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Key to symbols in this book

@ This symbol means that you want to discuss a point with your teacher. If you are

working on your own there are answers in the back of the book. It is important,
however, that you have a go at answering the questions before looking up the
answers if you are to understand the mathematics fully.

This symbol invites you to join in a discussion about proof. The answers to these
questions are given in the back of the book.

This is a warning sign. It is used where a common mistake, misunderstanding or
tricky point is being described.

This is the ICT icon. It indicates where you could use a graphic calculator or a

This symbol and a dotted line dowg
material that you are likely to have &g§
material before you move

This symbol and a do 1he NOwa_the\r) and side of the page indicates
material which is be G S e unit but which is included for
completeness.



Introduction

This is the first of a series of books for the University of Cambridge International
Examinations syllabus for Cambridge International A & AS Level Mathematics
9709. The eight chapters of this book cover the pure mathematics in AS level. The
series also contains a more advanced book for pure mathematics and one each
for mechanics and statistics.

These books are based on the highly successful series for the Mathematics in
Education and Industry (MEI) syllabus in the UK but they have been redesigned
for Cambridge users; where appropriate new material has been written and the
exercises contain many past Cambridge examination questions. An overview of
the units making up the Cambridge International A & AS Level Mathematics
9709 syllabus is given in the diagram on the next pas

taken further or ¥here fundamental underpinning work is explored and such

work is marked as ‘Extension’.

The original MEI author team would like to thank Sophie Goldie who has carried
out the extensive task of presenting their work in a suitable form for Cambridge
International students and for her many original contributions. They would also
like to thank Cambridge International Examinations for their detailed advice in
preparing the books and for permission to use many past examination questions.

Roger Porkess
Series Editor
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Algebra

Sherlock Holmes: ‘Now the skillful workman is very careful indeed
... He will have nothing but the tools which may help him in doing
his work, but of these he has a large assortment, and all in the most
perfect order.’
A. Conan Doyle

Background algebra

EXAMPLE 1.1

Manipulating algebraic expressions

You will often wish to tidy up an expression, or to rearrange it so that it is easier

to read its meaning. The following examples showsewliow to do this. You

should practise the techniques for yourself o ¢ in Exercise 1A.

Collecting terms

Very often you just need to collect like\t rer;1n this example those in x,

Simplix; Yhe expressiqn2x + 4y —5z—5x—9y+2z+ 4x— 7y + 8z

SOLUTION

Expression = 2x+4x—5x+4y—9y—7y+2z+8z—-5z
6x—5x+4y—16y+10z— 52

=x-12y+5z

This cannot be
simplified further
and so it is the answer.

Removing brackets

Sometimes you need to remove brackets before collecting like terms together.

v
==
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Algebra

EXAMPLE 1.2

EXAMPLE 1.3

EXAMPLE 1.4

EXAMPLE 1.5

EXAMPLE 1.6

Simplify the expression 3(2x — 4y) — 4(x— 5y).

SOLUTION Open the brackets
Expression = 6x— 12y — 4x+ 20y Notice (—4) x (-5y) = +20y

= 6x—4x+20y— 12y Collect like terms
= 2x+8y

Simplify x(x+2) — (x—4).

SOLUTION

Expression = x> +2x— x+4 Open the brackets
X2+ x+4

Simplify a(b + ¢) — ac.

SOLUTION

Expression

6 is a factor of both 12 and 18.

Expression = 6(2x— 3y)

SOLUTION

Factorise x* — 2xy + 3xz.

SOLUTION x is a factor of all three terms.

Expression = x(x—2y+ 3z)



EXAMPLE 1.7

EXAMPLE 1.8

EXAMPLE 1.9

Multiplication
Several of the previous examples have involved multiplication of variables: cases like
axb=ab and xxx=x%.

In the next example the principles are the same but the expressions are not quite
so simple.

Multiply  3p?qrx 4pg> x 5qr.

You might well do this
line in your head.

SOLUTION

Expression = 3x4x5xp>xpxqx q>x gxrxr?
=60xp>xg°xr’
= 60p3q5r3

Fractions

The rules for working with fractions in algelrd are exactly ¥h same as those used
in arithmetic.

Simplify E - E + Z

SOLUTION

As in arithmetic y, din common denominator. For 2, 10 and 4

this is 20.

Quivalent fraction with 20 as its denominator,

This line would often
be left out.

22
Simplify x7 - y;
SOLUTION
Expression = x_3 - y_3 derT::wicrgtnoT?snxy.
Xy Xy
By
R

P1
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Algebra

EXAMPLE 1.10

EXAMPLE 1.11

EXAMPLE 1.12

EXERCISE 1A

2
Simplify 35% X %

SOLUTION

Since the two parts of the expression are multiplied, terms may be cancelled top
and bottom as in arithmetic. In this case 3, 5, x and y may all be cancelled.

Expression = % X %‘
=X
2
o (x=1)
Simplify 1)
SOLUTION

(x—1) is a common factor of both top and bottam, so may be cancelled.

However, x is not a factor of the top (the nug may not be cancelled.

(x — 1)?

Expression =

24x+ 6

Simplify 3(dx+ 1)

SOLUTION

1 Simplify the following expressions by collecting like terms.

(i) 8x+3x+4x—6x

(ii) 3p+3+5p—7-7p—-9

(iii) 2k+ 3m+8n—3k—6m—5n+2k—m+n
(iv) 2a+3b—4c+4a—5b—8c—6a+2b+ 12¢
(V) r=2s—t+2r—5t—6r—7t—s+5s—2t+4r



Factorise the following expressions.

(i) 4x+8y (i) 12a+15b—-18c
(i) 72f— 36g— 48h (iv) p*>—pq+ pr

(v) 12k*+ 144km—72kn

Simplify the following expressions, factorising the answers where possible.

(i) 8(3x+2y) +4(x+3y)

(ii) 2(3a—4b+5¢)—3(2a—-5b-¢)

(i) 6(2p—3q+4r)—52p—6q—3r)—3(p—4q+2r)
(iv) 4(l+ w+ h)+3Q2l— w—2h) + 5w

v) 5u—6(w—v)+20Bu+4w—v)—1lu

Simplify the following expressions, factorising the answers where possible.

(i) a(b+c)+alb—-c) (ii) k(m+ n) — m(k+ n)
(i) p(2q+r+3s) —pr—s(3p+¢q)
(v) x(x—1)+2(x—1)—x(x+1)

Perform the following multiplications, si

(i) 2xyXx3x%y
(iii) km X mn X nk
(v) rsX2stX3tuX dur

Simplify the followi
2
0] (i) =
(iv) ——
Si
2 2
(i) (i) P X 1
9 P
iv) 2= X = x =
W e a2 Y 38 em
Write the following as single fractions.
SoX X L 2x x| 3x s 32 2z 5z
W33 W53y AR P!
y 2X_X y_ v,y
(iv) 3 4 (v) 578 + 5
Write the following as single fractions.
W 2+2 w L+l i) 24 %
X x Xy X y
P4 1 1.1
= = ___+_
(|v)q+p (v) 7 b e

v
==
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Algebra

10 Write the following as single fractions.

(i) x1-1+x2—1 (i) 2_3x_x5—1 (i) 3x4—5+xg7
0 32x+1) 7(x—2) 4x+1 7x-3
(iv) 5 3 (v) 3 + B

11 Simplify the following expressions.

Linear equations

EXAMPLE 1.13

o x+3 o 6(2x+ 1) 2y -3)*
(W 5—/—~ (i - ——F (i) ———=
2x+6 32x+1) 8x(y — 3)
L 6x—12 (Bx+27?* . x*
ot x—2 W) 6x x 6x + 4
9 What is a variable?
P

ariable in ay

You will often need to find the value of th
particular case, as in the following examplg.

pression in a

A polygon is a closed figure whose s1 straight lines. Figure 1.1 shows a

seven-sided polygon (a h

Figure 1.1

An expression for S°, the sum of the angles of a polygon with # sides, is

S=180(n-2).

0 How is this expression obtained?

Try dividing a polygon into triangles, starting from one vertex.

Find the number of sides in a polygon with an angle sum of (i) 180° (ii) 1080°.



QA

SOLUTION

This is an equation
which can be
solved to find n.

(i) Substituting 180 for S gives 180 = 180(n—2)
Dividing both sides by 180 = l=n-2
Adding 2 to both sides = 3=n

The polygon has three sides: it is a triangle.

(ii) Substituting 1080 for S gives 1080 = 180(n—2)
Dividing both sides by 180 = 6=n-2
Adding 2 to both sides = 8=mn

The polygon has eight sides: it is an octagon.

Example 1.13 illustrates the process of solving an equation. An equation is formed
when an expression, in this case 180(# — 2), is set equal to a value, in this case 180 or
1080, or to another expression. Solving means finding the value(s) of the variable(s)
in the equation.

For example, trine=11: 5(x— 1) =5x (11 - 1) =50; 5x—5=55-5=50V,
ortry x=46:5(x—1)=5%(46—1) =225;5x—5=230-5=225/,
or try x = anything else and it will still be true.

To distinguish an identity from an equation, the symbol = is sometimes used.

Thus 5(x—1) =5x—5.

g
=
[
o
=
(1]
2
c
o
-3
o
=
[
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EXAMPLE 1.14

EXAMPLE 1.15

Solve the equation 5(x—3) = 2(x+6).

SOLUTION
Open the brackets = 5x—15 =2x+ 12
Subtract 2x from both sides = 5x—2x—15 =2x—2x+12
Tidy up = 3x—15 =12
Add 15 to both sides = 3x—-15+15=12+15
Tidy up = 3x =27
Divide both sides by 3 = %x = 2?7

= x=9
CHECK

When the answer is substituted in the original equation both sides should come
out to be equal. If they are different, you have made a mistake.

Left-hand side Right-hand side

5(x—3) 2(x+6)
5(9-3) 2(9+6)
5%X6 2x15

30 30 (asreq

Solve the equation %(x

SOLUTION

Start by clearing t #c» the numbers 2 and 3 appear on the bottom

line, mulgir cancels both of them.

6X1(x+6)=6xx+6x5(2x—5)
3(x+6)=6x+2(2x-15)
3x+ 18 =6x+4x—-10

from both sides = 3x—6x—4x =—10-18

Tidy up = ~7x =28
Divide both sides by (-7) = % - —__278
= X = 4

CHECK

Substituting x=4 in %(x+ 6)=x+ %(2x—5) gives:

Left-hand side Right-hand side
1 1

5(4+6) 4+5(8-5)

10 3

7 4+3

5 5 (asrequired).



EXERCISE 1B

1 Solve the following equations.

(i) 5a—32=68

(i) 4b—6=3b+2

(iii) 2c+12=5c+ 12

Giv) 5(2d+8)=2(3d+24)

(v} 3(2e—1)=6(e+2)+3e

i) 7(2—f)-3(f-4)=10f—4
(vii) 5¢+2(g—9)=3(2g¢g-5) +11
(viii) 3(2h—6) —6(h+5)=2(4h—4) —10(h+4)
(ix)  Tk+3k=36

(-5 +1=11

(i) L(3m+5)+1)(2m-1)=5]

. 1 1 _5
(i) n+3(n+1)+ (n+2)=;

The largest angle of a triangle is six times as }
is 75°.

(i) Write this information in the form ofg
of the smallest angle.

(i) Solve the equation and so find

aJrectangular field is 40 m greater than the width.
¢ field is 400 m.

(i) Write thi
(ii) Solve the equation and so find the area of the field.

hformation in the form of an equation for d.

5 Yash can buy three pencils and have 49c change, or he can buy five pencils and

have 15¢ change.

(i) Write this information as an equation for x, the cost in cents of one pencil.

(i) How much money did Yash have to start with?

v
==
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Algebra

6 In a multiple-choice examination of 25 questions, four marks are given for
each correct answer and two marks are deducted for each wrong answer.
One mark is deducted for any question which is not attempted.

A candidate attempts g questions and gets ¢ correct.

(i) Write down an expression for the candidate’s total mark in terms of g and c.

(ii) James attempts 22 questions and scores 55 marks. Write down and solve
an equation for the number of questions which James gets right.

7 Joe buys 18kg of potatoes. Some of these are old potatoes at 22¢ per kilogram,
the rest are new ones at 36¢ per kilogram.

(i) Denoting the mass of old potatoes he buys by m kg, write down an
expression for the total cost of Joe’s potatoes.

(i) Joe pays with a $5 note and receives 20c change. What mass of new
potatoes does he buy?

8 In 18 years’ time Hussein will be five times a as he was 2 years ago.

(i) Write this information in the form \avolving Hussein’s
present age, a years.

(ii) How old is Hussein now?

Changing the subject of a fo la

€ parallel sides and h is the distance between
apon like this is often called a formula.

Figure 1.2

The variable A is called the subject of this formula because it only appears once
on its own on the left-hand side. You often need to make one of the other
variables the subject of a formula. In that case, the steps involved are just the
same as those in solving an equation, as the following examples show.



EXAMPLE 1.16

EXAMPLE 1.17

EXAMPLE 1.18

EXAMPLE 1.19

Make a the subject in A= %(a + b)h.

SOLUTION

It is usually easiest if you start by arranging the equation so that the variable you
want to be its subject is on the left-hand side.

Ha+bh=A
Multiply both sides by 2 = (a+bh =2A
Divide both sides by h = a+b = %
Subtract b from both sides = a= % -b
— . . _ PRT
Make T the subject in the simple interest formula I= 100

SOLUTION

Arrange with T on the left-hand side
Multiply both sides by 100 =

Divide both sides by Pand R =

Make x the subject in the
of an oscillating point

SOLUTION
Square bo = v? = w?(a? - x?)
2
Divide/bdth sides by = L =gy
)
2
Add x? toBotk sides = V—z + x? = g?
)
2 2
Subtract v_2 froq poth sides = x2 = a? —V—z
) )
. 2 V2
Take the square root of both sides = x=%,4a"-—
)

Make m the subject of the formula mv = I+ mu. (This formula gives the

momentum after an impulse.)

SOLUTION

Collect terms in m on the left-hand side
and terms without m on the other,. = mv—mu=1

Factorise the left-hand side =
Divide both sides by (v — u)

mv—u) =1
I
V—u

= =

v
==
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EXERCISE 1C 1

10

11

12

13

14

Make (i) a (ii) t the subjectin v=u+ at.
Make h the subject in V= [wh.

Make r the subject in A = rtr?.

Make (i) s (i) u the subject in v2 — u? = 2as.
Make h the subject in A =2nrh+ 212,

Make a the subject in s= ut+ ar>.
Make b the subject in h = a? + b*.

Make g the subject in T=2n \/z .

g
Make m the subject in E= mgh + %mvz.
Make R the subject in 1_1 + 1
R R R,

Make h the subject in bh=2A — ah.

Make u the subject in f= ut-l:v'

Make d the subject in u? — du
Make V the subject in p VM=

EXAMPLE 1.20

SOLUTION

Since the length of the field is 40 m greater than the width,

the width in m must be x— 40

and the area in m? is x(x — 40). x—40

So the required equation is x(x — 40) = 6000

or x% — 40x— 6000 = 0. Figure 1.3



EXAMPLE 1.21

This equation, involving terms in x?> and x as well as a constant term (i.e. a
number, in this case 6000), is an example of a quadratic equation. This is in
contrast to a linear equation. A linear equation in the variable x involves only
terms in x and constant terms.

It is usual to write a quadratic equation with the right-hand side equal to zero.
To solve it, you first factorise the left-hand side if possible, and this requires a
particular technique.

Quadratic factorisation

Factorise xa + xb + ya + yb.

Notice (a +b) isa

SOLUTION common factor.

xa+xb+ya+yb =x(a+b)+y(a+b)

(x+y)(a+b)

The expression is now in the form o
answer.

You can see this result in
be written as the prod

sum of the areas o s{angles, xa, xb, ya and yb.

\\7
a ya
AN
NV
b xb vb
Figure 1.4

The same pattern is used for quadratic factorisation, but first you need to split
the middle term into two parts. This gives you four terms, which correspond to
the areas of the four regions in a diagram like figure 1.4.

[=]
c
o
o
=~
]
-3
o
[+]
2
[
D
=4
[
=2
7]
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EXAMPLE 1.22

EXAMPLE 1.23

Factorise x2 + 7x+ 12.

SOLUTION
Splitting the middle term, 7x, as 4x + 3x you have

X2+ 7x+12 =x2+4x+3x+12
=x(x+4)+3(x+4)
=(x+3)(x+4).

How do you know to split the middle term, 7x, into 4x+ 3x, rather than say
5x+2x or 9x— 2x?

X 3
<> <—>

Figure 1.5

multiplied to git%e ¢ ), so these are the numbers chosen.

The constant term is 12.

2 W —24.

Factorise x

SOLUTION

First you look for two numbers that can be added to give —2 and multiplied to
give —24:

—-6+4=-2 —6 X (+4) =-24.
The numbers are —6 and +4 and so the middle term, —2x; is split into —6x + 4x.

x?—2x-24 = x> —6x+4x—24
= x(x—6)+4(x—16)
(x+4)(x-6).



This example raises a number of important points.

1 It makes no difference if you write + 4x — 6x instead of — 6x + 4x. In that case
the factorisation reads:

X2 —=2x—24=x>+4x—6x—24
=x(x+4)—6(x+4)
=(x—-6)(x+4) (clearly the same answer).

2 There are other methods of quadratic factorisation. If you have already learned
another way, and consistently get your answers right, then continue to use it.
This method has one major advantage: it is self-checking. In the last line but
one of the solution to the example, you will see that (x+ 4) appears twice. If at
this point the contents of the two brackets are different, for example (x+ 4) and
(x—4), then something is wrong. You may have chosen the wrong numbers, or
made a careless mistake, or perhaps the expression cannot be factorised. There
is no point in proceeding until you have sorted out why they are different.

2 to get back to the
ng this out.

P55

= x>—2x—24 (asrequired)

You would not expect to draw the lines and arrows in your answers. They
have been put in to help you understand where the terms have come from.

EXAMPLE 1.24 Factorise x2 — 20x + 100.

SOLUTION

x?—20x+ 100 = x> — 10x— 10x + 100
=x(x—10) —10(x—10)
=(x—10)(x—10)
= (x—10)2

Notice:
(-10) + (-10) =-20
(-10) x (-10) = +100

v
==
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EXAMPLE 1.25

EXAMPLE 1.26

Note

The expression in Example 1.24 was a perfect square. It is helpful to be able to rec-

ognise the form of such expressions.

(x+ a)2=x2+2ax+ a% (inthis case a=10)

(x—a)2=x2—2ax+ a?

Factorise x2 — 49.

SOLUTION m

x% — 49 can be written as x% + 0x — 49.

X2+ 0x—49 =x2—7x+7x—49

=x(x=7)+7(x=7)
= (x+7)(x=7) (nx7=89

bnce of two squares

Note

The expression in Example 1.25 was an exa

which may be written in more generghform s

- b?=(a+ b)a-b).

What would help yo eral results from Examples 1.24
and 1.25?

started with the term x2, that is the coefficient of

€ case in the next example.

SOLUTION

The technique for finding how to split the middle term is now adjusted. Start by
multiplying the two outside numbers together:

6% (—12) =—72.

Now look for two numbers which add to give +1 (the coefficient of x) and
multiply to give —=72 (the number found above).

(+9) +(=8) =+1 (+9) X (-8) =-72

3x is a factor of both
6x2 and 9x.

6x°+9x—8x— 12 =3x(2x+3) — 4(2x+ 3)
—8x and -12.

Splitting the middle term gives




Note

The method used in the earlier examples is really the same as this. It is just that in
those cases the coefficient of x2 was 1 and so multiplying the constant term by it had
no effect.

Before starting the procedure for factorising a quadratic, you should always check
that the terms do not have a common factor as for example in

2x2—8x+ 6.

This can be written as 2(x? — 4x + 3) and factorised to give 2(x— 3)(x— 1).

Solving quadratic equations

EXAMPLE 1.27

EXAMPLE 1.28

It is a simple matter to solve a quadratic equatig ke quadratic expression

has been factorised. Since the product of the
one or other of them must equal zero, and tlid

Solve x? — 40x — 6000 = 0.

SOLUTION

x% —40x— 60

Look back to page 12.
What is the length of the field?

Note

The solution of the equation in the example is x =-60 or 100.

The roots of the equation are the values of x which satisfy the equation, in this case
one root is x = -60 and the other root is x = 100.

Sometimes an equation can be rewritten as a quadratic and then solved.

Solve x*— 13x2+36=0

SOLUTION

This is a quartic equation (its highest power of x is 4) and it isn’t easy to factorise
this directly. However, you can rewrite the equation as a quadratic in x°.

v
==
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EXAMPLE 1.29

EXERCISE 1D

Let y =x?

x*—13x2+36=0
= (x?)?—-13x*+36=0
= P2-13y+36=0

You can replace
X2 with y to get a
quadratic equation.

Now you have a quadratic equation which you can factorise.
(y—-4)(y-9)=0 Don’t stop here.
You are asked to find x, not y.
So y=4o0ry=9
Since y=x?> thenx’=4=x=12 Remember the
orx)=9=x=+43 negative square root.

You may have to do some work rearranging the equation before you can solve it.

Find the real roots of the equation x> — 2 = 8

X

bR

SOLUTION

You need to rearrange the equation beford

Multiply by x%
Rearrange: xt— 242

2

This is a quadratic jp directly, without substituting in for x*.

So this quartic equation
only has two real roots. You
can find out more about roots
which are not real in P3.

(ii) px+py—gqx—qy

(i) ur—vr+us—vs (ivi m?+ mn+ pm+ pn
(v} x*—3x+2x—6 i) y*+3y+7y+21
(vii) z?>—5z+5z—25 (viii) ¢>—39—3q+9
(ix) 2x*+2x+3x+3 (x)  6v2+3v—20v—10

2 Multiply out the following expressions and collect like terms.

M (a+2)(a+3) i) (b+5)(b+7)
(i) (c—4)(c-2) (ivi (d—5)(d—4)
(v) (e+6)(e—1) (vi) (g—3)(g+3)
(vii) (h+5)2 (viii) (2i—3)?

(ix) (a+b)(c+d) x) (x+p)(x—y)



Factorise the following quadratic expressions.

X+ 6x+8
Y2+ 9y+20
r?—2r—15
x> —5x—6

a’-9

(i)
(iii)
(v)

(vii)

(ii)
(iv)
(vi)
(viii)

(ix) (x)

Factorise the following expressions.

2x*+5x+2
5x2 4+ 11x+2
2x%+ 14x+24
6x*—5x—6
t2—1t?

(i)
(iii)
(v)

(vii)

(ii)
(iv)
(vi)
(viii)

(x)

(ix)
Solve the following equations.

i) x2—11x+24=0
(i) x2— 11x+18=0
(v) x2—64=0

Solve the following equations.

(i) 3x2—5x+2=0
(i) 3x*—5x—2=0
(v) 9x2—12x+4=0
Solve the following
(i) (i)
(iii) x% £ A

(v)

Solve theYoIlwig'equations.

i x*-5x*+4=0
(i) 9x* — 13x2+4=0
(v) 25x*—4x*=0
ii) xX* —9x3 + 8 =0

(ii)
(iv)
(vi)

(viii)

Find the real roots of the following equations.

M 2+i=2 (i)
X

(i) x2 -6 = Z—Z (iv)
X

9 13 .

(v) ; +4 = F (vi)

(vii)\/; + =6

(viii)

8
Jx

3x2 +5x _

(iv) 2x+1=7

v
==

x> —6x+8
r?+2r—15
s> —4s+4

X+2x+1
(x+3)2-9

dal asiaiexg

2x2—5x+2
5x2—11x+2
4x% — 49
9x?—6x+1
2x*— 11xy + 59

4
3

15

8

(vi) 3x+§ =14

x*—10x2+9=0
454 —25x2+36=0

x—6Jx+5=0
x—Jx-6=0
2 =1+12
x2
1 20
1+;—F—0
3,2 _
x*+==3
x3
3 7
2+-=—F 19
X 0o 19



Algebra

10

11

12

13

Find the real roots of the equation % + % =1
X

x
The length of a rectangular field is 30 m greater than its width, w metres.

(i) Write down an expression for the area Am? of the field, in terms of w.
(ii) The area of the field is 8800 m?. Find its width and perimeter.

A cylindrical tin of height & cm and radius rcm, has surface area, including
its top and bottom, Acm?.

(i) Write down an expression for A in terms of r, h and 7.
(ii) A tin of height 6cm has surface area 547 cm?. What is the radius of the tin?

(iii) Another tin has the same diameter as height. Its surface area is 150 cm?.
What is its radius?

When the first # positive integers are added together, their sum is given by

%n(n+ 1).

(i) Demonstrate that this result holds foy'the case
(ii) Find the value of n for which the §

There are other techniques available for such situations, as you will see in the

next few pages.

Graphical solution

If an equation has a solution, you can always find an approximate value for it by

drawing a graph. In the case of

x2—6x+2=0

you draw the graph of

y=x>—6x+2

and find where it cuts the x axis.



From figure 1.6, x is between 0.3 and 0.4 so approximately 0.35, or between 5.6

W4/

\\_//

and 5.7 so approximately 5.65.

Clearly the accuracy of the answer is dependent on the scale of the graph but,
however large a scale you use, your answer will never be completely accurate.

Completing the square

If a quadratic equation has a solution, this method will give it accurately. It
involves adjusting the left-hand side of the equation to make it a perfect square.

The steps involved are shown in the following example.

X 0 1 2 3 4 5 6
x* 0 1 4 9 16 25 36
—6x 0 -6 -12 —-18 —24 -30 -36
+2 +2 +2 +2 +2 ) +2 )
U 2 _3 5 -7 —6 -3 +2
Y
2 | | []
.~ ( Between ﬁe@v/ee\nﬁi N
. 0.3and 0.4} \5_5@51/ —/
o LW 1
4 / ¢
-1 /; Q
\ / O\
L (( \
NE/AD
7/

v
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Algebra

EXAMPLE 1.30

Solve the equation x> — 6x+ 2 = 0 by completing the square.

SOLUTION

Subtract the constant term from both sides of the equation:

= x*-6x =-2
Take the coefficient of x: -6
Halve it: -3
S h . 9 Explain why this makes the
quare the answer: + left-hand side a perfect square.

Add it to both sides of the equation:
= xX*-6x+9=-2+9
Factorise the left-hand side. It will be found to be a perfect square:

= (x-3)?%=7

Take the square root of both sides:

7

= x—3 =%

YA

5 x= 2
e it has a line of symmetry, x= 2. X \ /
It is possible to find the vertex 3
and the line of symmetry without \ /
plotting the points by using the 2 \ /
technique of completing the \ /
square. | el
-1 0 4 fc
Figure 1.7



EXAMPLE 1.31

Rewrite the expression with the constant term moved to the right

x2—4x  +5.

Take the coefficient of x: —4
Divide it by 2: -2
Square the answer: +4

Add this to the left-hand part and compensate by subtracting it from the constant
term on the right

This is the completed

2
X —dx+4 +5-4. square form.

This can now be written as (x—2)2 + 1.

The minimum value is 1,
so the vertex is (2, 1).

The line of symmetry is
Xx—2=0 orx=2.

Write x? + 5x + 4 in completed square form.
Hence state the equation of the line of symmie ¢-prdinates of the
vertex of the curve y=x? + 5x+ 4.
SOLUTION

x% 4+ 5x +4
X2 +5x+625 +4—6

=y

%
—/T/ertex_v)/
(-2.5,-2.25)

Figure 1.8

Line of symmetry
Xx=-25

P1
1

suonoauny anjespenb jo sydeib ay

=



Algebra

EXERCISE 1E

A For this method, the coefficient of x> must be 1. To use it on, say, 2x* + 6x+ 5, you
must write it as 2(x? + 3x+ 2.5) and then work with x> + 3x+ 2.5. In completed
square form, it is 2(x+ 1.5)% + 0.5. Similarly treat —x? + 6x+ 5 as —1(x? — 6x—5)
and work with x? — 6x — 5. In completed square form itis —1(x —3)?+ 14.

Completing the square is an important technique. Knowing the symmetry and
least (or greatest) value of a quadratic function will often give you valuable
information about the situation it is modelling.

1 For each of the following equations:

(a) write it in completed square form
(b) hence write down the equation of the line of symmetry and the co-ordinates
of the vertex

(c) sketch the curve.
i y=x*+4x+9

(i) y=x?+4x+3

v) y=x*+6x—1

(vii) y=x*+x+2

ix) y=x2—3x+1 y=x2+0.1x+0.03

2 Write the following ions in descending powers of x.

(i) (x+4)*—4
iv) (x—10)2+12
(vi) (x+0.1)24+0.99

¥ in completed square form.

(i) 3x%>—18x-27
(iv) —2x2—-2x-2
(v) 5x2—10x+7 (vi) 4x2—4x—4
(vii) —3x%—12x (viii) 8x%+24x—2



4 The curves below all have equations of the form y= x>+ bx+ c.
In each case find the values of band c.

(i » (i) YA

v
==

G.1 \\/ x

-1,-1

=Y

(i) y A (iv) YA

NS

ejnwioy oi3espenb ay |

5 Solve the following e eling the square.

i) x2—8x—-1=0
(iv) 2x*2—6x+1=0

i) x2—6x+3
(iii) x*—3x+
(v)

Completingthdsqudré is a powerful method because it can be used on any
quadratic equatio/ However it is seldom used to solve an equation in practice
because it can be generalised to give a formula which is used instead. The
derivation of this follows exactly the same steps.

To solve a general quadratic equation ax? + bx+ c¢= 0 by completing the square:

First divide both sides by a: = x? + % + g =0.

Subtract the constant term from both sides of the equation:

bx _ ¢

24 O&
:>x+a a



Algebra

EXAMPLE 1.32

EXAMPLE 1.33

Take the coefficient of x: +=

Halve it: b
2a
B>

Square the answer: +-—
4a

Add it to both sides of the equation:

b b2 _ b2

= x?+ =2 _c
a  4a’> 4a®> a

Factorise the left-hand side and tidy up the right-hand side:

b\ _ b - dac
+—| =———
:}(x 261) 4q*

Take the square root of both sides:

b b* — 4ac
b _ 4 NO”—4ac
:>x+2a - 2a
- _ b+~ —dac
= 2a

This important result, known as th¥

adratisormty, Aas significance beyond
RS, as you will see later. The next two
OQl for solving equations.

_ —bEVb* - 4ac

\cge Aalues in the formula x = o

gives x =

=0.423 or 1.577 (to 3 d.p.).

Solve x2 —2x+2=0.

SOLUTION

The first thing to notice is that this cannot be factorised. The only two whole
numbers which multiply to give 2 are 2 and 1 (or —2 and —1) and they cannot be
added to get —2.

Comparing x* — 2x + 2 to the form ax? + bx+ c=0
givesa=1,b=—-2and c=2.



2
Substituting these values in x = W

. 2+N4-38
gives ==

2+
=2

Trying to find the square root of a negative number creates problems.

A positive number multiplied by itself is positive: +2 X +2 = +4.

A negative number multiplied by itself is also positive: —2 X —2 = +4.

Since V4 can be neither positive nor negative, no such number exists, and so
you can find no real solution.

Note

It is not quite true to say that a negative number has no square root. Certainly it

has none among the real numbers but mathematicians have invented an imaginary

happens if you draw the gragh.
below and the graph is

bz
—2x \}2\‘

+2 +2

<= )
4
/
<

y +5 +1 | 2 | +5

%
I~

Figure 1.9
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Algebra

The part of the quadratic formula which determines whether or not there are real
roots is the part under the square root sign. This is called the discriminant.

_ =b£~Nb - dac

X 2a

The discriminant, b2 — 4ac

If b% — 4ac> 0, the equation has two real roots (see figure 1.10).

Figure 1.10

If b? — 4ac< 0, the equation has no

=Y

Figure 1.1

If b? — 4ac= 0, the equation has one repeated root (see figure 1.12).

=

Figure 1.12



EXERCISE 1F

1 Use the quadratic formula to solve the following equations, where possible.

(i) x2+8x+5=0 (i) x24+2x+4=0
(iii) x2 = 5x—19=0 (iv) 5x2—3x+4=0
(v) 3x2+2x—4=0 (vi) x2—-12=0

2 Find the value of the discriminant and use it to find the number of real roots
for each of the following equations.

(i) x2=3x+4=0 (i) x2—3x—4=0
(i) 4x%—3x=0 (iv) 3x2+8=0
(v) 3x2+4x+1=0 (vi) X2+ 10x+25=0

3 Show that the equation ax’ + bx— a = 0 has real roots for all values of a and b.
4 Find the value(s) of k for which these equations have one repeated root.

i) x2=2x+k=0 (i) 3x2—6x+k=0
(i) kX2 +3x—4=0
(v) 3x%+2kx—3k=0

5 The height h metres of a ball at time ¢ secqny hfown up in the air is

given by the expression

h=1+15t—5¢

the same time).SCh equations are called simultaneous equations. If you need to
find values of two variables, you will need to solve two simultaneous equations;
if three variables, then three equations, and so on. The work here is confined

to solving two equations to find the values of two variables, but most of the

methods can be extended to more variables if required.

v
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n EXAMPLE 1.34

Algebra

EXAMPLE 1.35

Linear simultaneous equations

At a poultry farm, six hens and one duck cost $40, while four hens and three
ducks cost $36. What is the cost of each type of bird?

SOLUTION

Let the cost of one hen be $4 and the cost of one duck be $d.

Then the information given can be written as:

6h+d =40 Q@
4h+3d = 36. @

There are several methods of solving this pair of equations.

Method 1: Elimination

Multiplying equation @ by3 = 18h+3d =120
Leaving equation @ = 4h+3d = 36
Subtracting =
Dividing both sides by 14 =

Substituting = 6 in equation @ gives

1

Before lookiggMt6ther methods for solving this pair of equations, here is another

example.
Solve 3x+5y=12 @
2x—6y=-20 ®
SOLUTION
DOx6 = 18x+30y= 72
®x5 = 10x-30y = —100
Adding = 28« = -28
Giving X = -1
Substituting x=—1in equation ® = —3+5y =12
Adding 3 to each side = 5y =15
Dividing by 5 = y= 3

Therefore x=-1, y=3.



Note

In this example, both equations were multiplied, the first by 6 to give +30y and the
second by 5 to give —30y. Because one of these terms was positive and the other
negative, it was necessary to add rather than subtract in order to eliminate y.

Returning now to the pair of equations giving the prices of hens and ducks,

6h+d =40 ©)
4h+3d = 36 ®

here are two alternative methods of solving them.

Method 2: Substitution
The equation 6/ + d =40 is rearranged to make d its subject:
d=40-6h.

This expression for d is now substituted in the othe

4h+3(40 — 6h) = 36
= 4h+120—-18h = 36
= —14h = -8
=

Z \ \ 6h+d=40
: (Il
. IR
S| wh43d=36 N\ \
4
3
) N\
1 \ \\
\ g
0 1 2 3 4 5 6 7 8 9 10 #h

Figure 1.13

ajon, 4h+ 3d =36, giving

v
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Algebra

EXAMPLE 1.36

Non-linear simultaneous equations

The simultaneous equations in the examples so far have all been linear, that
is their graphs have been straight lines. A linear equation in, say, x and y
contains only terms in x and y and a constant term. So 7x+ 2y = 11 is linear
but 7x? + 2y = 11 is not linear, since it contains a term in x?.

You can solve a pair of simultaneous equations, one of which is linear and the
other not, using the substitution method. This is shown in the next example.

Solve xX+2y=7 @)
x*+y*=10 ®
SOLUTION

Rearranging equation D gives x=7 — 2y.
Substituting for x in equation @:

(7=29)2+»*=10

Multiplying out the (7 — 2y) X (7 —2y)

gives 49 — 14y — 14y + 4y> =49 -2
so the equation is

49 —-28y+4y*+y
This is rearrange
A quadratic in y which you

can now solve using
factorisation or the formula.

Either
Or 0 = y=

Substituting in equation @, x+2y=7:

y=26 = x=1.38
y =3 = x=1

The solution is either x=1.8, y=2.6 or x=1, y=3.

Always substitute into the linear equation. Substituting in the quadratic will give
you extra answers which are not correct.




EXERCISE 1G

1

Solve the following pairs of simultaneous equations.

(i) 2x+3y=8 (ii) x+4y=16 (i) 7x+y=15
3x+2y=7 3x+5y=20 4x+3y=11
(iv) 5x—2y=3 (v) 8x—3y=21 (vi) 8x+y=32
x+4y=5 S5x+y=16 7x—9y=128
(vii) 4x+3y=5 (viii) 3u—2v=17 (ix) 4/ —3m=2
2x—6y=-5 5u—3v=28 5/-7m=9

A student wishes to spend exactly $10 at a second-hand bookshop. All

the paperbacks are one price, all the hardbacks another. She can buy five
paperbacks and eight hardbacks. Alternatively she can buy ten paperbacks
and six hardbacks.

(i) Write this information as a pair of simultaneous equations.

(ii) Solve your equations to find the cost of each type of book.

pears cost $1.64.

(i) Write this information as a paipf si

miultaneous equations.

(i) x?2-2y°=8 (i) 2x%+3y=12
x+2y=38 x—y=-1
liv) Kk + km},2 v tr-t2=75 i) p+q+5=0
m=k—6 t,=2t, Pr=q*+5
(vii) k(k—m)=12 wviii) p>=p,>=0
k(k+ m) =60 pytp,=2

v
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Algebra

6 The diagram shows the net of a cylindrical container of radius » cm and height
hcm. The full width of the metal sheet from which the container is made is 1 m,
and the shaded area is waste. The surface area of the container is 1400m cm?.

h

C C

Im

Y

A

(i) Write down a pair of simultaneous equations for rand h.
(i) Find the volume of the container, giving your answers in terms of 7.

(There are two possible answers.)

7 A large window consists of six square pane s shown. Each pane is

@
€

N/ /)

e totefarea of the whole window in terms of x and .

e fotal area of the dividing wood is 7xy + 2y°.

[MEI]

Inequalities

Not all algebraic statements involve the equals sign and it is just as important to
be able to handle algebraic inequalities as it is to solve algebraic equations. The
solution to an inequality is a range of possible values, not specific value(s) as in

the case of an equation.



EXAMPLE 1.37

EXAMPLE 1.38

Linear inequalities

P1

The methods for linear inequalities are much the same as those for equations but n

you must be careful when multiplying or dividing through an inequality by a
negative number.

Take for example the following statement:

5> 3istrue
Multiply both sides by =1 -5 > —3 is false.

It is actually the case that multiplying or dividing by a negative number reverses
the inequality, but you may prefer to avoid the difficulty, as shown in the

examples below. /\
TN

Solve 5x—3 < 2x— 15.

SOLUTION

Add 3 to, and subtract 2 —2x< —15+3
Tidy up 3x < —12
Divide both sides = x < —4

Solve 2y+6>Yy+11.

SOLUTION
Beware: do not

Subtract 6 and 7y from both sides = 2y—-7y > 11-6 divide both sides
Tidy up = 5y > 45 by 5.
Add 5y to both sides and subtract 5 = =5 > +5y__( Thisnow allows
you to divide both
Divide both sides by +5 = -1 >y sides by +5.

Note that logically —1 > yis the same as y < —1, so the solution is y < —1.

sanenbauj



P 1 Quadratic inequalities

n EXAMPLE 1.39 Solve (i) x2—4x+3>0 (i) x2—4x+3<0.

SOLUTION

[
K-
[} . . .
?tm The graph of y = x> — 4x+ 3 is shown in figure 1.14 with the green parts of the
x axis corresponding to the solutions to the two parts of the question.
(i) You want the values of x for which (ii) You want the values of x for
y > 0, which that is where the curve y < 0, that is where the curve
is above the x axis. crosses or is below the x axis.

Here the end points are not included in the Here the end points are included in the

inequality so you draw open circles: O inequality so you draw solid circles: @

T I /
N—
0 3 4 x 0 4 X
= /§ -1
/>\\\
Figure 1.14
The solutiog W¥< 1 or 3. The solutionis x= 1 and x < 3,

usually witten 1 < x < 3.

EXAMPLE 1.40 bsJof k for which x% + kx + 4 = 0 has real roots.

SOLUTION
A quadratic equation, ax* + bx+ c=0, has real roots if b*>—4ac= 0.

So x*+kx+4=0hasreal rootsif k2 —4x4x1=0.

Take the square root
of both sides.

So the set of values is k = 4 and k < —4.

=k-16=0
=k=16

Take care: (-5)? = 25 and
(-3)2=19, so k must be
less than or equal to —4.

sl



EXERCISE 1H

1 Solve the following inequalities.

i) 5a+6>2a+24 (ii) 3b-5<b-1

(i) 4(c—1)>3(c—2) (iv)] d—3(d+2)=2(1+2d)

(v) le+3i<e i) —f—2f-3<4(1+f)

(vii) 5(2-39) + ¢=8(2¢g—4) (viii) 3(h+2)—2(h—4)>7(h+2)
2 Solve the following inequalities by sketching the curves of the functions

involved.

) p>—5p+4<0 i) p*—5p+4=0

(i) X2 +3x+2<0 (iv) x?+3x>-2

) y*-2y-3>0 i) z(z—1)=<20

(vii) > —4q+4>0 (viii) y(y—2) > 8

(ix) 3x*+5x—2<0 ) 2y2—1ly—-6=0

(xi) 4x—3=x? (xii) 10y> > y+3

3 Find the set of values of k for which each o

(i) 2x*2—3x+k=0 (
(i) 5x2+ kx+5=0

4 Find the set of values of k for whic

(i) x2—6x+k=0
(i) 4x2 —kx+4=0

If b — 4ac >\
If b? — 4ac= 0, the equation has one repeated root.

e equation has two real roots.

If b* — 4ac < 0, the equation has no real roots.
2 To solve a pair of simultaneous equations where one equation is non-linear:

e first make x or y the subject of the linear equation

e then substitute this rearranged equation for x or y in the non-linear equation

@ solve to find y or x
e substitute back into the linear equation to find pairs of solutions.

3 Linear inequalities are dealt with like equations but if you multiply or divide
by a negative number you must reverse the inequality sign.

4 When solving a quadratic inequality it is advisable to sketch the graph.

v
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P1 Co-ordinate geometry

A place for everything, and everything in its place
Samuel Smiles

Fly for 3 km on a
bearing of 360°.

Travel on bus
34 for 8 stops.

Co-ordinate geometry

Ahead for 3 blocks,
turn right, then continue
for 5 blocks.

