix equations for standard error estimates 
of these parameters in order both to conserve space and to avoid technical com-
plexity. Equations for these standard errors can be found in any intermediate to 
advanced textbook on multivariate statistics.

 2. Description of the computation of eigenvectors is beyond the scope of this book. 
The computation is covered in most multivariate statistics books (e.g., Appendix 
A.7 of Tabachnick & Fidell, 1996) and is nearly always performed using a matrix 
calculator.
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 3. This number varies by the method of factor analysis. Maximum likelihood fac-
tor analysis can extract a maximum number of factors such that the number of 
parameter estimates (factor loadings, residual variances, factor intercorrelations) 
is less than or equal to the number of variances and covariances in the input 
matrix. Principal factors analysis can extract a number of factors one less than 
the number of variables. Principal components analysis can extract a number of 
components equal to the number of variables (because the residual variance is 
assumed to be 0).

 4. Keep in mind that EFA (vs. PCA) also models residual variances of the variables. 
The matrix of residual variances is not shown in this equation for predicted cor-
relations because the expected values of residuals are 0 and traditional EFA does 
not model correlated residuals.

 5. Strictly speaking, an EFA is appropriate when you have no expectations about 
either the number of factors or which variables are likely to substantially load on 
ehich factors. I believe that this absence of expectations is rarely the situation. 
Instead, researchers typically have expectations (perhaps multiple alternative 
expectations that can be compared) about the number of factors and pattern of 
strong versus weak loadings. In the latter situation, a confirmatory model such 
as CFA is more appropriate.

 6. This equation is for general CFA in which S is a predicted variance/covariance 
matrix. In meta- analytic CFA, S will usually be a predicted correlation matrix 
(but see Beretvas & Furlow, 2006 for an alternative).

 7. Beretvas and Furlow (2006) described an alternative approach, in which you 
would also meta- analytically combine standard deviations to produce a variance/
covariance matrix for analysis. Cheung and Chan (2009) have also described an 
approach to synthesizing covariance matrices.

 8. The following equation (from Kline, 2010) provides the possible values of the 
correlation between Y and Z (rYZ) given the correlations between X and Y (rXY) 
and between X and Z (rXY):

 
 

22 11 XZXYXZXY rrrr

 From the example in the text, where rXY = .80 and rXZ = .70, the range of possible 
values of rYZ is from .13 to .99.

 9. As this book was being finalized, I learned that Mike Cheung is extending his 
approach to random- effects models. I encourage readers to search for his recent 
work and his website for updated details.

10. Note that the values for the relational- rejection association do not perfectly agree 
with previous presentations of these data (e.g., Table 8.1) because the values pre-
sented here are not corrected for artifacts.
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11. An alternative criterion for comparison would be to rely on the practical fit indi-
ces provided in CFA. For instance, you might decide that if the restricted (cor-
relations constrained equal) model has acceptable fit (e.g., RMSEA < .08; CFI > 
.90), then the homogeneity restriction is tenable. You should be aware, however, 
that this approach to evaluating homogeneity versus heterogeneity differs from 
the approach I have described elsewhere in the book (Chapter 8) and has not 
been evaluated.

12. If you read Becker (2009) for further description of this approach, please be 
aware that there is an error in the printing of this equation (p. 387, Equation 
20.2) in which the third through sixth ρ s are not squared).

13. Others have argued that these covariances can and often should be estimated. 
The solutions proposed are rather technically complex, but interested readers can 
consult Kalaian and Raudenbush (1996), look for ongoing work by Adam Haf-
dahl (following Hafdahl, 2009, 2010), or consider adapting a Bayesian approach 
(Prevost et al., 2007).

14. The possibility of an infinite number of nets is analogous to Popper’s (1959) 
portrayal of theories as being provisional approximations of the world until they 
are falsified and replaced by theories that better account for observations. For 
further consideration see Chapter 1 of Cook and Campbell (1979).

15. Of course, existing theories also guide these decisions in the body of primary 
research. The implication of this fact is that it might not be possible to evaluate 
a theory through meta- analysis if there do not exist primary studies guided by 
this theoretical perspective.

16. Here, it would be critical to correct for artifacts so that a 1.0 population correla-
tion does not appear smaller due to attenuation of the effect sizes in the studies.

17. With relevance defined by theoretical propositions of concepts—and in turn 
constructs—that should have differential relations to the presumably separate 
constructs.

18. The evaluation of the universality of a theory is valuable only if there is adequate 
representation of a wide range of samples and methodologies in the literature.

19. For example, some theories of human development describe the concept of dif-
ferentiation, that phenomena become more separate with development, which 
would predict moderation of the correlation between constructs with age (see 
e.g., Lerner, 2002, p. 118).

20. Exceptions can exist, however. When theories disagree, it is likely that (1) the 
theories were put forth before empirical literature existed, (2) the theorists have 
incomplete knowledge of the available empirical literature, (3) the theorists dis-
agree in the conclusion they reach in synthesizing the literature, or (4) there is 
imperfect correspondence between the variables used in primary studies and the 
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constructs specified by either or both theories. Given the advantages of meta-
 analysis as a method of drawing authoritative conclusions from the existing 
empirical research (see Chapter 2), meta- analysis is highly valuable in resolving 
disagreements about a single association arising from the first three sources. 
With regard to the fourth source, you can carefully code the correspondence 
between the theoretical construct and the variables used in primary studies and 
then evaluate meta- analytic moderator analyses to potentially reconcile these 
conflicting views.
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13

Writing Meta-Analytic Results

After many long—yet hopefully enjoyable— months of planning your meta-
 analysis, searching for and retrieving relevant research reports, coding study 
characteristics and effect sizes from these reports, and then meta- analytically 
combining and comparing these effect sizes comes what is arguably the most 
important step: presenting the results to the world. This chapter provides strate-
gies for successfully making this presentation. Specifically, in this chapter I 
describe the nuts and bolts of writing (or otherwise presenting) your meta-
 analysis, such as what to report in each section of your report, using figures 
and tables, and avoiding common problems in writing your results. Before turn-
ing to these details, however, it is useful to take a step back and revisit some 
dimensions along which literature reviews vary.

13.1 dIMenSIonS of lIterAture revIewS, revISIted

Before I turn to specific recommendations for writing the results of your 
meta- analysis, it is important for you to recognize that there is no single 
“right” way to write these results. As I described in Chapter 1 (see also Coo-
per, 1988), literature reviews vary along several dimensions. Before you begin 
to write the results of your meta- analysis, you should have a clear under-
standing of the goals, organization, and audience for this report.
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13.1.1 goals of Meta-Analysis

You began the meta- analysis with some goal in mind, and it is important that 
you keep this goal in mind as you write your report. As I described in Chap-
ter 2 (see also Cooper, 1988), the goal of conducting a meta- analytic review 
(indeed, most literature reviews) is usually that of integration. However, this 
general goal of integration entails at least two subgoals (see Cooper, 1988).

One aspect of integration is generalization from specific instances. For 
example, the example meta- analysis I have described throughout this book 
(involving the association between relational aggression and peer rejection) 
relied on a number of studies, each specific in terms of age of the sample, 
method of measuring relational aggression, and a number of other features. 
By combining results (Chapters 8 and 10) across these specific instances 
(studies), it is possible to make statements that are more generalized, albeit 
within the bounds of the population defined by the studies represented in 
the meta- analysis. This generalization is not made uncritically, however. 
Through the comparison of studies (i.e., moderator analyses; Chapter 9) that 
differ on conceptually relevant characteristics, it is possible to empirically 
evaluate where findings can (absence of moderation) and cannot (presence of 
moderation) be generalized.