Co-ordinates

o (3:4.5)
4 .
YA '
3 3 :
5
3 3,2 :
R RREEEEEEE L £ : 2 :
12 :
1 : '
-1 0 1 2 3 4 x T3 h
L3
-1

38 Figure 2.1



Plotting, sketching and drawing

In two dimensions, the co-ordinates of points are often marked on paper and
joined up to form lines or curves. A number of words are used to describe

P1
E

this process.

Plot (a line or curve) means mark the points and join them up as accurately as
you can. You would expect to do this on graph paper and be prepared to read
information from the graph.

Sketch means mark points in approximately the right positions and join them up

aulj e jo juaipesb ay|

in the right general shape. You would not expect to use graph paper for a sketch

and would not read precise information from one. You would however mark on
the co-ordinates of important points, like intersections with the x and y axes and
points at which the curve changes direction.

Draw means that you are to use a level of accuracy appropriate to the
circumstances, and this could be anything between-axqugh sketch and a very
accurately plotted graph.

The gradient of a line

mathematics, it is usually uderstqod to\myeama'siraight line. If you know the
co-ordinates of any two gOInthonalges&n you can draw the line.

Gradient m = g% ==

N
Hlw

0 (theta) is the Greek letter ‘th’.
«a (alpha) and g (beta) are also
used for angles.

=Y

O

Figure 2.2
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Co-ordinate geometry

In general, when A is the point (x,, y,) and B is the point (x,, y,), the gradient is

"= YoV 1
=%
When the same scale is used on both axes, m = tan 0 (see figure 2.2). Figure 2.3
shows four lines. Looking at each one from left to right: line A goes uphill and
its gradient is positive; line B goes downhill and its gradient is negative. Line C is

horizontal and its gradient is 0; the vertical line D has an infinite gradient.

YA
5
4
3 B
A
D
2 T N\
RN
N
N\ N N
0 5 7 8 x
Figure 2.3
ACTIVITY 2.1 On each line in figyr€ 2. ints and call them (x,, y,) and (x,, y,).
Substitute the v in the formula

nq so find the\gkadie

€ Does it matt ich point you call (x;, y,) and which (x,, y,)?

Parallel and perpendicular lines

If you know the gradients m, and m, of two lines, you can tell at once if they are
either parallel or perpendicular — see figure 2.4.

m

m
1 m,

Figure 2.4 parallel lines: m; =m, perpendicular lines: m;m, = -1



Lines which are parallel have the same slope and so m, = m,. If the lines are
perpendicular, m,m, =—1. You can see why this is so in the activities below.

U
-

ACTIVITY 2.2 Draw the line L, joining (0, 2) to (4, 4), and draw another line L, perpendicular
to L,. Find the gradients m, and m, of these two lines and show that m m, =—1.

ACTIVITY 2.3  Thelines AB and BC in figure 2.5 are equal in length and perpendicular. By
showing that triangles ABE and BCD are congruent prove that the gradients m,
and m, must satisfy m,m,=—1.

sjuiod om} usamiaq asuelsip ayl

VA
B
N
; 0
gradient m
gradient m,

\0 [
A E -

D

’ N— :
Figure 2.5
(\\\ §
A Lines for which m m will Npendicular if the same scale has been
used for both axes, /
V4

The distance bet

When the ¥Q-5
be calculated

YA

AB? =42+ 32
=25
AB=5

=Y

Figure 2.6
41
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This method can be generalised to find the distance between any two points,
A(x,, ;) and B(x,, y,), as in figure 2.7.

YA

The co-ordinates
of this point must
be (x, ).

(¢}

Figure 2.7

The length of the line AB is \/ (x, = x)* + (3, — )2

The mid-point of a line joining two poi

Look at the line joining the points Y0\ ) and
M(5, 3) is the mid-point of AB.

pigure 2.8. The point

y

4/

\
2NN B(8, 5)
< y4 \ i)
3// />M /\3
/y
3

K/
N7
)

=Y

—_
(&}
w
~
W
=
-
0

Figure 2.

Notice that the co-ordinates of M are the means of the co-ordinates of A and B.
_1 Ca_ 1
5=12+8); 3=1(1+5).

This result can be generalised as follows. For any two points A(x,, y,) and
B(x,, y,), the co-ordinates of the mid-point of AB are the means of the
co-ordinates of A and B so the mid-point is

2 > 2 f



EXAMPLE 2.1

EXAMPLE 2.2

A and B are the points (2, 5) and (6, 3) respectively (see figure 2.9). Find:

(i) the gradient of AB

(ii) the length of AB

(iii) the mid-point of AB

(iv) the gradient of a line perpendicular to AB.

SOLUTION

Taking A(2, 5) as the point (x,, y,), and B(6, 3) as the point (x,, y,) gives x, =2,

y1=5,x2=6,y2=3.

(i) Gradient= 2= h
X=X

92}

_3=5__1
- -2

\]

(i) Length AB = \/ (x, = x)* + (y, — ))?
(6— 272+ (3—5)

=16 +4 =120
X + X +
(i) Mid-point = (172, u)

(iv) Gradient of A

Ifmzis be

Using two differert methods, show that the lines
joining P(2, 7), Q(3, 2) and R(0, 5) form a
right-angled triangle (see figure 2.10).

SOLUTION

Method 1

Gradient of RP = Z—(S) =1
Gradient of RQ = % =-1

= Product of gradients =1 X (1) =—1

=> Sides RP and RQ are at right angles.

tpendicular to AB, then m, m, =

yA
AQ, 5)

B(6, 3)
>
-1
"o
P2
; 2,7
: \
R(0,5) 5 \
: \
3
2
1 QG3,2)
0 1 2 3 4 x
Figure 2.10

P1
E

sjuiod omy Buiuiof auij e jo jutod-prw ay
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EXERCISE 2A

Method 2

Pythagoras’ theorem states that for a right-angled triangle whose hypotenuse has
length a and whose other sides have lengths b and ¢, a? = b* + ¢%.

Conversely, if you can show that a? = b2 + ¢ for a triangle with sides of lengths 4, b,
and ¢, then the triangle has a right angle and the side of length a is the hypotenuse.

This is the basis for the alternative proof, in which you use
length? = (x, — x)2+ (y, — y,)%
PQ2=(3-2)2+(2-7)2=1+25=26
RP2=(2-0)?+(7-5)2=4+4=38
RQ2=(3-0)2+(2-5)2=9+9=18
Since 26=8+18, PQ?2=RP?+RQ?

=> Sides RP and RQ are at right angles.

1 For the following pairs of points A and B,

(a) the gradient of the line AB
(b) the mid-point of the line joiny
(c) the distance AB
(d) the gradient of Jd Iihe R gNar to AB.

i) A(0,1) § (i) A(3,2) B(4,-1)

(iii) A(-6, 3) (iv) A(5,2) B(2,-8)
(vi) A(1,4) B(1,-2)

Find the value of y.

4 The points A, B, C and D have co-ordinates (1, 2), (7, 5), (9, 8) and (3, 5).

(i) Find the gradients of the lines AB, BC, CD and DA.
(ii). What do these gradients tell you about the quadrilateral ABCD?

(iii) Draw a diagram to check your answer to part {ii).

5 The points A, B and C have co-ordinates (2, 1), (b, 3) and (5, 5), where b >3
and ZABC =90°. Find:

(i) thevalue of b
(ii) the lengths of AB and BC
(iii) the area of triangle ABC.



11

The triangle PQR has vertices P(8, 6), Q(0, 2) and R(2, r). Find the values of
r when the triangle: 1

(i) has aright angle at P

ﬂ'u

(ii) has aright angle at Q
(i) has a right angle at R
(iv) is isosceles with RQ = RP.

\VZ 9s12409x3g

The points A, B, and C have co-ordinates (—4, 2), (7, 4) and (-3, —1).

(i) Draw the triangle ABC.

(ii) Show by calculation that the triangle ABC is isosceles and name the two
equal sides.

(i) Find the mid-point of the third side.
(iv) By calculating appropriate lengths, calculate the area of the triangle ABC.

For the points P(x, y), and Q(3x, 5y), find in terms of x and y:

(i) the gradient of the line PQ
(ii) the mid-point of the line PQ
(iii) the length of the line PQ.

A quadrilateral has vertices A(0, dD(12,6).

The diagonals of a rhombus bisect each other at 90°, and conversely, when
two lines bisect each other at 90°, the quadrilateral formed by joining the end
points of the lines is a rhombus.

Use the converse result to show that the points with co-ordinates (1, 2),
(8,-2), (7,6) and (0, 10) are the vertices of a rhombus, and find its area.
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The equation of a straight line

EXAMPLE 2.3

The word straight means going in a constant direction, that is with fixed gradient.
This fact allows you to find the equation of a straight line from first principles.

Find the equation of the straight line with gradient 2 through the point (0, =5).

SOLUTION
YA

I
N

/ ,))

\
).
/)

&
-
—

k
/

/
\

Figure 2.11 \

own in figure 2.11. The gradient of
en by

Since (x, y) is a general point on the line, this holds for any point on the line and
is therefore the equation of the line.

The example above can easily be generalised (see page 50) to give the result that
the equation of the line with gradient m cutting the y axis at the point (0, ¢) is

y=mx+c
(In the example above, m is 2 and cis —5.)

This is a well-known standard form for the equation of a straight line.



Drawing a line, given its equation

There are several standard forms for the equation of a straight line, as shown in
figure 2.12.

When you need to draw the graph of a straight line, given its equation, the first
thing to do is to look carefully at the form of the equation and see if you can
recognise it.

(a) Equations of the form x= a (b) Equations of the form y= b
YA YA
x=3
(0,2)

All such lines are
parallel to the y axis.

All such lines are
parallel to the x axis.

0 (3,0) x

(c) Equations of the form y= mx ons of the foym\y= mx+ ¢

These are lines through the
origin, with gradient m.

YA
These lines have
—4 0,1 gradient m and
y=-4ax IR2 cross the y axis
at point (0, c).

(e) Equsti X+ qy+r=0

This is often a tidier way of
writing the equation.

2x+3y—-6=0

=Y

0 (3,0

Figure 2.12

(a), (b): Lines parallel to the axes

Lines parallel to the x axis have the form y = constant, those parallel to the y axis
the form x = constant. Such lines are easily recognised and drawn.

-
=
]
13
2
c
o
=
]
3
o
-
o
[7]
P
=
2,
Q
=
-
5
]
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EXAMPLE 2.4

EXAMPLE 2.5

(c), (d): Equations of the form y=mx + ¢

The line y = mx + ¢ crosses the y axis at the point (0, ¢) and has gradient m. If c=0,
it goes through the origin. In either case you know one point and can complete
the line either by finding one more point, for example by substituting x= 1, or
by following the gradient (e.g. 1 along and 2 up for gradient 2).

(e): Equations of the form px+ qy + r=0

In the case of a line given in this form, like 2x+ 3y — 6 = 0, you can either

rearrange it in the form y = mx+ ¢ (in this example y = —%x + 2), or you can find
the co-ordinates of two points that lie on it. Putting x = 0 gives the point where it
crosses the y axis, (0, 2), and putting y = 0 gives its intersection with the x axis, (3, 0).

Sketch the lines x=5, y=0 and y = x on the same axes.
Describe the triangle formed by these lines.

SOLUTION

B is (5, 5) since
atB,y=x
and x =5,

sox=y=5.

Figure 2.

The triangle obtained is an isosceles right-angled triangle, since OA = AB =5
units, and ZOAB = 90°.

Draw y=x— 1 and 3x+ 4y =24 on the same axes.

SOLUTION

The line y=x— 1 has gradient 1 and passes through the point (0, —1).
Substituting y =0 gives x= 1, so the line also passes through (1, 0).

Find two points on the line 3x+ 4y = 24.
Substituting x=0 gives 4y=124 )

R =
Il
% o

Substituting y =0 gives 3x=124 o)



The line passes through (0, 6) and (8, 0).

YA y=x-1
0,6
6 L&)
5 N
N
4 \\
’ 3x 1+ 4y|=24
2 .
) - (8, 0)
0 \ >
1 2 4 6 7T 8 X
O,=1)
Figure 2.14
EXERCISE 2B 1 Sketch the following lines.
M y=-2 (i) x=5 y=2x
(iv) y=-3x (v)  y=3x+1 y=x—4
(vii) y=x+4 { y:2x+%
(x) y=—4x+8 (xii) y=-x+1

(xiii) y = —1x -2
(xvi) 2x+5y=10
(xix) x+3y—6

x—=2y=1
3x+y=0
x+2y—\=0 x+2y+1=0
(ix) y=x-2 x+y=6
(xi) x+3y—-2=0 y=3x+2

Finding the equation of a line

(i) y=3x

(ivi y=2x+3
(vi) 2x+3y=4
(viii) y=2x—1
(x) y=4-2x
(xii) y=2x

(xv) 3x—2y=6
(xviii) 2y=5x—4

x=3y
4x—y+1=0
2y=3x—2
2x—y+3=0
x+2y=28
4x+2y=5

The simplest way to find the equation of a straight line depends on what

information you have been given.

v
)
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Given the gradient, m, and the co-ordinates (x,, y,) of one
point on the line

Take a general point (x, y) on the line, as shown in figure 2.15.

YA
. )
)
o g
Figure 2.15
The gradient, m, of the line joining (x,, y,) t yen by
V=N
m=2—721

X=X

= y-y=m(x—x).

This is a very useful form of the equa a straight line. Two positions of the

point (x;, y;) lead to parti€ular ent¥oiyns of the equation.

y=mx-+c

/ o £

%

Figure 2.16 Figure 2.17

=Y



EXAMPLE 2.6

EXAMPLE 2.7

Find the equation of the line with gradient 3 which passes through the point (2, —4).

SOLUTION

Using y—y, = m(x—x,)
= y—(-4) =3(x—2)
= y+4=3x-6
= y =3x—10.

(if) Given two points, (x,, y,) and (x,, y,)

The two points are used to find the v A
gradient:
m=2"1
X=X

This value of m is then substituted in
the equation ()

(x5, )

y=yy=mx=x). '12;/’\\\\

This gives \-j
o= h

y—h=(gjgj&—xﬁ

Rearranging the equation gi

y—4 x-2

gives 3 =55

This can be simplified to x+ 3y — 14 =0.

Show that the equation of the line in figure 2.19
can be written

Tilo

b

Y

YA
N (0, b)
(a,0)
0 N
Figure 2.19

P1
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EXAMPLE 2.8

EXAMPLE 2.9

Different techniques to solve problems

The following examples illustrate the different techniques and show how these
can be used to solve a problem.

Find the equations of the lines (a) — (e) in figure 2.20.

YA

()

B~ g

(b)

©

=\ W

<Y

3/

1

w N Ho

/

— @

—
=

Figure 2.20

SOLUTION

Line (a)

Line (b) i

=> equation of (e) is ¥ = —%x -1

This can be rearranged to give x+5y+5=0.

Two sides of a parallelogram are the lines 2y = x+ 12 and y = 4x— 10. Sketch
these lines on the same diagram.

The origin is a vertex of the parallelogram. Complete the sketch of the
parallelogram and find the equations of the other two sides.



EXAMPLE 2.10

SOLUTION
The line 2y = x+ 12 has gradient % and passes through the point (0, 6)
(since dividing by 2 gives y= %x +6).

The line y = 4x— 10 has gradient 4 and passes through the point (0, —10).

by

The dashed lines
are the other
two sides.

Y

y=4x-10
(0,-10)

Figure 2.21

The other two sid e line h gradients % and 4 which pass through (0, 0),

ie y= %x and y=4x

¢ perpendicular bisector of the line joining P(—4, 5) to

SOLUTION YA

P(—4,5)

Q2,3)

LY

Figure 2.22

I
5
2
5
Q
-,
E
®
®
2
c
]
-
o
3
°
S
1
g
®
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EXERCISE 2C

The gradient of the line PQ is
3-5 _2_ 1

2-(-4) 6 3
and so the gradient of the perpendicular bisector is +3.

The perpendicular bisector passes throught the mid-point, R, of the line PQ. The
co-ordinates of R are

(20, 323) e (1, 4.

Using y — y; = m(x — x,), the equation of the perpendicular bisector is
y—4=3(x—(-1))
y—4=3x+3
y=3x+7.

1 Find the equations of the lines (i) — (x) in the diagrams below.

YA
i (iii) [
) N\
NN T
2 /N \ \\\
SO\ @
YAANNTT .
“ 2 A AN ¢ X
NP
=N |
NN
( < \/ ~__
NA
AN
~J N (vi)
~
T~
, ~ (x)
- ~
L[ 2 4 ; 4 ¢ 5 x
(vii) E (%)
* (vili)




2 Find the equations of the following lines.

(i) parallel to y=2xand passing through (1, 5)

(ii) parallel to y=3x— 1 and passing through (0, 0)

(iii) parallel to 2x+ y— 3 =0 and passing through (—4, 5)
(iv) parallel to 3x— y— 1 =0 and passing through (4, —2)
(v) parallel to 2x+ 3y =4 and passing through (2, 2)

(vi) parallel to 2x — y — 8 = 0 and passing through (-1, —=5)

Find the equations of the following lines.

(i) perpendicular to y=3xand passing through (0, 0)

(ii) perpendicular to y=2x+ 3 and passing through (2, 1)
(i) perpendicular to 2x + y =4 and passing through (3, 1)
(iv) perpendicular to 2y = x+ 5 and passing through (-1, 4)
(v) perpendicular to 2x+ 3y =4 and passing through (5, —1)
(vi) perpendicular to 4x— y+ 1 =0 and passing th

(i) A(0,0) B(4, 3)
(iii) A(2,7) B(2,-3)
(v) A(-2,4) B(5,3)

the opposke
In a triangle OAB, O is at the origin, A is the point (0, 6) and B is the point (6, 0).
(i) Sketch the triangle.

(i) Find the equations of the three medians of the triangle.

(iii) Show that the point (2, 2) lies on all three medians. (This shows that the
medians of this triangle are concurrent.)

7 A quadrilateral ABCD has its vertices at the points (0, 0), (12, 5), (0, 10) and

(-6, 8) respectively.

(i) Sketch the quadrilateral.

(ii) Find the gradient of each side.
(i) Find the length of each side.
(iv) Find the equation of each side.

(v) Find the area of the quadrilateral.

v
)

92z 9s1949x3
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The intersection of two lines

The intersection of any two curves (or lines) can be found by solving their
equations simultaneously. In the case of two distinct lines, there are two
possibilities:

(i) they are parallel

(i) they intersect at a single point.

EXAMPLE 2.11 Sketch the lines x+ 2y =1 and 2x+ 3y = 4 on the same axes, and find the
co-ordinates of the point where they intersect.

SOLUTION

The line x+ 2y =1 passes through (O, %) and (1, 0

The line 2x+ 3y =4 passes through (0, %) afd

<Y

X+2y=1
Figure 2.23
®: x+2y=1 @:x2:2x+4y=2
@:2x+3y=4 ®@:  2x+3y=4
Subtract: y=-2.
Substituting y=-2 in @©: x—4=1

= x=>5.

The co-ordinates of the point of intersection are (5, —2).



EXAMPLE 2.12

Find the co-ordinates of the vertices of the triangle whose sides have the

U
-

equations x+ y=4,2x—y=8and x+ 2y=—1.

SOLUTION

A sketch will be helpful, so first find where each line crosses the axes.

@ x+ y=4 crosses the axes at (0, 4) and (4, 0).
(@ 2x— y=8 crosses the axes at (0, —8) and (4, 0).
® x+2y=-—1 crosses the axes at (O, —%) and (-1, 0).

YA

\ 2x-y=28
4

Saul] 0M} JO UOI}I9SId3UI BY |

x+2y=-1

=

bugh the point (4, 0) this is clearly one of the vertices. It
figure 2.24.

Point B is found by solving @ and ® simultaneously:

@x2: 4x—2y=16
®: x+2y=-1
Add 5x =15 so x=3.

Substituting x=3 in @ gives y =—2, so B is the point (3, -2).

Point C is found by solving @ and ® simultaneously:

@: x+ y=4
®: x+2y=-1
Subtract -y=5 so y=-5.

Substituting y = -5 in @ gives x=19, so C is the point (9, —5). 57
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Historical note

EXERCISE 2D

The line / has equation 2x — y =4 and the line m has equation y=2x— 3.

What can you say about the intersection of these two lines?

René Descartes was born near Tours in France in 1596. At the age of eight he was
sent to a Jesuit boarding school where, because of his frail health, he was allowed to
stay in bed until late in the morning. This habit stayed with him for the rest of his life
and he claimed that he was at his most productive before getting up.

After leaving school he studied mathematics in Paris before becoming in turn a
soldier, traveller and optical instrument maker. Eventually he settled in Holland
where he devoted his time to mathematics, science and philosophy, and wrote a
number of books on these subjects.

In an appendix, entitled La Géométrie, to one of his books, Descartes made the

A\B whosesides are given by the lines
: 9x+2y=11.

(iv) Find Ye“cglordinates of the other two vertices.

3 A(0, 1), B(1, 4), C(4, 3) and D(3, 0) are the vertices of a quadrilateral ABCD.

(i) Find the equations of the diagonals AC and BD.

(i) Show that the diagonals AC and BD bisect each other at right angles.
(i) Find the lengths of AC and BD.

(iv) What type of quadrilateral is ABCD?

4 The line with equation 5x+ y =20 meets the x axis at A and the line with
equation x+ 2y =22 meets the y axis at B. The two lines intersect at a point C.
(i) Sketch the two lines on the same diagram.
(ii) Calculate the co-ordinates of A, B and C.
(i) Calculate the area of triangle OBC where O is the origin.
(iv) Find the co-ordinates of the point E such that ABEC is a parallelogram.



5 A median of a triangle is a line joining a vertex to the mid-point of the
opposite side. In any triangle, the three medians meet at a point.
The centroid of a triangle is at the point of intersection of the medians.

Find the co-ordinates of the centroid for each triangle shown.

(i) vA (ii)
©,12)

0,9

> N\ >
o (6,0) x (-5, 0) (5,0) “x

6 You are given the co-ordinates of the fou ints A(6, 2), B(2,4), C(—6,-2)
and D(-2, —4).

[MEI]

the perpendicular from B to AC.

(i) Find the gradient of the line BC.

YA
(ii) Find the equation of the line AL. B(L7)
(iii) Write down the equation
of the line BM.
L
-
H
A n
2,1) v C(3,1)
“x

v
)

az 8s124ex3g
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The lines AL and BM meet at H.

(iv) Find the co-ordinates of H.
(v) Show that CH is perpendicular to AB.
(vi) Find the area of the triangle BLH.

[MEI]

8 The diagram shows a rectangle ABCD. The point A is (0, —2) and C is

(12, 14). The diagonal BD is parallel to the x axis.

YA
C(12, 14)

A0,-2)

(i) Explain why the y co-ording

The x co-ordinate of D is h.

B(2, 10)

N D(6, 2)

>
S
X

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 June 2005]



10 Three points have co-ordinates A(2, 6), B(8, 10) and C(6, 0). The
perpendicular bisector of AB meets the line BC at D. Find

v
)

(i) the equation of the perpendicular bisector of AB in the form ax+ by=c
(ii) the co-ordinates of D.

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q7 November 2005]

11 The diagram shows a rectangle ABCD. The point A is (2, 14), B is (-2, 8) and
C lies on the x axis.

az 8s124ex3g

by

B(-2,8) é

b AQ, 14)

)
C
=Y

Find
(i) the equation of BC.

(ii) the co-ordinates of £

B(6, 2) C(10,2)

>
S
X

(0)

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q6 November 2007]
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13 In the diagram, the points A and C lie on the x and y axes respectively and

the equation of AC is 2y + x= 16. The point B has co-ordinates (2, 2). The
perpendicular from B to AC meets AC at the point X.

YA
C

B(2,2)

(i) Find the co-ordinates of X.

DA

D

The point D is such that the quadrilatera)/A

(ii) Find the co-ordinates of D.

(i) Find, correct to 1 decimal

on the line 2y = x + 4. The point
ftom D(10, —3) to B is

.

D(10, -3)

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q8 June 2009]



® Drawing curves

You can always plot a curve, point by point, if you know its equation. Often,
however, all you need is a general idea of its shape and a sketch is quite sufficient.

P1
E

Figures 2.25 and 2.26 show some common curves of the form y=x"for n=1, 2, o
]
3and4andy:lforn=1and2. g
x" 2
«Q
g
Curves of the form y=x"forn=1, 2, 3 and 4 H
(7]
VA YA y=x*
y=x
o e
g

(ayn=1y=x (b)

YA YA

X

LY

(c) n=3, (d) n=4,y=x*

Figure 2.25

9 How are the curves for even values of n different from those for odd values of n?

Stationary points

A turning point is a place where a curve changes from increasing (curve going

up) to decreasing (curve going down), or vice versa. A turning point may be

described as a maximum (change from increasing to decreasing) or a minimum

(change from decreasing to increasing). Turning points are examples of

stationary points, where the gradient is zero. In general, the curve of a polynomial

of order » has up to n — 1 turning points as shown in figure 2.26. E



Co-ordinate geometry

A quadratic
(order 2) with one
stationary point.

a maximum point

y=-x>+4x

A cubic (order 3)
with two stationary
points.

A quartic (order 4)

with three turning
points.

you say that thg

Figure 2.27

YA y=x2
(0] \ X
a minimum
point
TA y=x’-x
1 0 x

YA

16

12

YA

>
4\x

y=-203+4x2-2x+4

LY

y=x*—4x3 + 557

A

pmials for which not all the stationary points materialise, as in
#x3 + 5x* (whose curve is shown in figure 2.27). To be accurate,
urve of a polynomial of order # has at most n — 1 stationary points.



Behaviour for large x (positive and negative)

What can you say about the value of a polynomial for large positive values and
large negative values of x? As an example, look at

f(x) = x> +2x*+3x+9,
and take 1000 as a large number.

f(1000) = 1000000000 + 2000000 + 3000 + 9
=1002003009

Similarly,

f(—=1000) =—1000000000 + 2000000 — 3000 + 9
=-998002991.

Note

1 The term x3 makes by far the largest contributig

dominantterm.

For a polynomial of order n, the term in x" is

Intersections with the x and y axes

The constant term in the polynomial gives the value of y where the curve
intersects the y axis. So y = x3 + 5x° + 17x + 23 crosses the y axis at the point
(0, 23). Similarly, y = x> + x crosses the y axis at (0, 0), the origin, since the
constant term is zero.

When the polynomial is given, or known, in factorised form you can see at once
where it crosses the x axis. The curve y= (x—2)(x — 8)(x— 9), for example, crosses
the x axis at x=2, x= 8 and x=9. Each of these values makes one of the brackets
equal to zero, and so y=0.

sanin9d Buimeaq
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EXAMPLE 2.13

n even n odd
coefficient of N N
. (RN
X" positive ~7 ~
- ~
Ny,
\
Z/ A4 ~
A
Ny
coefficient of N7
. \
x" negative </ </
Figure 2.28

Sketch the curve y= x> —

SOLUTION

( =2 1 0

Figure 2.29

Since the polynomial is of order 3, the curve has up to two stationary points. The
term in x> has a positive coefficient (+1) and 3 is an odd number, so the general

3x% —x+ 1) (x=1Tx—-3).
A
y=x3-3x2+x+3
3

N

shape is as shown on the left of figure 2.29.

The actual equation

1 2 3

y=x>-3x>—x+3=(x+1)(x—1)(x-3)

tells you that the curve:

— crosses the y axis at (0, 3
— crosses the x axis at (-1,

This is enough information to sketch the curve (see the right of figure 2.29).

)
0), (1,0) and (3, 0).

LY




In this example the polynomial x* — 3x?> — x + 3 has three factors, (x+ 1), (x— 1)
and (x— 3). Each of these corresponds to an intersection with the x axis, and to a
root of the equation x* — 3x? — x+ 3 = 0. Clearly a cubic polynomial cannot have
more than three factors of this type, since the highest power of x is 3. A cubic
polynomial may, however, cross the x axis fewer than three times, as in the case
of f(x) = x* — x? — 4x + 6 (see figure 2.30).

fi
4 fox)=x>-x>—4x+6

=Y

Figure 2.30

Note

This illustrates an important p mial of degree n, the curve with

equation y = f(x) crosses tjre imes, and the equation f(x) =0 has at

most n roots.

repeated fa SN M An such cases the curves touch the x axis at

f(x) 4

LY

f(x) = (x — 1)(x — 3)? f(x) = x%(x — 4)?

Figure 2.31

P1
E
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EXERCISE 2E Sketch the following curves, marking clearly the values of x and y where they

P 1 cross the co-ordinate axes.
E 1 y=x(x—3)(x+4) 2 y=(x+1)2x—-5)(x—4)
> 3 y=05-x)(x-1)(x+3) 4 y=x*(x-3)
g 5 y=(x+1)*(2—x) 6 y=(3x—4)(4x—3)?
:? 7 y=(x+2)*(x—4)? 8 y=(x—3)%(4+x)?
% 9 Suggest an equation for this curve.
S YA
4
/A

€@ What happens to the 1 1f 1t has a factor of the form
(x—a)*? Or (x

Curv = (for x = 0)

YA

=Y

1 1
(an=1y=% (b n=2,y="13
Figure 2.32

The curves for n=3, 5, ... are not unlike that for n= 1, those for n=4, 6, ... are
like that for n= 2. In all cases the point x= 0 is excluded because % is undefined.



An important feature of these curves is that they approach both the x and the y
axes ever more closely but never actually reach them. These lines are described as
asymptotes to the curves. Asymptotes may be vertical (e.g. the y axis), horizontal,
or lie at an angle, when they are called oblique.

Asymptotes are usually marked on graphs as dotted lines but in the cases above
the lines are already there, being co-ordinate axes. The curves have different
branches which never meet. A curve with different branches is said to be
discontinuous, whereas one with no breaks, like y = x2, is continuous.

The circle

You are of course familiar with the circle, and have probably done calculations
involving its area and circumference. In this section you are introduced to the
equation of a circle.

The circle is defined as the locus of all the points in.aplane which are at a fixed

distance (the radius) from a given point (the

As you have seen, the length of a line joining ,) is given by

length = /(x, — x)% + (, — y,
This is used to derive the equation of a
In the case of a circle of rgdi
the circumference is ditpfice 3

(0, 0) is given by
x?+ y?>=9 and thiN

treet the origin, any point (x, y) on

in. Since the distance of (x, y) from

This circle ¢

YA

<Y

242 =32

Figure 2.33

These results can be generalised to give the equation of a circle centre (0, 0),
radius r as follows:

X24yr=r2

P1
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The intersection of a line and a curve

When a line and a curve are in the same plane, there are three possible situations.

(i) All points of intersection are distinct (see figure 2.34).

YA

x+4y=4

>
5
X

Figure 2.34

(i) The line is a tangent to the curve at one{(dr more) poingt () (see figure 2.35).

In this case, each point of contact
points of intersection. It is possible
somewhere else.

spondstQ_two y/more) co-incident

Figure 2.35



EXAMPLE 2.14

(iii) The line and the curve do not meet (see figure 2.36).

The co-ordinates of the point of intersection can be found by solving the two
equations simultaneously. If you obtain an equation with no real roots, the
conclusion is that there is no point of intersection.

YA
y=x
y=x—-5
0 5 x
-5

Figure 2.36

non-linear. The examples which foll
equations.

Find the co-ordinates o,
curve y=2x%

SOLUTION

First ske e limsahd t

y—=3x=2

y=2x2

Figure 2.37

P1
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EXAMPLE 2.15

You can find where the line and curve intersect by solving the simultaneous

equations:

and

y—3x=2 ©)
y =22 ©)

Make y the subjectof @: y =3x+2 &
Substitute @ into @ : y =2x

=

= 3x+2 =252
= 2x2-3x—-2=0
= (2x+1)(x-2)=0

These are the x
co-ordinates of the
points of intersection.

=2orx=-1
x=2orx=—

Substitute into the linear equation, y = 3x+ 2, to find the corresponding y

co-ordinates.

x=2=y=8

=_1 =1
x=— =y

So the co-ordinates of the points of intersg

(i)

(ii)

1

2

Find the value of k for which the\

¥ =2x.

Hence, for this val

s a tangent to the curve

ates of the point where the line 2y

forms a tangent to the curve by solving the

2y =x+k ©)
y? =2x ®

When you'eliminate either x or y between the equations you will be left with
a quadratic equation. A tangent meets the curve at just one point and so you
need to find the value of k which gives you just one repeated root for the
quadratic equation.

Make x the subject of @:  x =2y—k ©)
Substitute ®into @: ¥y =2x

= 2 =202y—k)
= V2 =4y-2k
= ¥ —-4y+2k=0 ©)



You can use the discriminant, b% — 4ac, to find the value of k such that the
equation has one repeated root. The condition is b* — 4ac=0 P 1

y?—4y+2k=0 = a=1,b=—4and c=2k g

b*—4ac=0 = (—4)>-4%x1x2k=0

= 16—-8k=0
= k=2

4Z os12409x3

So the line 2y = x + 2 forms a tangent to the curve y* = 2x.

(i) You have already started to solve the equations 2y = x+ 2 and y* = 2xin
part (i). Look at equation @: y> —4y+2k=0

You know from part (i) that k = 2 so you can solve the quadratic to find y.

yP—4y+4=0
= (r-2)(y-2)=0
= y=2

Notice that this is a repeated root so the Jingi to the curve.

Now substitute y =2 into the equation df the line to find|the x co-ordinate.

When y=2: 2y=x+2=4=x
x=2

So the tangent meets th

EXERCISE 2F 1

(ii) Show also that the line y = 2x does not cross the curve y = x* + 6x+ 5.

4 Theline 3y=>5 — x intersects the curve 2y* = x at two points. Find the distance
between the two points.

5 The equation of a curve is xy = 8 and the equation of a line is 2x + y = k, where
k is a constant. Find the values of k for which the line forms a tangent to the
curve.

6 Find the value of the constant ¢ for which the line y = 4x + cis a tangent to the
curve y? = 4x.



Co-ordinate geometry

KEY POINTS

10

given by

The equation of a curve is xy = 10 and the equation of a line /is 2x+ y = g,
where g is a number.

(i) In the case where g =9, find the co-ordinates of the points of intersection
of land the curve.

(ii) Find the set of values of g for which [ does not intersect the curve.

The curve y* = 12x intersects the line 3y = 4x + 6 at two points. Find the
distance between the two points.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 June 2006]

Determine the set of values of the constant k for which the line y = 4x + k
does not intersect the curve y = x%.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q1 November 2007]

Find the set of values of k for which the line y = kx — 4 intersects the curve
y=x*>— 2xat two distinct points.

[Cambridge AS & A Leyel Mathematics 9709, Paper 1 Q2 June 2009]

) and (x,, y,) is

gradient =

B is \/(x2 -x)*+ (- )

+ +
the mid-point of the line AB is (%, %j

5 The equation of a straight line may take any of the following forms:

line parallel to the y axis: x=a

line parallel to the x axis: y=b

line through the origin with gradient m: y = mx

line through (0, ¢) with gradient m: y = mx+ ¢

line through (x,, y,) with gradient m: y — y, = m(x - x,)
line through (x,, y,) and (x,, y,):

Y—-n _X—-% or Y~ Nh_la—h

Vo= X=X X=X X=X




Sequences and series

Population, when unchecked, increases in a geometrical ratio.

Subsistence increases only in an arithmetical ratio. A slight

acquaintance with numbers will show the immensity of the first

power in comparison with the second.

Thomas Malthus (1798)

FISH & CHIPS

Sunday 12-8
Monday closed

Tuesday to Friday
12-10

Saturday 11-11

N —rg

\
N
; SIAN SAVINGS

DOUBLE

your $$
every

10 years

@ Eachof the following sequences is related to one of the pictures above.

(i)
(ii)

(i)

(iv)

(a)
(b)
(c)
(d)

5000, 10000, 20000, 40000, ... .
8,0,10,10, 10,10, 12,8,0, ....
5,3.5,0,-3.5,-5,-3.5,0,3.5,5,3.5, ....
20, 40, 60, 80, 100, ... .

Identify which sequence goes with which picture.

Give the next few numbers in each sequence.

Describe the pattern of the numbers in each case.

Decide whether the sequence will go on for ever, or come to a stop.

v
)

sau19s pue sasuanbag



P1

Sequences and series

)

Definitions and notation

A sequence is a set of numbers in a given order, like

1
16 "

b

| —

b

o~

b

o=
Ju—

Each of these numbers is called a term of the sequence. When writing the terms
of a sequence algebraically, it is usual to denote the position of any term in the
sequence by a subscript, so that a general sequence might be written:

Uy, Uy, Uy, ..., With general term u,.

. 1 .
For the sequence above, the first term is u, =3, the second term is u, = i, and
SO On.

When the terms of a sequence are added together, like

1,11 1
Statgtte

Anite number of terms, in which case it is called an
orresponding series is called an infinite series.

any sequence,N¥is usually used only when summing the sequence provides some

useful or interesting overall result.
This series has a finite
number of terms (6).

This series has an
infinite number
of terms.

For example:

(14+x)°=145x+10x2+ 10x3 + 5x* + x°
2 3
—1 -1 -1
=031+ (=] +5(=] +7(=] +...
\/5[ (5)+5(5]) (5] }

The phrase ‘sum of a sequence’ is often used to mean the sum of the terms of a
sequence (i.e. the series).



Arithmetic progressions

SCORECARD. J.GREEN
OUT |4 |4|5(10|3|2|4|86
HOME (3 (5|7 |1 |4 |5|4|5|7

suoissaifoad anawyily

Figure 3.1

Any ordered set of numbers, like the scores of this golfer on an 18-hole round

(see figure 3.1) form a sequence. In mathematics, we-arg particularly interested

in those which have a well-defined pattern, o of an algebraic

formula linking the terms. The sequences yo of this chapter

show various types of pattern.

ebraically as

This version has the
advantage that the right-hand
side begins with the first term
of the sequence.

>
k=3, u;=2+9=11

and so on.
(An equivalent way of writing thisis u, =5+ 3(k— 1) for k=1, 2,3, ... .)

As successive terms of an arithmetic sequence increase (or decrease) by a fixed
amount called the common difference, d, you can define each term in the
sequence in relation to the previous term:

uk+1=uk+d.

When the terms of an arithmetic sequence are added together, the sum is called
an arithmetic progression, often abbreviated to A.P. An alternative name is an

arithmetic series. 77
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EXAMPLE 3.1

Notation

When describing arithmetic progressions and sequences in this book, the
following conventions will be used:

o firstterm, u; = a

e number of terms = n

o last term, u,= l

e common difference = d

o the general term, U, is that in position k (i.e. the kth term).
Thus in the arithmetic sequence 5, 7, 9, 11, 13, 15, 17,
a=5,1=17,d=2and n=7.

The terms are formed as follows.

u=a =5

uy=a+d =5+2 =7
U;=a+2d=5+2x2=9
u,=a+3d=5+3x2=11
U=a+4d=5+4x2=13
ug=a+5d=5+5x2=15

You can see that anytefm is giwe href2rst term plus a number of differences.
The number of Hff 15 1 ase, one less than the number of the term.

For

Find the 17th term in the arithmetic sequence 12, 9, 6, ... .

SOLUTION
In this case a=12 and d=-3.

Using u, =a+ (k—1)d, you obtain
U, =12+ (17-1) x (= 3)
=12-48
=-36.

The 17th term is —36.



How many terms are there in the sequence 11, 15, 19, ..., 643?

SOLUTION

This is an arithmetic sequence with first term a = 11, last term /= 643 and
common difference d = 4.

Using the result I=a+ (n-1)d, you have
643 = 11+4(n—1)
= 4n=0643-11+4
= n = 159.

There are 159 terms.

Note

The relationship /= a + (n— 1)d may be rearranged to give

| - a
n =
d

+ 1

This gives the number of terms in an A.P. dire¢tlf X the first term, the last
term and the common difference.

The sum of the terms of an ari ic progression

¢ added the terms one by one. Instead he wrote the series

down ey, once in thg given order and once backwards, and added the two

together:

S= 3+...+ 98+ 99+ 100
S=100+ 99+ 98+...+ 3+ 2+ 1.

Adding, 25 =101 + 101 + 101 + ... + 101 + 101 + 101.

Since there are 100 terms in the series,

25=101x100
S =5050.
The numbers 1, 2, 3, ..., 100 form an arithmetic sequence with common difference

1. Gauss’ method can be used for finding the sum of any arithmetic series.

It is common to use the letter S to denote the sum of a series. When there is any
doubt as to the number of terms that are being summed, this is indicated by a
subscript: S indicates five terms, S, indicates 7 terms.

suoissaifoad anawyily
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EXAMPLE 3.3

EXAMPLE 3.4

Find the value of 8 + 6 + 4 + ... + (=32).

SOLUTION

This is an arithmetic progression, with common difference —2. The number of
terms, n, may be calculated using

The sum S of the progression is then found as follows.

S= 8+ 6+...—-30-32
§=-32-30—...+ 6+ 8
25=-24-24—...-24-24

Since there are 21 terms, this gives 25 =—-24 12 X 21 =-252.

Generalising this method by writing the sd gntional notation gives:
)dl + [a+ (n—1)d]

S, = [a] + l[a+d a
S, =la+(n-1)d] + [a+(n-2 \o + [a]

25, =[2a+ (n—1)d] + [2 %2a+(n—l)d] + [2a+ (n—1)d]

SOLUTION

In this arithmetic progression

azl,dziand n=100.

Using S, = %n[Za +(n—1)d], you have
1 1
5, = 1x100(2+99x })

= 13375



EXAMPLE 3.5

EXERCISE 3A

Jamila starts a part-time job on a salary of $9000 per year, and this increases by
an annual increment of $1000. Assuming that, apart from the increment, Jamila’s
salary does not increase, find

(i) her salary in the 12th year

(ii) the length of time she has been working when her total earnings are $100000.

SOLUTION

Jamila’s annual salaries (in dollars) form the arithmetic sequence
9000, 10000, 11000, ... .

with first term a = 9000, and common difference d = 1000.

(i) Her salary in the 12th year is calculated using:

u=a+(k-1)d
= u, =9000 + (12 — 1) X 1000
=20000.

(ii) The number of years that have elapsed whg
is given by:

dafnings are $100000

The root n=¥25 is irrelevant, so the answer is n= 8.

Jamila has earned a total of $100 000 after eight years.
1 Are the following sequences arithmetic?
If so, state the common difference and the seventh term.

(i 27,29,31,33,... i) 1,2,3,5,8, ... (i) 2, 4, 8, 16, ...
(iv) 3,7,11, 15, ... (v) 8,6,4,2,...

2 The first term of an arithmetic sequence is —8 and the common difference is 3.

(i) Find the seventh term of the sequence.
(ii) The last term of the sequence is 100.
How many terms are there in the sequence?

v
)

V€ os1240xg



v
=

Sequences and series

)

The first term of an arithmetic sequence is 12, the seventh term is 36 and the
last term is 144.

(i) Find the common difference.
(ii) Find how many terms there are in the sequence.

There are 20 terms in an arithmetic progression.
The first term is —5 and the last term is 90.

(i) Find the common difference.
(ii) Find the sum of the terms in the progression.

The kth term of an arithmetic progression is given by
u, =14+ 2k

(i) Write down the first three terms of the progression.
(ii) Calculate the sum of the first 12 terms of this progression.

Below is an arithmetic progression.

120+ 114+ ... + 36

(i) How many terms are there in the prpgression?

(i) Find the first ter
(ii) The sum of all ¥k

(iii) Find tY¢ sum of the terms of the arithmetic sequence with first term 50,
common difference 1 and 101 terms.
(iv) Explain the relationship between your answers to parts (i), (i) and (iii).

The first term of an arithmetic progression is 3000 and the tenth term is 1200.

(i) Find the sum of the first 20 terms of the progression.
(ii) After how many terms does the sum of the progression become negative?

An arithmetic progression has first term 7 and common difference 3.

(i) Write down a formula for the kth term of the progression.
Which term of the progression equals 732

(ii) Write down a formula for the sum of the first n terms of the progression.
How many terms of the progression are required to give a sum equal to
6300? [MEI]



12

13

14

Paul’s starting salary in a company is $14 000 and during the time he stays
with the company it increases by $500 each year.

(i) What is his salary in his sixth year?
(ii) How many years has Paul been working for the company when his total
earnings for all his years there are $126 000?

A jogger is training for a 10 km charity run. He starts with a run of 400 m;
then he increases the distance he runs by 200 m each day.

(i) How many days does it take the jogger to reach a distance of 10 km
in training?
(ii) What total distance will he have run in training by then?

A piece of string 10 m long is to be cut into pieces, so that the lengths of the
pieces form an arithmetic sequence.

(i) The lengths of the longest and shortest pieces are 1 m and 25 cm
respectively; how many pieces are there?

Each day h&\{l#s 3 more circuits than the day before. On the fifth day he flew
14 circuits.

Calculate how many circuits he flew:

(i) on the first day

(ii) in total by the end of the fifth day

(iii) in total by the end of the nth day

(iv) in total from the end of the nth day to the end of the 2nth day. Simplify

your answer.
[MEI]

v
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18 As part of a fund-raising campaign, I have
been given some books of raffle tickets to sell. QA I
Each book has the same number of tickets
and all the tickets I have been given are
numbered in sequence. The number of the

ticket on the front of the 5th book is 205 and
that on the front of the 19th book is 373.

(i) By writing the number of the ticket on the front of the first book as a
and the number of tickets in each book as d, write down two equations
involving a and d.

(ii) From these two equations find how many tickets are in each book and
the number on the front of the first book I have been given.

(i) The last ticket I have been given is numbered 492.

How many books have I been given?
[MEI]

Geometric progressions

€ometric sequence are formed by multiplying one term by a fixed
number, the common ratio, to obtain the next. This can be written inductively as:

Uy, =T with first term u,.

The sum of the terms of a geometric sequence is called a geometric progression,
shortened to G.P. An alternative name is a geometric series.

Notation

When describing geometric sequences in this book, the following conventions
are used:

o firsttermu =a

e common ratio =r



EXAMPLE 3.6

EXAMPLE 3.7

o number of terms = n

o the general term u, is that in position k (i.e. the kth term).

Thus in the geometric sequence 3, 6, 12, 24, 48,
a=3,r=2and n=>5.

The terms of this sequence are formed as follows.

u =a =3

u, =axr =3X2 =6
u, =axrt=3x22=12
u, =axr =3x2=24
u. =axrt=3x21=48

5

You will see that in each case the power of r is one less than the number of the

term: u. = ar? and 4 is one less than 5. This can be written deductively as

5

and the last term is

— n—1
un =ar- .

Find the seventh ter

SOLUT}OD

In the sexy gt term a = 8 and the common ratio r= 3.

The kth term'g Gmetric sequence is given by u, = ark!,
andso u, = 8x3°
= 5832.
How many terms are there in the geometric sequence 4, 12, 36, ... , 708 588?

SOLUTION

Since it is a geometric sequence and the first two terms are 4 and 12, you can
immediately write down

First term: a=+4
Common ratio: r=3

v
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The third term allows you to check you are right.
12x3 =136 v
The nth term of a geometric sequence is ar™, so in this case

4 x3"1=708588

Dividing through by 4 gives _
You will learn about
311—1 =177 147 these in P2 and P3.

You can use logarithms to solve an equation like this, but since you know that
nis a whole number it is just as easy to work out the powers of 3 until you come

to 177 147.

They go 3'=3,32=9,3°=27,3*=38]1, . You can do this by
hand or you can use

and before long you come to 3! =177 147. your calculator.

Son—1=11and n=12.

There are 12 terms in the sequence.

How would you use a spreadsheet to\s e equation 3”‘1 =1771472

The Emperor agreed, but it soon became clear that there was not enough rice in

the whole of China to give the inventor his reward.

How many grains of rice was the inventor actually asking for?

The answer is the geometric series with 64 terms and common ratio 2:
1+2+4+8+...+2%.

This can be summed as follows.

Call the series S:

S=1424+4+8+...+2%. ©



EXAMPLE 3.8

Now multiply it by the common ratio, 2:

2S=2+4+8+4+16+...+204 ®
Then subtract @ from @
® 2S= 24448416+ ... +203 4204

® S= 1+2+4+38 + .. +28
subtracting: S=-1+0+0+0 + ..+ 20

The total number of rice grains requested was therefore 26 — 1 (which is about
1.85x10Y).

How many tonnes of rice is this, and how many tonnes would you expect there
to be in China at any time?

(One hundred grains of rice weigh about 2 gra, - world annual
production of all cereals is about 1.8 X 10? tgfiffes.)

The method shown above ca ed to eometric progression.

Find the value of 0 625.

SOLUTION
This is g x’'with common ratio 5.
Let ... +390625. ©)

Multiplying b gmmon ratio, 5, gives:

58=1+5+25+...4+390625+1953125. ©)
Subtracting @ from @:
58 = 1+5+25+...+390625 + 1953125
S= 02+1+5+25+...+390625
4S=-02+0+... +0 +1953125
This gives  4S5=1953124.8
= S =488281.2.

U
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Sequences and series

The same method can be applied to the general geometric progression to give a
formula for its value:

S =a+ar+ar’+...+ar*?, @
Multiplying by the common ratio, r, gives:

1S =ar+ar’+ar’+...+ar. ®
Subtracting @ from @, as before, gives:

(r=1)S,=-a+ar"

=a(r"—1)
50 g = a"—1)
"o(r=1)
This can also be written as:
_ald—r"
S, = a_n

Infinite geometric progressions

. 1
The progression 1+ % + % + é + % + bmmon ratio 3.

giving S, =

=214
The larger the number of terms, #, the smaller (%)n becomes and so the nearer S,

n
is to the limiting value of 2 (see figure 3.3). Notice that (%) can never be negative,
however large n becomes; so S, can never exceed 2.



EXAMPLE 3.9

A 135
6 N T
5 14 H
17 T |E
4 i >
1
; 13 R L 2
n I 1 1
2 M 1
S B 1 b
T‘ 16 | =
1 14 208 ¢ 2 5

(a) (b)
Figure 3.3
In the general geometric series a + ar + ar® + ... the terms become progressively

smaller in size if the common ratio ris between —1 and 1. This was the case
1 . ..
above: r had the value 5. In such cases, the geometric series is convergent.

If, on the other hand, the value of ris greater than 1

or less than —1) the terms in

brge, —1 < r< 1, ensures that as
e sum of a geometric series:

Find the sum of the terms of the infinite progression 0.2, 0.02, 0.002, ... .

SOLUTION
This is a geometric progression with a = 0.2 and = 0.1.

Its sum is given by

U
-
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EXAMPLE 3.10

Note

You may have noticed that the sum of the series 0.2 + 0.02 + 0.002 + ... is 0.2, and

that this recurring decimal is indeed the same as %.

The first three terms of an infinite geometric progression are 16, 12 and 9.
(i)  Write down the common ratio.

(i) Find the sum of the terms of the progression.

SOLUTION
(i) The common ratio is 731.

(ii) The sum of the terms of an infinite geometric progression is given by:

S,=
O

In thiscase a= 16 and r = 2, SO:

16
S = — = 64 .
o 3
-3
QL
~__
A paradox
Consider the followin
(i) 64 —
32+...)

4)+(—8+16) +(—32+64)+...
8§+32+...

So S diverges towards +oo.

(i) S=(1-2)+(4-8)+(16-32)+...
= S§=-1-4-8-16...

So S diverges towards —oo.

What is the sum of the series: %, +00, —00, or something else?




EXERCISE 3B

1

Are the following sequences geometric?
If so, state the common ratio and calculate the seventh term.

i) 5,10, 20, 40, ... (i) 2,4,6,8, ...
Gii) 1, -1, 1, -1, ... (iv) 5,5,5,5, ...
) 6,3,0,-3, ... (vi) 6,3, 1%%

(vin 1, 1.1, 1.11, 1.111, ...

A geometric sequence has first term 3 and common ratio 2.
The sequence has eight terms.

(i) Find the last term.

(ii) Find the sum of the terms in the sequence.

The first term of a geometric sequence of positive terms is 5 and the fifth term
is 1280.

(i) Find the common ratio of the sequence.

(i) Find the eighth term of the sequence.
A geometric sequence has first term % and
(i) Find the fifth term.
(i)

(i)
(i)

(i)

(i) Find the sum of the first ten terms.
The first three terms of an infinite geometric progression are 4, 2 and 1.

(i) State the common ratio of this progression.

(ii) Calculate the sum to infinity of its terms.
The first three terms of an infinite geometric progression are 0.7, 0.07, 0.007.

(i) Write down the common ratio for this progression.
(i) Find, as a fraction, the sum to infinity of the terms of this progression.

(i) Find the sum to infinity of the geometric progression 0.7 — 0.07 + 0.007 — ...,
and hence show that % =0.63.

v
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10 The first three terms of a geometric sequence are 100, 90 and 81.

(i) Write down the common ratio of the sequence.

(ii) Which is the position of the first term in the sequence that has a value
less than 1?

(i) Find the sum to infinity of the terms of this sequence.

(iv) After how many terms is the sum of the sequence greater than 99% of the
sum to infinity?

11 A geometric progression has first term 4 and its sum to infinity is 5.

(i) Find the common ratio.

(ii) Find the sum to infinity if the first term is excluded from the progression.

12 (i) The third term of a geometric progression is 16 and the fourth term is
12.8. Find the common ratio and the first term.
(ii) The sum of the first n terms of a geometric progression is 22"+ 1 — 2,
Find the first term and the common rg# [MEI]

13 (i) ies are 3 and\4. Find the third term.
(i) depmetric series, find:

pdtio of the geometric series.

vyenth and eighth terms of a

[MEI]

of the first n terms of the series.
to infinity.

(v) HowXuny terms are needed for the sum to be greater than 80.999?

15 A tank is filled with 20 litres of water. Half the water is removed and replaced
with anti-freeze and thoroughly mixed. Half this mixture is then removed
and replaced with anti-freeze. The process continues.

(i) Find the first five terms in the sequence of amounts of water in the tank
at each stage.

(i) Find the first five terms in the sequence of amounts of anti-freeze in the
tank at each stage.

(iii) Is either of these sequences geometric? Explain.



16 A pendulum is set swinging. Its first oscillation is through an angle of 30°, and
each succeeding oscillation is through 95% of the angle of the one before it.

(i) After how many swings is the angle through which it swings less than 1°?
(i) What is the total angle it has swung through at the end of its tenth
oscillation?

17 A ball is thrown vertically upwards from the ground. It rises to a height of
10 m and then falls and bounces. After each bounce it rises vertically to % of
the height from which it fell.

(i) Find the height to which the ball bounces after the nth impact with the
ground.

(ii) Find the total distance travelled by the ball from the first throw to the
tenth impact with the ground.

18 The first three terms of an arithmetic sequence, a, a+ d and a + 2d, are the

same as the first three terms, a, ar, ar?, of a gg ic sequence (a#0).

¢ progression are the first and
) progression.

[Cambridge AS & A Level Mathematics 9709, Paper 12 Q3 November 2009]

21 (i) Find the sum to infinity of the geometric progression with first three
terms 0.5, 0.5% and 0.5°.

(ii) The first two terms in an arithmetic progression are 5 and 9. The last
term in the progression is the only term which is greater than 200. Find
the sum of all the terms in the progression.

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q7 June 2009]
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INVESTIGATIONS

22 The 1st term of an arithmetic progression is a and the common difference is
d, where d # 0.
(i) Write down expressions, in terms of a and d, for the 5th term and the
15th term.

The 1st term, the 5th term and the 15th term of the arithmetic progression
are the first three terms of a geometric progression.
(i) Show that 3a=8d.

(i) Find the common ratio of the geometric progression.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 November 2007]

Snowflakes

Draw an equilateral triangle with sides 9 cm long.

Trisect each side and construct equilateral trigngleson the middle section of each

side as shown in diagram (b).

wn in (e) and (d) so that

(a) (b) (d)

Figure 3.4

Does the area of the figure increase without limit?

Achilles and the tortoise

Achilles (it is said) once had a race with a tortoise. The tortoise started 100 m

ahead of Achilles and moved at % ms~! compared to Achilles’ speed of 10 ms™'.

Achilles ran to where the tortoise started only to see that it had moved 1 m fur-
ther on. So he ran on to that spot but again the tortoise had moved further on,
this time by 0.01 m. This happened again and again: whenever Achilles got to the
spot where the tortoise was, it had moved on. Did Achilles ever manage to catch
the tortoise?



Binomial expansions

EXAMPLE 3.11

A special type of series is produced when a binomial (i.e. two-part) expression
like (x + 1) is raised to a power. The resulting expression is often called a
binomial expansion.

The simplest binomial expansion is (x + 1) itself. This and other powers of
(x+ 1) are given below.

Expressions like these,

(x+ 1)1 = 1x + 1 consisting of integer

2 2 powers of x and constants
(x+1)*= 1x + x4+ 1 are called polynomials.
(x+1)°= I + 3x* + 3x + 1
(x+1)4= Ix* + 4x* + 6x2 + 4x + 1
(x+1)°=1x> + 5x* + 10x* + 10x* + 5x + 1

form a pattern.
These numbers are called

] (1) binomial coefficients.
1 2
1 3
1 4 6
1 5 10

This is called Pascal’s triangle, or the number is obtained by

adding the two above it, for example

Notice how in each term
the sum of the powers of

+ 1y
Ix* + 2xy + 1)2 x and y is the same as the
+  3x2 y o+ 3 xyz + 1 )/3 power of (x +Y).

This is a binomial expression.

Write out the binomial expansion of (x+ 2)%.

These numbers are called
binomial coefficients.

SOLUTION

The binomial coefficients for power4are 1 4 6 4 1.
In each term, the sum of the powers of x and 2 must equal 4.
So the expansion is

Ixx* 4+ 4xx3x2 4+ 6Xx*x2*2 +  4xxx2} + 1x2¢
ie. x* + 8x3 + 24x2 + 32x + 16.

@
5
)
2
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Sequences and series

Historical note

Write out the binomial expansion of (2a — 3b)°.

SOLUTION

The binomial coefficients for power 5are 1 5 10 10 5 1.
The expression (2a— 3b) is treated as (2a+ (=3b)).

So the expansion is

1 X (2a)°+5x% (2a)* x (=3b) + 10 x (2a)®> x (-=3b)?> + 10 x (2a)* x (-3b)3
+5x% (2a) X (-3b)*+ 1 x (=3b)°

ie.  32a’—240a*b+ 7204°b? — 1080a%b> + 810ab* — 2430°.
Blaise Pascal has been described as the greatest might-have-been in the history of

mathematics. Born in France in 1623, he was making discoveries in geometry by the
age of 16 and had developed the first computing machine before he was 20.

Pascal dieq atthe #gaply age of 39.

Tables of binomial coefficients

Values of binomial coefficients can be found in books of tables. It is helpful
to use these when the power becomes large, since writing out Pascal’s triangle
becomes progressively longer and more tedious, row by row.

Write out the full expansion of (x+ y)'°.

SOLUTION
The binomial coefficients for the power 10 can be found from tables to be

1 10 45 120 210 252 210 120 45 10 1



and so the expansion is

x10+10x7y + 45x8y? + 120x7y3 + 210x89* + 252 + 210x*y° + 120x%y7

+45x%y8 + 10xy° + y1°.
There are 10 + 1 = 11 terms.

As the numbers are symmetrical about the middle number, tables do not always
give the complete row of numbers.

The formula for a binomial coefficient

There will be times when you need to find binomial coefficients that are
outside the range of your tables. The tables may, for example, list the binomial
coefﬁc1ents for powers up to 20. What happens if you need to find the coefficient

usual to denote the power of the bingn
the row of binomial coefficients by r,
for row 5 of Pascal’s triangle

However, to do this you must be familiar with the term factorial.

The quantity ‘8 factorial’, written 8!, is
8=8X7X6X5Xx4x3x2x1=40320.

Similarly, 12! =12 X 11 X 10 X 9 X 8 X 7X 6 X 5 X 4 X 3 X 2 x 1 =479 001 600,

andnl=nx(n—-1) X (n—2)X...x 1, where nis a positive integer.

Note that 0! is defined to be 1. You will see the need for this when you use the

formula for [ n )
r

1
)
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ACTIVITY 3.1

EXAMPLE 3.14

The table shows an alternative way of laying out Pascal’s triangle.

Column (r)

0 1 2 3 4 5 6 r

1 1 1
Row 2 1 2 1
m) | 5 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
? ? ? ? ? ? ?
n 1 n ¢ =
! .
Show that | ™ | = —2— by following the{procedure Below.
r ri(n—r)!

The numbers in column 0 are all 1)

To find each number in cojuymn 1 yo y the 1 in column 0 by the row

number, 7.

(i) Find, in termg/6 A ust miQltiply each number in column 1 by to

n—1)(n-2)..(n—r+1)
I1X2X3X...Xr

forr=1.

(iv) Show that this can also be written as

nl_ n!
r) ri(n—n!

and that it is also true for r= 0.

|
Use the formula (n] = n—' to calculate these.
r! r)!

o) ) el
SH I



EXAMPLE 3.15

SOLUTION

o [5)o_5L _ 120 _,
0) 0l(5-0) 1x120

5\ 5120 _
w (1)_1!4! <24~
(5)_ 5 _ 120
(iii) (2]_2'3'_2X6 10
o (5)_ 5 _ 120
w (3)‘312! 6x2 10
5)_ 50 _ 120 _
v (4)‘ M= 24x1 >
o (3] 5L - 120 _
vi) = — S
5

Note

SOLUTION

(x+2)%

So the requi (285) x 28 x x17
25| _ 25! _ 25X 24X 23X 22X 21 X20X19 X 18 X 17!
8 8!17! 8! x 171
=1081575.

So the coefficient of x!7 is 1081575 x 28 = 276 883 200.

Note

Notice how 17! was cancelled in working out (285] Factorials become large numbers

very quickly and you should keep a look-out for such opportunities to simplify
calculations.

U
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100

EXAMPLE 3.16

EXAMPLE 3.17

The expansion of (1 + x)"

When deriving the result for ( nj you found the binomial coefficients in the
form r

1 n nn-1) nn-1)n-2) nn-1)(n-2)(n- 3)
2! 31 41

This form is commonly used in the expansion of expressions of the type (1 + x)".

" nn-Dx* , nn=1D(n-2)x>, n(n-1(n-2)(n-3)x*
(142" = 14 nx+ =525 Ix2x3 1x2x3x4

+...

Use the binomial expansion to write down the first four terms, in ascending
powers of x, of (1 + x)°.

The power of x is
the same as the
largest number

underneath.

SOLUTION

9X82 IX8X7 3
1xX2 +l><2 3 -

Two numbers on top,
two underneath.

(1+%x°=1+9%+

Use the bins
powers of x, oM 1 — 3x)’. Simplify the terms.

¢xpansion to write down the first four terms, in ascending

SOLUTION

Think of (1 —3x)7 as (1 + (—3x))’. Keep the brackets while you write out the terms.

1+ 30) =1+ 7 3x)+m( 302 + Zzgzg(—3x)3+

=1-21x+189x% — 945x> + ... Note how the signs
alternate.



EXAMPLE 3.18

6
The first three terms in the expansion of (ax + %) where a > 0, in descending

powers of x, are 64x% — 576x* + cx?. Find the values of g, band c.

SOLUTION

Find the first three terms in the expansion in terms of a and b:

o~ e et L2

= a%%® + 6a°bx* + 15a*b%x?

So a®x® 4+ 6a°bx* + 15a*bx? = 64x° — 576x* + cx?
Remember both
26 =64 and (~2)° = 64,
putasa>0thena=2.

Compare the coefficients of x: a® =64 = a=2
Compare the coefficients of x*: 6a°b=—-576
Since a=2 then 192b=-576 = b=-3
Compare the coefficients of x% 15a*b* = ¢

Since a=2 and b= -3 then c=15 X (=3)k=> 0

A Pascal puzzle

1.12=1.21 1.1°=

What is 1.1°?
What is the connecti

triangl%—_\\

Relationshi ween binomial coefficients

There are several useful relationships between binomial coefficients.

Symmetry

Because Pascal’s triangle is symmetrical about its middle, it follows that

(2)-(n)

P1
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Adding terms

You have seen that each term in Pascal’s triangle is formed by adding the two
above it. This is written formally as

)+l )-(m)

Sum of terms

You have seen that

n_| N n n n—1 n n—-2 n n
(x+y) —(O)x +(1jx y+(2]x y +...+(n)y

Substituting x=y =1 gives

ONORHERY!

Thus the sum of the binomial coefficients fo

The binomial theorem is used on other types of expansion and it has applications
in many areas of mathematics.

The binomial distribution

In some situations involving repetitions of trials with two possible outcomes, the
probabilities of the various possible results are given by the terms of a binomial
expansion. This is covered in Probability and Statistics 1.

Selections

The number of ways of selecting r objects from 7 (all different) is given by ( " j
This is also covered in Probability and Statistics 1. '



EXERCISE 3C

Write out the following binomial expansions.

i (x+1)* (i) (1+x)7 (i) (x+2)°
(ivi (2x+1)° v) (2x—3)* (vi) (2x+ 3y)?
3 4 5
(vii) (x - 2) (viii) (x + %) (ix) (3x2 - 2)
X X X

Use a non-calculator method to calculate the following binomial coefficients.
Check your answers using your calculator’s shortest method.

(i) 4 (i) 6 (i) 6
2 2 3
(iv) 6 (v) 6 (vi) 12
4 0 9
In these expansions, find the coefficient of these terms.
i xin(1+x)8 (i) x*in (1-x)'° (i) x%in (1 + 3x)'2

(iv) x7in (1 —2x)1° (v) *%in (x2 +

(i Simplify (14 x)* - (1 —x)°.
(i) Showthata®—b>=(a-b)(a

(ii) Hendosfind fgcoefficients of x and x? in the expansion of (4 — x)(2 — 4x)°.

(i) Find the fifst three terms, in descending powers of x; in the expansion
e
4x——=| .
( x2)
(i) Given that the value of the term in the expansion which is independent of
x is 240, find possible values of k.

(i) Find the first three terms, in descending powers of x, in the expansion of

6
(xz—l) .
X
1

6
(ii) Find the coefficient of x° in the expansion of (x2 - —) .
x

1
)

7€ os1949x3
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INVESTIGATIONS

10 (i) Find the first three terms, in descending powers of x, in the expansion

5
of(x—g).
X

5
(i) Hence find the coefficient of x in the expansion of (4 +1 )(x - g) .

x2 X

11 (i) Show that (2 + x)* =16 + 32x+ 24x> + 8x° + x* for all x.
(i) Find the values of x for which (2 + x)* = 16 + 16x + x*.
[MEI]

12 The first three terms in the expansion of (2 + ax)”, in ascending powers of x,
are 32 — 40x + bx?. Find the values of the constants #, a and b.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 June 2006]
13 (i) Find the first three terms in the expansion of (2 — x)° in ascending
powers of x.

(ii) Find the value of k for which there is no term in x? in the expansion of

(14 kx)(2—x)°.

14 (i) Find the first three terms in the exjpad

(ii) Given that there is no term'

(iii) For this value of
(1+ ax)°.

(i) How manyMifferent possible half-time scores are there if the final score is
2—-1? How many if the final score is 4-3?

(ii) How many different ‘routes’ are there to any final score? For example, for the
above match, putting Juventus’ score first, the sequence could be:

0-0—>0-1>1-1—>2-1
or 0-0—-1-0—>1-1—>2-1
or 0-0—>1-0—>2-0—2-1.

So in this case there are three routes.

Investigate the number of routes that exist to any final score (up to a maximum
of five goals for either team).
Draw up a table of your results. Is there a pattern?



Cubes

A cube is painted red. It is then cut up into a
number of identical cubes, as in figure 3.5.

How many of the cubes have the following
numbers of faces painted red?

3 (i) 2 (iii) 1 (iv) O

In figure 3.5 there are 125 cubes but your
answer should cover all possible cases. Figure 3.5

1 A sequence is an ordered set of numbers, u,, u,, us, ..., 4, ... u,, where u,
is the general term.

2 Inan arithmetic sequence, u,,, = u, +dw, xed number called

the common difference.

3 In a geometric sequence, u;,, =r mber called the

common ratio.

For an infiniYe geometric series to converge, —1 < r < 1.

In this case the sum of all the terms is given by ﬁ-

7 Binomial coefficients, denoted by ( :lj or "C , can be found
e using Pascal’s triangle

e using tables '
n|__ n
(7)-m

e using the formula n——r)'

8 The binomial expansion of (1 + x)” may also be written

+x)'=1+nx+ — 2 x? + — — =3+ "+
(1 )n 1 n(”z' 1) 2 H(T’l 13)'(71 2) 3 n—1 n

sjuiod Aay|



Functions

Still glides the stream and shall forever glide;
The form remains, the function never dies.

(]
e
2
-
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e
3
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William Wordsworth

Why fly to Geneva in January?

Several people arriving at Geneva airport from London were asked the main

purpose of their visit. Their answers were recorded.

Skiing

Returning home

To study abroad

For a mappiyg¥g/Mmake sense or to have any practical application, the inputs and
outputs must €ach form a natural collection or set. The set of possible inputs (in
this case, all of the people who flew to Geneva from London in January) is called

the domain of the mapping.

The seven people questioned in this example gave a set of four reasons, or
outputs. These form the range of the mapping for this particular set of inputs.

Notice that Jonathan, Louise and Karen are all visiting Geneva on business: each
person gave only one reason for the trip, but the same reason was given by several
people. This mapping is said to be many-to-one. A mapping can also be one-to-
one, one-to-many or many-to-many. The relationship between the people from
any country and their passport numbers will be one-to-one. The relationship
between the people and their items of luggage is likely to be one-to-many, and
that between the people and the countries they have visited in the last 10 years
will be many-to-many.



Mappings

In mathematics, many (but not all) mappings can be expressed using algebra.

Here are some examples of mathematical mappings.

(a) Domain: integers Range
Objects Images

-1 > 3

0 > 5

1 > 7

2 > 9

3 > 11
General rule:  x > 2x+5
(b) Domain: integers Range
Objects Images

General rule:

(c)

(d) Domain: quadratic Range
equations with real roots

Objects Images
x?—4x+3=0 0
x?—x=0 1
x?—=3x+2=0 2

3

General rule: ax?+bx+c=0 i x
_ —b+ b —dac

2a

P1
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runctions

€ For each of the examples above:

(i) decide whether the mapping is one-to-one, many-to-many, one-to-many or
many-to-one
(ii) take a different set of inputs and identify the corresponding range.

Functions

Mappings which are one-to-one or many-to-one are of particular importance,
since in these cases there is only one possible image for any object. Mappings

of these types are called functions. For example, x — x? and x > cos x are both
functions, because in each case for any value of x there is only one possible
answer. By contrast, the mapping of rounded whole numbers (objects) on to
unrounded numbers (images) is not a function, since, for example, the rounded
2q 4.5 and 5.5.

Ytion. For

{writing a

example, the function which maps the real nuybers, x, on to/xf can be written in

any of the following ways.
o y=x’ xeR

o f(x)=x? xeR

o f:x— x? xeR

ber; so you need to define the function as f: x> v x -5
for x = 5, so that the function is valid for all values in its domain.

root of a negative'y

Likewise, when choosing a suitable domain for the function g: x> ﬁ, you
need to remember that division by 0 is undefined and therefore you cannot input
x = 5. So the function g is defined as g: x> ﬁ, X#5.

It is often helpful to represent a function graphically, as in the following example,
which also illustrates the importance of knowing the domain.



EXAMPLE 4.1

Sketch the graph of y = 3x+ 2 when the domain of x is

i xeR This means x is a
positive real number.
(i) xeR*
(i) xe N. This means x is a natural
number, i.e. a positive
integer or zero.
SOLUTION

(i) When the domain is R, all values of y are possible. The range is therefore R, also.

(ii) When x is restricted to positive values, all the values of y are greater than 2,
so the range is y > 2.

(iii) In this case the range is the set of points {2, 5, 8, ...}. These are clearly all of
the form 3x+ 2 where x is a natural number (0, 1, 2, ...). This set can be
written neatly as {3x+2: xe N}.

y y

4

y=3x+2,xe R ® y=3x+2,xeN

(]

Figure 4.1

2

shows this¥Qr dpping x — x?%, or y = x?, and figure 4.2 shows the resulting

points on a graph?

Input (x) Output (y) Point plotted A
) 4 (=2, 4) 4
- 1 (-1,1)
0 0 (0,0) .
! ! (1,1) -2 -1 0 1 2 >
2 4 (2,4) Figure 4.2

If the mapping is a function, there is one and only one value of y for every value
of x in the domain. Consequently the graph of a function is a simple curve or line
going from left to right, with no doubling back.

v
)
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Figure 4.3 illustrates some different types of mapping. The graphs in (a) and (b)
illustrate functions, those in (¢) and (d) do not.

(a) One-to-one (b) Many-to-one
YA YA y=x-x
y=2x+1
—1 =
(0] “x
(c) One-to-many (d) Many-to-many

3 YA

/ : TN
y=£2¢

/
\_‘;

-5
Figure 4.3
EXERCISE 4A 1 Describe eacly/othe f ing ™aypings as either one-to-one, many-to-one,
one-to-many o to-m and say whether it represents a function.

(i) (ii)

YY

(iii) (iv)

YY

(vii) (viii)

YNY

56
6:¢
o



5 The mapping fis defined by

2 For each of the following mappings:

(a) write down a few examples of inputs and corresponding outputs
(b) state the type of mapping (one-to-one, many-to-one, etc.)
(c) suggest a suitable domain.

(i)  Words — number of letters they contain

(i) Side of a square in cm ~> its perimeter in cm

(iii) Natural numbers — the number of factors (including 1 and the number
itself)

(iv) x—>2x-5

W x—>x

(vi) The volume of a sphere in cm® — its radius in cm

(vii) The volume of a cylinder in cm?® > its height in cm

(viii) The length of a side of a regular hexagon in cm + its area in cm?

(ix) x+>x?

(i) A function is defined by f(x) = 2x — 5, x € B-Wite down the values of
(@ f(0) (b) (7)

(ii) A function is defined by g:(polygons)
(a) g(triangle)

(e t(~10)

(i)
(ii)
(iii)

0° <0 < 180°
xe{0,1,2,3,4}

(ivi y=taQ®¥ 0°<H<90°
(v) f:x—3¥-5 xeR

(vi) f:x+—>2% xe {-1,0,1,2}
(vii) y=cos x —90° < x < 90°
(viii) f:x— x> —4 xe R

(ix) f(x)= xe R

1+ x?

x) flx)=vx—-3+3 x=

):x2 0$X$3
)=3x 3<x<10.

w

o=
taPiRkal

The mapping g is defined by g(x) =x> 0<x<2
g(x)=3x 2=x=10.

Explain why f is a function and g is not.

‘
)
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Composite functions

EXAMPLE 4.2

It is possible to combine functions in several different ways, and you have already
met some of these. For example, if f(x) = x? and g(x) = 2x, then you could write

f(x) + g(x) = x>+ 2x.
In this example, two functions are added.
Similarly if f(x) = x and g(x) = sinx, then
f(x).g(x) = xsin x.
In this example, two functions are multiplied.

Sometimes you need to apply one function and then apply another to the answer.
You are then creating a composite function or a function of a function.

convert the temperature to degrees Fahre
mother taught her:

At one o five

He’ll cook alive
But ninety four
is rather raw.

Write down the ting e involved, and apply them to readings of

(i) 30°C ii °C (iii) 45°C.

The firgt pifverts the Celsius temperature Cinto a Fahrenheit
temperatdye)

9
F= 5 +32

The second function maps Fahrenheit temperatures on to the state of the bath.

F<94 too cold
94 < F< 105 all right
F=105 too hot

This gives

(i) 30°C — 86°F +— toocold
(i) 38°C +> 100.4°F > all right
(i) 45°C — 113°C +> too hot.



In this case the composite function would be (to the nearest degree)

C < 34°C too cold
35°C = C=40°C all right
C=41°C too hot.

In algebraic terms, a composite function is constructed as

Read this as
‘g of fof x.

(or gf(x)).

Thus the composite function gf(x) should be performed from right to left: start

f
Input x > Output f(x)

Input f(x) ~> Output g[£(x)]

with x then apply f and then g.

Notation

To indicate that f is being applied twice in succession, you could write ff(x) but
you would usually use f?(x) instead. Similarly g3(

In order to apply a function repeatedly its range
within its domain.

Order of functions

If f is the rule ‘square the in thexle ‘add 1’, then

square

So gf(x)=x>+1.

and so fg(x) = (x»
Clearly this is not the same result.

Figure 4.4 illustrates the relationship between the domains and ranges of the
functions f and g, and the range of the composite function gf.

domain of g

domain of range of f range of gf

of

Figure 4.4

(2}
)
3
]
o
7]
2,
1]
-
c
3
(1]
-
°
=2
)
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Notice the range of f must be completely contained within the domain of g.
If this wasn’t the case you wouldn’t be able to form the composite function gf
because you would be trying to input values into g that weren’t in its domain.

For example, consider these functions fand g.

f:x—2x,x>0
g:xH\/;,x>0 <

You need this restriction so
you are not taking the square
root of a negative number.

The composite function gf can be formed:

f
x'—>2x'§>\/a

X2 square root

and so gf: x — \/ﬂ, x>0

Now think about a different function h.
h:x—2x, xeR

This function looks like f but h has a different domain; jt is all the real numbers

f(x) =2xfor xeR, g(x R ?for xeR, x#0.
Find the following.
i fg(x) (iii) gh(x)
(iv) £2(x
SOLUTION
i) fgx) =flg i) gf(x) = glf(x)]

= f(x?) =g(2x)

= 2x? = (2x)?

= 4x?

(i) gh(x) = g[h(x)] (iv) f2(x) =f[f(x)]

= g(l) = f(2x)

x
1 =2(2x)
T x? = 4x

(v) fgh(x) = flgh(x)]
= f(é) using (iii)

2
=3



Inverse functions

Look at the mapping x — x + 2 with domain the set of integers.

Domain Range

2

The mapping is clearly a function, since for every input there is one and only one
output, the number that is two greater than that input.

called the inverse function, f~1.

s a short way of

Function: f x—>x+2 writing X is an integer.

alsohds an inverse function, every object
gne image in the range, and vice versa.

f1ix—>x+1

g! :xH%x

h=': x—3x

Some of the following mappings are functions which have inverse functions, and
others are not.

(a) Decide which mappings fall into each category, and for those which do not
have inverse functions, explain why.

(b) For those which have inverse functions, how can the functions and their
inverses be written down algebraically?

‘
)
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(i) Temperature measured in Celsius — temperature measured in Fahrenheit.
(ii) Marks in an examination — grade awarded.

(iii) Distance measured in light years — distance measured in metres.

(iv) Number of stops travelled on the London Underground ~ fare.

You can decide whether an algebraic mapping is a function, and whether it has
an inverse function, by looking at its graph. The curve or line representing a one-
to-one function does not double back on itself and has no turning points. The x
values cover the full domain and the y values give the range. Figure 4.5 illustrates
the functions £, g and h given on the previous page.

YA YA YA

y=1x) y=gx y=hx)

/)

Figure 4.5

Figure 4.6

You can make a new function, g(x) = x? by restricting the domain to R* (the set
of positive real numbers). This is shown in figure 4.7. The function g(x) is a
one-to-one function and its inverse is given by g™!(x) = /x since the sign v/
means ‘the positive square root of’.



Single output value

g(x) =x% xeR*

VA

E]
<
o
2
[
o
-
c
3
Q
=
°
H]
)

Single input value

LY

Figure 4.7

It is often helpful to define a function with a restricted domain so that its inverse
is also a function. When you use the inv sin (i, stiTweg xgsin) key on your

e (-90° to 90°\a
the principal value. Although there are infinitely many roots pf the equation
sinx=0.5 (..., —-330°, -210°, 30°, 15¢
restricted range and this is the value 3 torwilkgive you.

calculator the answer is restricted to the rang d is described as

ACTIVITY 41 yOsk out the inverse function, and draw the

(i) f(x)=2x, xR

(iv) fx)=x>+2, xeR

Try out a few more functions of your own to check your ideas.

Make a conjecture about the relationship between the graph of a function and
its inverse.

You have probably realised by now that the graph of the inverse function is the
same shape as that of the function, but reflected in the line y = x. To see why this
is so, think of a function f(x) mapping a on to b; (a, b) is clearly a point on the
graph of f(x). The inverse function f~!(x), maps b on to a and so (b, a) is a point
on the graph of f~!(x).

The point (b, a) is the reflection of the point (a, b) in the line y = x. This is shown
for a number of points in figure 4.8. 117
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EXAMPLE 4.4

This result can be used to obtain a sketch of the inverse function without having
to find its equation, provided that the sketch of the original function uses the
same scale on both axes.

YA

A0, 4) yEX

C(-4,2)

B(7 > 1)

=

NVO

Q2,4

Figure 4.8

tion

you should start by

y=2x+1
x=2y+1

Rearranging to make y the subject: y= xT—l

x—1
So fl(x)="75 ,xeR

Sometimes the domain of the function f will not include the whole of R. When
any real numbers are excluded from the domain of f, it follows that they will be
excluded from the range of {71, and vice versa.

f
domain of f and /+\ range of f
range of ! ~ and domain of !

ffl

Figure 4.9



EXAMPLE 4.5

EXAMPLE 4.6

Find f~!(x) when f(x) = 2x — 3 and the domain of fis x = 4.

SOLUTION

Domain Range
Function: y=2x-3 x=4 y=5
Inverse function: x=2y— 3 x=5 y=4
Rearranging the inverse function to make y the subject:  y= xT+3

The full definition of the inverse function is therefore:

F1(x) = x;3 for x= 5.

YA
y=1x)

4.5)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

TSN

(i) Find ) =x>+2, x=0.

(ii) Find f(7NaiNf° A(7). What do you notice?

SOLUTION

(i) Domain Range
Function: y=x2+2 x=0 y=2
Inverse function: x= y%+2 x=2 y=0

Rearranging the inverse function to make y its subject: ~ y?=x—2.

This gives y =+ v x — 2, but since you know the range of the inverse function

to be y = 0 you can write:

y=+Vvx—2 orjusty=~x—2.

0 \ N
Figure 4.10
You can see in fig at the Mperse function is the reflection of a restricted
part of the li =~

‘
)
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EXERCISE 4B

The full definition of the inverse function v A )= )

is therefore:
f1(x)=vx—2for x= 2.

The function and its inverse function are

shown in figure 4.11. y=Ff')
X
(7)) =f"'(51) =V51-2=7 Figure 4.11

Applying the function followed by its inverse brings you back to the original
input value.
Note

Part (ii) of Example 4.6 illustrates an important general result. For any function f(x)

with an inverse f~-1(x), f-'f(x) = x. Similarly ff~1 e &fects of a function and its

inverse can be thought of as cancelling eacly o

1 , g(x) =2xand
(v) fgh
2
(i) f(x)=4—-x xeR
(iv) fx) =x*-3,x=0
3 =(x—2)2%+3forx=2.

(ii) On the ¥ime axes, sketch the graph of f~!(x) without finding its equation.
4 Express the following in terms of the functions f: x — Jx and g x> x+4 for
x> 0.
(i) x—>~Vx+4 (i) x—>x+8
(iii) x> Vx+8 (iv) x—>Vx+4

5 A function fis defined by:

1

f:xH; xe R, x#0.

Find M fA(x) (i) £3(x) Gi) (%) (iv) £72(x).



6

10

(i) Show that x>+ 4x+ 7= (x+2)? + a, where a is to be determined.
(ii) Sketch the graph of y=x? + 4x+ 7, giving the equation of its axis of
symmetry and the co-ordinates of its vertex.

The function f is defined by f: x > x* + 4x + 7 with domain the set of all real
numbers.

(i) Find the range of .

(iv) Explain, with reference to your sketch, why f has no inverse with its given
domain. Suggest a domain for f for which it has an inverse.

[MEI]
The function fis defined by f: x — 4x> + 3, x € R.
Give the corresponding definition of f~!.
State the relationship between the graphs of fand f~!.
[UCLES]

Two functions are defined for x € R as f(x) = x* and g(x) = x*> + 4x— 1.

(i) Find aand b so that g(x) =f(x+ a) + b
(ii) Show how the graph of y = g(x) is refafed to the grgph of y = f(x) and

sketch the graph of y=g(x).
(iii) State the range of the functid
(iv) State the least value of ¢ so thay &

(v) With this restrictio etch g(

[Cambridge AS & A Level Mathematics 9709, Paper 12 Q3 June 2010]

Functions ta(d g are defined by
frx—>k-x for x e R, where ks a constant,
gix—>——— for xeR, x#-2.

(i) Find the values of k for which the equation f(x) = g(x) has two equal
roots and solve the equation f(x) = g(x) in these cases.
(ii) Solve the equation fg(x) = 5 when k = 6.
(iii) Express g7'(x) in terms of x.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q11 June 2006]

‘
)
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KEY POINTS

11

12

The function f is defined by f: x+> 2x*— 8x + 11 for xeR.