A second aspect of integration involves the resolution of conflicting find-
ings or conclusions. Often, conflicting conclusions come from only seemingly 
conflicting findings from the Null Hypothesis Significance Testing (NHST) 
Framework, as I illustrated in Chapter 5. In these cases, meta- analysis, which 
focuses on effect sizes across studies rather than conclusions regarding sta-
tistical significance, typically provides considerable clarity. In other cases, 
conflicting findings (and resulting conflicting conclusions) might not really 
be conflicting, but simply due to sampling fluctuations. Here, formal tests 
of heterogeneity of effect sizes (Chapter 8) will provide clearer conclusions 
about whether findings are truly conflicting. Finally, results might truly be 
conflicting (effect sizes are heterogeneous); here, meta- analytic results still 
have much to offer. One approach would be to accept this conflicting evi-
dence (i.e., heterogeneous effect sizes), yet still offer the best generalizable 
answer through random- effects models (Chapter 8). Alternatively, you might 
use meta- analytic approaches to go beyond the existence of conflicting find-
ings (i.e., reporting the random- effects mean) to evaluate the sources of con-
flicting findings through moderator analyses (Chapter 9).1

Although the goal of your meta- analysis likely involves one or both of 
these aspects of integration, this does not have to be your only goal in writ-
ing the results of your review. Other goals of literature reviews include (1) 



  Writing Meta- Analytic Results 315

critiquing the body of research that you have reviewed and (2) identifying 
key directions for future conceptual, methodological, and empirical work 
(see Chapter 2 and Cooper, 1988). Although neither of these goals is directly 
met by the techniques of meta- analysis, they are certainly goals that you, the 
author (and the person who has just carefully studied the available litera-
ture), can certainly address in your writing.

13.1.2 organization of the Meta-Analysis

The results of simple meta- analyses (i.e., those reporting only mean effect 
sizes and a limited number of moderators analyses from a single sample of 
studies) have less flexibility as to how they can be organized. However, more 
complex meta- analytic reviews (i.e., those with many moderator analyses 
or those comprised of several discrete meta- analyses of different samples 
of empirical literature) can be organized in various ways. Cooper (1988) 
stated that literature reviews are commonly organized in three ways: his-
torically (i.e., studies reviewing the progress of a field of study across time), 
conceptually (i.e., studies addressing a common idea or question are orga-
nized together), or methodologically (i.e., studies with similar methodologi-
cal or measurement approaches are organized together). Although each of 
these organizational approaches is an option, you are most likely to organize 
the results of your meta- analytic review either conceptually or methodologi-
cally. To illustrate a conceptual organization, the manuscript containing the 
example meta- analytic review I have used throughout this book (Card et al., 
2008) reported results of eight separate meta- analyses: one meta- analysis 
investigating gender differences in relational aggression, a second meta-
 analysis investigating the association of relational aggression with overt 
forms of aggression, and six smaller meta- analysis investigating associations 
of relational aggression with six distinct adjustment correlates. To illustrate a 
methodological organization, a meta- analysis might separately report results 
of concurrent naturalistic, longitudinal naturalistic, and experimental stud-
ies of a particular effect.

13.1.3 Audience for the Meta-Analysis

Given that I have characterized the writing of your meta- analysis as “pre-
senting the results to the world,” it makes sense that you would want to have 
in mind who is in that world—in other words, your intended audience. The 
potential audience for meta- analyses varies in terms of both their knowledge 
of the topic you have focused on and their familiarity with meta- analytic tech-
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niques. Scientists specializing in the area of your review are likely familiar 
with the terminology and theoretical perspectives, so they typically need less 
introduction and guidance in these areas (though you should not neglect this 
entirely). However, they may be unfamiliar with meta- analytic techniques, 
depending on the prevalence of meta- analyses in your particular field. Scien-
tists outside of your specialized area will need more introduction to the topic 
area and may or may not be familiar with meta- analytic techniques. Practi-
tioners, policymakers, and educated laypeople will almost universally need 
more didactic explanation of your topic and meta- analytic techniques.

Complicating matters even further, it is likely that your presentation 
will reach multiple audiences. If you decide that the only readers you care to 
inform are specialists in your field who are familiar with meta- analysis—and 
you write your report only for this audience—you should realize that you are 
probably targeting a very small audience, and the likelihood that your report 
will be published in a widely read outlet is small. Even if you decide to target 
a broader range of scientists within your field, you should recognize that 
others (e.g., educators, practitioners, policymakers) may read your report. 
Therefore, you are diminishing the potential impact of your review if it is not 
accessible to a broader audience of readers.

Conversely, you should be aware that some of the details that can be 
confusing and intimidating to readers unfamiliar with meta- analysis would 
be the very details that some readers (those very familiar with meta- analysis) 
will expect to see. The challenge, then, is to effect a balance between (1) 
providing enough technical details for content experts familiar with meta-
 analysis to evaluate your work, versus (2) not overwhelming other readers 
with too much technical detail. Although this can be a difficult line to walk, 
and it is likely that you cannot make 100% of readers 100% happy, I do think 
the following principles can help achieve this balance.

First, ask yourself what you find more discouraging when you read a 
report: (1) when you simply cannot understand what the authors have done, 
or (2) the authors provide what seems to be excessive detail of what they have 
done. My own reaction, and I suspect the reaction of many of you, is that it is 
better to be bored by too much detail than confused by too little. Following 
this principle, my suggestion is that it is better to report a potentially impor-
tant piece of information than to omit it.

My recommendation that you err on the side of reporting too much rather 
than too little comes with a corollary: You do not have to report everything 
in the narrative text of your manuscript. Depending on the editorial style of 
your publication outlet, it may be preferable to place some details in tables, 
footnotes, appendices, or supplemental online documents. Doing so allows 
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interested readers to evaluate these details, but does not distract attention for 
other readers. If space restrictions at your publication outlet preclude these 
options, then noting that full results are available upon request (and then 
providing them upon request) is an option.

My third recommendation is to write at multiple levels. What I mean 
by writing at multiple levels is that your text has pieces that make it under-
standable to audiences with a broad range of background in your topic and 
in meta- analysis. How you accomplish this is to provide a clear, jargon-free 
statement that is understandable to a broad audience in tandem with more 
technical details. For example, technical details can be placed in parenthe-
ses, as in the following: “Associations between relational aggression and 
peer rejection are stronger among studies using peer reports of relational 
aggression than those using observations (mean rs = .34 versus .09, c2

(df=1) 
= 21.05, p < .001).” Similarly, you might ensure that each paragraph con-
taining technical information consists of (1) a clear first sentence of what 
you evaluated, (2) one or more sentences reporting the detailed (techni-
cal) results, and (3) a clear final sentence or two stating what you found 
in jargon-free terms. I do not intend these to be absolute rules; rather they 
are my own suggestions for accomplishing the difficult task of writing at 
multiple levels.

13.2 whAt to rePort And where to rePort It

In this section, I discuss the basic structural sections of a manuscript and 
special considerations in reporting meta- analytic results within these sec-
tions. Two caveats are in order here. First, I expect that you are aware of the 
ways that manuscripts (whether primary studies or meta- analyses) are struc-
tured within your field, in terms of what the goals of each section are, expec-
tations about typical length, and writing conventions (e.g., as described in 
the American Psychological Association, 2009, Publication Manual). Second, 
I want to point out that in many ways, reports of meta- analyses are not differ-
ent from reports of primary research. Your goal is still to provide an empiri-
cally grounded exposition that adds meaningful knowledge to your field, and 
the manuscript reporting your meta- analysis should make this exposition 
in a similar way as you would when reporting results of a primary research 
study.

I next outline sections of a manuscript following a structure commonly 
found in social science research reports: the title, introduction, method, 
results, discussion, references, and appendices sections. Even if your field 
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typically uses a different structure for reporting empirical findings, I believe 
that these suggestions will still be useful to consider and adapt to the report-
ing practices in your field.

13.2.1 title

As with any manuscript, the title of your meta- analysis should be an accurate 
and concise statement of your research goals, questions, or findings. Your 
title should therefore reflect the substantive focus of your review, which is 
reflected by the constructs comprising the effect sizes included in your meta-
 analysis. I think it is also preferable to indicate that your manuscript is a 
meta- analysis (or similar terms such as “meta- analytic review,” “quantitative 
review,” or “quantitative research synthesis”; see Chapter 1). Clearly denot-
ing this is likely to draw the reader’s attention.