(i) Express f(x) in the form a(x + b)? + ¢, where a, b and c are constants.
(ii) State the range of f.

(iii) Explain why f does not have an inverse.

The function g is defined by g: x+> 2x>— 8x + 11 for x < A, where Aisa
constant.

(iv) State the largest value of A for which g has an inverse.
(v) When A has this value, obtain an expression, in terms of x, for g!(x) and
state the range of g™
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q11 November 2007]

The function fis defined by f: x+> 3x— 2 for xeR.

(i) Sketch, in a single diagram, the graphs of y = f(x) and y = f~!(x), making
clear the relationship between the two graphs.

(i) Express gf(x) in terms of x, and hd
gf(x) is 9.

The function h is defined by h:

(iii) Express 6x— x° in
constants.
(iv) Express h™!

finecting input values (objects) and output
an be many-to-one, one-to-many, one-to-one or

e or one-to-one mapping is called a function. It is a mapping
for which each input value gives exactly one output value.

The domain of a mapping or function is the set of possible input values
(values of x).

The range of a mapping or function is the set of output values.

A composite function is obtained when one function (say g) is applied after
another (say f). The notation used is g[f(x)] or gf(x).

For any one-to-one function f(x), there is an inverse function f™!(x).

The curves of a function and its inverse are reflections of each other in the
line y = x.



Differentiation

-

Hold infinity in the palm of your hand. H

William Blake g
o
g
A
-3
o
1]
c
P
(]
=
p.:i“ha’z“\
(DRl TR
10 RN = a s

This picture illustrate$ o HMtening rides at an amusement park.

To ensure that th ’fd, its designers need to know the gradient

of the curve at any pw {y¢ mean by the gradient of a curve?

The gradient of a

To understaxd» is means, think of a log on a log-flume, as in figure 5.1. If

you draw the stxjght line y = mx + ¢ passing along the bottom of the log, then

this line is a tangent to the curve at the point of contact. The gradient m of the

tangent is the gradient of the curve at the point of contact.
123

Figure 5.1
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One method of finding the gradient of a curve is shown for point A in figure 5.2.

Gradient = 2St¢P
X Step
. 55
1.5
;“::.’??Q.—i--
T
SR
i
Figure 5.2

ACTIVITY 5.1

e slightly different each time, because
drawing and measuring. Clearly you need

Figure 5.3 shoWs the part of the graph y = x? which lies between x=—1 and x=3.
What is the value of the gradient at the point P(3, 9)?

YA gradient 3
0 P4G.9)
The line OP is called gradient 5
a chord. It joins two 6
points on the curve,
in this case (0, 0 2.4
and (3 9(). ) 3 gradient 4
, y=x2
(1, 1)
-1 0 1 2 3 x

Figure 5.3



You have already seen that drawing the tangent at the point by hand provides
only an approximate answer. A different approach is to calculate the gradients
of chords to the curve. These will also give only approximate answers for the
gradient of the curve, but they will be based entirely on calculation and not
depend on your drawing skill. Three chords are marked on figure 5.3.

Chord (0,0) to (3,9):  gradient= —z _8 =3

Chord (1, 1) to (3,9):  gradient= —3 :i =4
. 9-4_

Chord (2,4) to (3,9):  gradient= 3.2 °

Clearly none of these three answers is exact, but which of them is the most
accurate?

Of the three chords, the one closest to being a tangent is that joining (2, 4) to
(3, 9), the two points that are closest together.

You can take this process further by ‘zooming ip >Roint (3, 9) and using

points which are much closer to it, as in figuré

NEB(2.8,7.84)

A AQR.7,7.29)

Figure 5.X%

The x co-ordinax’of point A is 2.7, the y co-ordinate 2.72, or 7.29 (since the
point lies on the curve y = x?). Similarly B and C are (2.8, 7.84) and (2.9, 8.41).
The gradients of the chords joining each point to (3, 9) are as follows.

Chord (2.7, 7.29) to (3, 9): gradient = % =57

Chord (2.8, 7.84) to (3, 9): gradient = 93__ 2'8 =58
. _9-841 _

Chord (2.9, 8.41) to (3, 9): gradient = 320 = 59

These results are getting closer to the gradient of the tangent. What happens if you
take points much closer to (3, 9), for example (2.99, 8.9401) and (2.999, 8.994001)?

The gradients of the chords joining these to (3, 9) work out to be 5.99 and 5.999
respectively.

1
==
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ACTIVITY 5.2

Historical note

Take points X, Y, Z on the curve y = x? with x co-ordinates 3.1, 3.01 and 3.001
respectively, and find the gradients of the chords joining each of these points
to (3,9).

It looks as if the gradients are approaching the value 6, and if so this is the
gradient of the tangent at (3, 9).

Taking this method to its logical conclusion, you might try to calculate the
gradient of the ‘chord’ from (3, 9) to (3, 9), but this is undefined because there is a
zero in the denominator. So although you can find the gradient of a chord which
is as close as you like to the tangent, it can never be exactly that of the tangent.
What you need is a way of making that final step from a chord to a tangent.

The concept of a limit enables us to do this, as you will see in the next section. It
allows us to confirm that in the limit as point Q tends to point P(3, 9), the chord
QP tends to the tangent of the curve at P, and the gradient of QP tends to 6 (see
figure 5.5).

Figure 5.5

¢ ¢hords approaching the tangent at P to calculate the gradient
of the tanye iy5t described clearly by Pierre de Fermat (¢.1608-65). He spent
his working I¥g ag’a civil servant in Toulouse and produced an astonishing amount

of original mathematics in his spare time.

@ Finding the gradient from first principles

Although the work in the previous section was more formal than the method of
drawing a tangent and measuring its gradient, it was still somewhat experimental.
The result that the gradient of y = x? at (3, 9) is 6 was a sensible conclusion,
rather than a proved fact.

In this section the method is formalised and extended.

Take the point P(3, 9) and another point Q close to (3, 9) on the curve y = x%.
Let the x co-ordinate of Q be 3 + h where h is small. Since y = x? at Q, the
y co-ordinate of Q will be (3 + h)2.



A Figure 5.6 shows Q in a position where h is positive, but negative values of
hwould put Q to the left of P.

(3+h,(3+h)?)

I
=
=
=
«Q
-,
=
[
Q
=
-
2
]
=
-
=
-
o
3
=
H
(]
-
°
=
=
5,
=
[+]
(7]
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Figure 5.6
From figure 5.6, the gradient of PQ is G+ }22 -
_9+6h+h -9
- h
_6h+ 1’
__h(6+h)
h

=6+h.

ACTIVITY 5.3  Using a similar Zwéthod, find the gradient of the tangent to the curve at

(i (1,1)
(i) (—2,4)
(iii) (4, 16).

What do you notice?

The gradient function

The work so far has involved finding the gradient of the curve y=x? at a
particular point (3, 9), but this is not the way in which you would normally find
the gradient at a point. Rather you would consider the general point, (x, y), and
then substitute the value(s) of x (and/or y) corresponding to the point of interest.
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EXAMPLE 5.1

Find the gradient of the curve y = x> at the general point (x, y).

SOLUTION

Figure 5.7

he point (x, x*) (since
b€ (x+ h) so Q is
Q is given by

Let P have the general value x as it
it is on the curve y=x%). Let the x c
((x+h), (x+ h)*). The grads

As Q takes values closer to P, h takes smaller and smaller values and the gradient
approaches the value of 3x? which is the gradient of the tangent at P. The
gradient of the curve y = x> at the point (x, ) is equal to 3x.

Note

If the equation of the curve is written as y = f(x), then the gradient function (i.e. the
gradient at the general point (x, y)) is written as f'(x). Using this notation the result
above can be written as f(x) = x3 = f'(x) = 3x2.



EXERCISE 5A 1 Use the method in Example 5.1 to prove that the gradient of the curve y = x? at
the point (x, y) is equal to 2x. P 1

2 Use the binomial theorem to expand (x+ h)* and hence find the gradient of
the curve y = x* at the point (x, y).

3 Copy the table below, enter your answer to question 2, and suggest how the
gradient pattern should continue when f(x) = x°, f(x) = x® and f(x) = x" (where

VG 9s1249x]

n is a positive whole number).

f(x) | f'(x) (gradientat (x, y))
x2 2x
X 3%

xﬂ

4 Prove the result when f(x) = x°.

Note

The result you shoul e obtaine m quéstion 3 is known as Wallis’s rule and
can be used as a f la.

PN /
\\17
€ How «&hou use the NiNomidYtheorem to prove this general result for integer values
of n?
\\7

An alternative notation

So far h has been used to denote the difference between the x co-ordinates of our
points P and Q, where Q is close to P.

h is sometimes replaced by 6x. The Greek letter d (delta) is shorthand for ‘a
small change in’ and so dx represents a small change in x and 8y a corresponding
small change in y.

In figure 5.8 the gradient of the chord PQ is % .
In the limit as dx — 0, dx and 8y both become infinitesimally small and the value

obtained for b approaches the gradient of the tangent at P.
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(X + 8%, y + dy)

c
]
8
-
c
g
(]
&
a
Figure 5.8
&I:E)no g—}; 1s written as j—i

Read this as ‘the
limit as &x tends
towards zero’.

Using this notation, Wallis’s rule begomes

Note

If, fo{ ekample, youlclirve represented time (t) on the horizontal axis and velocity

(v) on tRe d then the relationship may be referred to as v=g(t), i.e. vis a
function o # gradient function is given by % =g’(1).

ACTIVITY 5.4  Plot the curve with equation y = x> + 2, for values of x from -2 to +2.
On the same axes and for the same range of values of x, plot the curves
y=x’—1,y=x’and y=x>+ 1.

What do you notice about the gradients of this family of curves when x = 0?

What about when x=1 or x=-1?

ACTIVITY 5.5  Differentiate the equation y = x> + ¢, where ¢ is a constant.

How does this result help you to explain your findings in Activity 5.4?
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Historical note

Differentiating by using standard results

The notation :%: was first used by the German mathematician and philosopher
Gottfried Leibniz (1646-1716) in 1675. Leibniz was a child prodigy and a self-taught
mathematician. The terms ‘function’ and ‘co-ordinates’ are due to him and, because
of his influence, the sign ‘=" is used for equality and ‘x’ for multiplication. In 1684

he published his work on calculus (which deals with the way in which quantities

change) in a six-page article in the periodical Acta Eruditorum.

Sir Isaac Newton (1642-1727) worked independently on calculus but Leibniz
published his work first. Newton always hesitated to publish his discoveries. Newton
used different notation (introducing ‘fluxions’ and ‘moments of fluxions’) and his
expressions were thought to be rather vague. Over the years the best aspects of

the two approaches have been combined, but at the time the dispute as to who
‘discovered’ calculus first was the subject of many articles and reports, and indeed
nearly caused a war between England and Germany.

dys give the gradient
¢ver used. Its value is
As a working tool.

rfferent values of n a pattern
include the result that the line

y

4

=N\
G
\\&\/}xz’
This patterM and, in general

y=x" = % = nx""L,

This can be extended to functions of the type y = kx" for any constant k, to give

The power n can be any real
number and this includes positive
and negative integers and fractions,
i.e. all rational numbers.

_ n d_)/_ n—1
y=kx" = dx—knx .

Another important result is that

d .
y=c= P =0 where cis any constant.

dx

This follows from the fact that the graph of y = cis a horizontal line with gradient
zero (see figure 5.9).

1
==
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EXAMPLE 5.2

EXAMPLE 5.3

YA

C The liney = ¢ has
gradient zero and so

Figure 5.9

For each of these functions of x, find the gradient function.

M y=x° (i) z=7x° (i) p=11 (iv) f(x) :%
SOLUTION

0] % = 5x4

(i) g—i =6X7x° = 42x°

(iii) Sl—i =0

(iv) f(x)=3x7"!

then add the estilts together.

Differentiate y = 3x* + 4x°.

SOLUTION

dy = 6x + 12x2
dx

Note
This may be written in general form as:

y=f(x)+glx) = 3—)’; =f(x) + g’(x).



EXAMPLE 5.4

EXERCISE 5B

Differentiate f(x) = (> +1)(x = 5)

SOLUTION

X

You cannot differentiate f(x) as it stands, so you need to start by rewriting it.

Expanding the brackets: f(x)

_x=5x*+x-5
X

_x_

2
T X3
X X X X

=x?—-5x+1—-5x"

Now you can differentiate f(x) to give f’(x) =2x— 5 + 5x72

=2x+ 2 -5
X

Differentiate the following functions using the rules

40y

y=kx" = 4~ !
dx

(x4 2x)(x — 4)

Wx

12

15

18

21

24

27

30

y=2x°

y=3x>
y=2x3+3x>
y=x>+3x*+3x+1

y=3x*+6x+6

d=t
fx) = x°
y =i
g2
Jx
f(x)=x%—x3
_x*+6x
X
flo) = 2

v
==

g6 os12409x3
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Using differentiation

EXAMPLE 5.5 Given that y = Jx - %, find
X
. dy
W dx

(ii) the gradient of the curve at the point (4, 1%)

SOLUTION

(i Rewrite y = Vx — % as y = x* — 8x 2.
x

Now you can differentiate using the rule y = kx" = % = knx""!.

j—i = %x_% +16x73

(i) At (4, 1%) x=4

Substituting x = 4 into the ex

EXAMPLE 5.6 Figure B

Find the gradien¥of the curve at the points A and B where it meets the x axis.

yﬂ y=x376x2

Y

Figure 5.10



EXAMPLE 5.7

SOLUTION
The curve cuts the x axis when y =0, and so at these points

x*(x—6)=0
= x=0 (twice) or x = 6.

Differentiating y = x> — 6x? gives

dy ..,
a—?)x 12x.

. dy
At the point (0, 0), o 0
and at (6, 0), %=3X62_12X6=36’

At A(0, 0) the gradient of the curve is 0 and at B(6, 0) the gradient of the curve
is 36.

Note

This curve goes through the origin. You can sge {from the graph)and from the value

d ..
of d% that the x axis is a tangent to the

deduced this from the fact that x=0 is 3 3 e equation x3 - 6x2=0.

Find the points on the ¢ x{iheguatiQQ Y = X° + 6x2 + 5 where the value of the
gradient is —9.

SOLUTION

The gradje Curve is given by

Therefore yox 4 find points at which j—y =-9,1ie.
x

3x2 %+ 12x= -9
3x2+12x+9=10
3(x2+4x+3)=0

3(x+1)(x+3)=0
= x=-1lorx=-3.

When x=-1, y=(-1)>+6(-1)*+ 5= 10.
When x=-3, y=(-3)>+6(-3)*+5=32.

Therefore the gradient is —9 at the points (-1, 10) and (-3, 32)(see figure 5.11).

1
==
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Figure 5.11

EXERCISE 5C 1 For each part of this question,
dy
(a) find -~
dx

(b) find the gradient of the curve at the gix€

M y=x72(0.25,16)

i) y=x'+x%(-1,0)

(i) y=4x7 +2x7% (1, 6)
(iv) y=3x*—4-8x73 (2, 43)
W) y=+/x+3x (4,1
(vi) y=4x_%; (9, 1}

(iii) Show thg
gradient of the curve at this point.

the point (3, —9) lies on the curve y = x*> — 6x and find the

(iv) Relate your answer to the shape of the curve.

4 (i) Sketch, on the same axes, the graphs with equations
y=2x+5 and y=4-x* for-3<x<3.
(ii) Show that the point (-1, 3) lies on both graphs.
(iii) Differentiate y =4 — x? and so find its gradient at (-1, 3).

(iv) Do you have sufficient evidence to decide whether the line y=2x+51isa
tangent to the curve y=4 — x*?

(v) Isthe line joining (2%, 0) to (0, 5) a tangent to the curve y=4 — x??



5 The curve y=x>—6x>+ 11x— 6 cuts the xaxisat x= 1, x=2 and x = 3.

(i) Sketch the curve.

(ii) Differentiate y=x>—6x>+ 11x— 6.

(iii) Show that the tangents to the curve at two of the points at which it cuts the
x axis are parallel.

(i) Sketch the curve y=x?+3x—1.

(ii) Differentiate y= x>+ 3x— 1.

(iii) Find the co-ordinates of the point on the curve y = x> + 3x — 1 at which it
is parallel to the line y=5x— 1.

(iv) Is the line y=5x— 1 a tangent to the curve y=x*+ 3x— 1?
Give reasons for your answer.

(i) Sketch, on the same axes, the curves with equations
y=x*-9 and y=9-x* for-4<x<4.

(ii) Differentiate y=x>—9.

e dame value as your answer to part (ii).

of another curve with the same gradient function as

The function f(x) = ax® + bx + 4, where a and b are constants, goes through the
point (2, 14) with gradient 21.

(i) Using the fact that (2, 14) lies on the curve, find an equation involving
aand b.

(i) Differentiate f(x) and, using the fact that the gradient is 21 when x=2,
form another equation involving a and b.

(i) By solving these two equations simultaneously find the values of a and b.

1
==
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10 In his book Mathematician’s Delight, W.W. Sawyer observes that the arch of
Victoria Falls Bridge appears to agree with the curve

_ 116 — 21x2
YT 10

taking the origin as the point mid-way between the feet of the arch, and
taking the distance between its feet as 4.7 units.

(i) Find %

(ii) Evaluate 9 when x=-2.

dx

(iii) Find the value of

11

12 The ske hOws the graph of y = % + x.

YA

=Y




13

14

15

17 The gradient of the curve y = kx? at the point x = 9 is 18. Find the value of k.

18

. . 4
(i) Differentiate y= 2t

(i) Show that the point (-2, —1) lies on the curve.
(iii) Find the gradient of the curve at (-2, -1).

(iv) Show that the point (2, 3) lies on the curve.
(v) Find the gradient of the curve at (2, 3).

(vi) Relate your answer to part (v) to the shape of the curve.
(i) Sketch, on the same axes, the graphs with equations

y= é +1 and y=-16x+13 for -3 <x<3.
(ii) Show that the point (0.5, 5) lies on both graphs.

(i) Differentiate y = é + 1 and find its gradient at (0.5, 5).

(iv) What can you deduce about the two graphs?

(i) Sketch the curve y= Jx for 0 < x < 10,
(ii) Differentiate y = Vx.
(iii) Find the gradient of the curve at the{p¢

(i) Sketch the curve y= % for -¢

. . 4
(ii) Differentiate y= F

(=2, 1).

(i) Differentiate y = %— 2,
x

(ii) Find the gradient of the curve at the point where it crosses the x axis.

x—2

Jx

Find the gradient of the curve y =

at the point where x = 4.

1
==

96 as1949x3
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Tangents and normals

EXAMPLE 5.8

Now that you know how to find the gradient of a curve at any point you can use
this to find the equation of the tangent at any specified point on the curve.

Find the equation of the tangent to the curve y = x? + 3x+ 2 at the point (2, 12).

SOLUTION

dy dy_
I =2x+3.

Calculating i

Substituting x = 2 into the expression (Cil_)/ to find the gradient m of the tangent at
. X
that point:

m=2X2+3
=7.

The equation of the tangent is given by
Y=y, =m(x—x).

In this case x, =2, y, =12 so

y—12=7(x—-2)
= y=7x-2.
This is the equation of the/t t.

Figure 5.12

The normal to a curve at a particular point is the straight line which is at
right angles to the tangent at that point (see figure 5.13). Remember that for
perpendicular lines, m,m, =—1.



EXAMPLE 5.9

tangent

1
=

normal

curve

Figure 5.13

sjewJou pue sjuabue]

If the gradient of the tangent is m,, the gradient, m,, of the normal is given by

This enables you to find the equation of the normal at any specified point on
a curve.

A curve has equation y = % — 4x. The nor d at the point (4, —4)

meets the y axis at the point P. Find thg Qates of P.

SOLUTION

You may find it easier to w

Differentiating gives

So at the point (4, —4) the gradient of the tangent is —2.

-1 _
gradient of tangent

Gradient of normal =

N

The equation of the normal is given by
Y=y, =m(x—x)
y=(-4)=3(x~4)
y= %x -6
P is the point where the normal meets the y axis and so where x=0.
Substituting x= 0 into y = %x — 6 gives y = —6.

) . 141
So P is the point (0, —6).



EXERCISE 5D 1 The graph of y = 6x— x? is shown below.

P1

YA
y=6xfx2

Differentiation
<Y

The marked point, P, is (1, 5).

d
(i) Find the gradient function d_i
(i) Find the gradient of the curve at P.
(i) Find the equation of the tangent at P.

N

(i) Sketch the curve y=4x— x%

(i) Differentiate y=4x— x%.
(iii) Find the gradient of y = 4x— x? at th point (1,

(iv) Find the equation of the tangent to thd x? at the point (1, 3).

3 (i) Differentiate y= x> — 4x2.
(ii) Find the gradient of y = x> —

(i) Find the equation of

4 Cy=06 .
i curve at the points (-1, 5) and (1, 5).
tionYof the tangents to the curve at these points.
nd the cofgrdinates of the point of intersection of these two tangents.
5 curve y = x* + 4 and the straight line y = 4x on the same axes.

(ii) Show tat both y=x?+ 4 and y = 4x pass through the point (2, 8).
(iii) Show that y = x> + 4 and y = 4x have the same gradient at (2, 8), and state
what you conclude from this result and that in part (ii).

6 (i) Find the equation of the tangent to the curve y=2x> — 15x> + 42x at (2, 40).

(i) Using your expression for j—y, find the co-ordinates of another point on
X
the curve at which the tangent is parallel to the one at (2, 40).

(i) Find the equation of the normal at this point.
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7 (i) Given that y=x®— 4x>+ 5x— 2, find %

The point P is on the curve and its x co-ordinate is 3.

1
=

(ii) Calculate the y co-ordinate of P.
(i) Calculate the gradient at P.
(iv) Find the equation of the tangent at P.

as asisaexg

(v) Find the equation of the normal at P.

(vi) Find the values of x for which the curve has a gradient of 5.
[MEI]

8 (i) Sketch the curve whose equation is y = x> — 3x+ 2 and state the
co-ordinates of the points A and B where it crosses the x axis.
(ii) Find the gradient of the curve at A and at B.
(iii) Find the equations of the tangent and normal to the curve at both A and B.

(iv) The tangent at A meets the tangent at B at the point P. The normal at A
meets the normal at B at the point Q. Whatshape is the figure APBQ?

11 The equation of a curveis y = 1
x

(i) Find the equation of the tangent to the curve at the point (2, %)

(ii) Find the equation of the normal to the curve at the point (2, %)

(i) Find the area of the triangle formed by the tangent, the normal and
the y axis.
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12 The sketch shows the graph of y = Jx-1.

YA

=Y

-1

(i) Differentiate y= Jx-1.

(ii) Find the co-ordinates of the point on the curve y = Jx -1 atwhich the
tangent is parallel to the line y=2x — 1.

(iii) Is the line y = 2x—1 a tangent to the c Jx-12

Give reasons for your answer.

13 The equation of a curve is y = Vx -

8

Acurveis y =2+ .
X

(ii) Find the area of the triangle formed by the normal and the axes.

16 The graph of y = 3x — ﬁ is shown below.

The point marked P is (1, 2). YA

=Y




(i) Find the gradient function d_y
X

(ii) Use your answer from part (i) to find the gradient of the curve at P.

(i) Use your answer from part (ii), and the fact that the gradient of the curve
at P is the same as that of the tangent at P, to find the equation of the

1
=

m
Ed
tangent at P in the form y= mx+ c. s
g
17 The graph of y=x*+ ch is shown below. The point marked Q is (1, 2). o
O
YA
Q
0 >

19 (i) The diaxgam shows the line 2y = x + 5 and the curve y = x> —4x + 7,
which intersect at the points A and B.

VA
y=x2—4x+7

2y=x+5

=Y
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Maximum and minimum points

ACTIVITY 5.6

Find
(a) the x co-ordinates of A and B,
(b) the equation of the tangent to the curve at B,
(c) the acute angle, in degrees correct to 1 decimal place, between this
tangent and the line 2y = x + 5.
(i) Determine the set of values of k for which the line 2y = x + k does not
intersect the curve y = x> —4x + 7.

[Cambridge AS & A Level Mathematics 9709, Paper 12 Q10 November 2009]

20 The equation of a curveis y=5— 8

X
(i) Show that the equation of the normal to the curve at the point P(2, 1) is
2y+ x=4.

This normal meets the curve again at the point Q.

(ii) Find the co-ordinates of Q.
(i) Find the length of PQ.
[Cambridge AS & A Ley€l ¥

Plot the graph of y = x* — x> — 222, &
0.5, and answer these questjons.

Gradient at a maximum or minimum point

Figure 5.14 shows the graph of y = —x? + 16. It has a maximum point at (0, 16).

YA

Figure 5.14

X09, Paper 1 Q8 November 2008]

6m —2.5 to +2.5 in steps of



You will see that

. . . dy. P 1
e at the maximum point the gradient 3, s zero E

e the gradient is positive to the left of the maximum and negative to the right of it.

This is true for any maximum point (see figure 5.15). ?
é.

0 3

D

=

(-}

+ - 3

5

3

e

3

3

Figure 5.15 £y
"]

In the same way, for any minimum point (see figure 5.16):

e the gradient is zero at the minimum

e the gradient goes from negative to zero to/pg

Figure 5.16

EXAMPLE 5.10

SOLUTION
The gradient function for this curve is

%=3x2—3.

The x values for which g—i =0 are given by

3x2-3=0

3(x2-1)=0

3(x+1)(x—1)=0
= x=—-1lorx=1.

The signs of the gradient function just either side of these values tell you the
nature of each stationary point. 147



Forx=-1: x=-2 = d—§=3(—2)2—3 =49

‘
Y

d
E x=0 =¥ _3012-3=_3

dx

8 0

&

£

8 B -

.

Figure 5.17

— — d}’
F =1: =0 =-3
or x X =

x=2:%=3(2)2—3=+9.

Figure 5.18

Thus the stationary poing 2
minimum.

maximum YA
(-1,3)

/ 1 0 v “x
-1
minimum

(1,-D

148 Figure 5.19



EXAMPLE 5.11

In this case you knew the general shape of the cubic curve and the positions of all
of the maximum and minimum points, so it was easy to select values of x for

which to test the sign of % The curve of a more complicated function may have

several maxima and minima close together, and even some points at which the
gradient is undefined. To decide in such cases whether a particular stationary
point is a maximum or a minimum, you must look at points which are just either
side of it.

Find all the stationary points on the curve of y=2t* — > + 1 and sketch the curve.

SOLUTION

dy 3
-~ =81 =2t
dt

At a stationary point, % =0, so
813 —-2t=0

21(42-1)=0

2t(2t—1)(2t+1)=0

You may find it helpful to sumuarise y %Qking in a table like the one below.
d test point in each interval, for

/>

<\tg\—/a§//—o.5/;)%<t<o 0 0<t<05 05 t>05
/

N\
N\,
+
(e}
|
(e}
+

min max min

Sign of %&\\\
STCETEN

There is a maxi oint when #= 0 and there are minimum points when
t=—-0.5and +0°y,
When t=0: y=2(0)*=(0)>+1=1.

When t=-0.5:  y=2(-0.5)*—(-0.5)>+ 1 =10.875.
When t=0.5: y=2(0.5)*-(0.5)>+1=10.875.

Therefore (0, 1) is a maximum point and (0.5, 0.875) and (0.5, 0.875) are minima.

1
=

sjulod wnwiuIW pue wnwixep]
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The graph of this function is shown in figure 5.20.
YA
1
0.875
-1 0.5 0 0.5 1

Figure 5.20

Increasing and decreasing functiof

EXAMPLE 5.12

= y= x>+ x is an increasing function.

Figure 5.21 shows its graph.

-2 -1

-3

Figure 5.21

Y



EXAMPLE 5.13 Find the range of values of x for which yA
the function y = x> — 6x is a decreasing
function. /

SOLUTION

y=x?—6x= %=2x—6.

m
X
®
e
2,
[
o
)l
m

151

y decreasing :>j—£ <0

= 2x-6<0

= x<3.
-9

Figure 5.22 shows the graph of
y=x>—6x. Figure 5.22

EXERCISE 5E 1 Given that y= x>+ 8x+ 13

(i) find %, and the value of x for which

(ii) showing your working clearly, decide corresponding to
this x value is a maximum or a {

side of it

Ang the gradient either

(i) show that the corresp

(iv) sketch the curve.

3 Given that y —12x+2
(i) find d_y, and the values of x for which d_y =0
dx dx

(ii) classify the points that correspond to these x values
(iii) find the corresponding y values

(iv) sketch the curve.

4 (i) Find the co-ordinates of the stationary points of the curve y= x> — 6x?,
and determine whether each one is a maximum or a minimum.
(i) Use this information to sketch the graph of y = x* — 6x2.
5 Find fl—y when y= x> — xand show that y = x> — x is an increasing function
x

1 1
for x < ———and x > —.
J3 J3
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6 Given that y= x>+ 4x

(i) find %

(ii) show that y=x®+ 4x is an increasing function for all values of x.

Given that y=x> 4+ 3x*>—9x+6

(i) find 211_)/ and factorise the quadratic expression you obtain
X

(ii) write down the values of x for which d_y =0

dx
(i) show that one of the points corresponding to these x values is a
minimum and the other a maximum
(iv) show that the corresponding y values are 1 and 33 respectively
(v) sketch the curve.

Given that y=9x+ 3x? — x°

(i) find dy and factorise the quadratic expression you obtain

dx

(ii) find the values of x for which the ¢
these stationary points

(i) find the corresponding y values

(iv) sketch the curve.

(i)

e with/eguation y = x> + 3x?
(i) Fingd 0
(iv) HenceSketch the curve and explain your answer to part (ii).

You are given that y = 2x> + 3x* — 72x+ 130.

. dy
i) Find -=.
@ dx
P is the point on the curve where x = 4.

(ii) Calculate the y co-ordinate of P.

hat does Yhjs tell you about the number of stationary points of the

dlues of y corresponding to x=-3,-2,-1,0, 1, 2 and 3.

Qttynary points, and classify

(i) Calculate the gradient at P and hence find the equation of the tangent to

the curve at P.

(iv) There are two stationary points on the curve. Find their co-ordinates.

[MEI]



13 (i) Find the co-ordinates of the stationary points of the curve f(x) = 4x + 1
X

(ii) Find the set of values of x for which f(x) is an increasing function.

14 The equation of a curve is y = %(Zx —3)°—4x.

@ Find .
dx

(ii) Find the equation of the tangent to the curve at the point where the curve
intersects the y axis.
(iii) Find the set of values of x for which é(Zx —3)% — 4xis an increasing
function of x.
[Cambridge AS & A Level Mathematics 9709, Paper 12 Q10 June 2010]

15 The equation of a curve is y = > — 3x + 4.

(i) Show that the whole of the curve lies above the x axis.

(ii) Find the set of values of x for which x*> — 3x + 4 is a decreasing function of x.

(iii) In the case where k = 6, find the co-
of the line and the curve.

Arpbridge AS & A Level Mathematics 9709, Paper 1 Q4 June 2008]

@ Points of inflectio

It is possible fo falue of j—y to be zero at a point on a curve without it being a

x
maximum or minimum. This is the case

with the curve y= x3, at the point (0, 0) 74
(see figure 5.23).
y=x> = dy _ 35
dx
and when x=0, on. 0 x
dx

Figure 5.23

P1
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This is an example of a point of inflection. In general, a point of inflection occurs
where the tangent to a curve crosses the curve. This can happen also when Yo,

dx

1
Y

as shown in figure 5.24.

Notice that the

gradient of the
curve on either side
of the point has the
same sign.

Differentiation

Figure 5.24

If you are a driver you may find it helpful to think of a point of inflection as the
point at which you change from left lock to right lock, or vice versa. Another way
of thinking about a point of inflection is to viey syrve from one side and see

it as the point where the curve changes frond ¢ eave to convex.

The second derivative

Figure 5.25 shows a sketch of a funct (x), and beneath it a sketch of the

corresponding gradieng{un

LY

LY

Figure 5.25
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ACTIVITY 5.7

EXAMPLE 5.14

Sketch the graph of the gradient of jx

against x for the function illustrated in

figure 5.25. Do this by tracing the two graphs shown in figure 5.25, and extending

the dashed lines downwards on to a third set of axes.

You can see that P is a maximum point and Q is a minimum point. What can

dy
you say about the gradient of -~ ) at these points: is it positive, negative or zero?

dx

The gradient of any point on the curve of j is given by 51 (jﬁ) This is written
2
as % or f”(x), and is called the second derivative. It is found by differentiating

the function a second time.

2
d’y . dy
The second derivative, —, is not the same as (—1

d?y
Given that y= x° + 2x, find —=.
dx?

SOLUTION

dy .4
dx—Sx +2

Stationary points

2
Notice that at P, d_y =0and ﬂ < 0. This tells you that the gradient, d_y’ is zero

dx dx? dx

and decreasing. It must be going from positive to negative, so P is a maximum

point (see figure 5.26).

At Q, dy =0and j > 0. This tells you that the gradient, 3)/ , is zero and

1ncreasmg It must be going from negative to positive, so Q is a minimum point
(see figure 5.27).

1
=
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EXAMPLE 5.15

2
p >0
+ - X atQ
Q
d?y
w
atP
Figure 5.26 Figure 5.27

The next example illustrates the use of the second derivative to identify the

nature of stationary points.

Given that y=2x%+3x% — 12x

(i) find d_y’ and find the values of x for which =< =0

dx

(ii) find the value of % at each stationary gox

(i) find the y values of each of the stationgr
(iv) sketch the curve given by y = 2yA¢ 3x

SOLUTION

(i) % =6x2+6x—12

P =12 (=2) +6=—18.
X

5 <0= amaximum.
X

d?y
When x=1, F=6(2X1+1)=18
X

d? ..
@y > () = aminimum.

dx?

(iii) When x=-2, y=2(-2)>+3(-2)*-12(-2)
=20

so0 (=2, 20) is a maximum point.

When x=1, y=2+3-12
=7

so (1,—7) is a minimum point.

hewce determine its nature



A Take care when j—y = 0. Log}

(iv) YA y=2x3+3x% -12x

20

LY

[N

Figure 5.28

2
A\ Remember that you are looking for the value of 372/ at the stationary point.

Note

On occasions when it is difficult or laborious to fihe gmber that you can
. . A . d

always determine the nature of a stationary pdi at\he sign of d—)’: for

2
xZ

dy _ o2 dy _
a—Bx.at(0,0)dx—O

o
@ =6x: at (0, 0)

d’y _
0

Figure 5.29

y=x*

_ d d
y A y=x dy_, s dy _
Lo =4t (0,0) g =0

2

2
Y 1oy dy _
a2 12x4: at (0, 0) a2 0

=Y

Figure 5.30

v
=
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EXERCISE 5F

YA

y=-x

Figure 5.31

y=-x!
dy_ s dy _
a——‘lx at(0,0)a—O
2

2

d
—12x2 at (0, 0) d—XZ =0

<y
dx?

2
You can see that for all three of these functions both d_y and d_y are zero at the

origin.

dx dx?

2
Consequently, if both % and d—); are zero at a point, you still need to check the

X

values of % either side of the point in ord deterinjnX its nature.
dz
1 For each of the following functi
i y=x° (i) y=4x?
liv) y=x2 (vi) y=x*— %

(ii)
(iv)

(vi)

(ix) y=06x— X

3 You are given that y= x* — 8x2.

(i) Find (%
d2
(i) Find ayz

(viii) y= x>+ =
viii) y X

y=6x— x?
y=4x>—5x*
1
= + =
y=x X
12

(iii) Find any stationary points and identify their nature.

(iv) Hence sketch the curve.



4 Given that y=(x—1)*(x— 3)

1
=

(i) multiply out the right-hand side and find %

(ii) find the position and nature of any stationary points

(iii) sketch the curve.

5 Given that y=x?(x—2)?

46 os1249x3

(i) multiply out the right-hand side and find %
(ii) find the position and nature of any stationary points

(i) sketch the curve.

6 The function y= px’® + gx?, where p and q are constants, has a stationary
point at (1, —1).

(i) Using the fact that (1, —1) lies on the curve, form an equation involving
pand g.

(ii) Differentiate y and, using the fact that (1, —1)is a stationary point, form

another equation involving p and gq.

(i) Solve these two equations simultaneg dvalues of pand q.
7 You are given f(x) = 4x* + L
X

(i) Find f'(x) and "(x).

(ii) Find the position ang~ature of\g

8 For the function y =

(i) find the values of x for which y =0

(ii) show that there is a minimum turning point of the curve when x = 6 and
calculate the y value of this minimum, giving the answer correct to
1 decimal place.
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Applications

EXAMPLE 5.16

There are many situations in which you need to find the maximum or minimum
value of an expression. The examples which follow, and those in Exercise 5G,
illustrate a few of these.

Kelly’s father has agreed to let her have part of his garden as a vegetable plot.
He says that she can have a rectangular plot with one side against an old wall.
He hands her a piece of rope 5m long, and invites her to mark out the part she
wants. Kelly wants to enclose the largest area possible.

What dimensions would you advise her to use?

SOLUTION

Let the dimensions of the bed be x m X y m as shown in figure 5.32.

ong,2x+y=5o0r y=>5-2x.
s of x only A= x(5—2x) =5x—2x°.

To maximise A, which is now written as a function of x, you differentiate A with
respect to x

dA

e 5—4x.
At a stationary point, % =0, so
5-4x=10
x=2=125
d’A = —4 = the turning point is a maximum.
dx?

The corresponding value of yis 5 — 2(1.25) = 2.5. Kelly should mark out a
rectangle 1.25m wide and 2.5m long.



EXAMPLE 5.17 A stone is projected vertically upwards with a speed of 30ms™.

Its height, im, above the ground after fseconds (t < 6) is given by:
h=30t— 5t

0 ping 4 0q 8
(i) Find ar and a2

(i) Find the maximum height reached.

(iii) Sketch the graph of h against .

SOLUTION

g dh g

M g, =30~ 10z
d’h _
3=l

(ii) For a stationary point,% =0

30-10t=0
= 103—1) =0
= t=3.
d*h h . .
a2 < 0 = the stationary point is um.

The maximum height,i

(iii)

3>

0 3 6 t'(seconds)
Figure 5.33
Note
o, . . . dh . . d?h
For a position—-time graph, such as this one, the gradient, T the velocity and a2

is the acceleration.

1
=

suonesjddy
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EXERCISE 5G

1 A farmer wants to construct a temporary rectangular enclosure of length xm

and width y m for his prize bull while he works in the field. He has 120 m of
fencing and wants to give the bull as much room to graze as possible.

(i) Write down an expression for y in terms of x.

(ii) Write down an expression in terms of x for the area, A, to be enclosed.

dx

bull the maximum area in which to graze. State this maximum area.

(iii) Find 44 and ilxz’ and so find the dimensions of the enclosure that give the

2 A square sheet of card of side 12 cm has four equal squares of side xcm cut

from the corners. The sides are then turned up to make an open rectangular
box to hold drawing pins as shown in the diagram.

12cm

quinbers, in tefms of x.
d2s
—and ,
dx?

8 dx

(i) By coqQside find the least value of the sum of their squares.

4 A new children’s slide is to be built with a cross-section as shown in the

diagram. A long strip of metal 80 cm wide is available for the shute and will be
bent to form the base and two sides.

The designer thinks that for maximum safety the area of the cross-section
should be as large as possible.



v
=

cross-section

xcm| xcm
yem

m
x
1]
g
[
(]
)]
7}
(i) Write down an equation linking x and y.
(ii) Using your answer to part (i), form an expression for the cross-sectional
area, A, in terms of x.
o dA L d?A . . . .
(i) By considering aand L find the dimensions which make the slide as
safe as possible.
A carpenter wants to make a box to hold tg \to be made so that its
volume is as large as possible. A rectangulp pywood measuring
D= :
e shaded area is cut
off and not used.
Im
ons of one of the four rectangular faces in terms of x.
an exprepsjon for the volume, V, of the made-up box, in terms of x.
(iv) Hence find the dimensions of a box with maximum volume, and the
corresponding volume.
A piece of wire 16 cm long is cut into two pieces. One piece is 8x cm long and
is bent to form a rectangle measuring 3x cm by x cm. The other piece is bent to
form a square.
(i) Find in terms of x:
(a) the length of a side of the square
(b) the area of the square.
(ii) Show that the combined area of the rectangle and the square is A cm?
where A=7x>—16x+ 16.
(i) Find the value of x for which A has its minimum value.
(iv) Find the minimum value of A. 163
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7 A piece of wire 30 cm long is going to be made into two frames for blowing

bubbles. The wire is to be cut into two parts. One part is bent into a circle of
radius r cm and the other part is bent into a square of side xcm.

(i) Write down an expression for the perimeter of the circle in terms of r, and
hence write down an expression for rin terms of x.

(i) Show that the combined area, A, of the two shapes can be written as

_ (4+m)x - 60x + 225
- .

A

(iii) Find the lengths that must be cut if the area is to be a minimum.

A cylindrical can with a lid is to be made from a thin sheet of metal. Its height
is to be hcm and its radius rcm. The surface area is to be 250w cm?.

(i) Find hin terms of r.
(ii) Write down an expression for the volume, V, of the can in terms of r.

. adVv dv
(iii) Fmd? and ?

(iv) Use your answers to part (iii) to sho,

volume is 1690 cm? (to 3 significany
dimensions of the can.
Charlie wants to add an extensio
house. He wants to use

(i) Writ an expression for the area in terms of x and y.

(i) Write down an expression, in terms of x and y, for the total length, T, of
the outside walls.

(iii) Show that

T =2+
x
2
(iv) Find C(ll—z; and 377;

(v) Find the dimensions of the extension that give a minimum value of T, and
confirm that it is a minimum.



10 A fish tank with a square base and no top is to be made from a thin sheet of

11

toughened glass. The dimensions are as shown.

(i) Write down an expression for the volume V'in terms of x and y.

(ii) Write down an expression for the total surface area A in terms of x and y.

The tank needs a capacity of 0.5m? and the manufacturer wishes to use the

minimum possible amount of glass.
§0O

e smallest amount of glass and

(iii) Deduce an expression for A in term
iv) Find 94 ang 4
(iv) Find P and e
(v) Find the values of xand y that

confirm that these gi

A closed rectangulg
width. The heigh

(i) The volume of the box is 972 cm?.

Use this to write down an expression for 4 in terms of x.

2592
.

(ii) Show that the surface area, A, can be written as A = 6x2 +

(i) Find dA nduseitto finda stationary point.

dx
2

Find % and use it to verify that the stationary point gives the minimum
X

value of A.

(iv) Hence find the minimum surface area and the corresponding dimensions
of the box.

v
=

G 9s1949X3
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12 A garden is planned with a lawn area of 24 m? and a path around the edge.
The dimensions of the lawn and path are as shown in the diagram.

Im Im

[ [

ym lawn

xm

(i) Write down an expression for y in terms of x.
(i) Find an expression for the overall area of the garden, A, in terms of x.

(iii) Find the smallest possible overall area for the garden.

13 The diagram shows the cross-section of

edge touching the surface of t ne.

5? A 12cm

(i) Express hin terms of rand hence show that the volume, Vecm?, of the
cylinder is given by
V=12nr>-2nr’
(i) Given that rvaries, find the stationary value of V.

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 November 2005]



The chain rule

-
=
]
(1)
=
2
=
-
=
o

167

Whatinformationisgiven by dV ind %?

dh
Whatinformationisgiven by i—‘; X %?

How would you differentiate an expression |
y=~Nx?+12

Your first thought may be to write it as

+ 1)” and then get rid of the

brackets, but that is not posNpie is cyse bexgdise the power % is not a positive

integer. Instead you n Pre ession as a composite function, a

and

This is now in a form which you can differentiate using the chain rule.

Differentiating a composite function

d
To find d_ijc for a function of a function, you consider the effect of a small change
in x on the two variables, y and u, as follows. A small change dx in xleads to a
small change 6u in u and a corresponding small change 8y in y, and by simple
algebra,

b 8y b
ox  du” dx
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EXAMPLE 5.18

In the limit, as x — 0,

oy _dy &y _dy Su du
S de’du  du 8x  dx

and so the relationship above becomes

dy _dy  du

dx ~ du” dx’

This is known as the chain rule.

1
Differentiate y= (x> + 1)".

SOLUTION

As you saw earlier, you can break down this expression as follows.
1
y=u’, u=x>+1

Differentiating these gives

141

du 2 NE
and

du

a 2Xx.
By the chain rule

dy_dy d

dx  du

W

Notice that YeamSwer must be given in terms of the same variables as the
question, in this case x and y. The variable u was your invention and so should
not appear in the answer.

You can see that effectively you have made a substitution, in this case
u=x?+ 1. This transformed the problem into one that could easily be solved.

Note

Notice that the substitution gave you two functions that you could differentiate.
Some substitutions would not have worked. For example, the substitution u= x?,

would give you
1
y=(u+1)?and u=x2

You would still not be able to differentiate y, so you would have gained nothing.



EXAMPLE 5.19

Use the chain rule to find % when y=(x?-2)%

SOLUTION

Let u=x%—2, then y=u*.

du_
o 2x
and

dy — 44

du
=4(x2-2)3

ay_dydu

dx  du” dx
=4(x*—-2)>x2x
= 8x(x2-2)3.

A student does this question by first multiplying out (x? — 2)f to get a polynomial

of order 8. Prove that this heavy-ha e\ et me result
With practice you may find can %s‘cages of questions like this in
your head, and just wri WIN, f you have any doubt, however, you

should write down thxe All %10

sphere of radiud\g & given by V = %nr% Differentiating this with respect to r gives
the rate of change of volume with radius, (il_‘r/ = 47tr?. However you might be
more interested in finding (il_‘t/’ the rate of change of volume with time, .

To find this, you would use the chain rule:

dv _dv X dr Notice that the expression for
dr dr — dt %/ includes % the rate of
dv _ 4112 dr increase of radius with time.
dt dt

You have now differentiated V with respect to .

The use of the chain rule in this way widens the scope of differentiation and this
means that you have to be careful how you describe the process.

1
=

a|nJ uteys ay |
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A ‘Differentiate y = x* could mean differentiation with respect to x, or t, or any
other variable. In this book, and others in this series, we have adopted the

convention that, unless otherwise stated, differentiation is with respect to the
variable on the right-hand side of the expression. So when we write ‘differentiate
y=x? or simply ‘differentiate x%, it is to be understood that the differentiation is
with respect to x.

Differentiation

A\ The expression ‘increasing at a rate of is generally understood to imply
differentation with respect to time, t.

EXAMPLE 5.20 The radius r cm of a circular ripple made by dropping a stone into a pond is
increasing at a rate of 8 cms™!. At what rate is the area Acm? enclosed by the
ripple increasing when the radius is 25 cm?

SOLUTION
A =nr
dA _

ar - 2nr

hange of area with respect to time.

~ 1260cm?s.

170



EXERCISE 5H

1

Use the chain rule to differentiate the following functions.

1
=

i y=(x+2)> i) y=(Qx+3)* (iii) y=(x*-5)°
(iv) y=(x*+4)> v) y=0Bx+2)7! (i) y = ﬁ E

3 1, )P 4 )
(vii)y= (x> —1) (viii) y= (§ + x) (ix) y= (\/; - 1) g

2.

Given that y=(3x—5)3 E
) dy
(i) find dx

(ii) find the equation of the tangent to the curve at (2, 1)

(iii) show that the equation of the normal to the curve at (1, —8) can be written
in the form

36y+ x+287=0.
Given that y=(2x—1)*

i dy
(i) find P

(ii) find the co-ordinates of any stationary oints and d§tdrmine their nature

(iii) sketch the curve.

Given that y= (x? — x—2)*

Find the rate 0f ghange of the force when the poles are 0.2 m apart and the

distance betwéen them is increasing at a rate of 0.03ms™.

The radius of a circular fungus is increasing at a uniform rate of 5cm per day.
At what rate is the area increasing when the radius is 1 m?
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KEY POINTS

4 At a stationary point, j—i; =0.

1 y=kx" = d_ knx"! Where k, nand care

dx

constants.

_ dy _
y=c = dx_o

y=fx) +g() = g_}yc = £/(x) + g’().

Tangent and normal at (x, y,)
Gradient of tangent, m, = value of j—i when x = x,.
Gradient of normal, m, = —%.
Equation of tangent is

Y=y =m(x—x).

Equation of normal is

=y =m,(x—x)).

The nature of a stationary point\¢d looking at the sign of

the gradient just either side of it.

Maximum

d?y o ..
e If—=5 >0, the point is a minimum.

dx2

d2
d_x)Z/ =0, check the values of % on either side of the point to determine

its nature.

If

dy du

7 Chain rule: d_y ==X

dx  du” dx’



Reversing differe

Integration

Many small make a great.

Chaucer
YA
€ Inwhat way can you say
that these four curves are
all parallel to each other?
>
In some s now the gradient function, j—y, and want to find the
x

function itself, sWFor example, you might know that g—z = 2xand want to find y.

You know from the previous chapter that if y = x? then % =2x, but

y=x*+1, y=x*— 2 and many other functions also give % =2x.
Suppose that f(x) is a function with f'(x) = 2x. Let g(x) = f(x) — x%
Then g’(x) = f’(x) — 2x=2x—2x=0 for all x. So the graph of y = g(x) has zero
gradient everywhere, i.e. the graph is a horizontal straight line.

Thus g(x) = ¢ (a constant). Therefore f(x) = x* + .

All that you can say at this point is that if % =2xthen y=x*+ cwhere cis

described as an arbitrary constant. An arbitrary constant may take any value.

v
=

uornjeijuaiap Buisionay
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dy _

The equation Foie 2xis an example of a differential equation and the process of
solving this equation to find y is called integration.
So the solution of the differential equation % =2xisy=x*+c

Such a solution is often referred to as the general solution of the differential
equation. It may be drawn as a family of curves as in figure 6.1. Each curve
corresponds to a particular value of c.

YA
c=2
c=0
Recall from Activity 5.4 on page 130
c=-3 that for each member of a family of

curves, the gradient is the same

- or any particular value of x.
-

Figure 6.1 y = x2 + cfor nt vaNugs O

you were also told that when x=2, y=1.

Substituting these values in y = x? + ¢ gives

1=22+¢
c=-3

and so the particular solution is
y=x>-3.

This is the red curve shown in figure 6.1.



EXAMPLE 6.1

The rule for integrating x"

Recall the rule for differentiation:

y=x" é%:nx”‘l.
Similarly — y=x""! :%=(n+l)x”
— 1 n+1 d)’_ n
or y—(n+1)x+ :>a X

n+1

n+l

Reversing this, integrating x" gives

This rule holds for all real values of the power 1 except —1.

Note

In words: to integrate a power of x, add 1 to the power and divide by the new power.

This works even when nis negative or a fraction/-\

Differentiating x gives 1, so integrati ivw the pattern if you
remember that 1 = x°. g\

Given that % =3x

3 2
(i) By integratios ,y=%+ 4%+ 3x+c¢

=x3 + 2x% 4+ 3x+ ¢, where cis a constant.
(ii) Since the curve passes through (1, 10),

10=1>+2(1)2+3(1) +¢
c=4
= y=x3+2x>+3x+4.

1
=

uornjeijuaiap Buisionay
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EXAMPLE 6.2

EXAMPLE 6.3

dy _
dx
find the equation of the curve.

A curve is such that 3\/; + % Given that the point (4, 20) lies on the curve,
x

SOLUTION

. . . d !
Rewrite the gradient function as = 3y 4 8x2,

dx

Dividing by% is the same

as multiplying by %

Since the curve passes through the point (4, 20),

S 8
20:2(4)2_Z+C

=20=16—-2+c¢
= =6

So the equation of the curve is y =

dy

i) == =4x—-12

(i) ] X
=>y=2x>-12x+c

At the minimum point, x=3 and y=16
=16=2%x32-12x3+¢
= =34

So the equation of the curve is y = 2x? — 12x+ 34.



EXERCISE 6A

Given that dy _ 6x*+5
dx

(i) find the general solution of the differential equation

P1
6

(ii) find the equation of the curve with gradient function & and which passes

dx

through (1, 9) g

(iii) hence show that (—1, —5) also lies on the curve. g

d o

The gradient function of a curve is d—y = 4x and the curve passes through the >
x

point (1, 5).

(i) Find the equation of the curve.

(i) Find the value of y when x=—1.
The curve C passes through the point (2, 10) and its gradient at any point is

given by % = 6x°.

(i) Find the equation of the curve C.
(i) Show that the point (1, —4) lies on th

height (h metres) is given by % =\ sere s The time (in seconds).
When t=0, h=20.

(i) Show that the solygmoRthe tiffekeytial¥quation, under the given
conditions, is

e differential equation dy_ 5.

dx

with a y value of 1.

(i) Find the value of x at each stationary point. Make it clear in your solution
how you know which corresponds to the maximum and which to the
minimum.

(i) Use the gradient function and one of your points from part (i) to find the
equation of the curve.

(iii) Sketch the curve.

177
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7 A curve passes through the point (4, 1) and its gradient at any point is given

by%sz—&

(i) Find the equation of the curve.
(ii) Draw a sketch of the curve and state whether it passes under, over or
through the point (1, 4).

8 A curve passes through the point (2, 3). The gradient of the curve is given by
% =3x?-2x—1.

(i) Find yin terms of x.
(ii) Find the co-ordinates of any stationary points of the graph of y.
(iii) Sketch the graph of y against x, marking the co-ordinates of any

stationary points and the point where the curve cuts the y axis.
[MEI]

9 The gradient of a curve is given by (C% =3x2=8x+ 5. The curve passes

through the point (0, 3).

(i) Find the equation of the curve.

(i) Find the co-ordinates of thg
State, with a reason, the na\ixe's : 2y point.

(iii) State the range of values of vich the curve has three distinct

intersections withk(tk

[MEI]

- = % — 3. Given that the point (2, 10) lies on the

x
curve, find the equation of the curve.

12 A curve is such that % =Jx+ % Given that the point (1, 5) lies on the
X

curve, find the equation of the curve.

13 A curve is such that j_)’ = 3x? + 5. Given that the point (1, 8) lies on the
X
curve, find the equation of the curve.

14 A curve is such that % = 3«/; — 9 and the point (4, 0) lies on the curve.

(i) Find the equation of the curve.
(ii) Find the x co-ordinate of the stationary point on the curve and
determine the nature of the stationary point.



. . d .
15 The equation of a curve is such that &~ 3 _ x Given that the curve passes

dx [y

through the point (4, 6), find the equation of the curve.
[Cambridge AS & A Level Mathematics 9709, Paper 12 Q1 November 2009]

16 A curve is such that g—i; = 4 — x and the point P(2, 9) lies on the curve. The

normal to the curve at P meets the curve again at Q. Find

(i) the equation of the curve,
(ii) the equation of the normal to the curve at P,
(iii) the co-ordinates of Q.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q9 November 2007]

Finding the area under a curve

Figure 6.2 shows a curve y = f(x) and the area requiredJs shaded.

ey

LY

y+3

|

Figure 6.3 x o x+dx

1
=

8AIND B Japun ease ay3 Huipuiy
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EXAMPLE 6.4

If T is close to P it is appropriate to use the notation dx (a small change in x)
for the difference in their x co-ordinates and 8y for the difference in their y
co-ordinates. The area shaded in figure 6.3 is then referred to as 8A (a small

change in A).

This area 8A will lie between the areas of the rectangles PQRS and UQRT
y0x < 3A < (y+ 6y)dx.

Dividing by 8x
y < %_f:: < y+dy.

In the limit as 8x — 0, 8y also approaches zero so 8A is sandwiched between y and
something which tends to y.

34 dA

B oAa_da
utﬁx—>0 Ox  dx’

This gives % =y.

Note

This important result is known as th§ damexta A of calculus: the rate of

change of the area under a curve is eQu¥g he length of the moving boundary.

Find the area under t & Retween x=—1 and x=2.

SOLUTION
YA
(v, »)
p
6
“1 0 Q 2 x

Figure 6.4

Let A be the shaded area which is bounded by the curve, the x axis, and the
moving boundary PQ (see figure 6.4).

Then i—? = y=6x°+6.



Integrating, A= x°+ 6x+ c.
When x=—1, the line PQ coincides with the left-hand boundary so A=0

= 0=1-6+c¢
= c=5.

So A=x°+6x+5.
The required area is found by substituting x = 2

A=64+12+5
= 81 square units.

Note

The term ‘square units’ is used since area is a square measure and the units are

unknown.

Standardising the procedure

Suppose that you want to find the area betwgep the curve X3 f(x), the x axis, and

the lines x= a and x = b. This is shown.shadey

.

. % = y=f(x).

e Integrate f(x) to give A=F(x) + c.

e A=0whenx=a—=> 0=F(a)+c
= c¢=-F(a)
= A =F(x)—F(a).

@ The value of A when x=bis F(b) — F(a).

Notation

F(b) — F(a) is written as [F(x)]Z.

1
=

8AIND B Japun ease ay3 Huipuiy
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EXAMPLE 6.5 Find the area between the

SOLUTION
f(x) =20 -3x> = F(x) =
a=land b=2

= Area=[20x-x]
=(40-8) -
=13 square

Area as the limit of a sum

Suppose you want to fin

curve y =20 — 3x%, the x axis and the lines x=1 and x=2.

20x— x°

(20—-1)
units.

d the area between the curve y=x* + 1, the x axis and the

lines x=1 and x=5. This area is shaded in figure 6.6.

YA y=x2+l
V7 e
10|

[ P

2o

0 1 2 3 4 5 x

Figure 6.7



The estimated value of A is

1
=

2+54 10+ 17 = 34 square units.

This is an underestimate.

To get an overestimate, you take the four rectangles in figure 6.8. 5

1Y

o

YA .‘:

y= xX2+1 g

] P ERTTEEREREER 3

-,

2

o

[

c

17 frmmmmmmmmm e 3
10
S|~ /

(| / N
AN\

=Y

Figure 6.8

The corresponding estimate for A is

P+ 2+ 4B c A< P42+ 21542474843
39.5< A<51.5.
Similarly with 16 rectangles
42.375 < A< 48.375

and so on. With enough rectangles, the bounds for A can be brought as close
together as you wish.

ACTIVITY 6.1 Use ICT to get the bounds closer.

183
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Notation

This process can be expressed more formally. Suppose you have 7 rectangles,
each of width dx. Notice that #n and dx are related by

ndx = width of required area.
So in the example above,

ndx=5-—1=4.

In the limit, as 1 — o0, §x — 0, the lower
estimate — A and the higher estimate — A. 6A| =y Sx Y,

The area 3A of a typical rectangle may be

written y dx where y. is the appropriate &
1 1

y value (see figure 6.9). Figure 6.9

So for a finite number of strips, 1, as shown in figure 6.10, the area A is given

approximately by

A=~ 3A +8A,+...+84A,

or A=y dx+ydx+..

This can be written as A =

2 means ‘the sum of * so
all the 6A, are added from
SA, (givenby i =1)to 8A,
(when i =n).

or
Vo
N
B 2%
Vib---- coe
34, | 34, | 84, | 84, 34,
0 >
Figure 6.10

In the limit, as # —eo and dx — 0, the result is no longer an approximation; it is

exact. At this point, A = Y’ y.8xis written A = J y dx, which you read as ‘the
integral of y with respect to x. In this case y= x? + 1, and you require the area for
values of x from 1 to 5, so you can write

A=jf(x2+1)dx.



Notice that in the limit:

e = isreplaced by =

e dxis replaced by dx
e Y isreplaced by J, the integral sign (the symbol is the Old English letter S)

e instead of summing for i=1 to n the process is now carried out over a range
of values of x (in this case 1 to 5), and these are called the limits of the integral.
(Note that this is a different meaning of the word limit.)

This method must give the same results as the previous one which used (cil_A =y,
X

. . b . .
and at this stage the notation [F(x)]a is used again.

>
=
@
o
o
]
-
E
®
3
2
o
-8
o
[
£
3

185

. The limits have now
] moved to the right of the

: square brackets.

5 3
In this case -[1 (x*+1)dx= [% +x

1

3
Recall that this notation means: find the value of 2= + x when x =5 (the upper

limit) and subtract the value of %3 + xwhen x & limit).

5
X 53 1’
Ttx| =45 T+1

So the area A is 45% square units.

EXAMPLE 6.6 een x=—1and x=2.

YA
?) — ((=1) *+4(-1))
= 27 square units.
4 A
/1 0 2 g

Figure 6.11
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EXAMPLE 6.7

o 9 3
Evaluate the definite integral J4x2 dx

SOLUTION

Jox
4

3,

o,

b

|
1
%
x

NN ]
®
[S1V]
L1
=~ ©

2 To divide by a fraction,
5 invert it and multiply.
=)
=2(92_ 42
5
= 2(43-%2)
=842

Note

So = F(a) — F(b)
=—(F(b) — F(a))
b
= —‘[ f(x) dx
a

by

In general, interchanging the limits of a definite integral has the effect of reversing

the sign of the answer.

7



ACTIVITY 6.2  Figure 6.13 shows the region bounded by the graph of y= x + 3, the x axis and the

lines x=aand x=b.

V4

y=x+3

Figure 6.13

(0)

a

Figure 6.14

2 Y

by

A

y=x+3

S Y

P1

wins e o juwi| a3y} se easy
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EXAMPLE 6.8

EXAMPLE 6.9

EXAMPLE 6.10

Indefinite integrals

The integral symbol can be used without th enpte that a function is to

X2+

be integrated. Earlier in the chapter, you s§

Find J(Zx” —3x+ .
SOLUTION
3 2
) 3
2

Find the indefinite integral j(x% + \/;) dx.

SOLUTION % +1= % and dividing by% is
L. 2
3 3 1 the same as multiplying by =.
J.(x2+\/;)dx=j(x2+x2 PYINg Y 5
=Zx+ gx% +c
5 3



EXERCISE 6B

1 Find the following indefinite integrals.
(i J3x2 dx
(iii) J(6x2 +5)dx
(v) j(l 1x19+10x%) dx
win) [(x2+5) dx
(ix) j(6x2 +4x) dx
2 Find the following indefinite integrals.
(i) Jle*“ dx
(iii) J(2+x3 +5x73)d
j 5%t dx
(vii) J Vxdx
3 Evaluate the following definite inte
(i ﬁZx dx
Gii) |32 dx

W [2x+1)de

4 Evaluate the following definite integrals.

(i) ﬁ 3x-2dx
(iii) ﬁ 12x% dx

2
(v) Jz (wj dx

0.5 X4

(i)

iv)

(vi)

(5x*+7x%)dx
(3P+x2+x+1)dx

J
J
|Ga2+2x+ 1) dx
J
J

(x*+3x2+2x+1)dx

J(Zx— 3x~4) dx

J(6x2 —7x7%)dx

v
=

g9 os12409x3
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5 The graph of y=2x

is shown here.

The shaded region is bounded
by y = 2x, the x axis and the
lines x=2 and x=3.

(i) Find the co-ordinates of
the points A and B in the
diagram.

(ii) Use the formula for the area
of a trapezium to find the
area of the shaded region.

(i) Find the area of the shaded

region as j232xdx, and

confirm that your answer is

the same as that for part (ii).

for x> 0.

The shaded region is
bounded by the curve, the x
axis and the lines x =1 and
x=9.

Find its area.

Y

[MEI]

— y=“/;+«/%

Y



10 (i) Sketch the graph of y= (x+ 1)? for values of x between x=—-1 and x= 4.
(ii) Shade the area under the curve between x=1, x =3 and the x axis. P 1

Calculate this area. [MEI] B

11 (i) Sketch the curves y=x?and y=x’for0 < x<2.
(i) Which is the higher curve within the region 0 < x < 12

(iii) Find the area under each curve for0 < x < 1.

g9 os12409x3

(iv) Which would you expect to be greater, le x?dxor LZ X3 dx?

Explain your answer in terms of your sketches, and confirm it by
calculation.

12 (i) Sketch the curve y=x*>—1for-3 < x=<3.
(ii) Find the area of the region bounded by y = x* — 1, the line x= 2 and the
X axis.
(iii) Sketch the curve y=x>—2xfor -2 < x<4.
(iv) Find the area of the region bounded by y = x? — 2x, the line x= 3 and the
X axis.

(v) Comment on your answers to parts

13 (i) Shade, on a suitable sketch, the regid

J21(9 — x2) dx.

(ii) Find the area of the

J.:(xz—zx+ 1)dx or Ig(xz— 2x+1) dx.

(iii) Calculate the values of the two integrals. Was your answer to part (ii)
correct?

191
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18 A curve has equation y = —

16 (i) Sketch the curve with equation y=x>— 6x?>+ 11x— 6 for 0 < x < 4.

(ii) Shade the regions with areas given by

(a) Jf()?—6x2+ 11x—6) dx

(b) J.:(x3 —6x%2+11x—6) dx.

(iii) Find the values of these two areas.

(iv) Find the value ofJ.ll'5 (x3—6x2+11x—6) dx.
What does this, taken together with one of your answers to part (iii),
indicate to you about the position of the maximum point between
x=1and x=2?

17 Find the area of the region enclosed by the curve y = 3\/;, the x axis and the

lines x=0and x = 4.

7
(i) The normal to the curve at the point (4
axis at Q. Find the length of PQ, coy

(i) Find the area of the region enclosdd(by the curvy, the x axis and the lines

mgets the x axis at P and the y
ghificant figures.

x=1and x=4.

(4,3)

-
|
Y

(6] 1 1.6 X

16

(i) Show, by integration, that the equation of the curveis y = = + 2.
X

The point P lies on the curve and has x co-ordinate 1.6.

(i) Find the area of the shaded region.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q9 June 2008]



16

20 A curve is such that dy = =, and (1, 4) is a point on the curve.

21

Areas below the x axis

When a graph goes belg
the value of y dxis n,
negative you kno

dx %%
(i) Find the equation of the curve.
(ii) A line with gradient —% is a normal to the curve. Find the equation of this
normal, giving your answer in the form ax + by = c.
(i) Find the area of the region enclosed by the curve, the x axis and the lines

x=1and x=2.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q10 November 2005]

. . 8
The equation of a curve is y = 2x + o

2

(i) Obtain expressions for % and %

(ii) Find the co-ordinates of the stationary point on the curve and determine
the nature of the stationary point.

(iii) Show that the normal to the curve at the point (-2, —2) intersects the

x axis at the point (10, 0).

(iv) Find the area of the region enclosed b e curvs, the x axis and the lines

x=1and x=2.
[Cambridge AS & A {Le¥el Mathematicg9709, Paper 1 Q10 June 2007]

Ox

N
=Y

negative y value |- - - --- > For the_shaded _region
yox is negative.

Figure 6.15

1
=

SIXe X 9y} mojaq sealy
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EXAMPLE 6.11

Find the area of the region bounded by the curve with equation y = % — 3, the
lines x=2 and x =4, and the x axis. x

SOLUTION
The region in question is shaded in figure 6.16.

YA 173
X

y=3

o
= '

Figure 6.16

The shaded area is

4
= —; - 3X:|2
=(-3-12)-(-1-6)
=55

Therefore the shaded area is 5.5 square units, and it is below the x axis.



EXAMPLE 6.12 Find the area between the curve and the x axis for the function y= x> + 3x
between x=—1 and x=2.
SOLUTION

The first step is to draw a sketch of the function to see whether the curve
goes below the x axis (see figure 6.17).

A y=x>+3x

=Y

4 \/ 2

a i < X< 2 and negative for -1 < x < 0.

Figure 6.17

This shows that the y val

he\rag in two parts.

2
Area B = jo (x* 4+ 3x) dx

3 2P
_| X X
372

-(t4)-9

-2
=
Total area = %+?

5 .
= % square units.

1
=

SIXe X 9y} mojaq sealy

195



P 1 EXERCISE 6C 1 Sketch each of these curves and find the area between the curve and the x axis
between the given bounds.

E (i) y=x>Dbetween x=-3 and x=0.

(i) y=x?>—4between x=—1and x=2.

(iii) y=x>—2between x=—1and x=0.

(iv) y=3x>—4xbetween x=0and x=1.

£
2
S
©
-
=
0
2
=

(v)  y=x*—x?between x=—1and x=1.

(vi) y=4x>—3x?between x=—-1and x=0.5.
(vii) y=x>— x> between x=—1and x=1.
(viii) y=x?— x— 2 between x=-2 and x= 3.
(ix) y=x>+x?—2xbetween x=-3 and x=2.
(x)  y=x>+x?between x=-2 and x=2.

2 The diagram shows a sketch of part of the curve with equation y=5x* — x°.

[MEJ]

%

1

4

(b) Find jll (% - 8) dx.
\x

(i) Hence find the total area of the regions bounded by the curve y = % -8,
x

the lines x = i and x = 1 and the x axis.

4 (i) (a) Find J.32x(\/;— 2)dx.
(b) Find | izx(\/} ~2)dx.

(i) Hence find the total area of the regions bounded by the curve
196 y = 2x(\/x - 2), the line x = 9 and the x axis.



The area between two curves

EXAMPLE 6.13

v
=

Find the area enclosed by the line y = x+ 1 and the curve y= x> — 2x + 1.

SOLUTION

First draw a sketch showing where these graphs intersect (see figure 6.18).

S9AIND OM]) UBdM}3( eaJle 3y |

y
A mrt 1
y=x*-2x+1
A
/ 0 1 3
Figure 6.18
When they intersect
one of two ways.
Area A can bs ab the difference between the two areas, Band C, shown in
figure 6.19.
YA y=x+1 YA y=x2-2x+1
B
/ C
) 0 1 3 0 1 3 X

Figure 6.19
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EXERCISE 6D

A=B-C
3 3
= O(x+ 1) dx—jo(x2 —2x+1)dx
2 3 3 3
=X 4x| | E-x2+x
2 0 3 0
—|(° 27
=[(3+3)-0]-[(3-9+3)-0]
_9 :
= jsquare units.
Method 2
YA
y=x2-2x+1
The height of this rectangle
is the height of the top
Figure 6.20

-9 ;
= Jsquare units.
1 The diagram shows the curve YA y=x
y=x?and the line y=9. \
The enclosed region has been shaded. Y 5 V=9

(i) Find the two points of
intersection (labelled A and B).

(i) Using integration, show that
the area of the shaded region 5

=Y

is 36 square units.



10

11

(i) Sketch the curves with equations y = x*> + 3 and y=5 — x on the same
axes, and shade the enclosed region.
(ii) Find the co-ordinates of the points of intersection of the curves.

(i) Find the area of the shaded region.

(i) Sketch the curve y = x? and the line y = 4x on the same axes.
(ii) Find the co-ordinates of the points of intersection of the curve y = x* and
the line y = 4x.

(iii) Find the total area of the region bounded by y = x* and y = 4x.

(i) Sketch the curves with equations y=x* and y = 4x— x°.
(i) Find the co-ordinates of the points of intersection of the curves.

(i) Find the area of the region enclosed by the curves.

(i) Sketch the curves y=x? and y =8 — x? and the line y = 4 on the same
axes.

(ii) Find the area of the region enclosed by the line y =4 and the curve y = x2.

(i) Find the area of the region enclosed b 4 and the curve

y=8—x%
(iv) Find the area enclosed by the curves

Find the ardq of the region enclosed by the curves with equations y=—x*— 1
and y=-2x2
(i) Sketch the curve with equation y= x* + 1 and the line y = 4x+ 1.

(i) Find the areas of the two regions enclosed by the line and the curve.

The diagram shows the curve YA
y=5x—x* and the line y=4.
Find the area of the shaded region. y=4
y =5x-x?
0 VX

1
=

o 8s1s4exg
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12 The diagram shows the curve with equation y = x*(3 — 2x— x?). P and Q are
points on the curve with co-ordinates (=2, 12) and (1, 0) respectively.

y A

\
/o
3

(i) Find %
(ii) Find the equation of the line PQ.
e at both P and Q.

RQ and that part of the

(i) Prove that the line PQ is a tangent to the

(iv) Find the area of the region boundeg/by
curve for which -2 s x < 1.
[MEI]

13 The diagram shows the graph 4x t A has co-ordinates

(2,0).

(@]
7
<Y

., d
(i) Find é
Then find the equation of the tangent to the curve at A.
(ii) The tangent at A meets the curve again at the point B.
Show that the x co-ordinate of B satisfies the equation x*> — 12x+ 16 =0.
Find the co-ordinates of B.
(i) Calculate the area of the shaded region between the straight line AB and

the curve.
[MEI]



14 The diagram shows the curve y = (x — 2)? and the line y + 2x =7, which
intersect at points A and B.

YA

y=@-2y

& A Lewt tie€ 9709, Paper 12 Q9 June 2010]

15 The diagram shows the cyrve y = x { 9x for x = 0. The curve has a

maximum point at A
the curve at C(2, 2

y =% — 6x% + 9x

(6] B

<Y

(i) Find the co-ordinates of A and B.
(ii) Find the equation of the normal to the curve at C.
(iii) Find the area of the shaded region.

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q11 June 2009]

m
X
o
-
e,
[
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)
O
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The area between a curve and the y axis

EXAMPLE 6.14

So far you have calculated areas between curves and the x axis. You can also use
integration to calculate the area between a curve and the y axis. In such cases, the
integral involves dy and not dx. It is therefore necessary to write x in terms of y
wherever it appears. The integration is then said to be carried out with respect to y

instead of x.

Find the area between the curve y= x— 1 and the y axis between y =0 and y = 4.

SOLUTION

Instead of strips of width 8x and height y, you now sum strips of width 8y and
length x (see figure 6.21).

YA

4

W

/

Figure 6.21

To integrate x with
respect to y, write x
in terms of y. For this
graphy=x-1
sox=y+1.

=12 square units.



EXAMPLE 6.15

EXERCISE 6E

Find the area between the curve y = Vx and the y axis between y=0and y=3.

v

SOLUTION
5 YA
A= J.Oxdy 3
— 3,2
= JO y*dy
13
0
= 9 square units.
O
Figure 6.22

Find the area of the region bounded by each of 1k

lines y=aand y=10.
1 y=3x+1,a=1,b=7.

YA
7

y=3x+1

5 y=4x,a=1,b=2.
y

The reverse chain rule

ACTIVITY 6.3

=Y

2 y=

=Y

wyves, the y axis and the

4 y=vx-1,a=0,b=2.
6 y=Ux-2,a=-1,b=1.

(i) Use the chain rule to differentiate these.

(a) (x—2)*
1
() (2x—-1)°

You can think of the chain rule
as being: ‘the derivative of the
bracket x the derivative of the
inside of the bracket’.

(b) (2x+5)7

(d)

(1-8x)

P1

3|Nna uieyd 3s1d9A3d4 3y |
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EXAMPLE 6.16

(i) Use your answers to part (i) to find these.

(a) j«x—zfdx (b)jcx—zfdx
(c) j7(2x +5)0dx (d) jzs(zx +5)0dx
—1)* £ 1
(e) jé(zx 1) dx () J(Zx—l)‘* x
—4 8
(g9) dx (h) dx
j 1—-8x '[ 1-8x

In the activity, you saw that you can use the chain rule in reverse to integrate
functions in the form (ax + b)".

d3x+2)

=5x3x(3x+2)*
dx

For example,
=15(3x + 2)*

This tells you that j15(3x +2)*dx = 3x+2)

= [(x+2)tdx = SGx f 7

unction which differentiates to give

Increasing the power
of the bracket by 1.

Ix 25207 = ~(5-2x)"2

Use the reverse
3(5— 2x) 2.

2%)° is

= _[3( 20 P dx = —3(5— 2x)° + ¢

=-3/5-2x+c

n+1
In general, %

Since integration is the reverse of differentiation, you can write:

=a(n+1)(ax + b)"

Jdn+DUm+bde=Um+bY“+c

1

n+1
an T 1)(ax +b)" +c

iﬂm+wmz



EXERCISE 6F 1 Evaluate the following indefinite integrals.

1
=

(i) I(x +5)* dx (i) _[(x +7)8dx B
(i) I(sz)ﬁdx i [Vx-4dx 7
2,
—1)3 - 96 »
W [Gx-1) dx v [(5x -2 dx :
(vii) _[3(2x — 4y dx (viii) J\/ 4x —2 dx
4 3
(ix) dx (x) dx
J(S—x)2 j\/2x—1
2 Evaluate the following definite integrals.
(i J‘?\/X —1dx
i) [* (x—3)"dx
(v) J.:\/ x—5dx
3 The graph of y = (x—2)? is shown!
y=(x-2
ﬁ 4 ¢
4
y=(x-1)*-1
A
O B 2 ;x
(i) Find the area of the shaded region A by evaluating J-O_l((x —1)* - l)dx.
(i) Find the area of the shaded region B by evaluating an appropriate integral.
(iii) Write down the area of the total shaded region.
(iv) Why could you not just evaluate J.:((x —1)* - l)dx to find the total area? 205
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5 Find the area of the shaded region for each of the following graphs.

(i) YA y=(x-3)° (i) YA

y=(x-47

=Y

o
N
~
=

dy 6
6 The equation of a curve is such that 7~ = . Given that the curve passes
dx [z —

through the point P(2, 9), find

(i) the equation of the normal to the curve at P
(ii) the equation of the curve.
dy 4
7 A curve is such that 3= =
dx  J6—2x

(i) The normal to the curve at the poi
and at R. Find the co-ordinates of t

Improper integrals

ACTIVITY 6.4  Here is the graph . ded region is given by Jlmiz dx.
X

<Y

Figure 6.23

(i) Work out the value of J. f% dx when
x

(ab=2 b)b=3 () b=10 (d) b=100 (e) b=10000.

(i) What do you think the value of Lmiz dx is?
X



EXAMPLE 6.17

oo

At first sight, j?é dx = [—il doesn’t look like a particularly daunting integral.
However, the upper limit is infinity, which is not a number; so when you get an
answer of 1 — l, you cannot work it out. Instead, you should start by looking at
the case whereoo you are finding the finite area between 1 and b (as you did in the
activity). You can then say what happens to the value of 1 — 5 as b approaches (or

tends to) infinity. This process of taking ever larger values of b, is called taking a

limit. In this case you are finding the value of 1 — Lin the limit as b tends to .

b

b
You can write this formally as: JIL dx= [—J—C
x

b . b
As b — oo then J. 1 dx becomes lim L d
152 bsood 12

A\

What is the value of J.wiz dx?
ax

What can you say abou%x \d&
\)

9
Evaluate

I,
SOLUTION A

1
The diagram shows the graph of y = —.

Jx

Ofa 9

Figure 6.24

1
=

sjeaBbajul sadoadwy
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You can see that the expression is undefined at x= 0, so you need to find the
integral from a to 9 and then take the limit as a — 0 from above.

‘
Y

9
You can write: J.:de = [Zxﬂ
a
= (2 x 9%) - (Za%)

x
1
=6—2a

Integration

So as a tends to zero, the integral tends to 6, and IEL dx =6.
x
Notice, although the left-hand side of the curve is infinitely high, it has a finite

area.

EXERCISE 6G Evaluate the following improper integrals.

1 X

5 is rotated through 360° about the x axis,

the solid obtaintd,N 6.26, is called a solid of revolution.

YA YA

ol g
0 1 2 »
Figure 6.25 Figure 6.26

In this particular case, the volume of the solid could be calculated as the difference
between the volumes of two cones (using Vzén rzh), but if the line y = x in figure
6.25 was replaced by a curve, such a simple calculation would no longer be possible.

208



€ 1 Describe the solid of revolution obtained by a rotation through 360° of

(i) arectangle about one side
(ii) a semi-circle about its diameter
(iii) a circle about a line outside the circle.

2 Calculate the volume of the solid obtained in figure 6.26, leaving your answer
as a multiple of 7.

Solids formed by rotation about the x axis

Now look at the solid formed by rotating the shaded region in figure 6.27
through 360° about the x axis.

V) y=1(x)

Figure 6.27 Figure 6.28

(which is usually called the volume of

e 6.28 is approximately cylindrical with radius y and
e is given by

The volume of the solid is the limit of the sum of all these elementary discs as
0x— 0,

i.e. the limit as 6x — 0 of 2 oV

over all
discs

x=b
=Y my?dx.

You can write this as
V= J‘x:b 24
= ) jog WX

emphasising that the limits
aand b are values of x, noty.

The limiting values of sums such as these are

integrals so

V= Jjnyz dx

The limits are a and b because x takes values from a to b.

ning that the solid can be sliced into thin discs.

1
=

uonesbajul Aq sawnjon Buipuiq
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A Since the integration is ‘with respect to x’, indicated by the dx and the fact that
the limits a and b are values of x, it cannot be evaluated unless the function y is

also written in terms of x.

EXAMPLE 6.18 The region between the curve y = x?, the x axis and the lines x=1 and x=3 is
rotated through 360° about the x axis.
Find the volume of revolution which is formed.

SOLUTION

The region is shaded in figure 6.29.

YA y=x*

¢

Figure 6.29

volumnye S
Since in this case
y=x?
y2 = (x2)2 = x4
T
==(243-1
TeB-1)
_ 2421
—5 .

The volume is 242?75 cubic units or 152 cubic units (3 s.f.).

A Unless a decimal answer is required, it is usual to leave 1 in the answer, which is
then exact.




Solids formed by rotation about the y axis

When a region is rotated about the y axis a very different solid is obtained.

Y

Figure 6.30 Figure 6.31

Notice the difference between the solid obtained in figure 6.31 and that in
figure 6.28.

For rotation about the x axis you obtained the forfula

V. .= jsnyz dx.

X axis

In a similar way, the formula for rot abont ¥

V. .= _l‘gnx2 dy can be obtain

y axis

In this case you w111 neeg/to s in terms of y.

o

EXAMPLE 6.19

SOLUTION A

_ 2
The region is shaded in figure 6.32. - / e

Using V= anxz dy

volume = | ny dysince x2 =y

J;
o

(25— 4)

=Y

0]

_2rn . .
=5 cubic units. Figure 6.32

1
=

uonesbajul Aq sawnjon Buipuiq
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EXERCISE 6H

1 Name six common objects which are solids of revolution.

2 In each part of this question a region is defined in terms of the lines which

form its boundaries. Draw a sketch of the region and find the volume of the
solid obtained by rotating it through 360° about the x axis.

(i) y=2x, the xaxis and the lines x=1and x=3

(ii) y=x+2,the xaxis, the y axis and the line x=2
(i) y=x*+ 1, the x axis and the lines x=—1 and x=1
(iv) y=\/; , the x axis and the line x=4

(i) Sketch the line 4y = 3x for x = 0.

(ii) Identify the area between this line and the x axis which, when rotated
through 360° about the x axis, would give a cone of base radius 3 and
height 4.

(i) Calculate the volume of the cone using

(a) integration

(b) a formula.



6 The graph shows the curve y = x? — 4. The region R is formed by the line

y = 12, the x axis, the y axis and the curve y = x? — 4 for positive values of x. P 1
(i) Copy the sketch graph and shade the region R. B
m
YA 8
\ 12 / %
o
I

\\
N
<Y

RN

(ii) Write down an expression for,
about the y axis.

[MEI]

o 1 4 x
Find the volume of the solid obtained when this shaded region is rotated
completely about the x axis, giving your answer in terms of .

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q2 June 2007]
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8 The diagram shows part of the curve y = ¢, where a is a positive constant.
X

P1

c
)
2
[
1
o
[
i)
E
O X

Given that the volume obtained when the shaded region is rotated through

KEY POINTS

3 Area A

y=1x)

=Y

214



y=g()

a AreaB= [ (f0-gl)dx 74
y=1fx)
B
b =

/ a

5 Area C=qudy ’
P y=£(»)
q

LY

6 Volumes of revoluth
y
Aboytth X 0
a
I a I b :x
About the yaxis V= Jq nx® dy v
p

1
==

sjuiod Aay|
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Trigonometry

S K

I must go down to the seas again, to the lonely sea and the sky,
And all | ask is a tall ship and a star to steer her by.
John Masefield

Trigonometry

(® Trigonometry background
Angles of elevation and depression

The angle of elevation is the angle between the horizontal and a direction above
the horizontal (see figure 7.1). The angle of depression is the angle between the

angle of elevation

Figure 7.2

Beari

The bearing XQr g0mpass bearing) is the direction measured as an angle from

north, clockwise (see figure 7.3).

\150"
w E

this direction is
S a bearing of 150°

216 Figure 7.3



Trigonometrical functions

The simplest definitions of the trigonometrical functions are given in terms of
the ratios of the sides of a right-angled triangle, for values of the angle 6 between
0° and 90°.

-— 90°—-46
© N
0@0\)‘5
o opposite
o) C
adjacent
Figure 7.4
In figure 7.4
Gn6 = opposite cos6) = adjacent __opposite
~ hypotenuse ~ hypotenusg \\adjacent’

Sin is an abbreviation of sine, cos of cosine af denit. You will see from

the triangle in figure 7.4 that

30°

60°

Figure 7.5

Using Pythagoras’ theorem

AD?+12=22= AD=+/3.

suoauny |esu3swouobia] H 1
==Y
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From triangle ABD,

sin60° = @; cos60° = %; tan 60° = \/5;
z sin30° = l; cos30° = ﬁ; tan 30° = L
$ 2 2 J3
g
§, EXAMPLE 7.1 Without using a calculator, find the value of cos 60°sin 30° + cos®30°.
S (Note that cos?30° means (cos 30°)2.)