13.2.2 Introduction

The introduction section of a report of a meta- analysis tries to accomplish 
the same goals as the introduction of any empirical paper: to provide a back-
ground in theory, methods, prior findings, or unresolved questions that ori-
ents readers to the goals, research questions, or hypotheses of your meta-
 analytic review. In presenting this case for a meta- analytic review, it is impor-
tant to provide support for all aspects of your study selection and analyses. In 
terms of study selection, your introduction should make a clear case for why 
the population of studies—in terms of sample, measurement, design, and 
source characteristics—that you defined in your meta- analysis are important 
for study. Similarly, your introduction should provide a rationale for all of the 
analyses you report in the results section. For instance, providing evidence 
for a range of research findings could be useful in building the case for the 
uncertainty of typical findings and the need to combine these results in a 
meta- analysis to obtain a clearer understanding of these typical findings. If 
there is considerable variability in findings, as noted by previous scholars 
in your field and later in the findings of significant heterogeneity in your 
meta- analysis, then this is often motivation to perform moderator analyses 
(though see Chapters 8 and 9 for cautions). Of course, when you planned your 
meta- analysis, you made decisions about what study characteristics to code 
and eventually consider as moderators; you should describe the conceptual 
rationale for these potential moderators in your manuscript to ground and 
support the decisions to evaluate these moderators. In short, every decision 
you made in terms of defining a population of studies and analyses should 
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be previously supported with a rationale in the introduction section of your 
manuscript.

13.2.3 Method

The method section of your manuscript is where reporting practices become 
somewhat unique for meta- analyses versus primary research. Nevertheless, 
the same goals apply: to explain your research process in explicit enough 
detail that a reader fully understands what you have done to the point where 
he or she could, in principle, perfectly replicate your study (meta- analysis) 
based solely on what you have written. Next, I describe four general aspects 
of your methodology that you should report.

13.2.3.a Literature Search Procedures

As I described in Chapter 3, the quality of a meta- analysis is substantially 
impacted by the extent to which the included studies adequately represent 
the population about which you wish to draw conclusions. The adequacy 
of this representation is in turn determined by the quality of your litera-
ture search. For this reason, it is important to explicitly describe your lit-
erature search procedures. For example, if you used electronic databases as 
one search strategy (and virtually every modern meta- analysis will), then it 
is important to detail the databases searched, the key words used (including 
wildcard characters), any logical operations (e.g., “and,” “or”), and the date of 
your last searches of these databases. You should provide similarly detailed 
descriptions of other search strategies (e.g., journals or conference programs 
searched and time span considered). Of course, it is preferable to provide 
brief rationales for these searches (e.g., “In order to identify unpublished 
studies . . . ”) rather than merely list your search strategies.

13.2.3.b Study Inclusion and Exclusion Criteria

I mentioned in the previous subsection that the quality of a meta- analysis 
is impacted by whether the studies represent a population. This statement 
implies that the reader needs to have a clear idea of what the population 
is, which is defined by the inclusion and exclusion criteria you have speci-
fied. Therefore, it is critical that you clearly state your inclusion criteria that 
define the population of interest, as well as exclusion criteria that delineate 
the outer boundaries of what your population does not include. In Chapter 
3, I suggested that, before searching the literature, you specify a set of inclu-
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sion and exclusion criteria. I also indicated that these criteria may need to be 
modified as you search the literature and begin coding studies as unexpected 
situations arise. In the method section of your report, you should fully detail 
these inclusion and exclusion criteria, specifying which criteria you speci-
fied a priori (before searching and coding) and which you specified post hoc 
(while searching and coding). I note here that these inclusion and exclu-
sion criteria explicate the intended sampling frame of your meta- analysis (see 
Chapter 3); it will also be important to address how well the studies actually 
covered this sampling frame in the results section (see Section 13.2.4.a).

13.2.3.c Coding of Study Characteristics and Effect Sizes

As you know by this point in your efforts, many decisions must be made 
while coding the studies that comprise your meta- analysis. It is important 
that you fully describe this coding process for readers. Three general aspects 
of the coding process that you should describe are the coding of study char-
acteristics, the coding of effect sizes, and evidence of the reliability of your 
coding decisions.

As I described in Chapter 4, you could potentially code for a wide range 
of study characteristics in your meta- analysis. Whereas you have (or should 
have) provided a rationale for these study characteristics in the introduction 
section, here in the method section your task is to explicitly operationalize 
the characteristics you have coded. At a minimum, you should list the char-
acteristics you coded, defining each term as necessary given the background 
of your audience and defining each of the possible values for each character-
istic. For some characteristics (usually the “low- inference codes”; Chapter 4, 
Cooper, 2009a), this description can be very brief. For example, in describing 
“age” in the example meta- analysis I have described throughout this book, I 
might write “Age was coded as the mean age in years of the sample.” For other 
characteristics (especially “high- inference codes”; Chapter 4, Cooper, 2009a), 
the description may need to be considerably more extensive. For example, 
in describing the study characteristic “source of information” in this meta-
 analysis, it might (depending on the audience’s familiarity with these mea-
surement practices) be necessary for me to write a sentence or two for each 
of the possible codes (e.g., “Self- reports were defined as any scale in which 
the child provided information about his or her own frequency of relational 
aggression, including paper-and- pencil questionnaires, responses to online 
surveys, and individual interviews”). Coding of even higher inference charac-
teristics, such as “study quality” (see Chapter 4) might require multiple para-
graphs. With many coded study characteristics, especially those requiring 
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extensive descriptions, full description of all of these characteristics could 
take considerable space. Depending on the audience’s knowledge of your field 
and the space available in your publication outlet, it may be useful to present 
some of these details in a table or an appendix, or make them available upon 
request. However, the suggestion I offered earlier might be useful: When in 
doubt, err on the side of reporting too much rather than too little.

You should also describe your coding of effect sizes (Chapter 5) and 
any artifact corrections you perform (Chapter 6). In terms of describing your 
coding of effect sizes, you should be sure to answer three key questions. 
First, how do the signs of the effect size represent directions of results? For 
instance, in a meta- analysis of gender differences, it is important to specify 
whether positive effect sizes denote females or males scoring higher. Second, 
what effect size did you use and why? If you used a standard effect size (i.e., 
r, g or d, o), then it is usually sufficient to just state this (though you should 
keep the audience in mind). However, if you use an advanced or unique effect 
size (Chapter 7), you will usually need to further justify and describe this 
effect size. The third question you should be sure to answer is: How did you 
manage the various methods of reporting effects in the literature to obtain 
a common effect size? If you are writing to an audience that is somewhat 
familiar with meta- analysis, you can likely refer them to an external source 
(such as this book) for details of most computations. However, you should be 
especially clear about how you handled situations in which studies provided 
inadequate information. For example, did you assume the lower-bound effect 
size for studies reporting only that an effect was significant, and did you 
assume effect sizes of zero (or 1 for odds ratios) for studies reporting that an 
effect was nonsignificant? In these latter cases, it may be useful to report the 
percentage of effect sizes for which you made lower-bound estimates to give 
the reader a sense of the potential biasing effects.

Finally, you should provide evidence of the reliability of your coding, 
following the guidelines I offered in Chapter 4. Specifically, report how you 
determined reliability (intercoder and/or intracoder; number of studies dou-
bly coded), and the results of these reliability evaluations. If reliabilities of 
coding decisions were very consistent across codes (i.e., various study char-
acteristics and effect sizes), then it is acceptable to report a range; however, 
if there was variability, you should report reliabilities for each of your codes 
separately. If initial reliability estimates were poor and led to modification of 
your coding protocol, you should transparently report this fact. Finally, you 
should offer some evaluation of whether or not you believe the reliability of 
coding was adequate (if it was not, then it will be useful to address this limi-
tation in the discussion section of your report).
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13.2.3.d Data-Analytic Strategy

Because meta- analytic techniques are unfamiliar to many readers in many 
fields, and because there are differences in analytic practices among differ-
ent meta- analysts, it is important that you clearly state your data- analytic 
strategies. If extensive description is needed, I prefer to describe these strat-
egies as a distinct subsection of the manuscript, usually at the end of the 
method section, but sometimes at the beginning of the results section (you 
should read some articles in your field that use meta- analytic techniques, or 
other advanced techniques that require description, to see where this mate-
rial is typically placed). Alternatively, if you can adequately describe your 
techniques concisely, and many readers in your field are at least somewhat 
familiar with meta- analysis, then you might decide to omit this section and 
instead provide these details throughout the results section before you pre-
sent the results of each analysis.