SOLUTION

cos 60°sin 30° + c0s230° = = X

D [—

8

+
Bl N

o

(if) The angle 45°

In figure 7.6, triangle PQR is a right-angle{l 3
length 1 unit.

o F N
Figur 1
Using orem, PQ = \/5
This gives
. 1 1
sin45° = —; cos45° = —; tan45° = 1.
V2 V2

(iii) The angles 0° and 90°

Although you cannot have an angle of 0° in a triangle (because one side would be
lying on top of another), you can still imagine what it might look like. In figure
7.7, the hypotenuse has length 1 unit and the angle at X is very small.

hypotenuse z
opposite
X Y

adjacent

218 Figure 7.7



If you imagine the angle at X becoming smaller and smaller until it is zero, you
can deduce that
sin0°=%=0; cosO"z%:l; tan0°=%=0.

If the angle at X is 0°, then the angle at Z is 90°, and so you can also deduce that
sin90°=%:1; cos90°=%=0.

However when you come to find tan 90°, there is a problem. The triangle
. 1 .
suggests this has value g, but you cannot divide by zero.

If you look at the triangle XYZ, you will see that what we actually did was to draw
it with angle X not zero but just very small, and to argue:

‘We can see from this what will happen if the angle becomes smaller and smaller
so that it is effectively zero.’

Compare this argument with the ideas about Jfpafs whtchxou met in Chapters 5
and 6 on differentiation and integration.

problem of tan 90°.

If the angle X is not qy
is 1 (XY is almost
the angle X, the sm

de)ZY is also not quite zero, and tan Z
dpall number and so is large. The smaller

conclude thg
tan Z1is

Read these arrows as ‘tends to’.

as Z— 90°, tan Z — oo (infinity).

You can see this happening in the table of values below.

VA tan Z
80° 5.67
89° 57.29
89.9° 572.96
89.99° 5729.6
89.999° 57296

When Z actually equals 90°, we say that tan Z is undefined.

suoauny |esu3swouobia] H 1
==Y
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Positive and negative angles

Unless given in the form of bearings, angles are measured from the x axis (see
figure 7.8). Anticlockwise is taken to be positive and clockwise to be negative.

S K

A

Xn angle of +135°
“x

S
X

Trigonometry

an angle of —30°

Figure 7.8
EXAMPLE 7.2 In the diagram, angles ADB and CBD are right angles, angle BAD = 60°, AB = 2/
and BC = 31.
Find the angle 6.
ERAN 31 .
| ~—— 0
A
D
Figure
SOLUTION

First, find an expression for BD.

In triangle ABD, BD M
fangle ABD, J5 <91 (pB=21)

= BD = 2Isin 60°

3

=2lx
12

=31

220



EXERCISE 7A

BD

In triangle BCD, tanf = 5=

BC
_ 3
31

1

BNE

= 0 = tan™! (%)

=30°

1 In the triangle PQR, PQ =17 cm, QR = 15 cm and PR = 8 cm.

(i) Show that the triangle is right-angled.

(i) Write down the values of sin Q, cos Q and tan Q, leaving your answers
as fractions.

(iii) Use your answers to part (ii) to show that
(a) sin?Q+cos’Q=1

(b) tan Q= sinQ
cosQ

Without using a calculator, show

(i) sin 60°cos 30° + cos 60°sin 30° =

In the diagramgAR = »C = 30°, angle BCD =45° and

In the diagram, OA = 1 cm, angle AOB = angle BOC = angle COD = 30° and
angle OAB = angle OBC = angle OCD = 90°.

(i) Find the length of OD giving your

answer in the form av/3.
(ii) Show that the perimeter of OABCD

is %(1 + \/5) cm.

VL 9s1249x3] \] 1
-

221



5 In the diagram, ABED is a trapezium with right angles at E and D, and CED is
a straight line. The lengths of AB and BC are 2d and (2\/5)61 respectively, and
angles BAD and CBE are 30° and 60° respectively.

S K

C
>
-
]
£
-]
c
-]
2
= 243y
A
B E
L

2d
o)
A 3

(i) Find the length of CD in terms of d

atics 9709, Paper 1 Q3 November 2005]

=4cm, BC=6cm and angle
ar to the line ABX.

6 In the diagram, ABC i
ABC =150°. The li

(i) Find the exact length of BX and show that angle CAB = tan™! ( > j
4+3V3

(i) Show that the exact length of AC is V(52 + 24V3) cm.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q6 June 2006]

Trigonometrical functions for angles of any size

Is it possible to extend the use of the trigonometrical functions to angles greater
than 90°, like sin 120°, cos275° or tan 692°¢ The answer is yes — provided you
change the definition of sine, cosine and tangent to one that does not require the
angle to be in a right-angled triangle. It is not difficult to extend the definitions,

222 as follows.



ACTIVITY 71

First look at the right-angled triangle in figure 7.10 which has hypotenuse of

unit length.
P YA
P(x, y)
1
y
! y

o2\

x 0 >
Figure 7.10 0 . *

Figure 7.11

This gives rise to the definitions:

sin@z%:y; c059=x

Identities involving sin 6, cos 6 and tan 6

Since tan 0 = )—): and y=sin 6 and x = cos € it follows that

sin@

tan 6 = .
cosO

It would be more accurate here to use the identity sign, =, since the relationship
is true for all values of 6

An identity is different from an equation since an equation is only true for certain
values of the variable, called the solution of the equation. For example, tan 6 =1 is

az1s Aue jo sajbue 10} suoilsuny jesri3swouobia) H 1
==Y
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EXAMPLE 7.3

an equation: it is true when 6 = 45° or 225°, but not when it takes any other value
in the range 0° < 6 < 360°.

By contrast, an identity is true for all values of the variable, for example

sin 30° sin 72° sin(=399°)
tan 30° = , @an72°= ,  tan(-339°) = :
n cos 30° n cos72° n(-339%) c0s(—399°)

and so on for all values of the angle.

In this book, as in mathematics generally, we often use an equals sign where

it would be more correct to use an identity sign. The identity sign is kept for
situations where we really want to emphasise that the relationship is an identity
and not an equation.

Another useful identity can be found by applying Pythagoras’ theorem to any
point P(x, ¥) on the unit circle

y? + x* = OP?
(sin 0) + (cos 0)? =1.
This is written as

sin 0 + cos? 0 = 1.

You can use the identities tan6 = sin 6 + cos? 6 = 1 to prove other

identities are true.

yve an identity; you can use either

Prove the identity cos?6 — sin?6 = 2 cos?6 — 1.

SOLUTION

Both sides look equally complicated, so show LHS — RHS = 0.
So you need to show cos?6 —sin?6 — 2 cos?6 + 1 =0.
Simplifying:

c0s20 —sin?0 — 2 cos26 + 1 =— cos?H —sin?6 + 1
—(cos?6 + sin%6) + 1

-1+1 Using sin26 + cos26 = 1.

0 as required



Method 2

When one side of the identity looks more complicated than the other side, you
can work with this side until you end up with the same as the simpler side.

EXAMPLE 7.4 Prove the identity M ——L_— tano.
1—sinf cosf

g/ os12409x3 \] 1
-

SOLUTION

The LHS of this identity is more complicated, so manipulate the LHS until you
end up with tan6.

Write the LHS as a single fraction:

cos® 1 _ cos*6—(1-sinb)
1-sin® cos®  cosO(1— sin0)

_ cos’O+sinf—1

= " H in2 20 =
cosO(1 — sin6) Since sinc0 + cosc 0 =1,

_1-sin*6+sin6—1
~ cosO(1-sinb)

sinf —sin%6 _

EXERCISE 7B

sin®0 —3cos?H+1

5 =2
sin®0 — cos*0
o 1 1 - 1
cos’@ sin’@  cos?Osin’H
7 tanf+ <S80 1
sinf@ sinfcosO
g 1 )
1+sinf® 1-sinf cos2
. . 1—tan’x . 5
9 Prove the identity ————=1-2sin"x.
1+ tanx

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q3 June 2007] 225



l+sinx , cosx _ 2
CcosXx 1+sinx cosx

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q2 November 2008]

10 Prove the identity

S K

sinx _ _sinx
l—sinx 1+sinx
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q1 June 2009]

11 Prove the identity = 2tan’x.

Trigonometry

The sine and cosine graphs

In figure 7.12, angles have been drawn at intervals of 30° in the unit circle, and
the resulting y co-ordinates plotted relative to the axes on the right. They have
been joined with a continuous curve to give the graph of sin 6 for 0° < 6 < 360°.

sin 6 A
ooIIIIIT] e la

________ ~ >"—‘ N

7 f’\\\
P6 \\ P12 _

o 1800 )} 270° 60° | 6

------- NS

B \'""'\"""x"""'{lo

\\\ P9

Figure 7.12

The angle 390°
420° gives point R, n see that for angles from 360° to 720° the

sine wave s shown in figure 7.13. This is true also for

Y

(03 18 60° 54 20°

Figure 7.13

In a similar way you can transfer the x co-ordinates on to a set of axes to obtain
the graph of cos 6. This is most easily illustrated if you first rotate the circle

226 through 90° anticlockwise.



Figure 7.14 shows the circle in this new orientation, together with the resulting

graph.
PIZ
- /-7])11
--71')
P, “10
b 180° 0° 360° '0
s
TN '7{,
NG o
P7
P6

Figure 7.14

For angles in the interval 360° < 6 << 720°, the cosine curve will repeat itself. You
can see that the cosine function is also periodic sith-a pexjod of 360°.

Notice that the graphs of sin 6 and cos 6 hav¢ ¢xactly the syme shape. The cosine
graph can be obtained by translating the sind t left, as shown in

figure 7.15.
YA \

’ AN

=cos 0

o

2 )]

yd
4
A
_1\\\ / ) =sin 0
\\ \ /
N
Figur
From the graphs it £a# be seen that, for example

cos 20° =¥in 110°, cos 90° = sin 180°, cos 120° = sin 210°, etc.
In general

cos 0 =sin (0+ 90°).

1 What do the graphs of sin 6 and cos 6 look like for negative angles?
2 Draw the curve of sin 6 for 0° < 6 < 90°.

Using only reflections, rotations and translations of this curve, how can you
generate the curves of sin 6 and cos 6 for 0° < 6 < 360°?

N R

sydeub auisod pue auis ay |
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The tangent graph

ACTIVITY 7.2

The value of tan 6 can be worked out from the definition tan 6 = 3_): or by using
tan 6 = sin@
 cosB’

You have already seen that tan 6 is undefined for 8 = 90°. This is also the case for
all other values of 6 for which cos 6 = 0, namely 270°, 450°, ..., and —90°, =270, ...

The graph of tan 6 is shown in figure 7.16. The dotted lines 6 = +90° and
0 =270° are asymptotes. They are not actually part of the curve. The branches of
the curve get closer and closer to them without ever quite reaching them.

YA
/ el / T These are asymptotes.
—90° 90° A8 270° T;”‘:
7. 40
[ [ I

Figure 7.16

Note

The graph of tan 6 jgpériodic, like those sin 6 and cos 0, but in this case the

SY¥ < 90° can be used to generate the rest of

ations.

for solving triggrometrical equations.

Note
S A
Some people use this diagram to help them remember
when sin, cos and tan are positive, and when they are
negative. A means all positive in this quadrant, S means sin T c
positive, cos and tan negative, etc.
Figure 7.17



Solving equations using graphs of trigonometrical functions
Suppose that you want to solve the equation cos 6 =0.5.

You press the calculator keys for cos™ 0.5 (or arccos 0.5 or invcos 0.5), and the
answer comes up as 60°.

However, by looking at the graph of y = cos 6 (your own or figure 7.18) you can
see that there are in fact infinitely many roots to this equation.

YA
0.5

£420° | —300 -60°0| 60° 300° | 420°\ 270° |/660° | 780°\ 6
-1

Figure 7.18

You can see from the graph of y = cos6 that

—90° =6 =<90° (sin)
—90° <6< 90° (tan).

The solution that your calculator gives you is called principal value.

Figure 7.19 shows the graphs of cosine, sine and tangent together with their
principal values. You can see from the graph that the principal values cover the
whole of the range (y values) for each function.

suonouny jesl3awouobiil jo sydeih Buisn suonenbs Buinjog H 1
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P YA
1 y=cos @
principal values
7 05|
£
2 L I I L5
g -360° —270° -180° —H0° o 9 180°  270°  360° 0
<
o
2 -0.5 -
=
1k
YA
1 f—
0.5 fy=sind
principal
values,
I I ! | |5
-360° -270° -180° -90° 0 9p° 18§°  27§°\ 3p60° 0
y=tan 6
principal
values
I I 15
90° 0°  270° 60° 0

Figure 7.19
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EXAMPLE 7.5 Find values of 6 in the interval —360° < 0 < 360° for which sin 0 = 0.5.

SOLUTION

sin 0 =0.5=> sin1 0.5 = 30° = 6 = 30°. Figure 7.20 shows the graph of sin 6.

sin 6 A

1

/7330° 2100 /] 300 150°\/ 0
1

Figure 7.20

The values of 6 for which sin § = 0.5 are —330°, —210°, 30°, 150°.

EXAMPLE 7.6 Solve the equation 3tan 6 =—1 for —180° < 6 £ A80°.
SOLUTION
3tan 6=-1

= tanGz—%
=

Figure 7.21

From figure 7.21, the other answer in the range is

6=-18.4°+180°
=161.6°

The values of 6 are —18.4° or 161.6° to 1 d.p.

suonouny jesl3awouobiil jo sydeih Buisn suonenbs Buinjog H 1
=
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€ Howcan you find further roots of the equation 3tan 6 = —1, outside the range
—180° <6 < 180°?

S K

z

?

£ EXAMPLE 7.7 Find values of @ in the interval 0° < 6 < 360° for which tan? § — tan = 2.
8

2

= SOLUTION

First rearrange the equation.

tan?6 —tan 6 =2

This is a quadratic equation

= tan’6 —tan6—2=0 like 2 —x—2=0.

= (tan6—-2)(tan6+1) =0

= tanf=2ortand=-1.

tand=2 = 6 = 63.4° (calculator)

or 6 = 63.4° + 180° (see figuig

gure 7.22 is used to give

Figure 7.22

The values of 6 are 63.4°, 135°, 243.4°, 315°.
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EXAMPLE 7.8

EXERCISE 7C

Solve the equation 2sin? 6 = cos 6 + 1 for 0° < 6 < 360°.

SOLUTION

First use the identity sin? 6 + cos? 6 = 1 to obtain an equation containing only one
trigonometrical function.

2sin2 0 =cos O + 1

= 2(1 —cos*0) =cos 6 + 1 This is a quadratic
= 2—2cos’ 0 =cos b+ 1 Rgg:]rztrilgz ii?t?itijal
= 0=2cos’0+cosO—1 zeirto tgnstisgtt%zse
= 0=(2cos0—1)(cosO+1) equation.

= 2cos0—1=0o0rcosf+1=0

= c050=%0rcos(9=—1.

| —

cosf=5 =  0=060°
or 0 =360°—60° =300° (seq

cosf=-1 = 6=180°.

by

Y

Figure 7.23

The values of 8 are 60°, 180° or 300°.

1 (i) Sketch the curve y=sin x for 0° < x < 360°.

(i) Solve the equation sin x = 0.5 for 0° < x < 360°, and illustrate the two roots
on your sketch.

(iii) State the other roots for sin x= 0.5, given that x is no longer restricted to
values between 0° and 360°.

(iv) Write down, without using your calculator, the value of sin 330°.

H'u

9L 9s1949x3
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2 (i) Sketch the curve y= cos x for —90° < x < 450°.
(i) Solve the equation cos x= 0.6 for —90° < x < 450°, and illustrate all the
roots on your sketch.
(iii) Sketch the curve y=sin x for —90° < x < 450°.
(iv) Solve the equation sin x= 0.8 for —90° < x < 450°, and illustrate all the
roots on your sketch.

S K

(v) Explain why some of the roots of cos x = 0.6 are the same as those for

Trigonometry

sin x= 0.8, and why some are different.

3 Solve the following equations for 0° < x < 360°.

3
2

(i) tanx=1 (i) cosx=0.5 (iii) sin x=
(iv) tan x=-1 (v) cosx=-0.9 (vi) cos x=0.2
(vii) sin x=-0.25 (viii) cos x=—1

4 Write the following as integers, fractions, or using square roots. You should
not need your calculator.

(i) sin 60° (i) i) tan 45°
(iv) sin 150° (v) tan 180°
(vii) sin 390° tan 315°
5 In this question all the angles ar&\i\th intéxzal =186° to 180°.
Give all answers correct to 1 deciny
ad .
6 =sin x and use it to demonstrate why

(b) cos x=—cos (180° — x)

(c) tag xZAtan (180°— x) (d) tan x=—tan (180° — x)

7 (i) For what values of a are sin &, cos @ and tan « all positive?
(ii) Are there any values of & for which sin ¢, cos @ and tan « are all negative?
Explain your answer.
(i) Are there any values of @ for which sin @, cos a and tan a are all equal?
Explain your answer.

8 Solve the following equations for 0° < x < 360°.

(i) sinx=0.1 (i) cosx=0.5

(iii) tan x=-2 (iv) sin x=-0.4

(v) sin?x=1-cosx (vi) sin’x=1

(vii) 1 — cos? x=2sin x (viii) sin? x=2cos® x

234 (ix) 2sin% x = 3cos x (x) 3tan?x—10tanx+3=0



9 The diagram shows part of the curves y = cos x° and y = tan x° which intersect

at the points A and B. Find the co-ordinates of A and B. P 1
YA y=tanx°
5 Q
: 8
! £
A §
E 3
' []
1 -
' [
(0] > 5
90 80° «x o
i y=cos x°

10 (i) Show that the equation 3(2sin x — cos x) =24sin x — 3 cos x) can be written

in the form tan x= —Z.

), for 0° < x < 360°.

09, Paper 12 Q1 June 2010]

(ii) Solve the equation 3(2sin x — cos x)

11 (i) Prove the identity (sinx+ cos i <'sin® x + cos
(ii) Solve the equation (sin

12 (i) plati 8.2 2(sin6 — cos ) can be expressed as

(i) Y ¥ + cosO = 2(sinf — cosh), for 0° < 0 < 360°

13 S sing’— 2 cos6 — 3 =0, for 0° < x < 180°.

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q1 November 2005]

Circular measure

Have you ever wondered why angles are measured in degrees, and why there are
360° in one revolution?

There are various legends to support the choice of 360, most of them based in
astronomy. One of these is that since the shepherd-astronomers of Sumeria
thought that the solar year was 360 days long, this number was then used by the
ancient Babylonian mathematicians to divide one revolution into 360 equal parts.

Degrees are not the only way in which you can measure angles. Some calculators
have modes which are called ‘rad’ and ‘gra’ (or ‘grad’); if yours is one of these,
you have probably noticed that these give different answers when you are using
the sin, cos or tan keys. These answers are only wrong when the calculator mode

is different from the units being used in the calculation. 235
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The grade (mode ‘gra’) is a unit which was introduced to give a means of angle
measurement which was compatible with the metric system. There are 100 grades
in a right angle, so when you are in the grade mode, sin 100 = 1, just as when you
are in the degree mode, sin 90 = 1. Grades are largely of historical interest and are
only mentioned here to remove any mystery surrounding this calculator mode.

By contrast, radians are used extensively in mathematics because they simplify
many calculations. The radian (mode ‘rad’) is sometimes referred to as the

natural unit of angular measure.

If, as in figure 7.24, the arc AB of a circle centre O is drawn so that it is equal in
length to the radius of the circle, then the angle AOB is 1 radian, about 57.3°.

B

Figure 7.24

You will sometimes see 1 r; just as 1 degree is written 1°.

by 2mr, it follows that the angle of a

o ..
45° = 4 radians

30° = g radians
To convert degrees into radians you multiply by %

To convert radians into degrees multipy by %

Note

1 If an angle is a simple fraction or multiple of 180° and you wish to give its value
in radians, it is usual to leave the answer as a fraction of .

2 When an angle is given as a multiple of T it is assumed to be in radians.



EXAMPLE 7.9

EXAMPLE 7.10

(i) Express in radians (a) 30° (b) 315° (c) 29°.

(ii) Express in degrees (a) % (b) 8?75 (©) 1.2 radians.
SOLUTION
(i (a) 30° —30><@ =§
(b) 315°=315 x@ %ﬁ
(¢) 29°=29x @ =0.506 radians (to 3 s.f.).
i) (a) == ﬁx%— 15°
(b) 8;” = %X%mmm

(c) 12rad1ans—12><7t =68.8° (to 3 s.f.).

Using your calculator in radian modé

If you wish to find the value of, say, sin 1.4 o ad” mode on your

ples 0.9854... and

T
Qs 1> use the

calculator. This will give the answers d{x
0.9659... .

T _T
0=30X180 6

From figure 7.25 there is a second value 2

0 = 1500 =2 o 185\/60o
6
d= STC

The values of 6 are = 6 T an,

Figure 7.25

ainseaw senosy [N 1
== Y
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EXAMPLE 7.11

EXERCISE 7D

Solve tan? 0 =2 for 0 < 0 < m. tan 6 |

SOLUTION

Here the range 0 < 0 < m indicates that
radians are required.

Y

Since there is no request for multiples of T, 0.955 | 2.186
set your calculator to radians.

tan2 =2 -

:>tan9=\/5 or tan0=—\/5. /

tand=~2 = 0=0.955 radians

tanf=—v2 = 0=-0955 (not in range)
or 6=-0.955+ 1 =2.186 radians.

Figure 7.26

The values of 6 are 0.955 radians and 2.186 radigns

1 Express the following angles in radians,fleg \nywers in terms of

where appropriate.

(i) 45° (iv) 75°
(v) 300° (viii) 209°
(ix) 150°

2 Express the follo using a suitable approximation where

necessary.

0] % (i) 2 radians (iv) %’T
(v) (vii) 0.4 radians viii) 2L
(ix)

3 Write the IqJJ6wing as fractions, or using square roots.
You should not need your calculator.
) sin% (i) tan% (iii) cosg (iv) cosm
(v) tan%n (vi) sin%t (vii) tan%’E (viii) cos%
(ix) sin%ﬂ (x) cos%ﬂ

4 Solve the following equation for 0 < 6 < 2, giving your answers as multiples
of .

V3

(i) cosO=-"= (ii) tan6=1 (iii) sin@ = —

2 N

1
1 .
(v) cos@ = —F (vi) tan6@ = \/5
NE

[\

(iv) sinf = —

NS



5 Solve the following equations for -t < 6 < m.

(i) sin6=0.2 (i) cos0=0.74 (iii) tan 6 =3
(iv) 4sin6=-1 (v) cosf=-0.4 (vi) 2tan 6 =—1

6 Solve 3 cos20+2sinf—3=0for0 <O =<r.

The length of an arc of a circle

From the definition of a radian, an angle of 1 radian at the centre of a circle
corresponds to an arc of length r (the radius of the circle). Similarly, an angle of
2 radians corresponds to an arc length of 2r and, in general, an angle of 6 radians
corresponds to an arc length of 61, which is usually written 0 (figure 7.27).

arc length 76

Figure 7.27

2

Area = 0 X Tr
21

. 1.2
major sector =57 0.

Figure 7.28 Figure 7.29

8]2419 € JO 10}93S B JO eaJe 9y H 1
==Y
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The following formulae often come in useful when solving problems involving

sectors of circles.

S K

> For any triangle ABC:
2 b
E 1 M a — = C
2 The sine rule: sinA  sinB  sinC b
o
2 sinA _ sinB _ sinC
= or = = a
a b c
The cosine rule: @ =0+ & —2bccos A A
2, 2 2
or cosA = b-i-cha ¢
¢ B
The area of any triangle ABC = %ab sin C. Figure 7.30
EXAMPLE 7.12 Figure 7.31 shows a sector of a circle, centre Q ¢cm. Angle AOB = 2?75
radians.

(i) (a) Calculate the arc length, perimete
and area of the sector.

(b) Find the area

of the blue
region.

(ii) Find the exag Figure 7.31

the chord AB

Perimeter =4n+6+6=4n+ 12cm

Area =%r20 =lyex2t

_ 2
> 3 =12ncm

(b) Area of segment = area of sector AOB — area of triangle AOB

The area of any triangle ABC = %ab sin C.
Area of triangle AOB = % X 6 X 6sin2?n = 18# = o3em?

So area of segment = 121 — n3

= 22.1cm?
240



(ii) Use the cosine rule to find the length of the chord AB

a>=b*+ & —2bccos A

Substitute in b= 6, c=6 and A = %’T

So a2=62+62—2><6><6c052?n

- 72—72><(—%) =108

a=+108 = 6\/gcm

3/ es1949x3 \] 1
==Y

€ How else could you find the area of triangle AOB and the length of AB?

EXERCISE 7E 1 Each row of the table gives dimensions of a

The angle subtended at the centre of the cfrde is 6 radr
the sector is s cm and its area is A cm?. C

ircle of radius r cm.
the arc length of
and complgtg the table.

r (cm) 0 (rad) \\\\Q)\/A (cm?)
CRLYD
s AN
Q0 Y
N
&N Y L
\\ / 0.8 1.5
\// 2?75 4

2 (i) (a) Find the area of the sector OAB in the diagram.

(b) Show that the area of triangle OAB is 16 sin2% cos%.
(c) Find the shaded area.

241
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(i) The diagram shows two A
circles, each of radius 4 cm,
with each one passing through
the centre of the other.
Calculate the shaded area.
(Hint: Add the common
chord AB to the sketch.)

B

3 The diagram shows the cross-section of three

pencils, each of radius 3.5 mm, held together
by a stretched elastic band. Find

(i) the shaded area
(ii) the stretched length of the band.

4 A circle, centre O, has two radii Q divides the circle
into two regions with areas in the
If the angle AOB is 0 (radians), s

=L
0 51n0—2.

2t generally hits the ball anywhere in a
(assumed circular) is 80 yards away, find

A\BC is a semi-circle, centre O and radius 9 cm. The line BD is
the diameter AC and angle AOB = 2.4 radians.

2.4 rad

A [ C

9cm @) D

(i) Show that BD = 6.08 cm, correct to 3 significant figures.
(ii) Find the perimeter of the shaded region.

(i) Find the area of the shaded region.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q8 June 2005]



7 In the diagram, OAB and OCD are radii of a circle, centre O and radius 16 cm.
Angle AOC = a radians. AC and BD are arcs of circles, centre O and radii
10cm and 16 cm respectively.

(i) In the case where o = 0.8, find the area of the shaded region.
(i) Find the value of a for which the perimeter of the shaded region is 28.9 cm.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q2 November 2005]

AOB = %TC radians.

\/ 12cm B

(i) Find the\rea'of the shaded region, giving your answer in terms of © and NEY

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 June 2007]

9 In the diagram, the circle has centre O and
radius 5 cm. The points P and Q lie on the circle,
and the arc length PQ is 9 cm. The tangents to the
circle at P and Q meet at the point T. Calculate

(i) angle POQ in radians
(ii) thelength of PT
(iii) the area of the shaded region.

T

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q6 November 2008]

3/ es1949x3 \] 1
==Y
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10 In the diagram, AB is an arc of a circle, A
centre O and radius rcm, and
angle AOB = 6 radians. The point X
lies on OB and AX is perpendicular
to OB. rem

(i) Show that the area, Acm?, of the
shaded region AXB is given by

1 .
A= Er2(0— sm9c050) o ¢ rad |*X 5

(ii) In the case where r=12and 0 = én, find the perimeter of the shaded
region AXB, leaving your answer in terms of V3 and .
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q7 November 2007]

Other trigonometrical functions

y=sinf0+1

>
S

-180°  -90° 0 90° 180°  270°  360°  450°  540°  630°  720° O

Figure 7.32



ACTIVITY 7.3

ACTIVITY 7.4

Figure 7.33 shows the graphs of y = sin xand y = 2 + sin x for 0° < x < 360°.

If you have a graphics
calculator, use it to

experiment with other
curves like these.

y=2+sinx

0 >
90° 180  270° 60° X
y=sinx

-1

Describe the transformation that maps the curve y = sin x on to the curve

Figure 7.33

y=2+sinx.

Complete this statement.

‘In general, the curve y = f(x) + s is §btained from/y = f(x) by ...

Figure 7.34 shows the graphs of y =si

YA If you have a graphics
calculator, use it to experiment
with other curves like these.
0.5

0</ 90\\7 18

y=sin (x —45°)

-1
Figure 7.34
Describe the transformation that maps the curve y = sin x on to the curve
y=sin (x—45°).
Complete this statement.

>

‘In general, the curve y = f(x— 1) is obtained from y = f(x) by ... .

=sin (x — 45°) for 0° < x < 360°.

suoiauny jesr3swouobii) 18yl H 1
==Y
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ACTIVITY 7.5

ACTIVITY 7.6

Reflections

Figure 7.35 shows the graphs of y = sin x and y = —sin x for 0° < x < 360°.

If you have a graphics
calculator, use it to experiment
with other curves like these.

YA
1
05 y=-sinx
0 >
90° 270° 0° X
05 y=sinx
1
Figure 7.35

Describe the transformation that maps the ) pn1 to the curve

¥y =—sin x.
Complete this statement.

‘In generalnt = \f{x) iddbtained from y = f(x) by ...

sin x and y = 2sin x for 0° < x < 180°.

If you have a graphics
calculator, use it to

experiment with other
curves like these.

y=2sinx

y=sinx

0 180° x
Figure 7.36

What do you notice about the value of the y co-ordinate of a point on the curve
y=sinxand the y co-ordinate of a point on the curve y = 2sin x for any value of x?

Can you describe the transformation that maps the curve y = sinx on to the curve

y=2sinx?



ACTIVITY 7.7 Figure 7.37 shows the graphs of y=sin x and y = sin 2x for 0° < x < 360°.

If you have a graphics
calculator, use it to experiment
with other curves like these.

YA

y=sinx

=Y

Figure 7.37

suoiauny jesr3swouobii) 18yl H 1
==Y

What do you notice about the value of the x co-ordinate of a point on the curve
y=sinxand the x co-ordinate of a point on the curve y = sin 2x for any value of y?

Can you describe the transformation that mapsAfhe = sin x on to the curve
y =sin2x?
EXAMPLE 7.13 Starting with the curve y= cos x, sh g can be used to

sketch these curves.
(i) y=cos3x

(iii) y=cos (x—60°)
SOLUTION

(i)

Figure 7.38



0
(i) The curve of y=3+ cosxis obtained from that of y = cosx by a translation (3j

The curve therefore oscillates between y =4 and y =2 (see figure 7.39).

S K

by

\
=COSXx
| \ /y
0 >
90 180° 200 360° x
1

Trigonometry

YA
4 y=3+cosx
3
2
270° 360°  x

/\ ¥ =cos (x — 60°)
. /

90N 180° 0°  360° x 15\/0° ’
. 1

Figure 7.40

248



(iv) The curve of y=2cos xis obtained from that of y = cos x by a stretch of scale
factor 2 parallel to the y axis. The curve therefore oscillates between y =2 and P 1
y=-2 (instead of between y= 1 and y=—1). This is shown in figure 7.41.

YA

YA y=2c08 x

>
S

90 180° 0°  360° ; 9w 180°  270°  360° «x

o —_
/
I
(e}
]
w
=
/
o —_
suoiauny |esu3swouobiiy 18y

Figure 7.41 m
A 1tis always a good idea to check you Its W calculator whenever

possible.

EXAMPLE 7.14 (i) for 0 < x < 2m.

(i) ! - £— a+ bsinx, where a and b have the same value as found
in part (i) is d¢fined for the domain g < x < k. Find the largest value of k for
which g(x) has an inverse.

SOLUTION

(i) (a) f(0)=4=a+bsin0=4

= a=4sincesin0=0

f(%):s = 4+ bsin (g)zs
=4+3b=5
=>b=2

249



(b) f:x—>4+2sinx
The maximum value of sin xis 1.

So the maximum value of fis4+2 x 1 =6.

S K

2 The minimum value of sin xis —1.
]
§ So the minimum value of fis4 + 2 X (—-1) =2.
c
-]
2 So the range of fis 2 < f(x) < 6. YA
=
(¢) Asa=4and b=2,
y=a+ bsinxis 5
y=4+2sinx.
4
Figure 7.42 shows the graph of
y=4+2sinx. 3
1
0 b b 3n :c
2 2
Figure 7.42
(ii) For a functiq, have #fpin it must be one-to-one.
YA
6
5
4 g
3
2
1
0 T n 3 o x
2 2
Figure 7.43
The domain of g starts at % and must end at 3771, as the curve turns here.
250 So k= .

2



EXERCISE 7F

1 Starting with the graph of y = sin x, state the transformations which can be

used to sketch each of the following curves.

(i) y=sin (x—90°) (ii) y = sin 3x
(i) 2y =sin x (iv) y = sin %
(v) y=2+sinx

Starting with the graph of y = cos x, state the transformations which can be
used to sketch each of the following curves.

(i) y=cos (x+60°) (ii) 3y=cosx
(i) y=cos x+ 1 (iv) y=cos 2x
For each of the following curves

(a) sketch the curve

(b) identify the curve as being the same as one of the following:

y==sin x, y=1=cos x, or

(i) y=sin (x+360°)
(i) y=tan (x—180°)
(v) y=cos (x+180°)

Starting with the graph of y = tan x,

the graph after the followj ansfo

(i) Translation of

(i) Opéowa § factor 2 parallel to the x axis
Thegray is stretched with scale factor 4 parallel to the y axis.

jon of the new graph.

(i) Find the\exaCt value of y on the new graph when x = 240°.

6 The function fis defined by f(x) = a+ bcos2x, for 0 < x < m. It is given that

£(0) =—1 and f(%n) =7.

(i) Find the values of a and b.
(i) Find the x co-ordinates of the points where the curve y = f(x) intersects the
X axis.
(iii) Sketch the graph of y = f(x).
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q8 June 2007]

4/ os1249x3 \] 1
==Y
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7 The function fis such that f(x) = a — b cos x for 0° < x < 360°, where a and
b are positive constants. The maximum value of f(x) is 10 and the minimum
value is —2.

S K

(i) Find the values of a and b.
(i) Solve the equation f(x) = 0.
(iii) Sketch the graph of y = f(x).
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q5 November 2008]

Trigonometry

8 The diagram shows the graph of y = asin(bx) + cfor 0 < x < 2.

(i) Find the values of #~hand c.
(ii) Find the small & intefval 0 < x < 2m for which y=0.

& A Level Mathematics 9709, Paper 1 Q4 June 2009]

5—-3sin2xfor0 < x<m.

jeason, whether f has an inverse.
[Cambridge AS & A Level Mathematics 9709, Paper 12 Q4 November 2009]

i) tate, with k

10 The funcNo#f: x— 4 — 3sin x is defined for the domain 0 < x < 2m.

(i) Solve the equation f(x) = 2.
(ii) Sketch the graph of y = f(x).
(i) Find the set of values of k for which the equation f(x) = k has no solution.

The function g: x> 4 — 3sinx is defined for the domain %n sxs A

(iv) State the largest value of A for which g has an inverse.

(v) For this value of A, find the value of g!(3).
[Cambridge AS & A Level Mathematics 9709, Paper 12 Q11 June 2010]
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P1

1 The point (x, y) at angle 6 on the unit circle centre (0, 0) has co-ordinates

(cos 0, sin ) for all 6.

2 The graphs of sin 6, cos 6 and tan 6 are as shown below.

=
sin 0 A .‘<D
°
=
7777777777777777777777777777777 R !
/\ @
5 ¢gbured in radians. 7 radians = 180°.
6 fAadius r, arc length = 6
area of sector = %rZG (6 in radians).
7 The graph of y = f(x) + sis a translation of the graph of y = f(x) by [(s)j
8 The graph of y = f(x— 1) is a translation of the graph of y = f(x) by (6)
9 The graph of y = —f(x) is a reflection of the graph of y = f(x) in the x axis.
10 The graph of y = af(x) is a one-way stretch of the graph of y = f(x) with scale
factor a parallel to the y axis.
11 The graph of y = f(ax) is a one-way stretch of the graph of y = f(x) with scale
factor 1 parallel to the x axis.
a 253
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Vectors

We drove into the future looking into a rear view mirror.

Herbert Marshall McLuhan

What information do you need
to decide how close the aircraft
which left these vapour trails
passed to each other?

sof the aircraft (100 tonnes)
ection is associated with it; such a

o represent quantities such as force,
qetry to represent displacements. They

Terminology

In two dimensions, it is common to represent a vector by a drawing of a straight
line with an arrowhead. The length represents the size, or magnitude, of the
vector and the direction is indicated by the line and the arrowhead. Direction is
usually given as the angle the vector makes with the positive x axis, with the
anticlockwise direction taken to be positive.

The vector in figure 8.1 has magnitude 5,
direction +30°. This is written (5, 30°) and
said to be in magnitude—direction form or
in polar form. The general form of a vector

written in this way is (r, 8) where ris its
magnitude and 6 its direction. Figure 8.1



EXAMPLE 8.1

Note

In the special case when the vector is representing real travel, as in the case of
the velocity of an aircraft, the direction may be described by a compass bearing
with the angle measured from north, clockwise. However, this is not done in this
chapter, where directions are all taken to be measured anticlockwise from the

positive x direction.

An alternative way of describing a vector is in terms of components in given
directions. The vector in figure 8.2 is 4 units in the x direction, and 2 in the

y direction, and this is denoted by (3)

(‘2‘) or 4i +2j

Figure 8.2
This may also be written as 4i + 2j, nitude 1, a unit

vector, in the x direction and j is a uni ifection (figure 8.3).

Figure 8.3
In a bogK A vector Way be ed in bold, for example p or OP, or as a line

betweexr tw i ith an arrow above it to indicate its direction, such as OP.

or to put an axow ghove it, as in OP.

To convert a vector from component form to magnitude—direction form, or vice
versa, is just a matter of applying trigonometry to a right-angled triangle.

Write the vector a = 4i + 2j in magnitude—direction form.

SOLUTION

Figure 8.4

P1
£
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EXAMPLE 8.2

EXAMPLE 8.3

The magnitude of a is given by the length a in figure 8.4.

a=~42+22 (using Pythagoras’ theorem)
=4.47 (to 3 significant figures)

The direction is given by the angle 6.
anf =2 =05
0=126.6° (to 3 significant figures)

The vector a is (4.47, 26.6°).

The magnitude of a vector is also called its modulus and denoted by the symbols

| | . In the example a = 4i + 2j, the modulus of a, written | a |, is 4.47. Another

convention for writing the magnitude of a vector is to use the same letter, but in

italics and not bold type; thus the magnitude of a may be written a.

Write the vector (5, 60°) in component forp

SOLUTION

In the right-angled triangle OPX

OX =5 cos 60°=2,

j = (rcos 0)i + (rsin 0)j

Write the vector (10, 290°) in component form.

SOLUTION
In this case r=10 and 6 = 290°.

10cos 2900]

(10, 290°) — .
10 sin 290°

-940

This may also be written 3.42i — 9.40j.

342
= to 2 decimal places.

Figure 8.5

d written as a general rule, for all values of 6.

1IN

290°

Figure 8.6

10



EXAMPLE 8.4

In Example 8.3 the signs looked after themselves. The component in the i
direction came out positive, that in the j direction negative, as must be the case for
a direction in the fourth quadrant (270° < 6 < 360°). This will always be the case
when the conversion is from magnitude—direction form into component form.

The situation is not quite so straightforward when the conversion is carried out
the other way, from component form to magnitude—direction form. In that case,
it is best to draw a diagram and use it to see the approximate size of the angle
required. This is shown in the next example.

Write —5i + 4j in magnitude—direction form.

SOLUTION
4j r
length 4
S @ R >
\) (6] i
Figure 8.7
-
=6.40 (to 2 decimal places).

by the angle 0 in figure 8.7, but first find the angle a.
tana = % = a=38.7°  (tonearest 0.1°)
so  0=180-a=141.3°

The vector is (6.40, 141.3°) in magnitude—direction form.

P1
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Points

In three dimensions, a pog

Figure 8.8

The axes are conventionally arranged as shown in figure 8.8, where the point P is
(3,4, 1). Even on correctly drawn three-dimensional grids, it is often hard to see
the relationship between the points, lines and planes, so it is seldom worth your
while trying to plot points accurately.

The unit vectors i, j and k are used to describe vectors in three dimensions.



Equal vectors

The statement that two vectors a and b are equal means two things.
e The direction of a is the same as the direction of b.

e The magnitude of a is the same as the magnitude of b.

If the vectors are given in component form, each component of a equals the
corresponding component of b.

Position vectors

Saying the vector a is given by 3i + 4j + k tells you the components of the vector,
or equivalently its magnitude and direction. It does not tell you where the vector
is situated; indeed it could be anywhere.

All of the lines in figure 8.9 represent the vector a.

joining the origigt0 the point P(3, 4, 1) is the position vector | 4 | or 3i + 4j + k.

1
Another way of expressing this is to say that the point P(3, 4, 1) has the position
3
vector | 4 |.
1

1
==
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EXAMPLE 8.5

Points L, M and N have co-ordinates (4, 3), (=2, —1) and (2, 2).
—
(i) Write down, in component form, the position vector of L and the vector MN.

(ii) What do your answers to part (i) tell you about the lines OL and MN?

SOLUTION

. .7 (4
(i) The position vector of Lis OL = 5 )

The vector MN is also ; (see figure 8.10).

— —
(i) Since OL = MN, lines OL and MN are parallel and equal in length.

YA

4
4

(98]

N LN\
z
N\
N\

LY

A
N

v
Figure 8¢ v

Note

A line joining t points, like MN in figure 8.10, is often called a line segment,

meaning that itMs just that particular part of the infinite straight line that passes

through those two points.

—
The vector MN is an example of a displacement vector. Its length represents the
magnitude of the displacement when you move from M to N.

The length of a vector

In two dimensions, the use of Pythagoras’ theorem leads to the result that a
vector a,i + a,j has length | a | given by

= Ja2+ 22
|a|=+/aj+a5.



(D Show that the length of the three-dimensional vector a,i+ a,j+ akis given by

la|=+/al+a}+al

2
EXAMPLE 8.6 Find the magnitude of the vectora=| -5 |.

3
SOLUTION

la| =22+ (-5)%+3?
=+4+25+9
=38

=616 (to2dp.)

EXERCISE 8A 1 Express the following vectors in compone

(i YA

Y,

Y

v/
(iii) J’A/_\ (iv) y)
ZEERNYS
34 3
NEmb)| (i
0 1 CIr 01 2 3 4  »

2 Draw diagrams to show these vectors and then write them in magnitude—
direction form.

(i) 2i+3j (i) ( 23) (iii) (_ij

(iv) —i+2j (v) 3i—4j
3 Find the magnitude of these vectors.
1 4
M |2 i | 0 (i) 2i+4j +2k
3 -2
6
(iv)i+j—3k v) | -2 (vi) i—2k

-3

1
=

Vg 9s12409x3
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4 Write, in component form, the vectors represented by the line segments

P1

joining the following points.

E M (2,3)to(4,1) Gii) (4,0)to(6,0)
(iii) (0, 0) to (0, —4) (iv) (0,—4) to (0,0)
.3 (v) (0,0,0)to(0,0,5) (i) (0,0,0) to (-1,-2, 3)
$ wii) (=1,-2,3) to (0,0,0) (wiii) (0,2, 0) to (4, 0, 4)
(ix) (1,2,3)t0(3,2,1) (x) (4,-5,0)to(—4,5,1)

5 The points A, B and C have co-ordinates (2, 3), (0, 4) and (-2, 1).

(i) Write down the position vectors of A and C.
(i) Write down the vectors of the line segments joining AB and CB.
(iii) What do your answers to parts (i) and (ii) tell you about
(a) ABand OC
(b) CBand OA?
(iv) Describe the quadrilateral OABC.

Vector calculations

Multiplying a vector by a sc

direction.

Figure 8.11

When the vector is in component form, each component is multiplied by the
number. For example:

X (3i—5j+k) =6i—10j+ 2k

3 6
2x|=5|=|-10|.
1 2

The negative of a vector

In figure 8.12 the vector —a has the same length as the vector a but the opposite

direction.
262



EXAMPLE 8.7

o

When a is given in component form, the components of —a are the same as those

Figure 8.12

for a but with their signs reversed. So

23 -23
-| 0= 0
—-11 +11

Adding vectors

When vectors are given in component form, thes
component. This process can be seen geometfi¢4

paper, as in the example below.

Add the vectors 2i — 3j and 3i + 5j.

SOLUTION

2i—3j+ 3i+5)="5i

5i+2j

3i+

5

3i

Figure 8.13

The sum of two (or more) vectors is called the resultant and is usually indicated

by being marked with two arrowheads.

1
=

suonenojes 103997
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EXAMPLE 8.8

Adding vectors is like adding the legs of a journey to find its overall outcome (see
figure 8.14).

resultant

leg 1
leg 3

leg 2
Figure 8.14

When vectors are given in magnitude—direction form, you can find their
resultant by making a scale drawing, as in figure 8.14. If, however, you need

to calculate their resultant, it is usually easiest to convert the vectors into
component form, add component by component, and then convert the answer
back to magnitude—direction form.

Subtracting vectors

Subtracting one vector from another is thd sime as addigg[the negative of the

vector.
Two vectors a and b are giyeq by
a=2i+3j 1
(i) Finda-b.
Ing a,

(ii) Draw diagra —b.

SOL! 7
(i) aNb (—i+2j)
(i)

at(-b)=a-b

Figure 8.15



ACTIVITY 8.1

When you find the vector
represented by the line segment
joining two points, you are in
effect subtracting their position
vectors. If, for example,

P is the point (2, 1) and Q is the
. — . (1

point (3, 5), PQ is (4} as

figure 8.16 shows.

You find this by saying

— = =
PQ=PO+0Q=-p+q.

In this case, this gives

— 2 3 1
{1 )+(s)-[2)
as expected.
This is an important result:
H
PQ=q-p
where p and q are the positi

Geometrical figur

It is often useful t
given vectors.

YA
6
QG, 5)

5
4 /

1
3 /\ (4
2
1

P(2, 1)
0 2 3 4 5 “x
Figure 8.

y C

Figure 8.17

1
=

suonenojes 103997

265



v
—

Vectors

266

(i) Name the points with the following co-ordinates.

(a) (6,5,4) (b) (0,5,0) (e) (6,2.5,0)
@ (0,2.5,4) e) (3,5,4)

(ii) Use the letters in the diagram to give displacements which are equal to the
following vectors. Give all possible answers; some of them have more than one.

6 6 0 -6 -3
(@ |5 (b) |0 e) {5 (d) | =5 (e) 25
4 4 4 4 4
EXAMPLE 8.9 Figure 8.18 shows a hexagonal prism.
G H

Figure 8.18

— =
The hexagonal cr i ar and consequently AD = 2BC.
AB=psP 2 press the following in terms of p, q and r.
— -
(i) AS i (iii) HI (iv) IJ

— — —
(v) EF (vii) AH (viii) FI

SOLUTION
- = =
(i) AC=AB+BC
=Ptq

— —
(i) AD=2BC=2q

— —
(iii) HI=CD

e

Since AC+ CD =AD

Ptq

—

p+q+CD=2q
—
CD=q-p

—_—
So HI=q-p A > D



—
(iv) IJ] =DE
N

H
(v EF=-BC

- - — —>

(vij BE =BC+CD+DE
=q+(q-p)+-p
=2q-2p

‘ N N Figure 8.19

Notice that BE =2CD.

—_ 2 5 —
(vii) AH=AB+BC+CH

=p+q+r

= = = =
(viii) FI=FE+EJ+]JI
=q+r+p

Unit vectors

Tguie 3 \agnitude V3% + 5% = /34, and so

Thus the vector 3i + 5j
the vector ii + isa ve It has magnitude 1.
V34
The unit vector in t weation of ¥eptor a is written as 4 and read as ‘a hat’.

3

3i + 5j This is the unit vector
3 . 5 .
X —i+—=j
2j — \/ﬁ \/i
//

. //

i /((

O i 2i 3i 4 x

Figure 8.20

1
=
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EXAMPLE 8.10 Relative to an origin O, the position vectors of the points A, B and C are given by

— ()] — 0 I
E OA=| 3|, OB= 1|andOC=| 3.
-2 =3 1

H
(i) Find the unit vector in the direction AB.
(ii) Find the perimeter of triangle ABC.

[d
4
o
-
9
>

268

SOLUTION

— — —
For convenience call OA=a, OB=band OC=c.

N 0 -2 2
(i) AB=b—-a=| 1|—-| 3|=|-2
-3 -2 -1

— —
To find the unit vector in the direction AB, you need to divide AB by its
magnitude.

| AB | = V22 + (<20 + (<1
=9
=3

W= W W

| = V22 + 22+ 42
=24

PerimeterofABC:|E|+|ﬁ|+|B—C)|

=3+3+J4

=10.9

=|BC



EXERCISE 8B 1 Simplify the following.
L [2 4 .. 2 -1
(i) (3)+(5) (i) (_1)+[ 2)
o3 -3 . 2 1
(iii) (4j+(_4) (iv) 3(1)+2(_2)

(v) 6(3i—2j)—9(2i—j)
2 The vectors p, q and r are given by
p=3i+2j+k q=2i+2j+2k r=-3i—-j-2k
Find, in component form, the following vectors.

i ptq+r (i) p—q i) p+r
(ivi3(p—q) +2(p+r) (v) 4p—3q+2r

3 In the diagram, PQRS is a parallelogram and DS =b.

(i) Write, in terms of a and b,
the following vectors.

H

(a QR
H

) QS
(i) The mid-point of PR #
H

(a) PM

H
(b) PR

=V

(iii) Explain why
t each other.

Use the fatts that the diagonals
of a kite meet at right angles
and that M is the mid-point of
AC to find, in terms of i and j,

—> —
(a) AM (b) AC

— —
(e) BC (d) CD.

— —
(ii) Verify that|AB|=|BC | and
|AB|=|cD

1
==

g8 os1240x3
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5 In the diagram, ABC is a triangle. A
L, M and N are the mid-points of
the sides BC, CA and AB.

U
-

— —
AB=p and AC=q N M

Vectors

. . H
(i) Find, in terms of p and q, BC,

— — —
MN, LM and LN. B L C

(i) Explain how your results from part (i) show you that the sides of triangle
LMN are parallel to those of triangle ABC, and half their lengths.

6 Find unit vectors in the same directions as the following vectors.
W |2 (i) 3i+4j iy | 72 (iv) 5i—12j
3 -2
7 Find unit vectors in the same direction as the following vectors.

W |2 i) 2i-2j+ 3i — 4k

4
(vi) | O
0

(iv)

igin O, the position vectors of the points P and Q are given
—
£ 4k and OQ =i+ xj —2k.

Find the values of x for which the magnitude of PQ is 7.

10 Relative to an origin O, the position vectors of the points A and B are given by
(4 (3
OA=| 1 and OB=| 2|
) 4

— =
(i) Given that C i the point such that AC = 2AB, find the unit vector in the

direction of OC. |

H
The position vector of the point D is given by OD = | 4 |, where kis a
k

— —
constant, and it is given that OD = mOA + nOB, where m and n are constants.

S, (ii) Find the values of m, n and k.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q9 June 2007]



The angle between two vectors

Q As you work through the proof in this section, make a list of all the results that

you are assuming.

To find the angle 0 between the YA
two vectors l(gbl’ b,)
— . . A
OA=a=aji+aj) @ a,)
and
a b

H
OB=b=bi+b,j

start by applying the cosine rule to
triangle OAB in figure 8.21.

><V

OA?+OB? - AB? Figuye/8

c0s8 = =5 % OB

b —
In this, OA, OB and AB are the lengt} (OB and AB, and so

OA=|a|=+/al+a; and

in the cosine rule gives
(b7 + b)) = [(b — @) + (b, — a))’]
2@+ a2 x b2+ b

_ai+ai+bit b% — (b2 2ab, + a2+ b3 - 2a,b, + a?)
2[al|b]

This simplifies to
_2ab +2ab, ab+apb,
2|lallb]  [al|b]

Cos

The expression on the top line, a,b, + a,b,, is called the scalar product (or dot
product) of the vectors a and b and is written a.b. Thus

a.b )
|a[[b]

This result is usually written in the form

a.b=|a||b]|cosH.

cosO =

1
=
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EXAMPLE 8.11

The next example shows you how to use it to find the angle between two vectors
given numerically.

Find the angle between the vectors G) and (_éj.

SOLUTION

3
4

and bz[ 5) = |b|=+/5+(-12)? =13.

-12

Let az() = |a|=V3*+4*=5

The scalar product

(Z)'(—I;]:3XS+4X(_12)
=15-48

=-33.

Substitutingina.b=|a||b| cos 0 givq

—-33 =5X%x 13X cosb

33
65

cosf =

EXAMPLE 8.12 Show that the vectors a = ( i) and b = (_g) are perpendicular.

SOLUTION

The scalar product of the vectors is

w=(3)-(3)

=2X6+4X%x(-3)
=12-12=0.

Therefore the vectors are perpendicular.



Further points concerning the scalar product

e You will notice that the scalar product of two vectors is an ordinary
number. It has size but no direction and so is a scalar, rather than a
vector. It is for this reason that it is called the scalar product. There is
another way of multiplying vectors that gives a vector as the answer; it is
called the vector product. This is beyond the scope of this book.

e The scalar product is calculated in the same way for three-dimensional
vectors. For example:

2 5
31./]6|=2X54+3%X6+4X7=56.
4 7
In general
a b,
a, |.| b, |=ab +ab, +ab,
as by

ommytd s fhe same value
ad side. Thusa.b=D>b.a,

e The scalar product of two vectors j
whichever of them is on the left-h
as in the following example.

(6

=6X2+7X3=233

W
How WW INgesyt?
A Y

The angle n two vectors

The angle 6 betw€en the vectors a = a,i + a,j and b = b,i + b,j in two dimensions
is given by

ab +a,b, _a.b
Ja+ax\JrP+p2 |alb]

cosO =

where a.b is the scalar product of a and b. This result was proved by using the
cosine rule on page 271.

1
==

$10399A 0M} usamiaq ajbue ay]

273



U
-

Vectors

274

(D Show that the angle between the three-dimensional vectors

EXAMPLE 8.13

a=agi+ajt+ak and b=bji+b,j+bk
is also given by

a.b
b

cosf =
|a|

but that the scalar product a.b is now

a.b=ab +a,b, + a,b,.

Working in three dimensions

When working in two dimensions you found the angle between two lines by
sqnethod can be extended
Qg example.

using the scalar product. As you have just proye

The points P, Q and R are (1, 0, — / Find ZQPR.

SOLUTION

H
The angle between P

|P_)|:\/12+42+22:\/Z

-1
Therefore
1 2
H
PQ.PR=|4|.|5
2 7



Substituting gives
36

cos = ————

V21 x~N78

= 0=27.2°

m
x
o
=
2,
[
(1]
-]
(3}

275

Figure 8.22

A You must be careful to find th_e) c%ect angld.
you need the scalar product PQ. PR, asin t
% H . . . 3
QP. PR, you will obtain ZQ'PR, whick

Figure {\

EXERCISE 8C 1 Find the anyleYbétween these vectors.

(i) 2i+3jand4i+j (i) 2i—jandi+2j
(iii) (_D and (_;) (iv) 4i+jandi+j

D) e

2 The points A, B and C have co-ordinates (3, 2), (6, 3) and (5, 6), respectively.

. — —
(i) Write down the vectors AB and BC.
(i) Show that the angle ABC is 90°.
— =
(iii) Show that | AB |=|BC|.
(iv) The figure ABCD is a square.
Find the co-ordinates of the point D.
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3 Three points P, Q and R have position vectors, p, q and r respectively, where

p=7i+10j, q=3i+12j, r=-i+4j.

— —
(i) Write down the vectors PQ and RQ, and show that they are perpendicular.
(i) Using a scalar product, or otherwise, find the angle PRQ.
(iii) Find the position vector of S, the mid-point of PR.

— —
(iv) Show that | QS| =| RS|.
Using your previous results, or otherwise, find the angle PSQ.
[MEI]

Find the angles between these pairs of vectors.

2 1
(i) [{1] and | -1 (ii) | -1| and |1
4 0

(iii) 3i+2j — 2k and —4i —j+ 3k

In the diagram, OABCDEFG is a cube i

(i) Find th¥angle OQP.
[Cambridge AS & A Level Mathematics 9709, Paper 12 Q6 November 2009]

Relative to an origin O, the position vectors of points A and B are 2i +j + 2k
and 3i — 2j + pk respectively.

(i) Find the value of p for which OA and OB are perpendicular.
(i) In the case where p = 6, use a scalar product to find angle AOB, correct to
the nearest degree.

H
(i) Express the vector AB in terms of p and hence find the values of p for
which the length of AB is 3.5 units.

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q10 June 2008]



7 Relative to an origin O, the position vectors of the points A and B are given by

P1

—> —
OA=2i-8j +4k and OB=7i+2j -k
| .58 | 8
(i) Find the value of OA . OB and hence state whether angle AOB is acute,
obtuse or a right angle.

(i) The point X is such that AX = AB. Find the unit vector in the direction
of OX.

9g 9s1949x3

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q6 June 2009]
8 Relative to an origin O, the position vectors of the points A and B are given by
H . . H . .
OA=2i+3j—k and OB=4i-3j+2k.

(i) Use a scalar product to find angle AOB, correct to the nearest degree.
—
(ii) Find the unit vector in the direction of AB.
—
(iii) The point C is such that OC = 6j + pk, where p is a constant. Given that

— —
the lengths of AB and AC are equal, find thepqssible values of p.

ak prowact to show that cosPOQ =

1
H . . 7.
ngth of PQ is 6 units.

20 cm. The mid-point of AD is the origin O, the
and the mid-point of DC is N. The points E and F are

'<“6cm._>0

Unit vectors i, j and k are parallel to OD, OM and OE respectively.

H ﬁ . . .
(i) Express each of the vectors PA and PN in terms of i, j and k.
(ii) Use a scalar product to calculate angle APN.

[Cambridge AS & A Level Mathematics 9709, Paper 1 Q4 November 2008] 277



11 The diagram shows the roof of a house. The base of the roof, OABC, is
rectangular and horizontal with OA = CB = 14 m and OC = AB =8m. The
top of the roof DE is 5m above the base and DE = 6 m. The sloping edges OD,
CD, AE and BE are all equal in length.

U
-

Vectors

Unit vectors i and j are parallel to OA and OC respectively and the unit vector
k is vertically upwards.

12

H H . . .
(i) Express each of the vectors PR and PQ in terms of i, j and k.

(ii) Use a scalar product to find angle QPR.

(i) Find the perimeter of triangle PQR, giving your answer correct to
1 decimal place.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q10 November 2007]
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KEY POINTS

A vector quantity has magnitude and direction.
A scalar quantity has magnitude only.

H
Vectors are typeset in bold, a or OA, or in the form gA. They are
handwritten either in the underlined form a, or as OA.

The length (or modulus or magnitude) of the vector a is written as a or
as|al.

Unit vectors in the x, y and z directions are denoted by i, j and k, respectively.
A vector may be specified in

e magnitude—direction form: (r, ) (in two dimensions)

L x) . . .
e component form: xi + yj or (}/) (in two dimensions)

X

v
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Answers

Neither University of Cambridge International Examinations nor OCR bear any responsibility for the example

answers to questions taken from their past question papers which are contained in this publication.

Chapter 1
9 (Page 1)

Like terms have the same variable;
unlike terms do not.

Note that the power of the variable
must also be the same, for example
4x and 5x? are unlike terms and
cannot be collected.

Exercise 1A (Page 4)

1 (M 9x
(ii) p—13
(i) k—4m+4n
(iv) 0
(v) r+2s—15t
2 (i) 4(x+2y)
(ii) 3(4a+5b—6¢)
(i) 12(6f—3g—4h)
(iv) p(p—q+71)
(v) 12k(k+12m—6n)
3 (i) 28(x+y)
(ii) 7b+13¢
(iii) —p + 24q + 33r
(iv) 2(51+3w—h)
(v) 2(w+2v)
4 (i) 2ab
(i) n(k—m)
(iii) g(2p— s)
(iv) 4(x+2)
(v) =2
5 (i) 6x°y?
(i) 30a3b3c*
(i) k*m?*n?
(iv) 162p*q*rt

(v) 24r2s*2u?

10

W b (v) 26’54_3
o1
(i) § 1 G6) 5
2
X i) 53
(iiii) 5 2x+1)
(iv) 2a (i) M
4x
(v) E (iv) 6
3
i 1 x(3x+2)
(v) 1
(i) 5
(iii) pq
213
(iv) ?
3
w =
)
M .
6 Starting from one vertex, the

polygon can be divided into n —2

triangles, each with angle sum 180°.

The angles of the triangles form the
angles of the polygon.

9 (Page 7)
You get 0=0.

Exercise 1B (Page 9)

106 a=20
2 i) b=8
Gy 2+ X
xy (i) c=0
2 2
iv) 2 p’;q iv) d=2
b — ac + ab W e=-5
(v) =& T4
abc i) f=15
i) % (vii) g=14
(viii) h=0
) X +3
15 (ix) k=48
. 11x — 29 x) I=9
(iii) 712
76— 23 b m =1
(iv) L2==X N
10 (xii) n=0



Exercise 1C (Page 12)

(i)
(i)
(i)
(ii)
(i)
(ii)
(i)
(i)
(i)
(ii)
(i)
(ii)
(i)
(i)

a+6a+75=180

15°, 75°, 90°
2(r—=2)+r=32

10, 10, 12
2d+2(d—40) =400

d =120, area = 9600 m?
3x+49=5x+15

$1

6c—q—25

6c—47 =55 :17 correct
22m+36(18 — m)

6 kg

a+18=5(a—2)

7

. _v-u
1 (i) a= ;
i) t=Y=4
2 h:K
w
ar= A
b
R e e
4 (i) 5_7251
(i) u=+Vv?—2as
2
5 h:A—Zm
27r
6 :2(5—2ut)
t
7 b=+Vh*-a?
42
8 g= T2
2E
9 =
2gh + v*
R R,
10 R=—"1
R +R,
_2A
" h_u+b
__p
12 u_v—f
2
13 S
d oy
RT
14 v ="
M(p, - py)

Q (Page 12)

1

2
3
4

o

10

11

12

13

14

9 (Page 17)
100m

Constant acceleration formula
Volume of a cuboid

Area of a circle

Constant acceleration formula
Surface area of a closed cylinder
Constant acceleration formula
Pythagoras’ theorem

Period of a simple pendulum
Energy formula

Resistances

Area of a trapezium

Focal length

Focal length

Pressure formula

(z+5)(z—5)

¥ (q-3)(q—3)=(q-3)
2x+3)(x+1)
)  (3v—10)(2v+1)
i) a’+5a+6

i) b*+12b+35
(iii) —6¢c+8

(iv) d*-9d+20
(v} e*+5e-6

i) £-9

(vii) h%+10h+25
(viii) 4i2—12i+9

(ix) ac+ad+ bc+ bd
x) -y

(i (x+2)(x+4)
(i) (x—2)(x—4)
(i) (y+4)(y+5)
(iv) (r+5)(r—3)
(v) (r—=5)(r+3)
i) (s—2)2

(vii) (x—6)(x+1)
(viii) (x+1)2

(ix) (a+3)(a—3)
x)  x(x+6)

i Qx+1)(x+2)
(i) (2x—-1)(x—-2)
(iii) (5x+1)(x+2)
iv) (5x—1)(x—2)

(x+3)(x+4)

x—1)2

(ix)

(i) x=8orx=3
(ii) x=—-8orx=-3
(iii) x=2orx=9
(iv) x=3 (repeated)
(v) x=-8orx=38
(i) x=§0rx=l

(ii) x=—§ orx=-1

(i) x=—1 or x=2

(iv) x=—30rx =1
(v) x=2 (repeated)

3
(i) x=—4orx=5
(ii) x=-3 orng
(iii) x=2 (repeated)
(iv)x=—30rx=%
(v) x=—2orx=3

(vi) x=4 or x:%

N+ 7)(2x—7)
px+2)(2x— 3)

(+ )t —t,)

x) (2x—yp)(x—5y)

1
==

L 193deyn
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8 (i) x=xlorx==%2
(i) x=xlorx==3
i) x=+2orx=:+1
(iv) x=xl50rx==2
(v x=0orx==%04
(vi) x=1lorx=25
(vii) x=1orx=2
(viii) x=9 (Note: V4 means +2)

9 (i) x==1
(ii) x=22
(iii) x==3
(iv) x==2
(v x=xlorx==15
(vi) x=10rx=2/£
(vii) x=4o0orx=16
(viii) x=7or x=9

10 x==3

11 (i) w(w+30)

(ii) 80 m, 380m

12 (i) A=2nrh+2nr?
(ii) 3 cm
(iii) 5 cm

13 (ii) 14
(i) 45

14 x2+ (x+1)2=29%
20cm, 21 cm, 29cm

9 (Page 22)

4
follows that to make x? + axinto a

2 2
Since (x+%) =2+ax+ %, it

2
perfect square you must add az or

a 2
(E) to1t.

Exercise 1E (Page 24)

1 () (a (x+2)%+5
(b) x=-2;(-2,5)

(c) y

0,9

(2,5)

(i) (a) (x—2)%+5
(b) x=2;(2,5)

(c) y

/

Yo
)fa) (x+2)2-1
(b) x=-2;(-2,-1)

(c) y

©,3)

=2,-1)

(iv) (a) (x—2)2-1
(b) x=2;(2,-1)

(c) y

(0,3)

@1
(v) (a) (x+3)*-10
(b) x=-3;(-3,-10)

(c) y

\

o
(0,-1)

(-3,-10)
(vi) (a) (x—5)2-25
(b) x=5;(5,-25)

(c) Vv

(5,-25)
wii) (a) (x+%)2+1%
o c= (b
(c) y

0.2)




(viii) (a) (x - 1%)2 -9l
® x=1%(11,-91)

(c) y

0 x
©0,-7)

(ix) (a) (x - }1)2 +2

_1,(1 15
(b) x—z’(z’ E)

(c) y

\

(x) (a) (x+0.05)%+0.0275

(b) x=-0.05; (—0.05, 0.0275)

(c) ¥
(-0

.05, 0.0275) (0,0.03)

o) X

2 (i) 2+4x+1
(i) x> +8x+12
(iii) > —2x+3
(iv) X2 —20x+ 112
() ¥®—x+1
i) 2 +0.2x+1

3 (i) 2(x+1)2+4
(i) 3(x—3)2-54

(i) —(x+1)2+6

v —2(x+1p-12

(v) 5(x—1)2+2
wi) 4{x-1P-5
(vii) —3(x+2)2+12
(iii) 8(x+ 13220
(i) b=—6,c=10
(ii) b=2,c=0

(iii) b=-8,c=16
iv) b=6, c=11

M x=3=6;x=5449
or x=0.551 to 3d.p.

(i) x=4+17; x=8.123
or x=-0.123 to 3d.p.

(iii) x=1.5 + V1.25; x=2.618
or x=0.382to 3d.p.

(iv) x=1.5+ V1.75; x=2.823
or x=0.177 to 3d.

(v) x=-0.4 £~0.56; x
or x=-1.148 to 3d.

0.869 or x=-1.535
3.464 or x=-3.464
—7, no real roots

(ii) 25, two real roots

(iii) 9, two real roots

(iv) —96, no real roots

(v) 4, two real roots

(vi) 0, one repeated root

Discriminant = b + 4a% a* and
2 can never be negative so the
discriminant is greater than
zero for all values of a and b and
hence the equation has

real roots.

4 (i) k=1

(i) k=3

(i) k=—%

(iv) k=+8

(v) k=0ork=-9
5 (i) t=1and2

(i) £=3.065

(iii) 12.25m

Exercise 1G (Page 33)

1 () x=1Ly=2
(i) x=0,y=4
(i) x=2,y=1
ivy x=1,y=1

I=-1,m=-2
2 (i) 5p+8h=10,10p+6h=10

(ii)  Paperbacks 40c,
hardbacks $1

3 () p=a+58a+9p=164
(ii)  Apples 7c, pears 12¢

a6 H+t=4%
110¢, + 701, = 380

(i)  275km motorway,
105km country roads

5 (i) x=3,y=lorx=1,y=3
(i) x=4,y=2
or x=-20,y=14
(i) x=-3,y=-2
orx=1%,y=2%
(ivi k=-1,m=-7
ork=4,m=-2
wv) t,=-10,1,=-5
or t=10,1=5
i) p=-3,q=-2
(vii) k=—6,m=-4
ork=6,m=4

wiii) p,=1,p,=1

1
==

L 4a3deys
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6 (i)

(i)

7 (i)

(iii)

Exercise 1H (Page 37)

1 @M
(i)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)

2 (i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)

(xii)

(i)
(iii)

(iv)

(i)

(iii)

(iv)

h+4r=100,

2nrh+ 212 = 14007

980007
27

60007 or

cm

(3x+2y)(2x+y) m?

X =

i

Yy =

N —

a>6

b=<2

c>-=2

d<-§

e>7

f>-1

gs<14

h<o0
1<p<4
p<lorp=4
-2sx<-1
x<-2orx>-1
y<-lory>3
—4=<z<5
q7F2
y<-2ory>4
—2<x<%

yS—%ory>6
1 3

y< 20ry>5
9

k<§

k>-4

k>100or k<-10

k<Oork>3
k>9

3

chapter 2 (ii) (@) —3
w (3.1
Activity 2.1 (Page 40)
© 10
A: %; B:—1; C: 0; D: o0 (d) %
(i) (@) 0
© (Page 40) b) (0,3)

No, the numerator and denominator © 12

of the gradient formula would have

the same magnitude but the opposite () Infinite

sign, so m would be unchanged. (iv) (a) %
.. (b) (3% —3)
Activity 2.2 (Page 41)
() V109
YA 3
-
N L W (@ 3
3 IL
2 ? (b) (3,1%)
: V13
0 1 23 4 5 6 _ X -2

{a) Infinite
(b) (1,1)
(c) 6

An example of L, is the

(4,4) to (6, 0).

(d) 0
25
31
a4 () AB:},BC:2,CD:],DA:]
(ii) Parallelogram

(iii)

YA
8
6
D
B
4
Exercise 2A (Page 44)
2
1 () (a) -2 A
o) (1,-1) 0 2 4 6 8 =X
(c) \/% 5 (i) 6
@ ; i) AB=+20,BC =5

(i) 5 square units



6

10

1

M 18 Exercise 2B (Page 49) (viii) VA
P _1
(i —2 1.6 VA y=3x+2
(iii) 0 or 8 ) /
(iv) 8 o :x 2 o :x
(i) YA
B -2 5= (ix) YA y=2x+1
p ~ —
1 N (Y
B0l 2 4 ¢ x
C o)
0 £ R :
(i) AB=BC=+125
2 (x) YA
=5
(i) (—3%, %) *
(iii) YA/ y=2x 8
(iv) 17.5 square units
(i) 2%
“x
i) (2x,3
(i) (2x, 3y) 5 -
(i) /4x2 + 16y° y=—4x+8
@ yp YA oy=4-8
c D [
6 O X
4B
2
A >
00 2 4 6 8 1012 x 5
(i) gradient BC = gradient AD
_1 .
2 (xii) YA
(iii) (6, 3) 1
(i) lor5 “120 >
(ii) 7 0 ) >
(iii) 9 4 A y=-=x+1
(iv) 1
o xiii)  yA
Diagonals have gradients % and y=x=
3 .
—5 so are perpendicular. >
(6] 4 X >
Mid-points of both diagonals are 4 2O x
(4, 4) so they bisect each other. 7 B \
52 square units y=—ix-2
(vii) V)
YA

P1
L

Z 19ydeyn
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(xv)

(xvii) Ny

(xviii) by

(xx)

YA

YA

3y—2y=6

2x + 5y =10

O

3

\ 2v=5x-4

2x+y—-3=0

IEN
=

~Y

V)

6
x+3y—-6=0

Y

2 (i
(i)
(iii)
(iv)
(v)
(vi)

(vii)

(viii)

(ix)
(x)
(xi)

(xii)

Perpendicular
Neither
Perpendicular
Neither
Neither
Perpendicular
Parallel
Parallel
Perpendicular
Neither
Perpendicular

Neither

©® (Page 51)

Take (x,, y,) to be (0, b) and (x,, y,)

to be (a, 0).

The formula gives

(ix)
(x)

(ii)
(iii)
(iv)
(v)

(vi)

(i)
(iii)

x+2y=0

x+3y—12=0
y=2x+3
y=3x
2x+y+3=0
y=3x-14
2x+3y=10
y=2x-3
x+3y=0
x+2y=0
x=2y-1=0

y=b_x-0
0-b a-0
which can be rearranged #Q give

(iv)
(v)
(vi)
(i)
(i)
(iii)
(iv)
(v)

(vi)

W )

Q, 4)

2x+y—2=0

3x—2y-17=0
x+4y—24=0
3x—4y=0
y=x—3
x=2
3x+y-14=0
x+7y—26=0
y=-2
\
x-2y+8=0
B

C(6,2)

(ii) AC:x+3y—12=0,

BC:2x+y-14=0

(iii) AB = /20, BC = /20,

iv) V10

6 (i)

YA

A

area = 10 square units

=Y

o 2 4

(i) y=x;x+2y—6=0;
2x+y—6=0

7 (i)

=Y

6420 2 4 6 8 1012

>
S
X



ii .o ._5 L1
(i) AB.E, BC.—E, CD.g,
.4
AD: -4
(i) AB = 13; BC = 13; CD =+/40;
AD=10

(iv) AB: 5x—12y=0;
BC: 5x+12y—120=0;
CD: x—3y+30=0;
AD: 4x+3y=0

(v) 90 square units

@ (Page 58)

Attempting to solve the equations

simultaneously gives 3 = 4 which is
clearly false so there is no point of

intersection. The lines are parallel.

Exercise 2D (Page 58)

1 () A(L, 1); B(5, 3); C(-1, 10)
(i) BC =AC=1/85
2 (i) Yhow-y=9

9

/

4

o=

-9 /—4% 0

(i) (-3,3)
(i) 2x— y=3;x—2y=0
(iv) (—6,-3); (5,7)
3 (i) y= %x+ 1, y=-2x +6
(ii) Gradients = % and -2 = AC
and BD are perpendicular.

Intersection = (2, 2) = mid-
point of both AC and BD.

(iii) AC=BD =20

(iv) Square

x—2y=-9

10

11

12

13

14

Y

0 4\A 2

Sx+y=20

(i) A: (4,0), B: (0, 11), C: (2, 10)
(i) 11 square units

(iv) (=2, 21)

(i (2,4)

(i) (0,3)
1 3 1

8
12-h

iy’x co-ordinate of D=16

grgdient of CD =

x co-ordinate of B=—4
(iv) 160 square units

M(4, 6), A(-8, 0), C(16, 12)
(i) 3x+2y=31

(i) (7,5)

i) 2x+3y=20

(ii) C(10,0), D(14,6)
(6.2,9.6)

(i (4,6)

(i) (6,10)

(i) 40.9 units

B(6, 5), C(12, 8)

@ (Page 63)

Even values of n: all values of y are
positive; y axis is a line of symmetry.
Odd values of #: origin is the centre

of rotational symmetry of order 2.

Exercise 2E (Page 638)

/N :

/4

i) —5.7 ~73 % parallelogram v

(ii) 10

(i) —3, 4x+ 3y =20 0

(iv) (4.4,0.8) ’\

(v) 40 square units /] / 2%\/ 4 ™

3

y

4
-3 1 5
-15

4 y

\/3 x
5 y

N
N

P1

Z 19ydeyn
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144

4

9 y=(x+1)%(x-2)2

©® (Page 68)

(x— a)3: crosses the x axis at (a, 0)
but is flat at that point.
(x— a)*: touches the x axis at (a, 0).

The same results hold for any odd or
even n for (x— a)".

Exercise 2F (Page 73)
1 (2,7)
2 (i) (3,5);(-1,-3)
(i) 8.94
3 (i) (1,2);(-5,-10)
4 (2,1)and (12.5,-2.5); 11.1

4}
=~
Il
I+
-]

N

7 () (2,5),(2.5,4)
(i) —/80 < g < /80

3.75

0

9 k<-4

10 k>2,k<-6

Chapter 3

@ (Page 75)
(i) (a) Asian Savings
(b) 80 000, 160 000, 320 000, ...

(c) Exponential geometric
sequence

(d) The sequence could go
on but the family will no
live forever

(ii) (a)
(b

-

(b) 120, 140, 160, ...

(¢) Increasing by a fixed amount
(arithmetic sequence)

(d) The steps won’t go on
forever

Exercise 3A (Page 81)
1 (i) Yes:d=2, u, =39
(ii) No
(iii) No
(iv) Yes: d=4, u, =27
(v) Yes:d=-2,u,=-4

(i)

(i)

(i)

(i)

(i)

(i)

10 (i)

11 (i)

12 (i)

13 (i)

14 (i)

15 (i)

850

16, 18, 20
324

15

1170

First term 4, common
difference 6

The 1st sum, 5000, and the
2nd sum, 5100, add up to

the third sum, 10100. This is
because the sum of the odd
numbers plus the sum of the
even numbers from 50 to 150
is the same as the sum of all
the numbers from 50 to 150.

22000

The sum becomes negative
after the 31st term, i.e. from
the 32nd term on.

u, = 3k + 4; 23rd term
n
5(11 +3n); 63 terms

$16500

8

49

254.8 km

16

2.5cm
a=10,d=1.5
n=27



17 () 2 5
(ii) 40
i) 23n+1) 6
2
(iv) 5(On+1) ,
18 (i) a+4d=205;a+18d=373
(ii) 12 tickets; 157
(iii) 28 books 8
9 (Page 86)
For example, in column A enter 1 in 9
cell Al and fill down a series of step
1; then in B1 enter
=3A(A1-1)
then fill down column B. Look for 10
the value 177 147 in column B and
read off the value of nin column A.
An alternative approach is to use the
IF function to find the correct value. "

(2] (Page 87)
3.7 x 101! tonnes. Less than 1.8 x 10%; 12
perhaps 108 for China.

0 ( Page 90)
The series does not converge so it
does not have a sum to infinity.

Exercise 3B (Page 91)
1 (i) Yes:r=2, u, =320

(ii) No

(iii) Yes:r=-1, u,=1

(iv) Yes:r=1,u,=5

(v) No

(vi) Yes:r = %,u7 = %
(vii) No 15
384

(ii) 765

2 (i)

3 4
(ii) 81920

4 (i) 9 16

(ii) 10th term

i 9

(ii) 4088

(i) 6

(ii) 267 (to 3 s.f.)
(i) 2

(ii) 3

(iii) 3069

(i) ]

(i) S =~
i 0.9
(i) 45th
(i) 1000
(iv) 44

i 0.2

) 81(1 - (%)")

(iv) 81

(v) 11 terms

M 20,10,5,2.5,1.25 (i)
i) 0,10,15,17.5,18.75

(iii) First series geometric,
common ratio % Second
sequence not geometric as
there is no common ratio. (ix)

(i) 68th swing is the first less

than 1°

17 (i) Height after nth impact =
10x(2)
3
(ii) 59.0m (to 3 s.f.)
19 G) 3

(i) 243

P1

(iii) 270
20 (i) a=117;(d=-21)
Gi) a=128; (r=3)

2
21 (i) 3

€ 191deyn

(ii) 5150
22 (i) a+4d;a+14d

(ifi) 2.5

Activity 3.1 (Page 98)

age 101)

1.61051. Thisis 1 + 5 x (0.1) +

0% (0.1)2+10x (0.1)3 + 5 x (0.1)*
+1x(0.1)°and 1, 5, 10, 10, 5, 1 are
the binominal coefficients for n = 5.

Exercise 3C (Page 103)

16) x*+4x3+6x2+4x+1
(i) 1+7x+21x2+35x3 +35x*
+21x% + 7x5 + x7

(iii) x>+ 10x*+ 40x3 + 80x2 +
80x+ 32

(iv) 64x°+192x° +240x* +
160x3 + 60x% + 12x+ 1

(v)  16x*—96x3+216x%—216x
+ 81

8x3 + 36x2y + 54x)% + 27y°
2 8

X 43

(viii) x4+8x+§;+3—25+1—2
X X X

B —6x+

(vii)

243x10— 810x7 + 1080x* —

720x+ 240 32
X X

289

(i) 241° (to nearest degree)
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26 6
i) 15
i) 20
(iv) 15
v) 1
(vi) 220
3 (i 56
(ii) 210
(iii) 673596
(iv) —823680
(v) 13440
4 (i) 6x+2x°
5 16x*—64x2+ 96
6 64+ 192kx + 240k%x>

7 () 1-12x+60x
(ii) —3136and 16128
8 (i) 4096x° — 6144kx> + 3840k>
(i) +§
9 (i) x12—6x"+15x°
(ii) —20
10 (i) »°—10x>+40x
(ii) 150
11 (ii) x=0,—1and -2
12 n=>5, a:—%, b=20
13 (i) 64 —192x+ 240x>
(ii) 1.25
14 (i) 1+ 5ax+ 10a%x?

(i) a=

G

(i) —2.

Chapter 4

9 (Page 108)

(i) (a) One-to-one
(b) One-to-many
(c) Many-to-one

(d) Many-to-many

Exercise 4A (Page 110)

1 (i) One-to-one, yes

(ii) Many-to-one, yes

(iii) Many-to-many, no

(iv) One-to-many, no

(v) Many-to-many, no

(vi) One-to-one, yes

(vii) Many-to-many, no

(viii) Many-to-one, yes

2 (i) (a

(b)
(c)
i) (a)

(b)
(c)
(iii) (a)

(b)
(c)
(vi) (a)

(b)
(c)

(vii) (a)

(b)
(c)

(viii) (a)

(b)
(c)

Examples: one — 3,
word — 4

Many-to-one
Words

Examples: 1+ 4,
2.1—84

One-to-one

[R+

Examples;
6—4

One-to-one

x=0

Examples: 36m — 3,
9

ETC — 1.5
One-to-one

[R+

Examples: 121 — 3,
12— 12
Many-to-many

[R+

Examples:
133,423

One-to-one

R+

(ix) (a) Examples: 4+ 16,
—0.7+—0.49

(b) Many-to-one
e R
3 @ (a -5
(b) 9
(e) —11
(i) (a) 3
(b) 5
(e) 10
(i) (a) 32
(b) 82.4
(c) 14
(d) —40
a4 W flx) <2
0<f(V)<1
€ {2,3,6,11, 18}

ye R*
v) R
wiy {5 1,2,4

ii) 0sys<1
(viii) R

(ix) 0<f(x)<1
x) fx)=3

5 For f, every value of x
(including x = 3) gives a unique
output, whereas g(2) can equal
either 4 or 6.

©® (Page 115)
(i) (a) Function with an inverse
function.
M) f: C—>2C+32
f1: F— g(F— 32)

(ii) (a) Function but no inverse
function since one
grade corresponds to several
marks.

(iii) (@) Function with an inverse
function.

(b) 1 light year = 6 x 10'? miles or
almost 10'¢ metres.



f: x— 10'%x (approx.)
f~1: x+— 1071x (approx.)
(iv) (a) Function but no inverse

function since fares are
banded.

Activity 4.1 (Page 117)

i) y N
1 y = f)
------ y = f1(x)
0 >
f(x) = x% £1(x) = Vx
(i y=1fx)
R 0
o)--"" >
e X

f(x) =2x; f1(x) = %x

(iii) YA

.
.

fx)=x+2;f1(x)=x-2

(iv) YA

fx)=x>+2;f 1 (x)=3x-2

y=1f(x) and y=f~!(x) appear to
be reflections of each other in
y=x.

Exercise 4B (Page 120)
1) 8x°
i) 2x°
i) (x+2)°
iv) x*+2
(v)  8(x+2)3
i) 2(x>+2)
(vii) 4x
(viii) [(x+2)3+2]3
(ix) x+4
26 f(x =xT_7
(i) fli(x)=4-x
i) f1(x)= 2x-4
X

iv) f1(x)=vVx+3x A
3 (i), (ii)

YA

6 (i) a=3
(ii)

=Y

(i) f(x) = 3

(iv) Function f is not one-to-one
when domain is R.

Inverse exists for function
with domain x = —2.