There are at least five key elements of your data-analytic strategy that 
you should specify. First, you should describe how you managed multiple 
effect sizes from studies (see Chapter 8). Second, you should specify which 
weights you used for studies in your meta- analysis (e.g., inverse squared stan-
dard errors; Chapter 8). If your audience is entirely unfamiliar with meta-
 analysis, you might also provide justification for these weights (see Chapter 
8). Third, you should describe the process of analyzing the central tendencies 
of effect sizes. For instance, did you base your decision to use a fixed- ver-
sus random- effects model on the results of an initial heterogeneity test, or 
did you make an a priori decision to use one or the other (see Chapter 10)? 
Fourth, you should describe your process and method of moderator analyses. 
Specifically, you should describe (1) whether your decision to pursue mod-
erator analyses was guided by initial findings of heterogeneity; (2) the order 
in which you evaluated multiple moderators (e.g., one at a time, all at once, or 
some conceptually-based sequence); (3) if you followed a sequence of mod-
erator analyses, whether you used residual heterogeneity tests along the way 
to decide to continue or to stop; and (4) what approach to moderator analysis 
you used (e.g., ANOVA- or regression-based?). Finally, you should make clear 
how you evaluated potential publication bias (see Chapter 11).

13.2.4 results

As you might expect, the results section of the report contains some informa-
tion unique from that in the results section of a primary study. At the same 
time, the underlying goal is the same in both: to accurately and clearly report 
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the findings of your analyses to provide illumination of the research ques-
tions/hypotheses that motivated the study/meta- analysis. In this section, I 
describe four pieces of information that will generally be present in your 
results. I do not necessarily intend to suggest how you should organize your 
results section; for a single, relatively simple meta- analysis, this organization 
might be useful, but for a more complex meta- analysis or a review with sev-
eral meta- analyses, you will likely follow a more conceptual or methodologi-
cal organization as I described earlier.

13.2.4.a Descriptive Information

An important set of results, yet one that is often overlooked, is simply the 
description of the sample of studies that comprised your meta- analytic 
review. This information can often be summarized in a table, but the impor-
tance of this information merits at least a paragraph, if not an entire sub-
section, near the beginning of your results section. If your report includes 
multiple meta- analyses, it might be useful to report this descriptive infor-
mation for both the overall collection of studies (i.e., all studies included in 
any of your meta- analyses) and the subsets of studies that comprised each 
meta- analysis.

Necessary descriptive information to report includes the number of 
studies (usually denoted by k), as well as the total number of participants 
in these studies (N, which is the sum of the Ns across the studies). I also 
strongly advise that you report the number of studies at different levels of 
coded study characteristics used in moderator analyses. For categorical char-
acteristics, this is simply the number of studies with each value, whereas for 
continuous characteristics, you might report the means, standard deviations, 
and ranges. If your initial coding protocol included study characteristics that 
you ultimately did not use as moderators because of a lack of variability in 
values across studies, I suggest also reporting this information.

In addition to reporting this descriptive information, it is worth writ-
ing some comments about these data, as they describe both the sample for 
your meta- analysis and the state of the empirical literature in your field. For 
instance, it is useful to note if some values of your moderators are under-
represented in the existing literature (e.g., few studies have sampled certain 
types of individuals, few studies have used a particular methodology), or 
if certain combinations of moderators (e.g., particular methodologies with 
certain types of individuals) are underrepresented. It is also useful to com-
ment on study characteristics that did not vary, and potentially to discuss the 
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implications of this homogeneity in the discussion. In short, it is useful to 
describe the nature of the sample of studies (and by implication, the field of 
your meta- analysis), and to point out the sampling, measurement, and meth-
odological strengths and shortcomings of this body of research.

13.2.4.b Central Tendencies and Heterogeneity

Turning to the analytic results, most reports describe the results of central 
tendency and heterogeneity tests before the results of moderator analyses. 
Regarding central tendency, or (usually) mean effect sizes, you should clearly 
state whether the mean was obtained through fixed- or random- effects mod-
els, the standard error of this mean effect size, and the (typically 95%) confi-
dence interval of this mean. Although the confidence interval generally suf-
fices for significance testing, you might also choose to report the statistical 
significance of this effect size. In reporting these results, be sure to provide 
“words” that help readers make sense of the “numbers.” Put differently, avoid 
simply listing means, confidence intervals, and the like, but rather provide 
narrative descriptions of them. For instance, it might be useful to some read-
ers to have the direction of association described (e.g., to interpret a positive 
mean correlation: “Higher levels of relational aggression are associated with 
higher peer rejection”), and it is usually useful to characterize the magnitude 
of effect sizes according to standards in your field or else commonly applied 
guidelines (e.g., Cohen, 1969, characterization of rs ≈ ±.10, .30, and .50 as 
small, medium, and large, respectively).

In addition to the mean effect size, it is important to describe the het-
erogeneity of effect size to give readers a sense of the consistency versus vari-
ability as well as range of findings. Although you will almost certainly report 
the results of the heterogeneity test, the Q statistic described in Chapter 8 
(Section 8.4), you should bear in mind the limits of this statistic given that 
it is a statistical significance test (i.e., it can have very high or low statistical 
power). For this reason, it may be useful to supplement reporting of the Q 
statistic with a description of the magnitude of heterogeneity. One possibility 
might be to describe quantitatively the magnitude of this heterogeneity by 
reporting the I2 index. Another possibility might be to visually display the 
heterogeneity using one of the figures I describe in Section 13.3. With either 
approach, it is important to describe (again, using words) this homogeneity 
or heterogeneity, and how this information was used in decisions regard-
ing other analyses (e.g., to use random- effects models, to perform moderator 
analyses).
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13.2.4.c Moderator Analyses

If moderator analyses are conducted in your meta- analysis (and most meta-
 analyses will involve some moderator analyses), then it is important to fully 
report these results. Specifically, you should report the Q statistic, degrees 
of freedom, and significance level for each moderator analysis you perform 
(whether performed within an ANOVA or a regression framework; see Chap-
ter 9). It is also common to report the within-group or residual heterogene-
ity (Q) remaining after accounting for this moderator or set of moderators. 
For categorical moderators with more than two levels, it is also necessary to 
report results of follow-up comparisons (see Chapter 9).

You should not stop at reporting only the significance tests of your mod-
erator analyses; it is also important to report the numbers of studies and the 
typical effect sizes at various levels of the moderators. For a single categorical 
moderator this is straightforward: You simply report the numbers of studies 
and mean effect sizes within each of the levels of the moderator. For multiple 
categorical moderators, you should report the numbers of studies and mean 
effect sizes within the various combinations across the multiple moderator 
variables. For continuous moderators, it is not advisable to artificially catego-
rize the continuous moderator variable and then report information (num-
bers of studies and mean effect sizes) within these artificial groups, though 
this practice is sometimes followed. Instead, I suggest using the intercept and 
regression coefficient(s) of your regression-based moderator analysis to com-
pute predicted effect sizes at different levels of the moderator, and then report 
these predicted effect sizes across a range of the moderator variable values 
well- covered by the studies in your meta- analysis. In Chapter 9 (Section 9.2), 
I presented an example in which effect sizes of the association between rela-
tional aggression and peer rejection were predicted by (i.e., moderated by) 
the mean ages of the samples, and I computed the expected effect sizes for 
the ages 5, 10, and 15 years (intuitive values that represented the span of most 
studies in the meta- analysis).

Before concluding my suggestions for reporting moderator analysis 
results, I want to remind you of a key threat to moderator analysis in meta-
 analytic reviews: that the variable you have identified as the moderator is not 
the “true” moderator in that it is only associated with or serves as a proxy for 
the true moderator. If alternate potential moderators are study characteristics 
that you have coded, then it is important to report results either (1) ruling out 
these alternative explanations, or (2) showing that the variable you believe is 
the true moderator is predictive of effect sizes after controlling for the alter-
native moderator variables (see Section 9.4). You should report these findings 
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in the results section. However, it is also worth considering that you can 
never definitively determine whether the moderator variable you have identi-
fied is the true moderator, or whether it simply serves as a proxy for another, 
uncoded study characteristic that is the true moderator. This is a limitation 
that should be considered in the discussion section of your report.

13.2.4.d Diagnostic Analyses

Earlier (Chapters 2, 11) I described the widely known threat to meta- analyses 
(and all other literature reviews) posed by publication bias. Given that this 
threat is both widely known and potentially severely biasing to results of a 
meta- analysis, it is important to report evidence evaluating this threat. Specifi-
cally, you should report your efforts (1) to evaluate the presence of this threat, 
such as moderator analyses, funnel plots, or regression analyses; (2) show how 
plausible it is that there could exist enough missed literature with zero results 
so as to invalidate your conclusions (i.e., various failsafe numbers); and (3) and 
detail the approaches you used to correct for this potential bias (e.g., trim and 
fill, weighted selection) (see Chapter 11). After providing all available evidence 
regarding potential publication bias, you should offer the reader a clear state-
ment of how likely publication bias may have impacted your findings.