=2,b=-5

(ii) Translation (_52_,)

YA y=g
0 >
(=2,-5)
(iii) y = -5
(iv) c=—2
(v) YA
y=gx)
Y =X
7/
i y=g'()
e
----- 7 ‘
A(=5,-2)~
d
4
/7
(=2,-5)

(2]
=
[
°
=3
1]
=
»

291



9 (i) flx)s2 Exercise 5A (Page 129) Activity 5.5 (Page 130)

(i) k=13 2 4% y=x3+c= dy_ 3x?, i.e. gradient
10 (i) k=4o0r-8x=1o0r—-5 3 dx X
i) 7 f(x) f(x) depends only on the x co-ordinate.
o iii) 222X, x# 0 x 2x
s ) = Exercise 5B (Page 133)
] 1 ) 2(x-2)*+3 x3 3x2
k- 1 5x*
Gii) f(x) =3 4 43 .
(iii) f is not one-to-one 5 5xt 3 622
X
(iv) 2
a — X 6x° 4 11x"
— - ~1 <
W 2=yT5 e (=2 5 5 40x°
12 (i) 4
i A y = f0r) ” 1 6 15x
. 70

© (Page 129)
. y =11 When f(x) = x", then
3 f(x+ h)

(i) —9x%2+30x— 16
(i) 9 — (x— 3)?

(iv) 3+V9—x

Chapter 5

20
Activity 5.1 (Page 1Z44 :
hat foll 2! %xi
See text that follows. ty 5.4 (Page 130) by L
A x
Activity 5.2 (Page 126) 1
= 0z
6.1;6.01; 6.001 2 *
24 %xf
Activity 5.3 (Page 127) 25 _%
x
02 _
(i) 26 15
(i) —4 x
(iii) 8 27 —x*
Gradient is twice the x co-ordinate. 28 % +ax
When x=0, all gradients =0 x
When x = 1, all gradients are equal. 29 Jx'-3x7"
i.e. for any x value they all have the 30 g 4 % X

292 same gradient.



31 8x-1 3 (i) yp 6 (i) YA

\

32 4x+5

—
I

33 o >
Y 3 x e X
34 16x°—10x 3 /4
35 2y ‘
2 :
1
36 —
\/; (ii) % =2x+3
Nx_ 1 9
T Gii) (1, 3)
38 sz —%x +4 dy (iv) No, since the line does not
(ii) a=2x—6 go through (1, 3).
30 3 dy 7 @ A
2 (iii) At (3,-9), ax =0
505 _3/x_ 2 9
40 3x 2\/; Jx (iv) Tangent is horizontal: curve
at a minimum.
Exercise 5C (Page 136) a (i) V)

1 M (a) —2x73
(b) —128

(i) (a) —x2—4x7

(b) 3

i -
(i) (a) —12x~*—10x7° W 3= 2%
b} =22 (i) At (2, —5), dy _ 4;
(iv) (@) 12x3+24x7*

d
(b) 97.5 at (-2, -5), dﬁ =—4
(v) (@ —=+3
2*/_ i) At (2,5), ¥ — 4
. dx
(b) 33
‘o at (-2,5), dr_y
(vi) (a) —2x?
2 (v) A rhombus
(b) —5
8 (i) yﬂ
2 () TA \/
\ / > 3
_ 6] X -6
0 >
(ii) Y32 1ax+11 \1\/
dx —
dy dy
(iii) x=1: "L =2, x=2: L =—1; .
(i) (=2,0),(2,0) dx dx (i) 4
_3.dy _ (iviy=2+¢ceR
i ¥ =2x x=3 72
dx 9 (i) 4a+b-5=0
. dy The tangents at (1, 0) and
(iv) At (-2,0), Y =4 o _
iv ( ) dx (3, 0) are therefore parallel. (i) 12a+b=21

tzo,l: (iii) a=2and b=-3
at ( )dx

1
==

g se3deyn



Answers

294

11

12

13 (i)

(i) 0.8225 and —0.8225

(i) x = 2

(i) y

i (~1,0)

Lo 1

(i) 2

(iv) —4

. 8
-—=+1

(i) e

(iii) 2

(v) 0

(vi) There is a minimum point at

(2,3)

14

Ny
4

- 2
—=— 16
(iii) 3

(iv) The line y=—16x+ 13 is

tangent to the curve
y=%+ 1at (0.5, 5)
(i)
\

=Y

15 (i) 3y

\
10
5
3 0 30X
. dy 8
(i) a = —;
(iii) 1

(iv) —1; the curve is symmetrical

about the y axis

dy _1_ 2
o _1.2
16 (i) x 272
(i) x=2, gradient=1
17 4
3

Exercise 50 (Page

o 4
o dy
(i) £ =4-2x
n dx
(iii) 2
(iv) y=2x+1

.o dy

3 =L =3x2-8
(0} dx X
(i) —4
(i) y=—4x
(iv) (0,0)

2Y

4 (i)

YA

. dy
At (-1,5), =% =2;
(i) At ( )dx
dy
t(1,5), -4 =—
at ( )dx
(iii) y=2x+7,y=-2x+7
(iv) (0,7)
5 (i) y“
8

XV

(i) y=4x is the tangent to the

6 (i)

curve at (2, 8).

y=06x+28

(i) (3,45)

(iii) 6y=—x+273

7 (i)

%:3x2—8x+5

(i) 4

(iii) 8

(iv) y=8x—20

(v) 8y=—-x+35

(vi) x=0o0r x=

8 (i)

8
3

YA

I\

o] 1™

"

A(1, 0); B(2, 0) or vice versa



10

1

12

13

14

15

16

17

(i) At(1,0),Y =1

At(2,0), Y =1

Ee &E

(iii) At (1, 0),
tangent is y=-x+1,
normal is y=x—1
At (2,0),
tangent is y=x—2,
normal is y=—-x+2

(iv) A square
(i) (1,-7)and (4,-4)
i) & = 4x-9. At (1,7),

tangent is y=—5x—2;
at (4, —4), tangent is
y=7x—32.

(iii) (2.5, —14.5)

(iv) No

M y=3x+3

(i) y=3-2x

(iii) 2} units

i y=—1x+1

i) y=4x-7;

(i) 8% square units

1

N —F
2N x

o ()

(iii) No. Point (%, —%)does

lie on the line y=2x—1.
W y=>5x—}
(i) 20y+4x+9=0
o 13 .
(i) 5 square units
27.4 units
(i) 2y=x+6
(ii) 9 square units

. 2
i 3+
i P

(i) 5

(iii) y=5x—3
1

i) 2x——=

1 x2

(i) 1

(iv) (2.4, 5.4), (0.4, 2.6)

18 26% units
19 (i) (a) x= I%andx: 3
(b) y=2x-2
(e) 36.9°
(ii) k< 3.875
20 (i) (-8,6)

(i) 11.2 units

Activity 5.6 (Page 146)

YA

(i 3

(ii) 0

(iii) (0, 0) maximyg; minim
and right o

(iv) No

(v) N,

(vi) A =

(ii) Minimum

(iv) YA

13

Ie

N\ O
4

-3

.ody
2 -2 =2x+15;
(i) X

%szhenxz—Z%

<Y

(ii) Minimum
(i) y = 41%

(iv) YA

=Y

3 (i) %=3x2—12;

9=0whenx=—20r2
dx

Rimum at x= 2,

x==-2,y=18;
ben x=2, y=-14
(iv) YA
18

\
b
L
= Olw
<
<Y

A maximum at (0, 0),
a minimum at (4, —32)

(ii) YA

(6] 4 6 X
-32
dy
5 2 =3x2-1
dx X

(2]
=
[
°
=3
1]
=
(3]

295



7 G %23(x+3)(x—1)

P1

(ii) x=—3orl

(v) YA

Answers

33

. dy
8 () L=-3(x+1)(x—3
M (x+1)(x—3)
(ii) Minimum when x=-1,
maximum when x=3

(i) When x=-1, y=-5;
when x=3, y=27

(iv) YA

27

LY

7103\

2 13
5’4ﬁ)’

9 (i) Maximum at (—
minimum at (2, —5)

(i) VA

~
\n‘\N
o
b
<
=Y

10 (i) Maximum at (0, 300),
minimum at (3, 165),
minimum at (—6, —564)

296

(i) YA

—564

1 (i) %=3(x2+1)

(ii) There are no stationary
points.

(iii)

y |-36|-14| —4| 0 | 4 | 14

36

(~4, 338) and (3, —5)

@ (1,4)and (-}, —4)

i) 4 <x<?
14 (i) %:(Zx—3)2—4

Gi) 2y+9=10x

(i) x> 2; or x < }
15 (ii) x< 15

(i) (—1, 8) and (2, 2)

(iv) 33

16 (i) x= 1% and x=2

(i) (2, 1) is the stationary point

Activity 5.7 (Page 155)
y

AP
C\Q
o €
o
of N\ T
gradient 3
ofdy 1 | :
dx |
O/ X

xx.) the gradient of % is

iyf.) the gradient of (%’c is

Exercise 5F (Page 158)

2
%=3x2' dl:Gx

16G) e

d d’y
(i) ay =5x% s 20x3

2
i) Vo8 9Y g

a5 g
(iv) (d% =-2x73 % = 6xt
W jjﬁ% i%z%x‘%
(vi) % =4x3+%;

%z 122 — %

2 (i) (-1, 3), minimum
(i) (3,9), maximum

(iii) (-1, 2), maximum and
(1, —2), minimum

(iv) (0, 0), maximum and
(1, —1), minimum

(v) (=1, 2), minimum;
(—%, 2.02), maximum;

(1, —2), minimum



(vi) (1,2), minimum and

(-1, —2), maximum
. 1 o e
(vii) (5, 12) , minimum

(viii) (\/E, 8 \/E) , minimum and
(—2, -8 v2), maximum

(ix) (16, 32), maximum

(i) 4x(x+2)(x—2)

(ii) 4(3x*>—4)

(iii) (-2, —16), minimum;
(0, 0), maximumy;
(2,-16), minimum

LY

(i) % =0Bx-7)(x-1)
(ii) Maximum at (1, 0);
.. ( 1 5
minimum at 23,— lf)

@y

-3

(M % = 4x(x—1)(x—2)

(ii) Minimum at (0, 0);
maximum at (1, 1);
minimum at (2, 0)

i)y

1

(0] 1 2

=

M p+qg=-1
(i) 3p+29=0
(iii) p=2and g=-3

76 f'(0)=8x-Lsf"(0=8+2
X X

(i) (%, 3), minimum
2

7; X 2

Jx

(ii) (4, —4), minimum

8 (i) 1-

9 2
10 (i) 0,10

(ii) —58.8

Exercise 5G (Page 162)

1M y=60—x
(i) A=60x— x>
=2 =60-2x;
(m)dx X
&PA__
dx?

Dimensions 30m by 30m,
area 900 m?

2 (i) V=4x3—-48x*+14

v _

dle

(ii)

(i) V=x2-2x3

(iii) (}EV =2x—6x%
&V _y ok
de

(iv) All dimensions %m (a cube);
volume $m3
6 (i) (a) (4—2x)cm
(b) (16 —16x+ 4x%) cm?
(iii) x=1.143
(iv) A=6.857

7 (i) P=2nmr, r:M
T

30 c
4+m
lengths =~ 16.8 cm and
13.2cm
125
=—r

r

(i) x= m:

8 (i) h=
(i) V=125nr—mr?

(i) v _ 1251 — 3nr?;
dr

2
% =—61r

(iv) r=6.45cm; h=12.9 cm
(to 3s.f.)
9 (i) Area=xy=18
(i) T=2x+y
18, d°T _36

X dx? X°

and y=6

(v) x=1 andy=%

11 () h:%
x
. dA 2592 .
(i) o 12x— 2 ; stationary

point when x=6and h=9

(iv) Minimum area = 648 cm?
Dimensions:
6cm X 18cm X9 cm

12 (i) y=%
) A=3x+30+%
(i) A=54m?

13 (i) h=12-2r

(i) 647 or 201 cm?

© (Page 167)

dv is the rate of change of the

dh

volume with respect to the height of
the sand.

1
==

G 19ydeyn
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Answers

298

% is the rate of change of the height

of the sand with respect to time.

% X % is the rate of change of the

volume with respect to time.

® (Page 169)
y=x-2)

= () +4(x)°(-2) + 6(x?)*(-2)?
+4(x7)(-2)° + (-2)*

=x8— 8x0+24x* —32x% + 16
% =8x7 — 48x° + 96x° — 64x

= 8x(x® — 6x* + 12x% - 8)

=8x(x%—2)(x*— 4x% +4)

=8x(x?—2)(x?-2)?

=8x(x2-2)3

Exercise 5H (Page 171)

16G) 3(x+2)?
i) 8(2x+3)3
(iii)  6x(x*—5)?
(iv) 15x2(x*+4)*
v) —-3(3x+2)2

—6x
(x*-3)

1
(vii) 3x(x?—1)?

2
i oL <14

(ix) %(\/; - 1)3

2 () 9(3x-5)2

(vi)

i) y=9x—17
3 (i 8(2x-1)°
(i) (%, 0), minimum

(iii) YA

Y

N|—

4 (i) 42x-1)(x2-x-2)°
(ii) (-1, 0), minimum;
1 6561 .
(E’ ﬁ)’ maximuim;
(2, 0), minimum

i) YA

Y

1
-1 o 1

5 4cm?s!
6 —0.015 Ns~!

R
10
(=0.314 m?>day ! to 3 s.f.)

m?day!

Chapter 6

©® (Page 173)

3 (i) y=2x°-6

4 (ii) t=4. Only 4 is applicable
here.

5 (i) y=5x+c
(ii) y=5x+3

(iii) YA
y=5x+3
3

o

6 (i) x=1 (minimum) and
x=-1 (maximum)

(i) y=x>—3x+3

(i) A

LY

[—101

7 () y=x*—6x+9

(i) The curve passes through
(1,4)

8 (i) y=x*-x*—x+1
(ii) (—% 1%) and (1, 0)
(iii) vA

415

0,1

Y

(1,0

-
o

9 (i) y=x>—4x*+5x+3
(ii) max (1, 5), min (1%,4%)
. 23
(i) 45 <k<5
v 1<x<1%x=1
2 3
10 y=3x2+2
1 y=—2_3x+17

1

251
12 y=3x - +53

3

13 y=x>+5x+2
14 @) y=2xVx —9x+20

(i) x=9, minimum



15 y=6\/;—x72+2
16 () y=4x—12+3
(i) x+2y=20

(iii) (7, 6.5)

Activity 6.1 (Page 183)

The bounds converge on the value
— a5l

A= 455.

Activity 6.2 (Page 187)

() Area=1[3+(b+3)]b-1[3+(a+3)la
=1[6b+b?—6a— ]

2
%+3u

2
(ii) = [% +3b
2 b
gl

a

2 b
(i) _[:’(x +3)dx= [’% + 3x]

Exercise 6B (Page 189)

1

(i)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

2 (i)

(i)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

x+c
X +x"+c
2x3+5x+¢

3 2
X X

+ -+ +x+c
32

E
4
x4+ x4 ¢

B+x2+x+c

3

X
3 +5x+¢

5x+c¢

2x3+2x%+ ¢
¥
§+x3+x2+x+c

_10,-3
3 X+

X +x3+¢

4
2x+%—% Ztc

2x3+7x 1+ ¢

5
4xt+c

1,

3x3

2elx+c

5
x4,
5 x

(i) 9 P 1
(iii) 27 . .
(iv) 12
(2]
(v) 12 .E-
(vi) 15 §
- > -]
(vii) 114 T o > 5 >
(wiii) 1
(ix) 2% (ii) 2% square units
1 .
9 213 square units
x 0 354
3 10 (i) y
(xi) —105%
(xii) 5
=)C
;x
(iii) y= X% area= % square units
— 3 _1 :
y= x> area = 4 square units
(iv) Expect J.fx3 dx > J‘?xz dx,
_ since the curve y= x> is
0 1 2 * above the curve y= x>
(i) 21 between 1 and 2.
3
i) N Confirmation: J?x3 dx= 3%
and J.?xz dx= 2%
\ 12 (i) YA
/lz 0 j\ e
O 2 %
(i) 2<x<2
299

(iii) 103



- Lo [3
P1 G 1} i) [ (2 - 2x+1) dx=5%
i) [{2—2x41) dx=9]
- 1 0 x o
16 (i) and (ii)
0 YA
)
% (b)
c
< 5 >
1 /2 3 X
(6] >
NA 4 X
(iv) 13
(v) The answers are the same, -6
since the second area is a .
translation of the first. (iii) (a) 7
13 (i) YA (b) 2%
(iv) 0.140625. The maximum
lies before x = 1.5.
17 16 square units
-10 2 * 18 (i) 14.4 units
(ii) 8 square units
(i) 24 square units
14 (i) YA
o 2
(i) 7% square units
(iii) 7%, by symmetry
(iv) 73 1 YA
y=x
15 (i) Yy
73 N
0 “x
1
(O] =x
20! its
(i) jg(xz —2x+1) dxlarger, gSquareunt
as area between 3 and 4 is
larger than area between
200 —1and 0.

(i) YA

y=x’-4

T

9 square units

Y

(i) YA p=x_2
1 R
[0) “x
-2

1 .
square units
\

y=3x*-4x

C

1 square units
(v) YA

y=xt-x?

<Y

4 it
15 square units

(vi) y“ y= 4x3 — 332

970.75 x

1 .
24 square units



(vii) y (i) 520 square units 5 (i) A
“ P1
y=x-x (i) 0. Equal areas above and
below the x axis. .
3 () (a) 4 / \ y=4
1 (0) “x
(b) —2.5 o (2]
0 X 5
(ii) 6.5 square units '5
4 (i) (a) —6.4 y=8—x2 ®
1 .
6 square units (b) 38.8 (if) 10% square units
(viii) ii) 45.2 i .
YA (ii) 45.2 square units (i) 10% square units
y=xr-x-2
- 1 .
Exercise 6D (Page 198) (iv) 213 square units
1) A:(-3,9); B:(3,9) 6 G
> 2 G A g y=x-6x
2 -NQ| y 30 i ‘

1 .
82 square units

o

1

N
(=)}
=Y

(ix) A -
y=x3+x>-2x
(ii ,—5) and (5, —5)
(iii) 10% square units
2 -10 2 7 (i)
YA
y=2x-3
11% square units / 4 .
(x) v
Ay:x3+x2 y=x(4-x)
i) (-1,-5),(3,3)
(iiii) 10% square units
(i) (~2,-8),(0,0)and (2,8) 8 72 square units
(i) 8 square units 9 1% square units
> " YA yox 10 (i) A
10 1 2 X
y=4x+1
> y=x3+1
7 N g
8% square units y=4x-x2 Y x
i Y =200 - 5% (0,0 i
2 @ g x> —5x% (0, 0) (i) (0,0)and (2,4)

o2 .
and (4, 256) (iii) 25 square units (i) 8 square units (4 each) 301
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11 4.5 square units 6 20 square units 2 (i) 53

y -
12 (i) gx—y:m—sxz—w 0 (i) 60
(i) 4x+y—4=0 1 y=i-2 G205
. o X iv) 336
" (iv) 8.1 square units -1 )
§ dy -2 v 53
é, 13 (i) a=4—3x2;8x+y—16=0 / i 2
(i) (—4, 48) 36 4
(i) 108 square units (ii)  —4; the graph has rotational
14 102 square units Activity 6.3 (Page 203) symmetry about (2, 0).
15 () A: (1, 4); B: (3,0) i) (a) 4(x—2)3 4 (i) 5.2 square units
(i) 3y=x+4 (b) 14(2x+5)° (ii) 1.6 square units
(i) % square units (o) =6 (iii) 6.8 square units
(2x-1)* (iv) Because region B is below
—4 the x axis, so the integral for
H (d) > i
Exercise 6E (Page 203) 1-8x this part is negative.

1 6 square units (i) (a) (x—2)*+c { square units
2 6% square units (b) %(x -2)*+c 3\ square units
3 4 square units (e) 22x+5)7+¢ +x=29

A () 2(2x+5)7+ Y=43x -2 +1
2 7 ) (8.5,4.25)
y=Ax (i) y=16—4vV6—2x
R Activity 6.4 (Page 206)

0 x 1

2 . M (@ ,
4 83 square units b) %
A (e 0.9
2 () 0.99

{e) 0.9999

(i) 1

-1
= (i) ——=+¢
0/ x 5(x-2) ©® (Page 207)
3 o
1 (iv) %(x— 4y +c l; J %dx does not exist since 1 is
a Jox 0
5 6 square units W 5Bx—1)*+c undefined.
| .
)\ i) 3z(5x-2)7 Exercise 6G (Page 208)
2
(vii) 3(2x—4)°+c 12
4 3 1
! y=ix (iii) §(4x—2)2+¢ 2,
R ) g 4 Ste 32
0 “x a -l
(x) 3J2x—1tc 4
5 —1



(iv) ¥ 5 (i)

€ (Page 209) A
. . 62.5
1 (i) Acylinder y=yT Wiy /
(i) A sphere > :
(e} 4 X :
(iii) A torus s o
, 7 8T units y=10 w| /0 _' T
3 3 (0 (i) (base) i L 2
¥ o 10 25 'x N
A N
® (Page 211) (i) 45.9 litres
Follow the same procedure as that 6 (i)
. - 4y =3x YA
on page 209 but with the solid sliced
into horizontal rather than vertical 3 12
. 4.3)
discs.
Exercise 6H (Page 212) o >
4 x

1 For example: ball, top (as in (i) 127 units®

top & whip), roll of sticky tape, +5
pepper mill, bottle of wine/milk 4@ y, \ /

Y

etc., tin of soup 2
2. v
y=2x 2
(y+4)dy
(iii) 3 litres
(iv) _[I)On(y+ 4) dy=90n
=2 of 120
> 7 421
0 3 X
1047 . 86
~3  units’
(RN Chapter 7
:x
© (Page 219)
y=x+2 When looking at the gradient of a
2347 units® tangent to a curve it was considered
; (i) as the limit of a chord as the
> A _2 width of the chord tended to zero.
> y=x-2
0 2 ¥ 4 Similarly, the region between a
s56m .o curve and an axis was considered as
3 units . .
the limit of a series of rectangles as
(iii) YA y=x2+1 0 > the width of the rectangles tended
to zero.
-2
Exercise 7A (Page 221)
187 units®
1 (i) Converse of Pythagoras’
1 0 1 > theorem
sen ) 17> 177 15
15 units

3 (i) 5cm 303
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a ) gx/§
5 (i) 4d

6 (i) BX=3/3

Activity 7.1 (Page 223)

Only sin 6 positive All positive

L.
S

Only tan 0 positive | Only cos @ positive

©® (Page 227)

1 The oscillations continue to the

left.
YA

/\ N
/:(60° —186° 0° 9

y=sin6

YA

/\_20 Oo/'\

y=cos @

2 y=sin0:

— reflectin 6 =90° to give t
curve for90° <6 <1

rotate the curve for
0 < 0 < 180° through 180°,
centre (180°, 0) to give the
curve for 180° < 6 < 360°.

y=cos0:

— translate (_92 j and reflect

in y axis to give the curve for
0<0=<90°

rotate this through 180°,
centre (90°, 0) to give the
curve for 90° < 6 < 180°

reflect the curve for
0<6=<180°in 60 =180°
to give the curve for
180° < 6 = 360°.

Activity 7.2 (Page 228)

YA

1 N\,

~1

90° 180@360" 4500 g
y=sin0

YA

AN /N

-90°0°[  90°_180° 270° 360° 4503 ")
~1 \/ \
y=cos 0
YA

0

0° 180° 270° 360° 4350°

Y

30° 90° 150° 270°  360° x

(ii) 30°, 150°
(iii) 30°, 150° (+ multiples of 360°)
(iv) —0.5

2 (i), (i)

Ccos )CA

ANy

=

90¢ 180° 270° 360° 45§° -
53° 307° 413°

(i) x=-53°53° 307°, 413°
(to nearest 1°)

(iii), (iv)

sin x

1 .
08 1 1 1
H >

90° 18§° 270° 360° 450°
53° 127° 413°

=53°127° 413°
to nearest 1°)

For 0 = x =< 90°,

sin x= 0.8 and cos x= 0.6
have the same root.

For 90° =< x < 360°,

sin xand cos x are never
both positive.

3 (Where relevant, answers are to
the nearest degree.)

(i)  45°225°
(ii)  60° 300°
(iii)  240°, 300°
(iv) 135° 315°
(v) 154° 206°
(vi) 78° 282°
(vii) 194°, 346°
(viii) 180°

V3

4 () X2
(0]} 2
1
@i —=
V2
(i) 1
v
1
v —
(vi) 0



i) % 12 (i) 0=71.6° or 0=251.6 a0 g,ll?n
13 6=90°or 0=131.8°
V3 iy T8
twiii) 5= 4’4
i) -1 Exercise 7D (Page 238) (i) %’%Tc
. ° . n
5 (i) —-60 1 (i) 4 - 7n 11n
Gi) —155.9° W T 6’6
n ~
(iii) 54.0° 2 (v) % T
m 44
6 (i) (iti) —
3 . T4n
» (vi) 7,2
y=sinx . 5n 3" 3
1 (iv) —
17\ - 2 5 (i) 0.201 rads, 2.940 rads
WAk ( 1803 % ! w = (ii) —0.738 rads, 0.738 rads
N\, N 3
- (180 - x)
shaded areas are congruent (vi) 0.4 rad (iii) —1.893 rads, 1.249 rads
. (vii) 51 (iv) —2.889 rads, —0.253 rads
(i) (a) False >
(v) —1.982 rads, 1.982 rads
(b) True (viii) 3.65 rad
() False 5n Q.464 rads, 2.678 rads
(ix) —
() True 6 \730 rads, 2.412 rads,
hIs
7 ()  obetween 0° and 90°, 360° b o
and 450°, 720° and 810°, 2 ) 18° '
etc. (and corresponding age 241)
. ii 108°
negative values). (i Draw a line from O to M, the mid-
(i) No: since tan @ = sina ;1 (i) 114.6° oint of AB. Then find the lengths

coso’
must be positive or one

of OM, AM and BM and use them to
find the areas of the triangles OAM
positive and two negative. and OBM, and so that of OAB.
(iii) No:sinor=cosax = ox=45°
225°, etc. but tan o= +1 for
these values of ¢, and

In the same way,
AB =AM + MB =2AM.

. 1
sin@=cosQ=——

2 Exercise 7E (Page 241)

8 (i) 5.7°174.3° 1

(ii)  60° 300°
(i) 116.6° 296.6°

r(cm) | 6 (rad)| s(cm) | A (cm?)

1
==

L 19ydeyn

n St 251

(iv) 203.6° 336.4° i) 3 5 4 4 5
) 0° 90° 270°, 360° - 7:«; . : . .
i) 90°,270° _

(iv) -1 4 % 5 .
(vii) 0°, 180°, 360°

vy -1
(viii) 54.7°, 125.3°, 234.7°, 305.3° i . . p

i) == 2 3 2 8

(ix)  60° 300°

3
2
4
(x) 18.4° 71.6° 198.4° 251.6° (vii) \/g 5 5 4 10

. o 1
9 A:(38.2°,0.786), wii) 1.875 | 0.8 15 | 1.41
B: (141.8°,—0.786) 2
. 2
10 (ii) x=143.1° or x=323.1° (ix) 3.46 3 7.26 4n

N = D=

11 (ii) x=26.6° or x=206.6° (x)
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Answers
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2 (i) (a) %cm2

(c) 16.9 cm?
(ii) 19.7 cm?
1.98 mm?

(ii) 43.0 mm
5 (i) 140yards

(i) 5585 square yards
6 (ii) 43.3 cm

(iii) 117 cm? (3 s.f.)

7 (i) 62.4cm?

(ii) 0.65
8 ) 43

(i) 48v/3 — 241
9 (i) 1.8 radians
(ii) 6.30 cm
(iii) 9.00 cm?

10 (i) 18— 63 + 21

Activity 7.3 (Page 245)
The transformation that maps
the curve y=sin x on to the curve

y =2+ sinxis the translation (g)

In general, the curve y=1f(x) + sis
obtained from y = f(x) by the

translation (0)
s

Activity 7.4 (Page 245)

The transformation that maps
the curve y=sin x on to the
curve y=sin (x—45°) is the

o
translation (48 )

In general, the curve y=f(x—t) is
obtained from y = f(x) by the

translation ((t))

Activity 7.5 (Page 246)

The transformation that maps the
curve y=sin x on to the curve
y=—sin xis a reflection in the x axis.

In general, the curve y=—f(x) is
obtained from y=f(x) by a
reflection in the x axis.

Activity 7.6 (Page 246)

For any value of x, the y co-ordinate
of the point on the curve y=2sin x
is exactly double that on the curve
y=sin x.

This is the equivalent of the curve
being stretched parallel to the y axis.
Since the y co-ordinate is doubled,
the transformation that maps the
curve y=sin x on to the curve
y=2sin xis called a stretch of scale
factor 2 parallel to the y axis.

The equation y = 2sin x could also
be written as 2 = sin x, so dividing
y by 2 gives a stretch of scale factgr,
in the y direction.

This can be generalised 3

e equivalent of the curve
pressed parallel to the
ince the x co-ordinate is
ed, the transformation that
maps the curve y=sin x on to the
curve y=sin2xis called a stretch of
scale factor % parallel to the x axis.

Dividing x by a gives a stretch of
scale factor a in the x direction, just
as dividing y by a gives a stretch of
scale factor a in the y direction:

y=f (%) corresponds to a stretch of

scale factor a parallel to the x axis.
Similarly, the curve y = f(ax), where
ais greater than 0, is obtained from
y=f(x) by a stretch of scale factor %
parallel to the x axis.

Exercise 7F (Page 251)

1 () Translation(gg ]

(ii) One-way stretch parallel to
x axis of s.f. %

(i) One-way stretch parallel to
y axis of s.f. %

(iv) One-way stretch parallel to
xaxis of s.f. 2

(v) Translation (g)

(o]
2 (i) Translation (_68j

(i) One-way stretch parallel to
y axis of s.f. %

jii) Translation G)j

e-way stretch parallel to
is of s.f. %

(b) y=sinx
(ii) (a)
YA

(b) y=cosx
(iii) (a)
YA

Y

0°

of—

(b) y=tanx



(iv) (a)
YA

(b) y=sin x

(v) (a)
YA

| /\
0 >
/)o 27&/ X
-1

(b) y=—cos x

4 (i) y=tanx+4

YA
y=tanx +4,

A

o oob 1800 27f° 360° 450° x

(i) y=tan (x+30°)

by y=tan (x + 30°)

(i) y=tan (0.5x)
y y = tan (0.5x)

1&0%30(’ 5400 X

5 (i) y=4sinx

(i) —2\/3

6 (i) a=3,b=—4
(ii) x=0.361 or x=2.78

(iii)

fx) A

7 y=3-4cos2x

O b1 n T :
a8 7 F Ny
7 () a=4,b=6

(ii) x=48.2or x=311.8
(iii)

1) A

10

-2

8 (i) a=6

(i)

O T Tox
(i) No, it is a many-to-one
function.

10 (i) x=0.730 or x=2.41

(ii)
f{x)

M

y=4-3sinx

(2]
=
[
o
(=3
1]
-
(-}

1

Y

(0] T b 3n 2m

2 2

(i) k<1, k>7
(iv) 3n

2

(v) 2.80

vapour trails you need two pieces of
information for each of them: either
wo points that it goes through,

or else one point and its direction.
All of these need to be in three
dimensions. However, if you want

to find the closest approach of the
aircraft you also need to know, for
each of them, the time at which it was
at a given point on its trail and the
speed at which it was travelling. (This
answer assumes constant speeds and
directions.)

® (Page 261)

The vector a,i + a,j + a;k is shown
in the diagram.

ZA

&
=y

_____________ e 307



—
Start with the vector 0Q = a,i + a,j.

O

Xy a,

0
o
H
g
g

Length =/a? + a3

Now look at the triangle OQP.

(6}

Al 2 2
aita;

P

OP2 = 0Q? + QP2

= (a2 + a2) + a?

_[a2 2 2
= OP =ja] +a; +a;

Exercise 8A (Page 261)

1 () 3i+2j
(i) 5i—4j
(iii) 3i

(iv) —=3i—j

2 For all question 2:

(i)

(13, 56.3°)

308

(i)

(13, -33.7°)

(iii)

(442, —135°)

(iv)
(5, 116.6°)
(v) \
N
2NN
7 AN\
N\
/)

v 7

(vi) 2.24
i 2i-2j
(i) 2i

Giii) —4j
(iv) 4j

(v) 5k

i) —i-2j+3k
(vii) i+2j-3k
(viii) 4i—2j+ 4k
(ix) 2i-2k

(x) -8i+10j+k

5 (i)

(i)

A:2i+3j,C:-2i+j

AB=-2i+j,CB=2i+3j

—  —
(iii) (a) AB=0C

—_— >
(b) CB=0OA

(iv) A parallelogram

Activity 8.1 (Page 266)

(i) (a)
(b)
(c)
(d)
(e)
(ii) (a)

(b)

(iii)

(iv)

(v)

(i)
(iii)
(iv)

(v)

(i)

(iii)

-3j
2i+3j+k
i-k
j-k
3i+2j-5k
-6k
(a b
(b) a+b
() -a+b

(@ (a+b)
(b) J(-a+b)

PQRS is any parallelogram
andWA:%ﬁ){,()T\)/I:%(TS)



i (a i

G |AB|=|BC|=V2,
|AD|=|CD|=1/5

M  -p+q3p—38 P9

—
(i) NM-=
ML

6 (i) 3
G i+
(iii)

(v 2i-3j

7 (i) \/ﬁ

i) Zi-Zj+lk

i) 2i-2k

(iv)

2= @

|
[$¥)

2l

o

-
|

ﬁw
%

(v)

-
+

&“N
(e’

(vi)

TN
[*]

8 11.74

9 x=4o0rx=-2

2 (v) 90°

A 1
oM g 3 (vi) 180°

-6

(i) m=—2,n=3,k=-8 S (3] (-1
o (12

©® (Page 271)

The cosine rule

— —>
(i) BA.BC=0
i) | AB| = | BC| = V10

Pythagoras’ theorem i 2, 5)

® (Page 273) 3 () PQ=—4i+2j; RO =4i+8j
(i) 26.6°

(2)(2) =abtab, (i) 3i+7j

b)) (a (iv) 53.1°

[szl(“zJ bt b, am 29.0°

(i) 76.2°
iij) 162.0°

These are the same because ordinary
multiplication is commutative.

0 (Page 274) OQ\=3i+ 3j + 6k,

Consider the triangle OAB with ang
AOB = 6, as shown in the diagram.

(ii) 40°

Gii) AB=i-3j + (p— 2)k;
p=050rp=3.5

7 (i) —6, obtuse

W= WIN W

(ii)

8 (i) 99°
(i) 1(2i-6j+3k)
(iii) p=—7orp=>5

OB¥ = b? + b3 + b?
ABZ:(bl_a1)2+(b2_ 2)2+(b3_a3)2 9 (ii) q=501‘q=—3

.
2ab, + ab, + ab,) 10 (i) PA=-6i-8j— 6k,
= owsf=—"—_-—"""""—"— — . .
2lallbl PN = 6i + 2j — 6k
_ab (i) 99.1°
lallb]
11 (i) 4i+4j+5k 7.55m
Exercise 8C (Page 275) (i) 43.7° (or 0.763 radians)
160 42.3° 12 () PR=2i+2j+2k,
(i) 90° PQ=—2i+2j+4k
(iii) 18.4° (ii) 61.9°
(iv) 31.0° (iii) 12.8 units

P1
L

g 1e3deyn
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Index

Achilles and the tortoise 94

addition
of vectors 263—4
see also sum; summation

algebraic expressions, manipulating

1
angles
between two vectors 271-2,
273-5

of elevation and depression 216

measuring 235

of a polygon 6-7

positive and negative 220

in three dimensions 274-5
arc of a circle, length 238
area

below the x axis 193-6

between a curve and the y axis

202-3

between two curves 197

as the limit of a sum 182-5

of a sector of a circle 238

of a trapezium 10

under a curve 179-82
arithmetic progressions 77-84
asymptotes 69, 228

bearings 216, 255
binomial coefficients
notation 97
relationships 101
sum of terms 101
symmetry 97,101
tables 96-7
binomial distribution 102
binomial expansions, of
(1+x)" 100-1
binomial expansions 95-104
binomial theorem 102-4
brackets, removing 1-2

calculus
fundamental theorem 180
importance of limits 126
notation 129, 131
see also differentiation;
integration

Cartesian system 38 Descartes, René 58
centroid of a triangle 59 difference of two squares 16
chain rule 167-71 differential equations 1734
changing the subject of a formula general solution 174
10-11 particular solution 174
Chinese triangle see Pascal’s triangle  differentiation
chords, approaching the tangent of a composite function 167-8
126 from first principles 126-7, 131
Chu Shi-kie 96 and gradient of curves 134-9
circle with respect to different variables
arc 238 169-70
equation 69 reversing 173
properties 238-44 using standard results 131-2

sectors 239 minant 27

circular measure 235-8
common difference 77
completing the square 21-4
complex numbers 27
constant, arbitrary 173 :
co-ordinates of a function 108
of a mapping 106
drawing

co-ordinates 39

curves 63

a line, given its equation 47-9

elevation, angle 216
equations
of a circle 69

b 2267 graphical solution 20-1
ule 240, 271 linear 6,13
polynomial, curve and solving 7-8
stationary points 64-5 of a straight line 46-54
curves of a tangent 140
continuous and discontinuous see also differential equations;
69 quadratic equations;
drawing 63 simultaneous equations
of the form y = # 68-9 expansion of (1 + x)” 100-1

gradient 123-6, 134-9

normal to 140-1 factorials 97

factorisation 2

d (3), notation 129 quadratic 13-17
degrees 235 Fermat, Pierre de 126

depression, angle 216



formula
binomial coefficients 97-9
changing the subject 10-11
definition 10
for momentum after an impulse
11
quadratic 25-7
for speed of an oscillating point
11
fractions 3-4
functions
composite 112-13, 167
domain 108
graphical representation 108-10
increasing and decreasing 150-3
inverse 115-17
notation 113
as one-to-one mappings 108
order 113-14
range 108
sums and differences 132-3
fundamental theorem of calculus
180

Gauss, Carl Friederich 79
geometrical figures, vector
representation 265-7
geometric progressions 84-94
infinite 88-90
grade, for measuring angles 235
gradient
at a maximum or minimum point
146-50
of a curve 123-6,134-9
fixed 46
of aline 39-40
gradient function 127-9
second derivative 155
graphical solution
of equations 20-1, 229-33
of simultaneous equations 31
graphs
of a function 108
of a function and its inverse
117-18
maximum and minimum points
146
of quadratic functions 22-5
of trigonometrical functions
226-35

heptagon 6

i (square root of —1) 27
identities

how they differ from equations

7,223

involving sin, cos and tan 223-6
image (output) 106, 109
inequalities 34-6

linear and quadratic 35
input 106, 109
integrals

definite 1867

improper 206-8

indefinite 188
integral sign 185
integration 173-9

notation 184-5

of x" 175
intersection

of aline and a curve 70-3

of two straight lines 56-8
inverse function 115-20

Leibniz, Gottfried 131
length
of an arc of a circle 238
of a vector 2
limits

line segment 260
line of symmetry 22,23, 62,217
locus, of a circle 69

mappings
definition 106
mathematical 107-11
one-to-one or one-to-many 106
maximum and minimum points
146-50
see also stationary points
maximum and minimum values,
finding 160-6

gQuation 46-9

median of a triangle 59
mid-point of aline 42-3
modulus of a vector 256
momentum after an impulse,
formula 11
multiplication
of algebraic expressions 3
by a negative number 35
of a vector by a scalar 262

negative number
multiplying or dividing by 35
square root 27,108, 114
Newton, Sir Isaac 131
normal to a curve 140-1

object (input) 106, 109

ascakBlaise 96
Pascal’s triangle (Chinese triangle)
95, 98,101
perfect square 16
periodic function 226
perpendicular lines 40-1
plotting co-ordinates 39
points, three-dimensional
co-ordinates 258
points of inflection 153—4
polygons, sum of angles 6
polynomials
behaviour for large x (positive
and negative) 65
curves 63
dominant term 65
intersections with the x and y axes
65-7
position—time graph, velocity and
acceleration 161
position vectors 259-60
principal values
of graphs of trigonometrical
functions 229-30
in a restricted domain 117
Pythagoras’ theorem, alternative
proof 44

P1

xapuj
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Index

312

quadratic equations 12-18
completing the square 21-2
graphical solution 20-1, 229-33
that cannot be factorised 20-2

quadratic factorisation 13-17

quadratic formula 25-7

quadratic inequalities 35

quadratic polynomial, curve and

stationary point 64-5
quartic equation, rewriting as a

quadratic 17-18
quartic polynomial, curve and

stationary points 64-5

radians 235,237

range, of a mapping 106

real numbers 27,107,108, 115

reflections, of trigonometrical

functions 246

reverse chain rule 203-6

roots
of a quadratic equation 17
real 26,27,28

rotational solids 209-11

Sawyer, W.W. 138
scalar, definition 254
scalar product (dot product) 271-4
second derivative 154-8
sectors of a circle, properties
239-41
selections 102
sequences
definition and notation 76
infinite 76
series
convergent 88, 89
definition 76
divergent 89
infinite 76
simplification 1
simultaneous equations 29-33
graphical solution 31
linear 30-1
non-linear 32
substitution 31
sine rule 240
sine (sin) 217,223
graphs 226-7

sketching co-ordinates 39
snowflakes 94
speed of an oscillating point,
formula 11
square
completing 21-4
perfect 16
square root
of -1 27
of a negative number 27
stationary points 63—4
using the second derivative
154-8
see also maximum and minimum
points
straight line see line
stretches, one-way, of
trigonometrical functions
246-7

substitution, in simultaneous

equations 31, 32
subtraction, of vectors 264-5
sum

of binomial coefficienty

of a sequence 76

toacurve 123,126, 140
tangent (tan) 217,223

graph 228
terms

collecting 1

like and unlike 1

of a sequence 76
translations, of trigonometrical

functions 244-5

trapezium, area 10

triangle

properties 59

see also Pascal’s triangle
trigonometrical functions 217-19

for angles of any size 222

inverse 229

transformations 244-52
turning points of a graph 63

see also stationary points

unit vectors 255, 258,267-8

variables 6

vector product 273

vectors
adding 263-4
angle between 271-2,273-5
calculations 262-70

modulus 256
multiplying by a scalar 262
negative of 262-3
notation 254-6
perpendicular 272
in representation of geometrical
figures 265-7
scalar product (dot product)
271-4
subtracting 264-5
in three dimensions 258-62,
274-5
in two dimensions 254-7
see also unit vector
vertex, of a parabola 22,23
volume
finding by integration 208-14
of rotation 209

Wallis’s rule 129, 130

Yang Hui 96
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