13.2.5 discussion

The discussion section of your report should place the findings of your meta-
 analytic review in the context of your field. Whereas it is tempting to let the 
numbers speak for themselves, do not assume that they speak to the reader. 
Although the discussion section likely allows the most liberty in terms of writ-
ing (you can think of it as your opportunity to add the “qualitative finesse” that 
some critics have charged is absent from meta- analyses; see Chapter 2), you 
should consider including at least four components of this section. I discuss 
each of these components next in an order in which they commonly (though 
not necessarily) appear in discussion sections of meta- analytic reports.

13.2.5.a Review of Findings

Although you should be careful to avoid extensive repetition of results in the 
discussion section, it is sometimes useful to provide a brief overview of key 
findings, especially if the results section was long, technical, or complex. It 
is useful to highlight the findings that you will most extensively discuss in 
this section, though you should certainly not omit findings that were unex-
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pected or contradictory to your hypotheses (these are typically important to 
consider further).

13.2.5.b Explanations and Implications of Findings

You should remember that the main purpose of your meta- analytic review 
was to answer some research questions, which presumably are important 
to your field in some way. The majority of your efforts in the discussion sec-
tion should be directed to describing how your results provide these answers 
(when they do) and how these answers increase understanding within your 
field. For instance, do the findings of your review provide answers that sup-
port existing theory, support one theory over another, or suggest the need for 
refinement of existing theories in your field? Do the answers inform policy 
or practice in your field?

While providing answers to these questions is useful, you should also 
recognize the limits to the information provided by the existing research 
that comprised your review. This recognition can guide where more primary 
empirical research is needed, and it is important for your review to identify 
this need. For example, if you could not reach reasonably definitive conclu-
sions to some of your research questions due to low statistical power (result-
ing from few studies or studies with small sample sizes), then you should 
state the need for further research to inform this question. Your descriptive 
summary of study characteristics also speaks to the types of studies that 
have not been performed (e.g., specific sample characteristics, measurement 
characteristics, etc., and combinations of these characteristics). Conversely, 
if you find that a large number of studies (or a number of studies with large 
samples) using very similar samples, measures, and the like, have been per-
formed, and that the results are homogeneous and provide a very precise 
estimate of this effect size, then it is also valuable to state that more studies 
of this type are not needed (better that future research invest efforts toward 
providing new information). In short, I encourage you to remember that you 
have just spent months carefully studying and meta- analyzing nearly all of 
the work in the area of your meta- analysis, so you are in a very informed posi-
tion to say where the field needs to go; it is a valuable contribution for you to 
make clear statements that guide these future efforts.

13.2.5.c Limitations

As when you are reporting the results of any empirical study, it is impor-
tant for you to acknowledge the limitations of your meta- analytic review. 
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Some of these limitations may be the shortcomings of the available empirical 
basis, and I have already encouraged you to make clear statements of what 
these limitations are. Other limitations are particular to literature reviews 
(including meta- analyses), such as the limitations of drawing conclusions 
about moderator variables and potential publication bias. You should also 
make clear limitations to what can be inferred from the types of studies and 
effect sizes you have included in your meta- analysis. For instance, you should 
describe the limitations to inferring causality from effect sizes from concur-
rent naturalistic studies (see Chapter 2). For every limitation you identify, I 
encourage you to provide a rationale for why this limitation is more or less 
threatening to your conclusions, and how future research might resolve these 
issues (this piece of advice is relevant for any research report, not just those 
using meta- analyses).

13.2.5.d Conclusions

Given the often high impact and broad readership of reports of meta- analyses, 
it is critical that your text conclude with a clear statement of how your meta-
 analytic review advances understanding, and why this advancement is impor-
tant.

13.2.6 references

As with any other scholarly report, your meta- analytic review will include a 
list of references. Although typical practices vary across disciplines, I note 
two practices that are common in the field of Psychology (as described in 
the American Psychological Association, 2009, Publication Manual) and in 
many other areas social science. First, all of the studies included in your meta-
 analysis should be included in your reference list. Second, the first line of your 
reference section (after the “Reference” heading but before the first reference) 
should contain a statement such as “Studies preceded by an asterisk were 
included in the meta- analysis”; and then you should place an asterisk before 
the reference of the studies that were included in your meta- analytic review.

13.2.7 Appendices

Different journals have different standards and preferences for material being 
included in the main body of the text, in appendices printed at the end of the 
article, or (more recently) in appendices available through the journal’s web-
site. Depending on the practices of your targeted journal, however, it might 
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be useful to consider using appendices for some of the lengthier information 
that is important to report yet not of interest to many readers. For instance, 
tables summarizing the coding of all studies included in your meta- analysis 
(see Section 13.3.2) are important because they allow readers to judge the 
completeness of your review and your coding practices; however, such tables 
are lengthy and often of peripheral interest to many readers. These tables 
might ideally be placed in an appendix rather than in the text proper.

13.3 uSIng tABleS And fIgureS  
In rePortIng MetA-AnAlySeS

Tables and figures, if used effectively, can provide a large amount of data 
in an informative way, as well as reduce the burden of describing all of this 
information within the text (though you should not omit key findings from 
the text just because they are also displayed in tables or figures). In this 
section, I describe some approaches to presenting meta- analytic results in 
tables and in figures. I supplement description of each approach I describe by 
considering the relative frequencies of their use in a recent survey of meta-
 analyses published from 2000 to 2005 by Borman and Grigg (2009).2

13.3.1 tables

There are two general types of tables used to summarize results of meta-
 analytic reviews: tables presenting summary information such as mean 
effect sizes, and tables summarizing coded aspects of the individual studies 
included in the meta- analysis. The use of both tables is common; in the sur-
vey by Borman and Grigg (2009), these tables were included in 74% and 89%, 
respectively, of published meta- analyses.

13.3.1.a Summary Tables

Summary tables can be used to report aggregate information obtained from 
meta- analytic combination and comparison of multiple studies. This infor-
mation can include information about the central tendency of effect sizes 
(e.g., mean, median), the distribution of these effect sizes (range, heterogene-
ity tests, indices of heterogeneity such as I2), and results of moderator analy-
ses. If your review contains a single meta- analysis (i.e., all studies included in 
a single meta- analysis), this table will likely be rather narrow, so you should 
consider if such a table is worth the space beyond summarizing such infor-
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mation in the text. However, if your review includes several meta- analyses 
(i.e., a series of meta- analyses of separate effect sizes), this table will be wider 
and contain a wealth of information more concisely summarized than can be 
done in text. Summary tables are especially useful in these latter situations.

Table 13.1 illustrates one of many ways (and not the only way) you might 
organize a summary table. Here, I summarize results for the ongoing exam-
ple meta- analysis used throughout this book involving associations between 
relational aggression and peer rejection. The first two rows display results of 
the heterogeneity test and its significance (denoted by asterisks) and the I2 
index to quantify the magnitude of heterogeneity. The next two rows display 
the random- effects mean effect size (with significance level) and confidence 
intervals around these means. The remaining rows display the results of two 
moderator analyses: the categorical moderator “reporter” and the continu-
ous moderator age. After reporting the omnibus test (Qbetween) of the cat-
egorical moderator, I report the mean associations within each group (type of 
reporter),3 denoting significant differences between groups with alphabetic 
subscripts. For the continuous moderator variable (age), I report its signifi-

tABle 13.1. Summary table of Meta-
 Analyses of Associations of relational 
and overt Aggression with Peer rejection

Relational aggression 
with peer rejection

Heterogeneity (Q; df = 21) 291.17***

 I2 92.8%

Random- effects mean r .33***

 95% confidence interval .24 to .40

Moderator effects

 Reporter (Qb(3)) 65.14***

  Observation (k = 3) .10a

  Parent (k = 1) .52***c

  Peer (k = 3) .38***b

  Self (k = 0) —

  Teacher (k = 6) .19***a

 Age (Qregression(1)) 9.31**

  bZr –.011

  r̂ at 5, 10, and 15 years .41, .37, .22

Note. Significant differences among reporters from follow-up 
comparisons are denoted by different alphabetic subscripts.
*p < .05; **p < .01; ***p < .001.
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cance (Qregression), followed by the unstandardized regression coefficient and 
predicted correlations at various meaningful values of the moderator. This 
table could be expanded in various ways, such as by including additional 
rows to report the results of more moderator analyses (including compari-
sons of published vs. unpublished studies to evaluate publication bias), or by 
adding additional columns to report the results of other meta- analyses (e.g., 
Card et al., 2008, also reported results involving associations of overt forms 
of aggression with peer rejection, as well as associations of relational aggres-
sion with various other aspects of adjustment).

13.3.1.b Tables of Individual Studies

It is very useful—and arguably even necessary—to provide a detailed listing 
of the values you coded for each of the studies included in your meta- analytic 
review. This sort of table should report, for each of the studies included in 
your meta- analytic review, basic citation information for the study (e.g., 
authors, year), sample size, your coding for all of the study characteristics 
used in your review (for either descriptive purposes or in moderator analy-
ses), and effect sizes. If you performed any artifact adjustments (see Chap-
ter 6), the artifact information (e.g., reliability estimates, dichotomizations) 
should also be reported.

The most common order of studies within this type of table is to list 
studies either alphabetically by author names or else chronologically by year 
of publication. Although such ordering is useful for readers to find a par-
ticular study or to see if any studies were excluded, it is not necessarily the 
most informative approach (Borman & Grigg, 2009). A preferable way to 
organize these tables is likely according to some important characteristics of 
studies, such as by moderator variables found to be important in your meta-
 analyses.

To illustrate this sort of table, Table 13.2 presents coded details of the 
studies used in the meta- analysis on relational aggression and peer rejec-
tion. Here, I have organized studies first by reporter (one of the moderator 
variables) and then by age (another moderator variable). You can see that this 
table contains a row for each study,4 columns for each study characteristic 
coded, and the coded effect size.

13.3.2 figures

The statement “a picture is worth a thousand words” is a cliché but neverthe-
less, it is true: Thoughtful use of figures to present meta- analytic results is 
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tABle 13.2. example table reporting coding of Individual Studies

Study
Sample size 

(N) Method
Age 

(years)
Effect 

size (r)

Ostrov (under review)a 139 Obs. 3.6 .181

Ostrov & Crick (2007) 132 Obs. 4.1 .049

Ostrov et al. (2004)b 60 Obs. 4.6 .000

Blachman (2003) 228 Parent 9.2 .525

Crick et al. (1997) 65 Peer 4.5 .443

Nelson et al. (2005) 180 Peer 4.8 .090

Johnson (2003) 74 Peer 6.0 .531

Henington (1996) 904 Peer 7.5 .336

Geiger (2003) 458 Peer 8.0 .554

Werner (2000) 881 Peer 8.0 .477

Werner & Crick (2004) 517 Peer 8.0 .469

Phillipsen et al. (1999) 262 Peer 8.7 –.048

Murray-Close & Crick (2006) 590 Peer 9.0 .575

Tomada & Schneider (1997) 314 Peer 9.0 .313

Crick & Grotpeter (1995) 491 Peer 9.4 .198

Leff (1995) 151 Peer 9.5 .617

Rys & Bear (1997) 266 Peer 9.5 .556

Pakaslahti & Keltikangas-Järvinen (1998) 839 Peer 14.5 .326

Hawley et al. (2007) 929 Peer 14.7 .161

Salmivalli et al. (2000) 209 Peer 15.5 .253

Miller (2001) 150 Peer 16.0 .557

Ostrov (under review)a 139 Teacher 3.6 .513

Crick et al. (1997) 65 Teacher 4.5 .167

Nelson et al. (2005) 180 Teacher 4.8 –.011

Johnson (2003) 74 Teacher 6.0 .074

Tomada & Schneider (1997) 314 Teacher 9.0 .000b

Rys & Bear (1997) 266 Teacher 9.5 .338

aArticle was under review during the preparation of this meta- analytic review. It has subsequently been 
published as Ostrov (2008).
bEffect size is lower-bound estimate based on author’s reporting only nonsignficant associations.
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an efficient way to present a large amount of information, including informa-
tion about central tendency and variability in effect sizes, moderator effects, 
publication bias, and potential outlier studies. I next describe three types 
of figures that you can consider in presenting results of your meta- analysis, 
considering the type of information that is conveyed in each type of figure.

13.3.2.a Forest Plots

These plots are rarely used in social sciences, though they are common in 
research syntheses of medical trials (Borman & Grigg, 2009). These plots, 
such as those illustrated in Figure 13.1, are formed by listing the studies 
included in the meta- analysis down the left side of the figure. The area to 
the right of each study displays information about the mean (filled circles) 
and 95% confidence intervals (horizontal lines) for each study in the meta-
 analysis. The thick vertical line represents the (weighted) mean of these effect 
sizes. Although it is not done in every instance, I have also included a vertical 
(dashed) line to indicate the null result of r = .00 to illustrate which studies 
yield significant effect sizes.

Forrest plots portray a range of information. First, they present informa-
tion regarding both the point estimate and uncertainty of effect sizes from 
every study in your meta- analysis, serving a useful summary function simi-
lar to tables of individual studies. Second, the inclusion of the vertical line 
for the mean effect size makes this information apparent. Third, this plot 
provides visual information regarding the heterogeneity of studies. Observ-
ing that several (more than the approximately 1 in 20 expectable by chance) 
of the study confidence intervals do not contain the common mean effect size 
(vertical line) serves as visual evidence of significant heterogeneity, and the 
range of these study- specific effect sizes around this vertical provides some 
indication of the variability in these effect sizes. Although not apparent in 
Figure 13.1, this forest plot would also be useful for detecting studies with 
extreme effect sizes (far to the left or right of other studies with confidence 
intervals not approaching the rest of the studies).

The basic forest plot such as the one I have shown in Figure 13.1 can 
be extended in several ways (see Borman & Grigg, 2009). For instance, the 
studies could be ordered in some meaningful way rather than alphabetically, 
such as by a key study characteristic (i.e., moderator). If order is by a cat-
egorical moderator, then you might consider adding multiple vertical lines 
to denote different mean values within moderator groups. The sizes of the 
circles for study effect sizes could be larger or smaller to denote, for instance, 
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Crick & Grotpeter (1995)

Crick et al. (1997)

Geiger (2003)

Hawley et al. (2007)

Henington (1996)

Johnson (2003)

Leff (1995)

Miller (2001)

Murray-Close & Crick (2006)

Nelson et al. (2005)

Ostrov (under review)

Ostrov & Crick (2007)

Ostrov et al. (2004)

Pakaslahti & Keltikangas-Järvinen (1998)

Phillipsen et al. (1999)

Rys & Bear (1997)

Salmivalli et al. (2000)

Tomada & Schneider (1997)

Werner (2000)

Werner & Crick (2004)

Zalecki & Hinshaw (2004)

–.40 –.20 .00 .20 .40 .60 .80

Effect size (r)

Blachman (2003)

fIgure 13.1. Example forest plot.
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their relative weighting. It would also be possible to change the shapes or 
other characteristics (e.g., color, if presenting in color) of these study- specific 
effect sizes to indicate other features, such as values on a second moderator 
of interest. Finally, you might consider merging the information of a table of 
individual studies (e.g., sample sizes, coded scores on various moderators) 
and the forest plot by creating a hybrid table and figure. This would display 
a tremendous amount of information, though it might be rather large if you 
have a large (in terms of numbers of studies and coded study characteristics) 
meta- analysis.

13.3.2.b Stem-and-Leaf Plots

These plots are commonly used and convey considerable information, includ-
ing information about central tendency, variability, and distributional form 
(e.g., skewness, modality) of a set of effect size, as well as pointing to poten-
tial outlier studies with extreme effect sizes. Stem-and-leaf plots consist of 
two parts. The “stem” is the vertical array of “bins” of possible effect sizes 
(e.g., correlations between .70 and .79, between .60 and .69, etc.), and each 
“leaf” is a single-digit number representing the effect size from a single study. 
These effect sizes can be either in the original metric (e.g., r, o) or in a trans-
formed metric (e.g., Zr, ln(o)); the original metric is more intuitive for readers, 
but the transformed metric is more useful for assessing potential skew in the 
distribution of effect sizes.5 Figure 13.2 presents a stem-and-leaf plot for the 
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.5 35677

.4 0578

.3 1346

.2 05

.1 66

.0 450

–.0 5

–.1

fIgure 13.2. Example stem-and-leaf plot. Values represent associations (r) 
between relational aggression and peer rejection for 22 studies in meta- analysis.
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22 studies in the example meta- analysis. The numbers to the left of the verti-
cal line comprise the stem, scaled in intervals of .1 with a range one value 
higher and one value lower than the most extreme effect sizes found among 
these 22 studies. To the right of the vertical line are the leaves, with each 
digit representing a single study. For example, the highest leaf is the value 
2 connected to the stem at .6 to represent a study that found a correlation of 
.62 between relational aggression and peer rejection. The five digits (leaves) 
connected to the .5 stem denote five studies finding associations between .50 
and .59 (specifically, .53, .55, .56, .57, and another .57; note that the leaves are 
arranged from lowest to highest values moving away from the stem).

Visual inspection of this figure provides a variety of information. First, 
the visual spacing of the leaves provides information about the number of 
studies finding effect sizes of approximate values (e.g., you can see that more 
studies find correlations in the .50 to .59 range than the .60 to .69 range; note 
that it is preferable to use a font that is uniform in width for all values so 
that the size of the rightward- extending bar represents the number of stud-
ies on that stem). Second, this sort of plot gives an approximate, though not 
precise, idea about central tendency. Recalling that the weighted mean r = .37 
among these studies, you can see that this is near an approximate “balancing 
point” of the distribution of these effect sizes (though be aware that visual 
inspection of the funnel plot does not take into account differential weight-
ing of studies). Third, stem-and-leaf plots visually display the heterogeneity 
of effect sizes across studies. In this example, there is considerable disper-
sion among the effect sizes, which is consistent with quantitative findings of 
significant heterogeneity and a large I2. Fourth, stem-and-leaf plots provide 
visual information about the distribution of effect sizes. In this example, it 
appears that the effect sizes are somewhat skewed to have a longer tail toward 
the lower/negative values. Finally, it can be useful to study stem-and-leaf 
plots of studies with outlying effect sizes; in this example, no study dramati-
cally departs from the others.

Stem-and-leaf plots are commonly used in reports of meta- analytic find-
ings (about 30% of reports surveyed by Borman & Grigg, 2009). You can also 
extend the basic stem-and-leaf plot to provide more sophisticated informa-
tion. For example, it is possible to provide multiple sets of leaves to represent 
studies with different study characteristics (i.e., different values of categori-
cal moderators). By orienting these multiple sets of leaves side by side, scaled 
along a common vertical axis (i.e., stem), readers can gain an appreciation for 
the differences in central tendency, variability, distributional form, and pos-
sible outlier studies within each group of studies.
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13.3.2.c Funnel Plots

As seen in Chapter 11, funnel plots are a way of graphically evaluating poten-
tial publication bias (or other biases leading to censoring of nonsignificant 
results). As you recall, these plots are scatterplots of the studies in your meta-
 analysis, with one axis representing some function of sample sizes (or stan-
dard errors) and the other representing effect sizes. Because I described these 
plots in Chapter 11, I will not discuss them here.

The main purpose of funnel plots is to identify potential publication 
bias. However, these plots also display information about the mean effect size 
(which can be shown as a line through the scatterplot) and about heterogene-
ity (i.e., the width of the funnel). According to the survey of published meta-
 analyses by Borman and Grigg (2009), these plots are modestly frequently 
used (12.5% of meta- analyses considered). My own impression is that the 
value of funnel plots is primarily in terms of detecting publication bias. For 
other information (e.g., mean effect sizes, heterogeneity), other figures are 
more effective or as effective while using less space.

13.3.2.d Other Figures

My consideration of forest plots, stem-and-leaf plots, and funnel plots only 
touches on the many options available. These other options include schematic 
plots (a.k.a. box-and- whisker plots, which provide clear information about 
means, heterogeneity, and outliers); normal quantile plots (which are useful 
in evaluating publication bias); and radial plots (which are fairly technical 
plots of studies’ mean effect sizes and precisions) described by Borman and 
Grigg (2009). This variety of potential graphical displays is valuable in pro-
viding a wide range of tools for presenting the results of your meta- analysis. 
When choosing a method of displaying your results, however, you should 
always keep in mind what information is most important to convey.

13.4 PrActIcAl MAtterS: AvoIdIng coMMon 
ProBleMS In rePortIng reSultS 
of MetA-AnAlySeS

In this section, I identify 10 problems that I perceive to be common in report-
ing results of meta- analytic reviews. More importantly, I offer concrete sug-
gestions for how you can avoid each. Although following these suggestions 
will not guarantee that your meta- analytic report will be successful (whether 
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defined by publication in a top- outlet, high- impact, or any other criterion), 
doing so will help you avoid some of the most common obstacles.

1. Disconnecting conceptual rationale and data analyses. One of the more 
common problems with written reports of meta- analyses (and probably most 
empirical papers) is a disconnect between the conceptual rationale for the 
review in the introduction and the analyses and results actually presented. 
Every analysis performed should be performed for a reason, and this reason 
should be described in the Introduction of your paper. Even if some analyses 
were entirely exploratory, it is better to state as much rather than have read-
ers guess why you performed a particular analysis. A good way to avoid this 
problem is simply to compile a list of analyses presented in your results sec-
tion, and then identify the section in your introduction in which you justify 
this analysis.

2. Providing insufficient details of methodology. I have tried to emphasize 
the importance of describing your meta- analytic method in sufficient detail 
so that a reader could—at least in principle— replicate your review. This level 
of detail requires extensive description of your search strategies, inclusion 
and exclusion criteria, practices of coding both study characteristics and 
effect sizes, and the data- analytic strategy you performed. Because it is easier 
to know what you did than to describe it, I strongly recommend that you ask 
a colleague familiar with meta- analytic techniques to review a draft of your 
description to determine if he or she could replicate your methodology based 
only on what you wrote.

3. Writing a phone book. Phone books contain a lot of information, but 
you probably do not consider them terribly exciting to read. When presenting 
results of your meta- analysis, you have a tremendous amount of information 
to potentially present: results of many individual studies, a potentially vast 
array of summary statistics about central tendency and heterogeneity of effect 
sizes, likely a wide range of nuanced results of moderator analyses, analyses 
addressing publication bias, and so on. Although it is valuable to report most 
or all of these results (that is one of the main purposes of sharing your work 
with others), this reporting should not be an uninformative listing of num-
bers that fails to tell a coherent story. Instead, it is critical that the numbers 
are embedded within an understandable story. To test whether your report 
achieves this, try the following exercise: (1) Take what you believe is a near-
 complete draft of your results section, and delete every clause that contains 
a statistic from your meta- analysis or any variant of “statistical significance”; 
(2) read this text and see if what remains provides an understandable nar-
rative that accurately (if not precisely) describes your results. If it does not, 
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then this should highlight to you places where you should better guide read-
ers through your findings.

4. Allowing technical complexity to detract from message. Robert Rosenthal 
once wrote, “I have never seen a meta- analysis that was ‘too simple’ ” (Rosen-
thal, 1995, p. 183). Given that Rosenthal was one of the originators of meta-
 analytic techniques (see Chapter 1) and has probably read far more meta-
 analytic reviews than you or I ever will, his insight is important. Although 
complex meta- analytic techniques can be useful to answer some complex 
research questions, you should keep in mind that many important questions 
can be answered using relatively simple techniques. I encourage you to use 
techniques that are as complex as needed to adequately answer your research 
questions, but no more complex than needed. With greater complexity of 
your techniques comes greater chances (1) of making mistakes that you may 
fail to detect, and (2) confusing your readers. Even if you feel confident in 
your ability to avoid mistakes, the costs of confusing readers is high in that 
they are less likely to understand and—in some cases—to trust your conclu-
sions. The acronym KISS (Keep It Simple, Stupid) is worth bearing in mind. 
To test whether you have achieved adequate simplicity, I suggest that you 
(1) have a colleague (or multiple colleagues)—one who is unfamiliar with 
meta- analysis but is otherwise a regular reader of your targeted publication 
outlet—read your report; then (2) ask this colleague or colleagues to describe 
your findings to you. If there are any aspects that your colleague is unable to 
understand or that lead to inaccurate conclusions, then you should edit those 
sections to be understandable to readers not familiar with meta- analysis.

5. Forgetting why you performed the meta- analysis. Although I doubt that 
many meta- analysts really forget why they performed a meta- analysis, the 
written reports often seem to indicate that they have. This is most evident in 
the discussion section, where too many writers neglect to make clear state-
ments about how the results of their meta- analysis answer the research ques-
tions posed and advance understanding in their field. Extending my earlier 
recommendation (problem 1 above) for ensuring connections between the 
rationale and the analyses performed, you should be sure that items on your 
list of analyses and conceptual rationales are addressed in the discussion 
section of your report. Specifically, be sure that you have clearly stated (1) 
the answers to your research questions, or why your findings did not provide 
answers, and (2) why these answers are important to understanding the phe-
nomenon or guiding application (e.g., intervention, policy).

6. Failing to consider the limits of your sample of studies. Every meta-
 analysis, no matter how ambitious the literature search or how liberal the 
inclusion criteria, necessarily involves a finite—and therefore potentially 
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limited— sample of studies. It is important for you to state—or at least 
speculate—where these limits lie and how they qualify your conclusions. 
You should typically report at least some results evaluating publication bias 
(see Chapter 11), and comment on these in the discussion section. Evidence 
of publication bias does not constitute a fatal flaw of your meta- analysis if 
your literature search and retrieval strategies were as extensive as can be 
reasonably expected, but you should certainly be clear about the threat of 
publication bias. Similarly, you should clearly articulate the boundaries of 
your sample as determined by either inclusion/exclusion criteria (Chapter 3) 
or characteristics of the empirical literature performed (elucidated by your 
reporting of descriptive information about your sample of studies). Descrip-
tion of the boundaries of your sample should be followed with speculation 
regarding the limits of generalizability of your findings.

7. Failing to provide (and consider) descriptive features of studies. Problem 
4 (allowing technical complexity to detract from your message) and problem 
6 (failing to consider the limits of your sample) too often converge in the 
form of this problem: failing to provide basic descriptive information about 
the studies that comprise your meta- analysis. As mentioned, reporting this 
information is important for describing the sample from which you draw 
conclusions, as well as describing the state of the field and making recom-
mendations for further avenues of research. The best way to ensure that you 
provide this information is to include a section (or at least a paragraph or 
two) at the beginning of your results section that provides this information.

8. Using fixed- effects models in the presence of heterogeneity. This is a 
rather specific problem but one that merits special attention. As you recall 
from Chapter 10, fixed- effects models assume a single population effect size 
(any variability among effect sizes across studies is due to sampling error), 
whereas random- effects models allow for a distribution of population effect 
sizes. If you use a fixed- effects model to calculate a mean effect size across 
studies in the presence of substantial heterogeneity, then the failure to model 
this heterogeneity provides standard errors (and resulting confidence inter-
vals) that are smaller than is appropriate. To avoid this problem, you should 
always evaluate heterogeneity via the heterogeneity significance test (Q; see 
Chapter 8) as well as some index that is not impacted by the size of your sam-
ple (such as I2; see Chapter 8). If there is evidence of statistically significant 
or substantial heterogeneity, then you are much more justified in using a ran-
dom- rather than a fixed- effects model (see Chapter 10 for considerations). A 
related problem to avoid is making inappropriately generalized conclusions 
from fixed- effects models; you should be careful to frame your conclusions 
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according to the model you used to estimate mean effect sizes in your meta-
 analysis (see Chapter 10).

9. Failing to consider the limits of meta- analytic moderator analyses. I have 
mentioned that the results of moderator analyses are often the most important 
findings of a meta- analytic review. However, you should keep in mind that 
findings of moderation in meta- analyses are necessarily correlational—that 
certain study characteristics covary with larger or smaller effect sizes. This 
awareness should remind us that findings of moderation in meta- analyses (or 
any nonexperimental study) cannot definitively conclude that the presumed 
moderator is not just a proxy for another moderator (i.e., another study char-
acteristic). You should certainly acknowledge this limitation in describing 
moderator results from your meta- analysis, and you should consider alterna-
tive explanations. Of course, the extent to which you can empirically rule out 
other moderators (through multiple regression moderator analyses control-
ling for them; see Chapter 10) diminishes the range of competing explana-
tions, and you should note this as well. To ensure that you avoid the problem 
of overinterpreting moderator results, I encourage you to jot down (separate 
from your manuscript) at least three alternative explanations for each mod-
erator result, and write about those that seem most plausible.

10. Believing there is a “right way” to perform and report a meta- analysis. 
Although this chapter (and other works; e.g., Clarke, 2009; Rosenthal, 1995) 
provides concrete recommendations for reporting your meta- analysis, you 
should remember that these are recommendations rather than absolute pre-
scriptions. There are contexts when it is necessary to follow predetermined 
formats for reporting the results of a meta- analysis (e.g., when writing a com-
missioned review as part of the Campbell [www.campbellcollaboration.org] or 
Cochrane [www.cochrane.org] Collaborations), but these are typically excep-
tions to the typical latitude available in presenting the results of your review. 
This does not mean that you deceptively present your work, but rather that 
you should consider the myriad possibilities for presenting your results, 
keeping in mind the goals of your review, how you think the findings are 
best organized, the audience for your review, and the space limitations of 
your report. I believe that the suggestions I have made in this chapter—
and throughout the book—are useful if you are just beginning to use meta-
 analytic techniques. But as you gain experience and consider how to best 
present your findings, you are likely to find instances where I have written 
“should” that are better replaced with “should usually, but . . . ”. I encourage 
this use of my (and others’) recommendations as jumping points for your 
efforts in presenting your findings.

http://www.campbellcollaboration.org]
http://www.cochrane.org]
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13.5 SuMMAry

In this chapter I have offered concrete suggestions for writing the results of 
your meta- analytic review. The first step is to consider the goals and potential 
audience for your report, as well as a meaningful organizational framework 
for presenting the findings. I then offered specific suggestions for each por-
tion of a typical manuscript, and described how you can use tables and figures 
in conjunction with text to effectively convey information. I then highlighted 
10 common problems in reports of meta- analytic findings and discussed how 
you can avoid these problems. I hope that these comments are useful to you 
in most effectively presenting the findings from your months of hard work on 
your meta- analytic review.

13.6 recoMMended reAdIngS

Borman, G. D., & Grigg, J. A. (2009). Visual and narrative interpretation. In H. Cooper, 
L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-
 analysis (2nd ed., pp. 497–519). New York: Russell Sage Foundation.—This chapter is 
a comprehensive overview of the wide variety of methods of presenting meta- analytic 
results in tables and figures. The chapter also includes some helpful advice on incorpo-
rating narrative description of your meta- analytic review.

Rosenthal, R., (1995). Writing meta- analytic reviews. Psychological Bulletin, 118, 183–
192.—As the name implies, this article is an excellent overview of how you should 
write a meta- analysis. Although the article is now a bit dated, the advice given by this 
leader in the field of meta- analysis is invaluable.

noteS

1. Or, you could do both through mixed- effects models, which estimate the vari-
ability in effect sizes both across and within study characteristics (see Chapter 
10).

2. Specifically, Borman and Grigg (2009) surveyed 80 meta- analyses published in 
the journals Psychological Bulletin and Review of Educational Research during this 
period. Although their focus on these two particular journals might limit the 
generalizability of these findings, it is worth noting that these two journals are 
widely read within their respective disciplines and therefore provide a reason-
ably accurate portrayal of practices at least within these fields. Note that they 
present the results of their survey separately for these two journals, whereas I 
combine the results in the percentages I report here.
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3. This example, containing only one study using parent reports as the categorical 
moderator, is perhaps not ideal (but might be realistic). Here, I would include a 
caveat in the text about interpreting this and other findings with small numbers 
of studies.

4. Note that this example contains a somewhat atypical situation in which some 
studies are listed twice if they provide results according to multiple reporters (see 
Chapter 9).

5. Because the skew of r is fairly small at small to moderate values, my preference is 
to use r rather than Zr if most effect sizes are less than about ±.50. In contrast, the 
distribution of the odds ratio (o) is highly skewed, so I prefer to use ln(o) for this 
effect size in all cases.
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